ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (172)
  • Ocean Drilling Program; ODP  (161)
  • 176-735B; DRILL; Drilling/drill rig; Indian Ocean; Joides Resolution; Leg176; Ocean Drilling Program; ODP  (11)
  • 2000-2004  (123)
  • 1995-1999  (49)
  • 1980-1984
  • 1975-1979
  • 1970-1974
Collection
  • Data  (172)
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bach, Wolfgang; Alt, Jeffrey C; Niu, Yaoling; Humphris, Susan E; Erzinger, Jörg; Dick, Henry J B (2001): The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176). Geochimica et Cosmochimica Acta, 65(19), 3267-3287, https://doi.org/10.1016/S0016-7037(01)00677-9
    Publication Date: 2024-01-09
    Description: Chemical exchange between oceanic lithosphere and seawater is important in setting the chemical composition of the oceans. In the past, budgets for chemical flux in the flanks of mid-ocean ridges have only considered exchange between basalt and seawater. Recent studies have shown that lower crustal and upper mantle lithologies make up a significant fraction of sea floor produced at the global mid-ocean ridge system. Moreover, the rugged topography of slow spread crust exposing lower crust and upper mantle facilitates prolonged fluid circulation, whereas volcanic ridge flanks are more rapidly isolated from the ocean by a sediment seal. Hence, elemental fluxes during lower crust-seawater reactions must be assessed to determine their role in global geochemical budgets. ODP Hole 735B penetrates more than 1500 m into lower ocean crust that was generated at the very slow spreading Southwest Indian Ridge and later formed the 5-km-high Atlantis Bank on the inside corner high of the Atlantis II Fracture Zone. The gabbroic rocks recovered from Hole 735B preserve a complex record of plastic and brittle deformation and hydrothermal alteration. High-temperature alteration is rare below 600 m below seafloor (mbsf), but the lowermost section of the hole (500-1500 mbsf) has been affected by a complex and multistage low-temperature (〈250°C) alteration history probably related to the tectonic uplift of the basement. This low-T alteration is localized and typically confined to fractured regions where intense alteration of the host rocks can be observed adjacent to veins/veinlets filled with smectite, smectite-chlorite mixed layer minerals, or chlorite +/- calcite +/- zeolite +/- sulfide +/- Fe-oxyhydroxide. We have determined the bulk chemistry and O and Sr isotope compositions of fresh/altered rock pairs to estimate the chemical fluxes associated with low-temperature interaction between the uplifted and fractured gabbroic crust and circulating seawater. The locally abundant low-temperature alteration in crust at Site 735 has significantly changed the overall chemical composition of the basement. The direction of these changes is similar to that defined for volcanic ridge flanks, with low-temperature alteration of gabbroic crust acting as a sink for the alkalis, H2O, C, U, P, 18O, and 87Sr. The magnitudes of element fluxes are similar to volcanic ridge flanks for some components (C, P, Na) but are one or two orders of magnitude lower for others. The flux calculations suggest that low-temperature fluid circulation in gabbro massifs can result in S uptake (3% of riverine sulfate input) in contrast to the S losses deduced for volcanic ridge flanks.
    Keywords: 176-735B; DRILL; Drilling/drill rig; Indian Ocean; Joides Resolution; Leg176; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: John, Barbara E; Foster, David A; Murphy, John M; Cheadle, Michael J; Baines, A Graham; Fanning, C Mark; Copeland, Peter (2004): Determining the cooling history of in situ lower oceanic crust-Atlantis Bank, SW Indian Ridge. Earth and Planetary Science Letters, 222(1), 145-160, https://doi.org/10.1016/j.epsl.2004.02.014
    Publication Date: 2024-01-09
    Description: The cooling history and therefore thermal structure of oceanic lithosphere in slow-spreading environments is, to date, poorly constrained. Application of thermochronometric techniques to rocks from the very slow spreading SW Indian Ridge provide for the first time a direct measure of the age and thermal history of in situ lower oceanic crust. Crystallization of felsic veins (~850°C) drilled in Hole 735B is estimated at 11.93F0.14 Ma, based on U-Pb analyses of zircon by ion probe. This crystallization age is older than the 'crustal age' from remanence inferred from both sea surface and near-bottom magnetic anomaly data gathered over Hole 735B which indicate magnetization between major normal polarity chrons C5n.2n and C5An.1n (10.949-11.935 Ma). 40Ar/39Ar analyses of biotite give plateau ages between 11 and 12 Ma (mean 11.42 +/- 0.21 Ma), implying cooling rates of 〉800°C/m.y. over the first 500,00 years to temperatures below ~330-400°C. Fission-track ages on zircon (mean 9.35 +/- 1.2 Ma) and apatite reveal less rapid cooling to 〈110°C by ~7 Ma, some 4-5 m.y. off axis. Comprehensive thermochronometric data from the structurally intact block of gabbro between ~700 and 1100 m below sea floor suggest that crust traversed by ODP Hole 735B mimics conductive cooling over the temperature range ~ 900-330°C, characteristic of a 2-D plate-cooling model for oceanic lithosphere. In contrast, lower temperature chronometers (fission track on zircon, titanite, and apatite; T〈=280°C) are not consistent with these predictions and record anomalously high temperatures for crust 〉700 m below sea floor at 8-10 Ma (i.e. 2-4 m.y. off axis). We offer two hypotheses for this thermal anomaly: (i) Off-axis (or asymmetric) magmatism that caused anomalous reheating of the crust preserved in Hole 735B. This postulated magmatic event might be a consequence of the transtension, which affected the Atlantis II transform from ~19.5 to 7.5 Ma. (ii) Late detachment faulting, which led to significant crustal denudation (2.5-3 km removed), further from the ridge axis than conventionally thought.
    Keywords: 176-735B; DRILL; Drilling/drill rig; Indian Ocean; Joides Resolution; Leg176; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ibaraki, Masako (2000): Planktonic foraminifers off Costa Rica in the East Pacific Ocean - biostratigraphic and chronostratigraphic analyses. In: Silver, EA; Kimura, G; Shipley, TH (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 170, 1-58, https://doi.org/10.2973/odp.proc.sr.170.001.2000
    Publication Date: 2024-01-09
    Description: From October to December in 1996, Sites 1039 through 1043 were drilled on the lower continental slope and the bottom of the Middle American Trench. Planktonic foraminifers were obtained from 377 samples of the total 487 examined. The Pliocene- to Pleistocene-age sediments of Sites 1039 and 1043 are continuous from Zones N19 through N23. At Sites 1039 and 1040, middle Miocene sediments are also continuous, encompassing Zones N8 through N12. The sequences of the upper part of Sites 1040, 1041, 1042, and 1043 are décollements, tentatively assignable to Zone N19 for Sites 1040, 1041, and 1042 and to Zone N22 for Site 1043. The oldest sediments of these sites are assigned to Zone N7 (latest early Miocene), ~17 Ma in age.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ogg, James G; Bardot, Leon (2001): Aptian through Eocene magnetostratigraphic correlation of the Blake Nose Transect (Leg 171B), Florida continental margin. In: Kroon, D; Norris, RD; Klaus, A (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 171B, 1-58, https://doi.org/10.2973/odp.proc.sr.171B.104.2001
    Publication Date: 2024-01-09
    Description: The full suite of magnetic polarity chrons from Subchron M''-2r'' (early Albian) through Chron C13r (latest Eocene) were resolved at one or more Ocean Drilling Program sites on the Blake Nose salient of the Florida continental margin. These sediments preserve diverse assemblages of calcareous and siliceous microfossils; therefore, the composite suite provides a reference section for high-resolution correlation of biostratigraphic datums to magnetic polarity chrons of the Late Cretaceous and Paleogene. Relative condensation or absence of polarity zones at different sites along the transect enhance the recognition and dating of depositional sequences and unconformities within the margin succession. A stable paleolatitude of ~25°N was maintained from the late Aptian through Eocene.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mita, Isao (2001): Data Report: Early to late Eocene calcareous nannofossil assemblages of Sites 1051 and 1052, Blake Nose, northwestern Atlantic Ocean. In: Kroon, D; Norris, RD; Klaus, A (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 171B, 1-28, https://doi.org/10.2973/odp.proc.sr.171B.122.2001
    Publication Date: 2024-01-09
    Description: During Ocean Drilling Program Leg 171B, a thick sequence of lower to middle Eocene sediments was recovered from Sites 1051 and 1052 at Blake Nose in the North Atlantic Ocean. Calcareous nannofossils are moderately well preserved in the upper to middle Eocene sediments but are moderate to poorly preserved in the lower Eocene sediments. Calcareous nannofossils are diverse throughout the recovered sequence, which extends from nannofossil Zone CP8 to Subzone CP15a. The nannofossil biostratigraphy of these sites indicates the presence of a hiatus in Subzone CP12a in the middle Eocene, in which the major nannofossil assemblage changes dramatically from Toweius to reticulofenestrid; however, no major change in the nannoflora was observed across the Eocene/Paleocene boundary. Coccolith size evolution patterns were recognized. Coccolithus, Reticulofenestra, and Cribrocentrum specimens may suggest a trend of increasing size upward through the sedimentary sequence, but Dictyococcites does not show a similar simple trend. Most traditional zonal markers are present. The reworking of Discoaster sublodoensis and overgrowth of Tribrachiatus in the lower Eocene makes zonal subdivision of this part of the sequence difficult. For this reason, tentative nannofossil zonation is given for the lower Eocene.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: White, Lisa D (2000): Diatom biostratigraphy of Sites 1039-1043, Costa Rica margin. In: Silver, EA; Kimura, G; Shipley, TH (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 170, 1-22, https://doi.org/10.2973/odp.proc.sr.170.003.2000
    Publication Date: 2024-01-09
    Description: The following data paper summarizes diatom biostratigraphic data from sediments drilled in the Costa Rica accretionary wedge during Ocean Drilling Program Leg 170. Quaternary through lower Miocene diatom zones characteristic of the equatorial Pacific region are recognized in the reference section, Site 1039, which was drilled on the downgoing Cocos plate. At Sites 1040-1043, where the recovered silty clay units are primarily wedge and apron sediments that overlie the underthrust sections, diatoms are generally low in abundance, and complete zonation of the cores was not possible above the décollement surface.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Muza, Jay Phillip (2000): Calcareous nannofossil biostratigraphy from a 15-km transect (Cocos plate to Caribbean plate) across the Middle America Trench, Nicoya Peninsula, Costa Rica. In: Silver, EA; Kimura, G; Shipley, TH (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 170, 1-63, https://doi.org/10.2973/odp.proc.sr.170.008.2000
    Publication Date: 2024-01-09
    Description: Three Pleistocene, five Pliocene, and thirteen late and middle Miocene calcareous nannofossil datums have been identified in the Leg 170 cored sequences collected from a transect across the Middle America Trench off the Nicoya Peninsula. Although some nannofossil zones could not be delineated, particularly in the Pliocene and upper Miocene, there appears to be a complete or very nearly complete Pleistocene through lower Miocene section at Sites 1039 and 1040. The oldest assemblages, observed at Site 1039 and 1040, are latest early Miocene in age (nannofossil Zone NN4). These assemblages are associated with gabbro intrusions into the basal sediments (one contact metamorphic hornfels sample contains relict nannofossils), indicating an age for the intrusion event of between 15.6 and 18.2 Ma at both Sites 1039 and 1040. Reference Site 1039, located on the Cocos plate, provides the best-preserved sequence of sediments of late Pleistocene to latest early Miocene age. The sediments cored in the prism sections at Sites 1040, 1041, 1042, and 1043 all indicate that the age of nannofossil assemblages in the prism sediments, including the toe, wedge, and apron, are all Pleistocene with a considerable amount of upper Miocene reworking. A period of low sediment accumulation rates (~5.3 m/m.y.) is recorded for Pliocene and upper Miocene sediments at Sites 1039, 1040, and 1043. Pliocene calcareous nannofossil assemblages characteristic of the ~2.5- to 3.75-m.y. time interval (nannofossil Zones NN16 and equivalent nannofossil Subzones CN12b and CN12a) were not resolved at any site. Nannofossil Zones NN15, NN14, NN13, and NN12 (early late Pliocene to early Pliocene) could not be resolved at any site either because of the absence of marker species. Within the Miocene at Sites 1039 and 1040, nannofossil Zones NN10-NN6 were difficult to differentiate because of the absence of several species that define the zonal boundaries. These intervals, where the nannofossil zones have not been resolved or are partially resolved, are primarily composed of carbonate ooze deposited during an ~8.5-m.y. (2.5-11 Ma) low sediment accumulation rate time interval. The absence of many of the marker species is attributed to warmer water conditions during those periods. Many of the same marker species are absent in the sediments recovered from nearby Deep Sea Drilling Project Site 155 in the Panama Basin.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gieskes, Joris M; Mahn, Chris L; Schnetzger, Barni (2000): Data report: Trace element geochemistry of I-, Br-, F-, (HPO4)2-, Ba2+, and Mn2+ in pore waters of Escanaba Trough, Sites 1037 and 1038. In: Zierenberg, RA; Fouquet, Y; Miller, DJ; Normark, WR (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 169, 1-16, https://doi.org/10.2973/odp.proc.sr.169.103.2000
    Publication Date: 2024-01-09
    Description: Data were presented to compare pore fluids from Sites 1037 and 1038 in the Escanaba Trough, Gorda Ridge. Site 1037 constitutes the reference site, and Site 1038 is the hydrothermally affected site. The program was undertaken for two purposes: (1) to make a detailed analysis of the halide chemistry of these two sites, with the specific aim of discerning any potential differences in the generation of dissolved halides as a result of sediment diagenesis in these drill sites and (2) to investigate the geochemistry of Ba2+ and Mn2+ at these two sites to discover potential hydrothermal effects reflected in the concentration-depth distributions of these elements.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Scholten, Jan Christoph; Lackschewitz, Klas Sven; Marchig, Vesna; Stoffers, Peter; Mangini, Augusto (2000): 230Th/234U and 231Pa/235U disequilibria in massive sulfides from the Bent Hill area (Legs 139 and 169). In: Zierenberg, RA; Fouquet, Y; Miller, DJ; Normark, WR (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 169, 1-15, https://doi.org/10.2973/odp.proc.sr.169.108.2000
    Publication Date: 2024-01-09
    Description: Massive sulfide samples from the Bent Hill area were analyzed for 230Th/234U and 231Pa/235U disequilibria. Apparent ages calculated from these ratios are between 8.2 and 〉300 ka. Concordant ages were found for only three samples that originate near the surface from the clastic sulfide zone and suggest "true" ages of between 8.5 and 16.0 ka (mean of 230Th and 231Pa ages). The uranium vs. depth distribution in the Bent Hill Massive Sulfide deposit suggests an open system for uranium for the deeper part of the deposit, which was probably caused by extensive recrystallization processes inhibiting true age determinations.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Summit, Melanie; Peacock, Aaron D; Ringelberg, David; White, David C; Baross, John A (2000): Phospholipid fatty acid-derived microbial biomass and community dynamics in hot, hydrothermally influenced sediments from Middle Valley, Juan De Fuca Ridge. In: Zierenberg, RA; Fouquet, Y; Miller, DJ; Normark, WR (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 169, 1-19, https://doi.org/10.2973/odp.proc.sr.169.117.2000
    Publication Date: 2024-01-09
    Description: Phospholipid fatty acids were measured in samples of 60°-130°C sediment taken from three holes at Site 1036 (Ocean Drilling Program Leg 169) to determine microbial community structure and possible community replacement at high temperatures. Five of six samples had similar concentrations of phospholipid fatty acids (2-6 pmol/g dry weight of sediment), and biomass estimates from these measurements compare favorably with direct microscopic counts, lending support to previous microscopic measures of deep sedimentary biomass. Very long-chain phospholipid fatty acids (21 to 30 carbons) were detected in the sediment and were up to half the total phospholipid fatty acid measured; they appear to increase in abundance with temperature, but their significance is not known. Community composition from lipid analysis showed that samples contained standard eubacterial membrane lipids but no detectable archaeal lipids, though archaea would be expected to dominate the samples at high temperatures. Cluster analysis of Middle Valley phospholipid fatty acid compositions shows that lipids in Middle Valley sediment samples are similar to each other at all temperatures, with the exception of very long-chain fatty acids. The data neither support nor deny a shift to a high-temperature microbial community in hot cores, so at the present time we cannot draw conclusions about whether the microbes observed in these hot sediments are active.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lawrie, Darren; Miller, D Jay (2000): Data report: Sulfide mineral chemistry and petrography from Bent Hill, ODP Mound, and TAG massive sulfide deposits. In: Zierenberg, RA; Fouquet, Y; Miller, DJ; Normark, WR (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 169, 1-34, https://doi.org/10.2973/odp.proc.sr.169.106.2000
    Publication Date: 2024-01-09
    Description: Sulfide mineral major and trace element analyses were performed on more than 50 polished slabs representing mineralization from three seafloor hydrothermal massive sulfide deposits. Samples from the Bent Hill and ODP Mound massive sulfide deposits, both on the Juan de Fuca Ridge, can be contrasted with samples from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound on the Mid-Atlantic Ridge. The massive sulfide at Bent Hill is predominantly pyrite and pyrrhotite, with increasing amounts of copper-bearing sulfide minerals at the base of the massive sulfide body and through the stockwork to an interval 200 m below seafloor that hosts high copper mineralization (Deep Copper Zone). ODP Mound contains much more abundant sphalerite and copper-bearing sulfides as compared to either Bent Hill or TAG, which are predominantly pyrite with much less abundant chalcopyrite. Copper-bearing sulfides from the Deep Copper Zone beneath Bent Hill and the lowest sampled interval of ODP Mound are petrographically and chemically similar, but distinct from copper-bearing minerals higher in either sequence.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gröschel-Becker, Henrike M (2000): Data report: Physical properties of sediment, basalt, and massive sulfide samples from Holes 856H, 1035D, 1035E, 1035F, and 1035H, Middle Valley, northern Juan de Fuca Ridge, and Holes 1037B and 1038I, Escanaba Trough, Gorda Ridge. In: Zierenberg, RA; Fouquet, Y; Miller, DJ; Normark, WR (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 169, 1-19, https://doi.org/10.2973/odp.proc.sr.169.109.2000
    Publication Date: 2024-01-09
    Description: The results of 72 index properties analyses and 29 high-pressure velocity experiments on samples of sediment, basalt, and sulfide rocks recovered during Leg 169 of the Ocean Drilling Program are presented. The large sample set was subjected to shore-based index properties measurements from which wet bulk densities (b), grain densities (g), and porosities were calculated. The majority of samples are from Sites 856 and 1035 in the Bent Hill area of Middle Valley, part of the northern Juan de Fuca Ridge. Four basalts are from Holes 1037B and 1038I drilled in the Escanaba Trough of the Gorda Ridge. Reentry drilling of Hole 856H below 93.8 meters below seafloor (mbsf) resulted in penetration of a complete Bent Hill Massive Sulfide (BHMS) area reference section below the massive sulfide deposit drilled during Leg 139. Physical properties samples were obtained from the underlying sulfide feeder zone section of mineralized sediments (Unit VI), a deeper interbedded hemipelagic and turbiditic sediment interval (Unit II), the intercalated sills and sediment of "hydrothermal basement" (Unit VII), and the basaltic flows of interpreted oceanic basement (Unit VIII). Elevated-pressure velocity measurements of sediments from Units II and VI, sediment interbeds of Unit VII, and basalts of Unit VIII were made for the first time. The presence of sulfide minerals as disseminations, blebs, and vein infillings affects the velocity and density signatures of sediment samples from cores in the vicinity of the BHMS (Site 1035). Densities, velocities, and porosities of massive sulfides (Unit V; Holes 1035F and 1035H) and basaltic sills (Hole 856H) are comparable to Leg 139 data for sulfides from 0.0 to 93.8 mbsf in Hole 856H and Hole 857D sills.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Iturrino, Gerardo J; Davis, Earl E; Johnson, Joel; Gröschel-Becker, Henrike M; Lewis, Trevor J; Chapman, David; Cermak, Vladimir (2000): Permeability, electrical, and thermal properties of sulfide, sedimentary, and basaltic units from the Bent Hill area of Middle Valley, Juan de Fuca Ridge. In: Zierenberg, RA; Fouquet, Y; Miller, DJ; Normark, WR (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 169, 1-42, https://doi.org/10.2973/odp.proc.sr.169.115.2000
    Publication Date: 2024-01-09
    Description: Permeability, electrical resistivity, and thermal conductivity measurements were performed on samples from the Bent Hill area of the Middle Valley on the northern Juan de Fuca Ridge. Thermal conductivity measurements were also made on samples from the Trans-Atlantic Geotraverse (TAG) hydrothermal area in the Mid-Atlantic Ridge for direct comparison with previous studies and the Middle Valley results. Electrical resistivity and permeability measurements were made as a function of confining pressure on 15 samples comprising different lithologic compositions found in the Bent Hill area. The effect of pressure on electrical resistivity values is relatively small and the observed frequency dependence is highly controlled by the sulfide content in these rocks. Permeabilities are in the 10**-16 to 10**-20 m**2 (0.1-100 µD) range. Although permeability does not recover in samples that undergo significant permanent deformation, the elastic permeability dependence on confining pressure is relatively small. Permeability correlates with porosity. Permeability anisotropy correlates with the presence of oriented sulfide veins with increased flow parallel to the veins. Thermal conductivity measurements made on 41 samples from Middle Valley and 9 samples from the TAG area show systematic variations due to changes in composition and a weak relationship with porosity for sedimentary samples from Middle Valley. A comparison between the divided-bar and the half-space needle-probe methods of measuring thermal conductivity shows good agreement for the Leg 169 measurements unlike previous results from Legs 139 and 158. The discrepancies observed in earlier studies seem to be related to the long times used in the older measurements for the optimal T vs. ln(t) data interval. The apparatus used during Leg 169 was smaller, sampled a smaller volume of core, and in high conductivity material was not influenced by boundary effects.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Underwood, Michael B; Hoke, Kimberly D (2000): Composition and provenance of turbidite sand and hemipelagic mud in northwestern Cascadia Basin. In: Fisher, A; Davis, EE; Escutia, C (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 168, 1-15, https://doi.org/10.2973/odp.proc.sr.168.012.2000
    Publication Date: 2024-01-09
    Description: Sequences of late Pliocene to Holocene sediment lap onto juvenile igneous crust within 20 km of the Juan de Fuca Ridge in northwestern Cascadia Basin, Pacific Ocean. The detrital modes of turbidite sands do not vary significantly within or among sites drilled during Leg 168 of the Ocean Drilling Program. Average values of total quartz, total feldspar, and unstable lithic fragments are Q = 35, F = 35, and L = 30. Average values of monocrystalline quartz, plagioclase, and K-feldspar are Qm = 46, P = 49, and K = 5, and the average detrital modes of polycrystalline quartz, volcanic-rock fragments, and sedimentary-rock plus metamorphic-rock fragments are Qp = 16, Lv = 43, and Lsm = 41. Likely source areas include the Olympic Peninsula and Vancouver Island; sediment transport was focused primarily through the Strait of Juan de Fuca, Juan de Fuca Channel, Vancouver Valley, and Nitinat Valley. Relative abundance of clay minerals (〈2-µm-size fraction) fluctuate erratically with depth, stratigraphic age, and sediment type (mud vs. turbidite matrix). Mineral abundance in mud samples are 0%-35% smectite (mean = 8%), 18%-59% illite (mean = 40%), and 29%-78% chlorite + kaolinite (mean = 52%). We attribute the relatively low content of smectite to rapid mechanical weathering of polymictic source terrains, with little or no input of volcanic detritus from the Columbia River. The scatter in clay mineralogy probably was caused by converging of surface currents, turbidity currents, and near-bottom nepheloid clouds from several directions, as well as subtle changes in glacial vs. interglacial weathering products.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Marescotti, Pietro; Vanko, David A; Cabella, Roberto (2000): From oxidizing to reducing alteration: mineralogical variations in pillow basalts from the east flank, Juan de Fuca Ridge 2000. In: Fisher, A; Davis, EE; Escutia, C (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 168, 1-18, https://doi.org/10.2973/odp.proc.sr.168.006.2000
    Publication Date: 2024-01-09
    Description: With this study, we investigate the mineralogical variations associated with the low-temperature (〈100°C) alteration of normal tholeiitic pillow basalts varying in age from 0.8 to 3.5 Ma. Their alteration intensity varies systematically and is related to several factors, including (1) the aging of the igneous crust, (2) the increase of temperatures from the younger to the older sites, measured at the sediment/basement interface, (3) the local and regional variations in lithology and primary porosity, and (4) the degree of pillow fracturing. Fractures represent the most important pathways that allow significant penetration of fluids into the rock and are virtually the only factor controlling the alteration of the glassy rim and the early stages of pillow alteration. Three different alteration stages have been recognized: alteration of glassy margin, oxidizing alteration through fluid circulation in fracture systems, and reducing alteration through diffusion. All the observed mineralogical and chemical variations occurring during the early stages of alteration are interpreted as the result of the rock interaction with "normal," alkaline, and oxidizing seawater, along preferential pathways represented by the concentric and radial crack systems. The chemical composition of the fluid progressively evolves while moving into the basalt, leading to a reducing alteration stage, which is initially responsible for the precipitation of Fe-rich saponite and minor sulfides and subsequently for the widespread formation of carbonates. At the same time, the system evolved from being "water dominated" to being "rock dominated." No alteration effects in pillow basalts were observed that must have occurred at temperatures higher than those measured during Leg 168 at the basement/sediment interface (e.g., between 15° and 64°C).
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Yatabe, Autumn; Vanko, David A; Ghazi, Mohamad (2000): Petrography and chemical compositions of secondary calcite and aragonite in Juan de Fuca Ridge basalts altered at low temperature. In: Fisher, A; Davis, EE; Escutia, C (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 168, 1-12, https://doi.org/10.2973/odp.proc.sr.168.003.2000
    Publication Date: 2024-01-09
    Description: During Leg 168 a transect was drilled across the eastern flank of the Juan de Fuca Ridge in an area where the volcanic basement is covered by sediments of variable thickness. Samples of basement volcanic rocks were recovered from nine locations along the transect, where the basement sediment interface is presently heated to temperatures varying from 15° to 64°C. Altered rocks with secondary calcium carbonate were common at four of the sites, where present-day temperatures range from 38° to 64°C. Fluid inclusions in aragonite suggest that the mineral precipitated from an aqueous fluid of seawater salinity at temperatures well below 100°C. The chemical compositions of secondary calcite and aragonite were determined with both an electron microprobe and a laser-ablation inductively coupled plasma-mass spectroscopy (LA-ICP-MS) microprobe. These two techniques yielded consistent analyses of the same minor elements (Mg and Sr) in the same specimens. The combined results show that secondary aragonites contain very little Mg, Mn, Fe, Co, Ni, Cu, Zn, Rb, La, Ce, Pb, or U, yet they contain significant Sr. In contrast, secondary calcites contain significant Mg, Mn, Fe, Ni, Cu, Zn, and Pb, yet very little Co, Rb, Sr, La, Ce, or U. Secondary calcium carbonates provide subseafloor reservoirs for some minor and trace elements. Replacement of aragonite by calcite should result in a release of Sr, Rb, and Zn to solution, and it provides a sink for Mg, Mn, Ni, Cu, Zn, and Pb.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lackschewitz, Klas Sven; Singer, A; Botz, Reiner; Garbe-Schönberg, Dieter; Stoffers, Peter (2000): Mineralogy and geochemistry of clay minerals near a hydrothermal site in the Escanaba Trough, Gorda Ridge, northeast Pacific Ocean. In: Zierenberg, RA; Fouquet, Y; Miller, DJ; Normark, WR (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 169, 1-24, https://doi.org/10.2973/odp.proc.sr.169.116.2000
    Publication Date: 2024-01-09
    Description: Central Hill is in the northern part of the Escanaba Trough, which is a sediment-filled rift of southern Gorda Ridge. Central Hill is oriented north-south and is associated with extensive sulfide deposits. Hydrothermal alteration of sediment from Site 1038 was studied through analyses of mineralogy and the chemistry and oxygen isotopic compositions of one nearly pure clay sample. In addition, Site 1037 was drilled to establish the character of the unaltered sedimentary sequence away from the hydrothermal centers of the Northern Escanaba Trough Study Area (NESCA). Mineralogy of the clay-size fraction of turbiditic and hemipelagic sediments of Hole 1037B are predominantly quartz, feldspar, pyroxene, illite, chlorite, and smectite, representing continental-derived material. Cores from Hole 1038I, located within the area of Central Hill but away from known active vent areas, recovered minor amounts of chlorite/smectite mixed-layer clay in the fine fraction, indicating a low-temperature hydrothermal alteration. The 137.4-m-thick sediment section of Hole 1038G is located in an area of low-temperature venting. The uppermost sample is classified as chlorite/smectite mixed layer, which is underlain by chlorite as the dominant mineral. The lowermost deposits of Hole 1038G are also characterized by chlorite/smectite mixed-layer clay. In comparison to Hole 1038I, the mineralogic sequence of Hole 1038G reflects increased chloritization. Intensely altered sediment is almost completely replaced by hydrothermal chlorite in subsurface sediments of Hole 1038H. Alteration to chlorite is characterized by depletion in Na, K, Ti, Ca, Sr, Cs, and Tl and enrichment in Ba. Further, Eu depletion reflects a high-temperature plagioclase alteration. A chlorite 18O value of 2.6 indicates formation at a temperature of ~190°C. It is concluded that the authigenic chlorite in Hole 1038H formed by an active high-temperature fluid flow in the shallow subsurface.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Porter, Sean; Vanko, David A; Ghazi, Mohamad (2000): Major and trace element compositions of secondary clays in basalts altered at low temperature, eastern flank of the Juan de Fuca Ridge. In: Fisher, A; Davis, EE; Escutia, C (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 168, 1-9, https://doi.org/10.2973/odp.proc.sr.168.004.2000
    Publication Date: 2024-01-09
    Description: A drilling transect across the sedimented eastern flank of the Juan de Fuca Ridge, conducted during Leg 168 of the Ocean Drilling Program, resulted in the recovery of samples of volcanic basement rocks (pillow basalts, massive basalts, and volcanic glass breccias) that exhibit the effects of low-temperature hydrothermal alteration. Secondary clays are ubiquitous, with Mg-rich and Fe-rich saponite and celadonitic clays commonly accounting for several percent, and up to 10%-20% by volume. Present-day temperatures of the basement sites vary from 15° to 64°C, with the coolest site being about 0.8 Ma, and the warmest site being about 3.5 Ma. Whereas clays are abundant at sites that have been heated to present temperatures of 23°C and higher, the youngest site at 15°C has only a small trace of secondary clay alteration. Alteration increases as temperatures increase and as the volcanic basement ages. The chemical compositions of secondary clays were determined by electron microprobe, and additional trace element data were determined by both conventional nebulization inductively coupled plasma-mass spectroscopy (ICP-MS) and laser-ablation ICP-MS. Trioctahedral saponite and pyrite are characteristic of the interior of altered rock pieces, forming under conditions of low-oxygen fugacity. Dioctahedral celadonite-like clays along with iron oxyhydroxide and Mg-saponite are characteristic of oxidized haloes surrounding the nonoxidized rock interiors. Chemical compositions of the clays are very similar to those determined from other deep-sea basalts altered at low temperature. The variable Mg:Fe of saponite appears to be a systematic function both of the Mg:Fe of the host rock and the oxidation state during water-rock interaction.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nigrini, Catherine A; Sanfilippo, Annika (2000): Paleogene radiolarians from Sites 998, 999, and 1001 in the Caribbean. In: Leckie, RM; Sigurdsson, H; Acton, GD; Draper, G (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 165, 1-25, https://doi.org/10.2973/odp.proc.sr.165.026.2000
    Publication Date: 2024-01-09
    Description: The Paleogene sequences from three sites in the Caribbean were examined for radiolarians. In general, samples are highly lithified, requiring lengthy and repetitive cleaning procedures, and the assemblages are usually fragmented and/or partially dissolved. Both abundances and preservation of the assemblages vary considerably from site to site and within a single site; even within a single sample more than one degree of preservation was observed. It was possible, however, to construct at least partial stratigraphies for each of the three sites. Because the abundance of radiolarians is high even in extremely poorly preserved assemblages, we conclude that the differences in biogenic silica preservation are the result of postdepositional processes and not productivity. In both Sites 999 and 1001, near the Paleocene/Eocene boundary (Bekoma bidartensis Zone [RP7]), there is a short interval in which the abundance and preservation state of the radiolarians improves relative to overlying and underlying assemblages. In each case the intervals corresponds to the level, identified by calcareous microfossils, as representing changes in paleoceanographic conditions associated with the late Paleocene thermal maximum.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Carey, Steven N; Sigurdsson, Haraldur (2000): Grain size of Miocene volcanic ash layers from Sites 998, 999, and 1000: implications for source areas and dispersal. In: Leckie, RM; Sigurdsson, H; Acton, GD; Draper, G (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 165, 1-13, https://doi.org/10.2973/odp.proc.sr.165.002.2000
    Publication Date: 2024-01-09
    Description: Crystal size measurements have been carried out on tephra fall layers of Miocene to recent age from Sites 998, 999, and 1000 in the western Caribbean Sea. Maximum crystal size is used as a proxy for the grain size characteristics of the layers and an index of atmospheric dispersal from source eruptions. Crystal sizes range from 50 to 650 µm with the majority falling between 200 and 300 µm. All three sites exhibit a coarsening in the grain size of tephra layers with increasing age to the early Miocene that broadly correlates with an increase in the frequency of layers. Analysis of the present lower and upper level atmospheric circulation in the western Caribbean suggests that the layers were derived from source eruptions to the west of the sites somewhere in the Central American region. Minimum distances to these sources are of the order of 700 km. Crystal sizes in tephra layers at these distances are consistent with their derivation from energetic pyroclastic flow-forming eruptions that injected tephra to stratospheric levels by large-scale co-ignimbrite and plinian-style plumes. Coarsening of the layers during the Miocene peak of explosive volcanism cannot be attributed to any major change in paleowind intensity and is taken to represent the occurrence of more energetic eruptions that were able to disperse tephra over larger areas.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Peterson, Larry S; Haug, Gerald H; Murray, Richard W; Yarincik, K M; King, John W; Bralower, Timothy J; Kameo, Koji; Rutherford, Scott D; Pearce, Richard B (2000): Late Quaternary stratigraphy and sedimentation at site 1002, Cariaco basin (Venezuela). In: Leckie, RM; Sigurdsson, H; Acton, GD; Draper, G (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 165, 1-15, https://doi.org/10.2973/odp.proc.sr.165.017.2000
    Publication Date: 2024-01-09
    Description: Ocean Drilling Program Site 1002 in the Cariaco Basin was drilled in the final two days of Leg 165 with only a short transit remaining to the final port of San Juan, Puerto Rico. Because of severe time constraints, cores from only the first of the three long replicate holes (Hole 1002C) were opened at sea for visual description, and the shipboard sampling was restricted to the biostratigraphic examination of core catchers. The limited sampling and general scarcity of biostratigraphic datums within the late Quaternary interval covered by this greatly expanded hemipelagic sequence resulted in a very poorly defined age model for Site 1002 as reported in the Leg 165 Initial Reports volume of the Proceedings of the Ocean Drilling Program. Here, we present for the first time a new integrated stratigraphy for Site 1002 based on the standard of late Quaternary oxygen-isotope variations linked to a suite of refined biostratigraphic datums. These new data show that the sediment sequence recovered by Leg 165 in the Cariaco Basin is continuous and spans the time interval from 0 to ~580 ka, with a basal age roughly twice as old as initially suspected from the tentative shipboard identification of a single biostratigraphic datum. Lithologic subunits recognized at Site 1002 are here tied into this new stratigraphic framework, and temporal variations in major sediment components are reported. The biogenic carbonate, opal, and organic carbon contents of sediments in the Cariaco Basin tend to be high during interglacials, whereas the terrigenous contents of the sediments increase during glacials. Glacioeustatic variations in sea level are likely to exert a dominant control on these first-order variations in lithology, with glacial surface productivity and the nutrient content of waters in the Cariaco Basin affected by shoaling glacial sill depths, and glacial terrigenous inputs affected by narrowing of the inner shelf and increased proximity of direct riverine sources during sea-level lowstands.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Acton, Gary D; Galbrun, Bruno; King, John W (2000): Paleolatitude of the Caribbean Plate since the Late Cretaceous. In: Leckie, RM; Sigurdsson, H; Acton, GD; Draper, G (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 165, 1-25, https://doi.org/10.2973/odp.proc.sr.165.001.2000
    Publication Date: 2024-01-09
    Description: We used paleomagnetic results from Sites 998, 999, 1000, and 1001 to estimate the paleolatitude of the Caribbean region over the past 80 m.y. The data include remanence measurements of split-core sections (typically 1.5 m long) and discrete samples (6-12 cm**3 in volume) from volcanic and sedimentary rocks. From these, we computed 15 new paleolatitude estimates for Sites 999 and 1001 on the Caribbean plate and three new paleolatitude estimates for Site 998 on the Cayman Rise, currently on the southern North American plate. One estimate from Site 1001 is based on 230 measurements made along split-core sections of basalt after demagnetization of 20-25 mT. The other 17 estimates are based on principal component analysis of demagnetization data from 438 discrete paleomagnetic samples from sedimentary units. Where necessary, the 18 new paleolatitude estimates are corrected for a polarity ambiguity bias that occurs when averaging paleomagnetic data from drill cores that have shallow inclinations and are not azimuthally oriented. We also investigated the contribution of additional biases that may arise from a compaction-related inclination error, which could affect the sedimentary units, though not the basalt units. Several lines of evidence, including the lack of a correlation between porosity (or water content) and inclination, indicate that the inclination error is small, if present at all. The results from Sites 999 and 1001 indicate that the Caribbean plate was 5°-15° south of its current position at ~80 Ma, possibly placing it directly over the equator in the Late Cretaceous. Although the data do not preclude changes in the rate of northward motion over the past 80 m.y., they are consistent with a constant northward progression at a rate of 18 km/m.y. Given the uncertainties in the data, rates of northward motion could be as low as 8 km/m.y. or as high as 22 km/m.y. These results are compatible with several existing models for the evolution of the Caribbean plate, including those that have the Caribbean plate originating in the Pacific Ocean west of subduction zones active in the Central American region during the Cretaceous, and those that have the Caribbean plate originating within the Central American region, though more than 1000 km west of its current position relative to North and South America.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 16 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sigurdsson, Haraldur; Kelley, Simon P; Leckie, R Mark; Carey, Steven N; Bralower, Timothy J; King, John W (2000): History of circum-Caribbean explosive volcanism: 40Ar/39Ar dating of tephra layers. In: Leckie, RM; Sigurdsson, H; Acton, GD; Draper, G (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 165, 1-16, https://doi.org/10.2973/odp.proc.sr.165.021.2000
    Publication Date: 2024-01-09
    Description: Drilling in the Caribbean Sea during Ocean Drilling Program Leg 165 has recovered a large number of silicic tephra layers and led to the discovery of three major episodes of explosive volcanism that occurred during the last 55 m.y. on the margins of this evolving ocean basin. The earliest episode is marked by Paleocene to early Eocene explosive volcanism on the Cayman Rise, associated with activity of the Cayman arc, an island arc that was the westward extension of the Sierra Maestra volcanic arc in southern Cuba. Caribbean sediments also document a major mid- to late Eocene explosive volcanic episode that is attributed to ignimbrite-forming eruptions on the Chortis Block in Central America to the west. This event is contemporaneous with the first phase of activity of the Sierra Madre volcanic episode in Mexico, the largest ignimbrite province on Earth. In the Caribbean sediments, a Miocene episode of explosive volcanism is comparable to the Eocene event, and also attributed to sources in the Central American arc to the west. Radiometric 40Ar/39Ar dates have been obtained for biotites and sanidines from 27 tephra layers, providing absolute ages for the volcanic episodes and further constraining the geochronology of Caribbean sediments. Volcanic activity of the Cayman arc is attributed to the northward subduction of the leading edge of the oceanic plate that carried the Caribbean oceanic plateau. Although the factors generating the large episodes of Central American explosive volcanism are unclear, we propose that they are related to contemporary major readjustments of plate tectonic configuration in the Pacific.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Paull, Charles K; Lorenson, Thomas D; Borowski, Walter S; Ussler, William III; Olsen, K; Rodriguez, Nancy M (2000): Isotopic composition of CH4, CO2 species, and sedimentary organic matter within samples from the Blake Ridge: gas source implications. In: Paull, CK; Matsumoto, R; Wallace, PJ; Dillon, WP (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 164, 1-12, https://doi.org/10.2973/odp.proc.sr.164.207.2000
    Publication Date: 2024-01-09
    Description: The isotopic characteristics of CH4 (d13C values range from -101.3 per mil to -61.1 per mil PDB, and dD values range from -256 per mil to -136 per mil SMOW) collected during Ocean Drilling Program (ODP) Leg 164 indicate that the CH4 was produced by microbial CO2 reduction and that there is not a significant contribution of thermogenic CH4 to the sampled sediment gas from the Blake Ridge. The isotopic values of CO2 (d13C range -20.6 per mil to +1.24 per mil PDB) and dissolved inorganic carbon (DIC; d13C range -37.7 per mil to +10.8 per mil PDB) have parallel profiles with depth, but with an offset of 12.5 per mil. Distinct downhole variations in the carbon isotopic composition of CH4 and CO2 cannot be explained by closed-system fractionation where the CO2 is solely derived from the locally available sedimentary organic matter (d13C -2.0 per mil ± 1.4 per mil PDB) and the CH4 is derived from CO2 reduction. The observed isotopic profiles reflect the combined effects of upwards gas migration and decreased microbial activity with depth.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wehner, Hermann; Faber, Eckhard; Hufnagel, Heinz (2000): Characterization of low and high molecular-weight hydrocarbons in sediments from the Blake Ridge, Sites 994, 995, and 997. In: Paull, CK; Matsumoto, R; Wallace, PJ; Dillon, WP (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 164, 1-12, https://doi.org/10.2973/odp.proc.sr.164.225.2000
    Publication Date: 2024-01-09
    Description: Sediments from Holes 994C, 995A, 997A, and 997B have been investigated for "combined" gases (adsorbed gas and that portion of free gas that has not escaped from the pore volume during core recovery and sample collection and storage), solvent-extractable organic compounds, and microscopically identifiable organic matter. The soluble materials mainly consist of polar compounds. The saturated hydrocarbons are dominated by n-alkanes with a pronounced odd-even predominance pattern that is derived from higher plant remains. Unsaturated triterpenoids and 17ß, 21ß-pentacyclic triterpenoids are characteristic for a low maturity stage of the organic matter. The low maturity is confirmed by vitrinite reflectance values of 0.3%. The proportion of terrestrial remains (vitrinite) increases with sub-bottom depth. Within the liptinite fraction, marine algae plays a major role in the sections below 180 mbsf, whereas above this depth sporinites and pollen from conifers are dominant. These facies changes are confirmed by the downhole variations of isoprenoid and triterpenoid ratios in the soluble organic matter. The combined gases contain methane, ethane, and propane, which is a mixture of microbial methane and thermal hydrocarbon gases. The variations in the gas ratios C1/(C2+C3) reflect the depth range of the hydrate stability zone. The carbon isotopic contents of ethane and propane indicate an origin from marine organic matter that is in the maturity stage of the oil window.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Watanabe, Yoshio; Matsumoto, Ryo; Lu, Hailong (2000): Data Report: Trace element geochemistry of the Blake Ridge sediments at Site 997. In: Paull, CK; Matsumoto, R; Wallace, PJ; Dillon, WP (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 164, 1-13, https://doi.org/10.2973/odp.proc.sr.164.223.2000
    Publication Date: 2024-01-09
    Description: Twenty-two trace elements in 355 sediment samples from Site 997 on the Blake Ridge were examined by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry, for respective fractions of acid-soluble and insoluble compositions. Downhole profiles of these elements exhibit complicated fluctuations throughout late Miocene to Pleistocene, principally due to the variations in the acid-soluble fraction. Noncarbonate composition is given from the acid-insoluble residues, which permits us to recognize secular feature of selected element variance for four intervals. These intervals (I: 0-183 mbsf; II: 183- 440 mbsf; III: 440-618 mbsf; and IV: 618-750 mbsf) are interpreted to have originated from changes in the suite of sediments of particular sources and chemical composition, sedimentation rate, dilution of biogenic carbonate abundance, and possibly the current system that controlled deposition and reworking of the terrigenous materials.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lu, Hailong; Matsumoto, Ryo; Watanabe, Yoshio (2000): Data Report: Major element geochemistry of the sediments from Site 997, Blake Ridge, Western Atlantic. In: Paull, CK; Matsumoto, R; Wallace, PJ; Dillon, WP (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 164, 1-3, https://doi.org/10.2973/odp.proc.sr.164.224.2000
    Publication Date: 2024-01-09
    Description: Since being first discovered in the Blake-Bahama region of the west Atlantic in the 1970s (Hollister, Ewing, et al., 1972, doi:10.2973/dsdp.proc.11.1972), submarine gas hydrates have been identified in the continental margin worldwide. Ocean Drilling Program (ODP) Leg 164 was the first drilling designated to study the occurrence and distribution of natural gas hydrates in Blake Ridge where a well developed, distinct BSR (Bottom Simulating Reflector) has been identified (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996). It has been reported there is a prominent discrepancy between the BSR and the base of gas hydrate stability (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996; Ruppel, 1997, doi:10.1130/0091-7613(1997)025〈0699:ACTOAT〉2.3.CO;2), though theoretically they should be at the same depth. Natural gas hydrate in marine sediments coexists with sediment particles, so detailed delineation of sediment geochemistry will be of benefit to solve this apparent discrepancy. The main objectives of this study are to supply background data of the major chemical compositions of sediments from a hydrated sediment section.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Collett, Tim S; Ladd, John W (2000): Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data. In: Paull, CK; Matsumoto, R; Wallace, PJ; Dillon, WP (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 164, 1-13, https://doi.org/10.2973/odp.proc.sr.164.219.2000
    Publication Date: 2024-01-09
    Description: Leg 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Sites 994, 995, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m**3 of gas.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Forniciari, Eliana (2000): Calcareous nannofossil biostratigraphy of the California margin. In: Lyle, M; Koizumi, I; Richter, C; Moore, TC Jr (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 167, 1-38, https://doi.org/10.2973/odp.proc.sr.167.204.2000
    Publication Date: 2024-01-09
    Description: Selected calcareous nannofossils were investigated by means of quantitative and semiquantitative methods in middle Miocene to Pleistocene sediments from the California margin (Pacific Ocean) recovered during Ocean Drilling Program Leg 167. The goal of the work was to provide detailed dating and correlations of the successions recovered that span a wide latitudinal transect (from 29°N to 40°N) affected by strongly variable ecological conditions. The standard zonations are not easily applied in these sediments; hence, additional biohorizons have been adopted that are useful in the area. Specifically, the reliability of 50 biohorizons has been evaluated by considering their mode of occurrence, ranking, and spacing. For the Pleistocene interval, the following six biohorizons are considered reliable: last occurrence (LO) of Pseudoemiliania lacunosa, first occurrence (FO) of Gephyrocapsa sp. 3, LO and FO of large Gephyrocapsa, FO of Gephyrocapsa oceanica s.l., and LO of Reticulofenestra asanoi. The acme end (AE) of small Gephyrocapsa spp. and the LOs of Helicosphaera sellii and Calcidiscus macintyrei do not seem to be reliable in the study area. For the Pliocene interval, the following nine biohorizons are considered reliable: LO of Discoaster pentaradiatus, LO of Discoaster surculus, LO of Discoaster tamalis, LO and first common and continuous occurrence (FCO) of Discoaster asymmetricus, paracme beginning (PB) and paracme end (PE) of Discoaster pentaradiatus, LO of Reticulofenestra pseudoumbilicus, and LO of Amaurolithus delicatus. The LOs of Discoaster brouweri and Discoaster triradiatus and the FCO of P. lacunosa seem to be moderately reliable. For the late Miocene interval, the following eight biohorizons are considered reliable: LO of Discoaster quinqueramus, PB and PE of R. pseudoumbilicus, FO of Amaurolithus primus, FO and LO of Minylitha convallis, LO of Catinaster calyculus, and FO of Catinaster spp. Sediments of middle Miocene age were recovered only at low-latitude Site 1010. Therefore, the reliability of the six biohorizons identified (Discoaster kugleri FO and LO, Calcidiscus macintyrei FO, Cyclicargolithus floridanus last common and continuous occurrence [LCO], Calcidiscus premacintyrei LO, and Sphenolithus heteromorphus LO) cannot be fully evaluated. These events have been correlated with the global chronostratigraphic scale and calibrated to the geomagnetic polarity time scale. This integrated time frame has been used for dating the successions recovered during Leg 167. The biozones proposed for the Pleistocene seem to be valid globally, and they are proposed as an alternative to the standard zonation.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 12 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kennett, James P; Rozo-Vera, Gloria A; Machain-Castillo, Maria Luisa (2000): Latest Neogene planktonic foraminiferal biostratigraphy of the California margin. In: Lyle, M; Koizumi, I; Richter, C; Moore, TC Jr (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 167, 1-22, https://doi.org/10.2973/odp.proc.sr.167.212.2000
    Publication Date: 2024-01-09
    Description: Late Neogene biostratigraphy of planktonic foraminifers has been investigated from 13 sites cored during Ocean Drilling Program Leg 167 off the coast of California. The planktonic foraminiferal biostratigraphy of six of these sites is presented here at higher stratigraphic resolution for the interval that encompasses the late early Pliocene through the Quaternary (~3.5 Ma to present day). The sites form a transect along the California margin from 31°N to 41°N within the California Current system. A new planktonic foraminiferal zonation has been established largely on evolutionary changes within the Neogloboquadrina plexus, supported by other taxa. A total of eight zones are recognized, most of which are broadly applicable throughout the region, thus providing a biostratigraphic zonation of the sequence at ~0.5-m.y. intervals. The new zonation appears to be unique to the California Current system. The diversity of planktonic foraminiferal assemblages during the late Neogene appears to have remained relatively constant despite large-scale paleoclimatic change. The assemblages are consistently dominated by few taxa that almost always include the neogloboquadrinids and Globigerina bulloides. Low diversity and high dominance of the assemblages favored these and other taxa well adapted to upwelling systems exhibiting high seasonal surface ocean variability. Apparently the oceanographic conditions that favor such assemblages have persisted at least for the duration of the late Neogene (~3.5 Ma to present day). The biostratigraphically important forms have been illustrated with scanning electron micrographs.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Maruyama, Toshiaki (2000): Middle Miocene to Pleistocene diatom stratigraphy of Leg 167. In: Lyle, M; Koizumi, I; Richter, C; Moore, TC Jr (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 167, 1-48, https://doi.org/10.2973/odp.proc.sr.167.217.2000
    Publication Date: 2024-01-09
    Description: Ocean Drilling Program Leg 167 represents the first time since 1978 that the North American Pacific margin was drilled to study ocean history. More than 7500 m of Quaternary to middle Miocene (14 Ma) sediments were recovered from 13 sites, representing the most complete stratigraphic sequence on the California margin. Diatoms are found in most samples in variable abundance and in a moderately well-preserved state throughout the sequence, and they are often dominated by robust, dissolution-resistant species. The Neogene North Pacific diatom zonation of Yanagisawa and Akiba (1998, doi:10.5575/geosoc.104.395) best divides the Miocene to Quaternary sequences, and updated ages of diatom biohorizons estimated based on the geomagnetic polarity time scale of Cande and Kent (1995, doi:10.1029/94JB03098) are slightly revised to adjust the differences between the other zonations. Most of the early middle Miocene through Pleistocene diatom datum levels that have been proven to be of stratigraphic utility in the North Pacific appear to be nearly isochronous within the level of resolution constrained by sample spacing. The assemblages are characterized by species typical of middle-to-high latitudes and regions of high surface-water productivity, predominantly by Coscinodiscus marginatus, Stephanopyxis species, Proboscia barboi, and Thalassiothrix longissima. Latest Miocene through Pliocene assemblages in the region of the California Current, however, are intermediate between those of subarctic and subtropical areas. As a result, neither the existing tropical nor the subarctic (high latitude) zonal schemes were applicable for this region. An interval of pronounced diatom dissolution detected throughout the Pliocene sequence apparently correspond to a relatively warmer paleoceanographic condition resulting in a slackening of the southward flow of the California Current.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 11 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ikeda, Akihiro; Koizumi, Itaru (2000): Data Report: Diatom flora of the northern California margin since 3 Ma. In: Lyle, M; Koizumi, I; Richter, C; Moore, TC Jr (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 167, 1-7, https://doi.org/10.2973/odp.proc.sr.167.231.2000
    Publication Date: 2024-01-09
    Description: The Pliocene and Pleistocene periods are known for the onset and consequent amplification of glacial-interglacial cycles. The California margin, situated in the mid-latitudes of the northern Pacific Ocean, is expected to be one of the most interesting regions for Pliocene to Pleistocene paleoceanography because this area occupies a unique position in the ocean-atmosphere system over the region. In this study, we investigated paleoceanographic history, using fossil diatoms, since the Brunhes/Matuyama (B/M) paleomagnetic boundary in which glacial and interglacial periods began to alternate in 100-yr cycles. In Hole 1018A, to a depth corresponding to the beginning of Northern Hemisphere glaciation (late Pliocene), we investigated the responses of the ocean-atmosphere system to stepwise cooling in the California margin. Although the work is still continuing, this data report shows that fossil diatoms of Pliocene and Pleistocene sediments significantly changed both in quality and quantity and implies a possible relationship to global climatic changes.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: deMenocal, Peter B; Baker, Linda (2000): Data Report: Benthic stable isotope data from Sites 1014 and 1020 (0.6-1.2 Ma). In: Lyle, M; Koizumi, I; Richter, C; Moore, TC Jr (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 167, 1-6, https://doi.org/10.2973/odp.proc.sr.167.202.2000
    Publication Date: 2024-01-09
    Description: Benthic foraminiferal stable isotope data are presented for Sites 1014 (Tanner Basin, 1176 m) and 1020 (Gorda Ridge, 3040 m) to constrain past changes in Pacific deep- and intermediate-water nutrient chemistry associated with the onset of large-amplitude 100-k.y. climate cycles after ~900 ka. The Site 1014 data were based on analyses of separate species of Cibicidoides, whereas only Cibicidoides wuellerstorfi was used to generate the Site 1020 record. The present data span 380-920 and 620-950 ka at Sites 1014 and 1020, respectively.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Andreasen, Dyke; Flower, M; Harvey, M; Chang, S; Ravelo, Ana Christina (2000): Data Report: Late Pleistocene oxygen and carbon isotopic records from Sites 1011, 1012, and 1018. In: Lyle, M; Koizumi, I; Richter, C; Moore, TC Jr (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 167, 1-4, https://doi.org/10.2973/odp.proc.sr.167.225.2000
    Publication Date: 2024-01-09
    Description: Three sites, drilled during Ocean Drilling Program (ODP) Leg 167, were chosen for detailed late Pleistocene paleoceanographic studies of intermediate water along the California margin. These sites are Site 1011 (Animal Basin, 31°17'N, 117°38'W, 2033 m water depth, 1600 m sill depth), Site 1012 (East Cortez Basin, 32°17'N, 118°23'W, 1783 m water depth, 1415 m sill depth), and Site 1018 (Guide Seamount, 36°59'N, 123°17'W, 2476 m water depth). Here we present carbon and oxygen isotopic measurements of benthic foraminifers from these three sites. We made 135 measurements from Site 1011, 387 measurements from Site 1012, and 231 measurements from Site 1018. This data report includes an explanation of the methods used to generate these isotopic records and the age models for each site. Detailed paleoceanographic interpretations of the isotopic records are currently under way.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wallrabe-Adams, Hans-Joachim; Werner, Reinhard (1999): Date report: Chemical Composition of Middle Miocene to Early Pliocene ash from Sites 982 and 985. In: Raymo, ME; Jansen, E; Blum, P; Herbert, TD (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 162, 1-14, https://doi.org/10.2973/odp.proc.sr.162.021.1999
    Publication Date: 2024-01-09
    Description: The Cenozoic volcanic activity on Iceland has been recorded in North Atlantic sediments drilled during several Ocean Drilling Program (ODP)/Deep Sea Drilling Project legs (Legs 104, 151, 152, 162, and 163). Leg 162 (North Atlantic-Arctic Gateways II) recovered ash layers at Sites 982, 985, and 907 (Jansen, Raymo, Blum, et al., 1996, doi:10.2973/odp.proc.ir.162.1996). The revisited Site 907 was first drilled during Leg 151, and the ash from this site has been described in detail by Lacasse et al. (1996, doi:10.2973/odp.proc.sr.151.122.1996) and Werner et al. (1996, doi:10.2973/odp.proc.sr.151.123.1996). Site 982 is located within the Hatton-Rockall Basin on the Rockall Plateau, which is situated west of the British Isles. Site 985 is located northeast of Iceland at the foot of the eastern slope of the Iceland Plateau, adjacent to the Norwegian Basin. Here we report chemical analyses of Neogene tephra layers from Holes 982A, 983B, 982C, 985A, and 985B. The sedimentary sequence at Site 982 spans the lower Miocene-Holocene; Site 985 recovered sediments spanning the upper Oligocene-Holocene. Twenty-two distinct ash layers and ash-bearing sediments were sampled in Holes 982A-982C (Cores 162-982A-16H through 24H, 162-982B-14H through 56X, and 162-982C-15H through 27H), and 59 ash layers were sampled in Holes 985A and 985B (Cores 162-985A-11H through 59X, and 162-985B-11H through 14H). Almost 50% of the sampled ash is strongly altered (predominantly from Site 985). A cluster of altered thin layers in the lower Pliocene of Site 985 (top of Unit III) is remarkable.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ortiz, Joseph D; O'Connell, Suzanne B; Mix, Alan C (1999): Data Report: Spectral reflectance observations from recovered sediments. In: Raymo, ME; Jansen, E; Blum, P; Herbert, TD (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 162, 1-6, https://doi.org/10.2973/odp.proc.sr.162.029.1999
    Publication Date: 2024-01-09
    Description: Sediment spectral reflectance measurements were generated aboard the JOIDES Resolution during Ocean Drilling Program Leg 162 shipboard operations. The large size of the raw data set (over 1.3 gigabytes) and limited computer hard disk storage space precluded detailed analysis of the data at sea, although broad band averages were used as aids in developing splices and determining lithologic boundaries. This data report describes the methods used to collect these data and their shipboard and postcruise processing. These initial results provide the basis for further postcruise research.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zuleger, Evelyn; Alt, Jeffrey C; Erzinger, Jörg (1995): Primary and secondary variations in major and trace element geochemistry of the lower sheeted dike complex: Hole 504B, Leg 140. In: Erzinger, J; Becker, K; Dick, HJB; Stokking, LB (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 137, 65-80, https://doi.org/10.2973/odp.proc.sr.137140.022.1995
    Publication Date: 2024-01-09
    Description: Rocks of the lower sheeted dike complex of Hole 504B sampled during Leg 140 were analyzed for major and trace element compositions to investigate the effects of igneous processes and hydrothermal alteration on the compositions of the rocks. The rocks are relatively uniform in composition and similar to the shallower dikes. They are moderately evolved mid-ocean-ridge basalts (MORB) with relatively high MgO (7.9-10 wt%) and Mg# (0.60-0.70), and have unusually low incompatible element contents (TiO2 = 0.42-1.1 wt%, Zr = 23-62 ppm). Discrete compositional intervals in the hole reflect varying degrees of differentiation, and olivine and plagioclase accumulation in the rocks, and may be related to injection of packets of dikes having similar compositions. Systematic depletions of total REE, Zr, Y, TiO2, and P2O5 in centimeter-size patches are most likely attributed to exclusion of highly differentiated, late-stage interstitial liquids from small portions of the rocks. The rocks exhibit increased H2O+ reflecting hydrothermal alteration. Replacement of primary plagioclase by albite and oligoclase led to local gains of Na2O, losses of CaO, and slightly positive Eu anomalies. Some mobility of P2O5 led to minor increases and decreases in P2O5 contents, and some local mobility of Ti may have occurred during alteration of titanomagnetite to titanite. Higher temperatures of alteration in the lower sheeted dikes led to breakdown of pyroxene and sulfide minerals and losses of Zn, Cu, and S to hydrothermal fluids. Later addition of anhydrite to the rocks in microfractures and replacing plagioclase caused local increases in sulfur contents. The lower sheeted dikes are a major source of metals to hydrothermal fluids for the formation of metal sulfide deposits on and within the seafloor.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sparks, Joel W (1995): Geochemistry of the lower sheeted dike complex, Hole 504B, Leg 140. In: Erzinger, J; Becker, K; Dick, HJB; Stokking, LB (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 137, 81-97, https://doi.org/10.2973/odp.proc.sr.137140.021.1995
    Publication Date: 2024-01-09
    Description: Sixty-three samples representing 379 m of sheeted dikes from Deep Sea Drilling Project/Ocean Drilling Program Site 504B have been analyzed for major and selected trace elements by X-ray fluorescence. The samples range from microcrystalline aphyric basalts to moderately phyric (2%-10% phenocrysts) diabase that are typically multiply saturated with plagioclase, olivine, and clinopyroxene, in order of relative abundance. All analyzed samples are classified as Group D compositions with moderate to slightly elevated compatible elements (MgÆ-value = 0.65% ± 0.03%; Al2O3 = 15.5% ± 0.8%; CaO = 13.0% ± 0.3%; Ni = 114 ± 29 ppm), and unusually depleted levels of moderate to highly incompatible elements (Nb 〈 1 ppm; Zr = 44 ± 7 ppm; Rb 〈 0.5 ppm; Ba ~ 1 ppm; P2O5 = 0.07% ± 0.02%). These compositions are consistent with a multistage melting of a normal ocean ridge basaltic mantle source followed by extensive fractionation of olivine, plagioclase, and clinopyroxene. Leg 140 aphyric to sparsely phyric (0%-2% phenocrysts) basalts and diabases are compositionally indistinguishable from similarly phyric samples at higher levels in the hole. An examination of the entire crustal section, from the overlying volcanics through the sheeted dikes observed in Leg 140, reveals no significant trends indicating the enrichment or depletion of Costa Rica Rift Zone source magmas over time. Similarly, significant trends toward increased or decreased differentiation cannot be identified, although compositional patterns reflecting variable amounts of phenocryst addition are apparent at various depths. Below ? 1700 mbsf to the bottom of the Leg 140 section, there is a broadly systematic pattern of Zn depletion with depth, the result of high-temperature hydrothermal leaching. This zone of depletion is thought to be a significant source of Zn for the hydrothermal fluids depositing metal sulfides at ridge-crest hydrothermal vents and the sulfide-mineralization zone, located in the transition between pillow lavas and sheeted dikes. Localized zones of intense alteration (60%-95% recrystallization) are present on a centimeter to meter scale in many lithologic units. Within these zones, normally immobile elements Ti, Zr, Y, and rare-earth elements are strongly depleted compared with "fresher" samples centimeters away. The extent of compositional variability of these elements tends to obscure primary igneous trends if the highly altered samples are not identified or removed. At levels up to 40% (or possibly 60%) recrystallization, Ti, Zr, and Y retain their primary signatures. Although the mechanisms are unclear, it is possible that these intense alteration zones are a source of Y and rare-earth elements for the typically rare-earth-element-enriched hydrothermal vent fluids of mid-ocean ridges.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Johnson, Kevin T M; Fisk, Martin R; Naslund, Howard Richard (1995): Geochemical characteristics of refractory silicate melt inclusions from Leg 140 diabases. In: Erzinger, J; Becker, K; Dick, HJB; Stokking, LB (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 137, 131-139, https://doi.org/10.2973/odp.proc.sr.137140.004.1995
    Publication Date: 2024-01-09
    Description: Geochemical data from plagioclase-hosted silicate melt inclusions from Leg 140, Hole 504B diabase dikes are reported. Hand-picked plagioclase grains were heated to 1260°-1280°C to remelt the glass inclusions and to infer trapping temperatures. The samples were then polished to expose the inclusions, which were analyzed by electron and ion microprobes. Inclusion compositions are mainly in equilibrium with the host plagioclase and are more depleted in incompatible elements than the host rock. Simple crystal-liquid equilibrium calculations show that the melt inclusions could have been in equilibrium with depleted abyssal peridotite diopsides, whereas whole-rock basalt compositions generally could not have been. The melt inclusions are significantly more depleted than normal (N-type) mid-ocean-ridge basalt (MORB) and are consistent with being produced by 8%-16% incremental or open-system melting with 2% residual porosity in the peridotite source. These magmas were formed during pressure-release melting of the mantle over a range of depths between 30 and 15 km.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Alt, Jeffrey C; Zuleger, Evelyn; Erzinger, Jörg (1995): Mineralogy and stable isotopic compositions of the hydrothermally altered lower sheeted dike complex, Hole 504B, Leg 140. In: Erzinger, J; Becker, K; Dick, HJB; Stokking, LB (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 137, 155-166, https://doi.org/10.2973/odp.proc.sr.137140.013.1995
    Publication Date: 2024-01-09
    Description: Drilling during Legs 137 and 140 of the Ocean Drilling Program deepened Hole 504B, the only hole to penetrate through the volcanic section and into the underlying hydrothermally altered sheeted dike complex, by 438.1 m to a total depth of 2000.4 meters below seafloor. This paper presents the secondary mineralogy, bulk-rock sulfur contents, and stable isotopic (O, S) compositions, plus oxygen isotopic compositions of secondary minerals from the lower sheeted dike complex drilled during Legs 137 and 140. Various evidence indicates higher temperatures of hydrothermal alteration in the lower dikes than in the upper dikes, including: the local presence of secondary clinopyroxene in the lower dikes; secondary anorthite and hornblende in the lower dikes vs. mainly actinolite and albite-oligoclase in the upper dikes; generally increasing Al and Ti contents of amphibole downward in the dike section; and greater 18O depletions of the lower dikes (d18O = 3.6-5.0 per mil) compared with the upper dikes. Early high-temperature alteration stages (T = 350°-500°C) resulted in 18O depletions and losses of metals (Cu, Zn) and sulfur from the rocks. Local incorporation of reduced seawater sulfate led to elevated d34S values of sulfide in the rocks (up to 2.5 per mil). Quartz + epidote formed in crosscutting veins at temperatures of 310°-320°C from more evolved fluids (d18O = 1 per mil). Late-stage lower-temperature (~250°C) reactions producing albite, prehnite, and zeolites in the rocks caused slight 18O enrichments, but these were insufficient to offset the 18O depletions caused by earlier higher-temperature reactions. Addition of anhydrite to the rocks during seawater recharge led to increased S contents of rocks that had previously lost S during axial hydrothermal alteration, and to further increases in d34S values of total S in the rocks (up to 12 per mil). Despite the evidence for seawater recharge to near the base of the sheeted dike complex, the paucity of late zeolites in the lower dikes suggests that late-stage, off-axis circulation was mainly restricted to the volcanics and shallowest dikes, or to localized high-permeability zones (faults) at depth.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Loubere, Paul; Mekik, Figen; Francois, Roger; Pichat, Sylvain (2004): Export fluxes of calcite in the eastern equatorial Pacific from the Last Glacial Maximum to present. Paleoceanography, 19(2), PA2018, https://doi.org/10.1029/2003PA000986
    Publication Date: 2024-01-09
    Description: The eastern equatorial Pacific (EEP) is an important center of biological productivity, generating significant organic carbon and calcite fluxes to the deep ocean. We reconstructed paleocalcite flux for the past 30,000 years in four cores collected beneath the equatorial upwelling and the South Equatorial Current (SEC) by measuring ex230Th-normalized calcite accumulation rates corrected for dissolution with a newly developed proxy for "fraction of calcite preserved". This method produced very similar results at the four sites and revealed that the export flux of calcite was 30-50% lower during the LGM compared to the Holocene. The internal consistency of these results supports our interpretation, which is also in agreement with emerging data indicating lower glacial productivity in the EEP, possibly as a result of lower nutrient supply from the southern ocean via the Equatorial Undercurrent. However, these findings contradict previous interpretations based on mass accumulation rates (MAR) of biogenic material in the sediment of the EEP, which have been taken as reflecting higher glacial productivity due to stronger wind-driven upwelling.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Nilsen, E B; Anderson, Linda Davis; Delaney, Margaret Lois (2003): Paleoproductivity, nutrient burial, climate change and the carbon cycle in the western equatorial Atlantic across the Eocene/Oligocene boundary. Paleoceanography, 18(3), 1057, https://doi.org/10.1029/2002PA000804
    Publication Date: 2024-01-09
    Description: Paleoproductivity, nutrient burial, and carbon cycling were investigated across the Eocene/Oligocene (E/O) boundary (begin to end; 36.9-32.7 Ma at ~40 kyr resolution, timescale of Shackleton et al. (1999, doi:10.1098/rsta.1999.0407) at Ocean Drilling Program Site 925 on the Ceara Rise in the western equatorial Atlantic (3040 m present water depth; 748.26-850.70 mbsf). Downcore bulk sediment records of biogenic barium, total reactive phosphorus, biogenic silica, and calcium carbonate are interpreted to represent export production, net nutrient burial, biogenic opal production, and inorganic carbon burial, respectively. The global positive excursion in d13C subsequent to the E/O boundary is recorded at Site 925. Export production appears to have been externally forced by orbital parameters at eccentricity frequencies during the study interval, based on spectral analysis of the biogenic barium and reactive phosphorus records. Biogenic silica production or preservation increased after the Eocene/Oligocene boundary to a higher baseline, although overall productivity and nutrient burial did not increase, based on barium and reactive phosphorus records. Thus, although absolute production did not increase at this site, a shift in relative abundance of siliceous versus carbonate productivity may have resulted in a change in relative organic carbon burial. This may have contributed to the positive excursion in global oceanic d13C subsequent to the Eocene/Oligocene boundary, although the silica maximum persists after the carbon isotope excursion ends.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Barron, John A; Heusser, Linda E; Herbert, Timothy D; Lyle, Mitchell W (2003): High resolution climatic evolution of coastal Northern California during the past 16,000 Years. Paleoceanography, 18(1), 1020, https://doi.org/10.1029/2002PA000768
    Publication Date: 2024-01-09
    Description: Holocene and latest Pleistocene oceanographic conditions and the coastal climate of northern California have varied greatly, based upon high-resolution studies (ca. every 100 years) of diatoms, alkenones, pollen, CaCO3%, and total organic carbon at Ocean Drilling Program (ODP) Site 1019 (41.682°N, 124.930°W, 980 m water depth). Marine climate proxies (alkenone sea surface temperatures [SSTs] and CaCO3%) behaved remarkably like the Greenland Ice Sheet Project (GISP)-2 oxygen isotope record during the Bølling-Allerod, Younger Dryas (YD), and early part of the Holocene. During the YD, alkenone SSTs decreased by 〉3°C below mean Bølling-Allerod and Holocene SSTs. The early Holocene (ca. 11.6 to 8.2 ka) was a time of generally warm conditions and moderate CaCO3 content (generally 〉4%). The middle part of the Holocene (ca. 8.2 to 3.2 ka) was marked by alkenone SSTs that were consistently 1-2°C cooler than either the earlier or later parts of the Holocene, by greatly reduced numbers of the gyre-diatom Pseudoeunotia doliolus (〈10%), and by a permanent drop in CaCO3% to 〈3%. Starting at ca. 5.2 ka, coastal redwood and alder began a steady rise, arguing for increasing effective moisture and the development of the north coast temperate rain forest. At ca. 3.2 ka, a permanent ca. 1°C increase in alkenone SST and a threefold increase in P. doliolus signaled a warming of fall and winter SSTs. Intensified (higher amplitude and more frequent) cycles of pine pollen alternating with increased alder and redwood pollen are evidence that rapid changes in effective moisture and seasonal temperature (enhanced El Niño-Southern Oscillation [ENSO] cycles) have characterized the Site 1019 record since about 3.5 ka.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Emeis, Kay-Christian; Schulz, Hartmut; Struck, Ulrich; Rossignol-Strick, Martine; Erlenkeuser, Helmut; Howell, M W; Kroon, Dick; Mackensen, Andreas; Ishizuka, S; Oba, Tadamichi; Sakamoto, Tatsuhiko; Koizumi, Itaru (2003): Eastern Mediterranean surface water temperatures and d18O composition during deposition of sapropels in the late Quaternary. Paleoceanography, 18(1), 1005, https://doi.org/10.1029/2000PA000617
    Publication Date: 2024-01-09
    Description: Water column stratification increased at climatic transitions from cold to warm periods during the late Quaternary and led to anoxic conditions and sapropel formation in the deep eastern Mediterranean basins. High-resolution data sets on sea-surface temperatures (SST) (estimated from UK'37 indices) and d18O of planktonic foraminifer calcite (d18Ofc) across late Pleistocene sapropel intervals show that d18Ofc decreased (between 1 and 4.6 per mil) and SST increased (between 0.7° and 6.7°C). Maximal d18Oseawater depletion of eastern Mediterranean surface waters at the transition is between 0.5 and 3.0 per mil, and in all but one case exceeded the depletion seen in a western Mediterranean core. The depletion in d18Oseawater is most pronounced at sapropel bases, in agreement with an initial sudden input of monsoon-derived freshwater. Most sapropels coincide with warming trends of SST. The density decrease by initial freshwater input and continued warming of the sea surface pooled fresh water in the surface layer and prohibited deep convection down to ageing deep water emplaced during cold and arid glacial conditions. An exception to this pattern is "glacial" sapropel S6; its largest d18Oseawater depletion (3 per mil) is almost matched by the depletion in the western Mediterranean Sea, and it is accompanied by surface water cooling following an initially rapid warming phase. A second period of significant isotopic depletion is in isotope stage 6 at the 150 kyr insolation maximum. While not expressed as a sapropel due to cold SST, it is in accord with a strengthened monsoon in the southern catchment.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Berger, Wolfgang H; Lange, Carina Beatriz; Wefer, Gerold (2002): Upwelling history of the Benguela-Namibia system: a synthesis of Leg 175 results. In: Wefer, G; Berger, WH; Richter, C (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 175, 1-103, https://doi.org/10.2973/odp.proc.sr.175.235.2002
    Publication Date: 2024-01-09
    Description: Upwelling along the western coast of Africa south of the equator may be partitioned into three major areas, each having its own dynamics and history: (1) the eastern equatorial region, comprising the Congo Fan and the area of Mid-Angola; (2) the Namibia upwelling system, extending from the Walvis Ridge to Lüderitz; and (3) the Cape Province region, where upwelling is subdued. The highest nutrient contents in thermocline waters are in the northern region, the lowest in the southern one. Wind effects are at a maximum near the southern end of the Namibia upwelling system, and maximum productivity occurs near Walvis Bay, where the product between upwelling rate and nutrient content of upwelled waters is at a maximum. In the Congo/Angola region, opal tends to follow organic carbon quite closely in the Quaternary record. However, organic carbon has a strong precessional component, while opal does not. Despite relatively low opal content, sediments off Angola show the same patterns as those off the Congo; thus, they are part of the same regime. The spectrum shows nonlinear interference patterns between high- and low-latitude forcing, presumably tied to thermocline fertility and wind. On Walvis Ridge, as in the Congo-Angola region, the organic matter record behaves normally; that is, supply is high during glacial periods. In contrast, interglacial periods are favorable for opal deposition. The pattern suggests reduction in silicate content of the thermocline during glacial periods. The reversed phase (opal abundant during interglacials) persists during the entire Pleistocene and can be demonstrated deep into the Pliocene, not just on Walvis Ridge but all the way to the Oranje River and off the Cape Province. From comparison with other regions, it appears that silicate is diminished in the global thermocline, on average, whenever winds become strong enough to substantially shorten the residence time of silicate in upper waters (Walvis Hypothesis, solving the Walvis Paradox of reversed phase in opal deposition). The central discovery during Leg 175 was the documentation of a late Pliocene opal maximum for the entire Namibia upwelling system (early Matuyama Diatom Maximum [MDM]). The maximum is centered on the period between the end of the Gauss Chron and the beginning of the Olduvai Chron. A rather sharp increase in both organic matter deposition and opal deposition occurs near 3 Ma in the middle of the Gauss Chron, in association with a series of major cooling steps. As concerns organic matter, high production persists at least to 1 Ma, when there are large changes in variability, heralding subsequent pulsed production periods. From 3 to 2 Ma, organic matter and opal deposition run more or less parallel, but after 2 Ma opal goes out of phase with organic matter. Apparently, this is the point when silicate becomes limiting to opal production. Thus, the MDM conundrum is solved by linking planetary cooling to increased mixing and upwelling (ramping up to the MDM) and a general removal of silicate from the upper ocean through excess precipitation over global supply (ramping down from the MDM). The hypothesis concerning the origin of the Namibia opal acme or MDM is fundamentally the same as the Walvis Hypothesis, stating that glacial conditions result in removal of silicate from the thermocline (and quite likely from the ocean as a whole, given enough time). The Namibia opal acme, and other opal maxima in the latest Neogene in other regions of the ocean, marks the interval when a cooling ocean selectively removes the abundant silicate inherited from a warm ocean. When the excess silicate is removed, the process ceases. According to the data gathered during Leg 175, major upwelling started in the late part of the late Miocene. Presumably, this process contributed to the drawing down of carbon dioxide from the atmosphere, helping to prepare the way for Northern Hemisphere glaciation.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kelley, Deborah S; Vanko, David A; Gu, Chifeng (1995): Fluid evolution in oceanic crustal layer 2: fluid inclusion evidence from the sheeted dike complex, Hole 504B, Costa Rica Rift. In: Erzinger, J; Becker, K; Dick, HJB; Stokking, LB (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 137, 191-198, https://doi.org/10.2973/odp.proc.sr.137140.015.1995
    Publication Date: 2024-01-09
    Description: Fluid inclusions in variably altered diabase recovered from Ocean Drilling Program Legs 137 and 140 at Hole 504B, Costa Rica Rift, exhibit fluid salinities up to 3.7 times that of seawater values (11.7 wt% NaCl equivalent) and exhibit uncorrected homogenization temperatures of 125°C to 202°C. The liquid-dominated inclusions commonly are entrapped in zones of secondary plagioclase and may be primary in origin. Fluid salinities are similar to compositions of fluids venting on the seafloor (0.4-7.0 wt% NaCl) and overlap with those measured in metabasalt samples recovered from near the Kane Fracture Zone on the Mid-Atlantic Ridge and from the Troodos ophiolite, Cyprus. The salinity variations may reflect hydration reactions involving formation of secondary mineral assemblages under rock-dominated conditions, which modify the ionic strength of hydrothermal fluids by consuming or liberating water and chloride ion. Rare CO2-CH4-bearing inclusions, subjacent to zones where talc after olivine becomes an important secondary mineral phase (1700 mbsf), may have formed due to local interaction of seawater and olivine at low water to rock ratios. Corrected average fluid inclusion homogenization temperatures exhibit a gradient from 159°C at a depth of 1370 mbsf to 183°C at a depth of 1992 mbsf and are in apparent equilibrium with the present conductive downhole temperatures. These data indicate that fluid inclusions may be used to estimate downhole temperatures if logging data are unavailable. The compositional and thermal evolution of the diabase-hosted fluids may reflect late-stage, off-axis circulation and conductive heating of compositionally modified seawater in the sheeted dike complex at Hole 504B.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Laverne, Christine; Vanko, David A; Tartarotti, Paola; Alt, Jeffrey C (1995): Chemistry and geothermometry of secondary minerals from the deep sheeted dike complex, Hole 504B. In: Erzinger, J; Becker, K; Dick, HJB; Stokking, LB (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 137, 167-189, https://doi.org/10.2973/odp.proc.sr.137140.014.1995
    Publication Date: 2024-01-09
    Description: Dolerites sampled from the lower sheeted dikes from Hole 504B during Ocean Drilling Program Legs 137 and 140, between 1562.4 and 2000.4 mbsf, were examined to document the mineralogy, petrography, and mineral parageneses associated with secondary alteration, to constrain the thermal history and composition of hydrothermal fluids. The main methods used were mineral chemical analyses by electron microprobe, X-ray diffraction, and cathodoluminescence microscopy. Temperatures of alteration were estimated on the basis of single and/or coexisting mineral chemistry. Permeability is important in controlling the type and extent of alteration in the studied dike section. At the meter-scale, intervals of weakly altered dolerites containing fresh olivine are interpreted as having experienced restricted exposure to hydrothermal fluids. At the centimeter- or millimeter-scale, alteration patches and extensively altered halos adjacent to veins reflect the permeability related to intergranular primary porosity and cracks. Most of the sheeted dike alteration in this case resulted from non-focused, pervasive fluid-rock interaction. This study confirms and extends the previous model for hydrothermal alteration at Hole 504B: hydrothermal alteration at the ridge axis followed by seawater recharge and off-axis alteration. The major new discoveries, all related to higher temperatures of alteration, are: (1) the presence of hydrothermal plagioclase (An80-95), (2) the presence of deuteric and/or hydrothermal diopside, and (3) the general increasing proportion of amphiboles, and particularly magnesio-hornblende with depth. We propose that the dolerites at Hole 504B were altered in five stages. Stage 1 occurred at high temperatures (less than 500° to 700°C) and involved late-magmatic formation of Na- and Ti-rich diopside, the hydrothermal formation of Na, Ti-poor diopside and the hydrothermal formation of an assemblage of An-rich plagioclase + hornblende. Stage 2 occurred at lower temperatures (250°-320°C) and is characterized by the appearance of actinolite, chlorite, chlorite-smectite, and/or talc (in low permeability zones) and albite. During Stage 3, quartz and epidote precipitated from evolved hydrothermal fluids at temperatures between 310° and 320°C. Anhydrite appeared during Stage 4 and likely precipitated directly from heated seawater. Stage 5 occurred off-axis at low temperatures (250°C) with laumontite and prehnite from evolved fluids.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 9 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Iturrino, Gerardo J; Christensen, Nikolas I; Becker, Keir; Boldreel, Lars O; Harvey, Peter K H; Pezard, Philippe A (1995): Physical properties and elastic constants of upper crustal rocks from core-log measurements in Hole 504B. In: Erzinger, J; Becker, K; Dick, HJB; Stokking, LB (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 137, 273-291, https://doi.org/10.2973/odp.proc.sr.137140.031.1995
    Publication Date: 2024-01-09
    Description: Seismic velocities have been measured at confining pressures of 100 MPa and 600 MPa for sheeted dike samples recovered during Ocean Drilling Program Legs 137 and 140. The compressional- and shear-wave velocities show an increase with depth at Hole 504B, which is in sharp contrast to the atmospheric pressure velocity measurements performed as part of the shipboard analyses. Rocks exposed to different types of alteration and fracture patterns show distinct changes in their physical properties. The seismic reflectors observed on the vertical seismic profile (VSP) experiment performed during Leg 111 may have been caused by low velocity zones resulting from alteration. The amount of fracturing and hydrothermal alteration in several zones also may have contributed to the acoustic impedance contrast necessary to produce the E5 reflector. Poisson's ratios calculated from laboratory velocity measurements show several low values at depths ranging from 1600 mbsf to 2000 mbsf, which tends to follow similar trends obtained from previous oceanic refraction experiments. A comparison of physical properties between samples recovered from Hole 504B and ophiolite studies in the Bay of Islands and Oman shows a good correlation with the Bay of Islands but significant differences from the measurements performed in the Oman complex.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stokking, Laura B; Heise, Elizabeth A; Pariso, Janet E; Allerton, Simon A (1995): Data report: Magnetic mineralogy, major- and trace-element geochemistry, and rock magnetic properties of Hole 504B upper crustal rocks. In: Erzinger, J; Becker, K; Dick, HJB; Stokking, LB (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 137, 327-337, https://doi.org/10.2973/odp.proc.sr.137140.029.1995
    Publication Date: 2024-01-09
    Description: Leg 140 of the Ocean Drilling Program deepened Hole 504B to a total depth of 2000.4 m below seafloor (mbsf), making it the deepest hole drilled into ocean crust. Site 504, south of the Costa Rica Rift, is considered the most important in-situ reference section for the structure of shallow ocean crust. We present the results of studies of magnetic mineralogy and magnetic properties of Hole 504B upper crustal rocks recovered during Legs 137 and 140. Results from this sample set are consistent with those discussed in Pariso et al. (this volume) from Legs 111, 137, and 140. Coercivity (Hc) ranges from 5.3 to 27.7 mT (mean 12 mT), coercivity of remanence (HCR) ranges from 13.3 to 50.6 mT (mean 26 mT), and the ratio HCR/HC ranges from 1.6 to 3.19 (mean 2.13). Saturation magnetization (JS) ranges from 0.03 to 5.94 * 10**-6 Am**2, (mean 2.52 * 10**-6 Am**2), saturation remanence (JR) ranges from 0.01 to 0.58 * 10**-6 Am2 (mean 0.37 * 10**-6 Am**2), and the ratio JR/JS ranges from 0.08 to 0.29 (mean 0.16), consistent with pseudo-single-domain behavior. Natural remanent magnetization (NRM) intensity ranges from 0.029 to 7.18 A/m (mean 2.95 A/m), whereas RM10 intensity varies only from 0.006 to 4.8 A/m and has a mean of only 1.02 A/m. Anhysteretic remanent magnetization (ARM) intensity ranges from 0.04 to 6.0 A/m, with a mean of 2.46 A/m, and isothermal remanent magnetization (IRM) intensity ranges from 0.5 to 1683 A/m, with a mean of 430.7 A/m. Volume susceptibility ranges from 0.0003 to 0.043 SI (mean 0.011 SI). In all samples examined, high-temperature oxidation of primary titanomagnetite has produced lamellae or pods of magnetite and ilmenite. Hydrothermal alteration has further altered the minerals in some samples to a mixture of magnetite, ilmenite, titanite, and a high-titanium mineral (either rutile or anatase). Electron microprobe analyses show that magnetite lamellae are enriched in the trivalent oxides Cr2O3, Al2O3, and V2O5, whereas divalent oxides (MnO and MgO) are concentrated in ilmenite lamellae.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Farrell, John W; Raffi, Isabella; Janecek, Thomas R; Murray, David W; Levitan, Mikhail A; Dadey, Kathleen A; Emeis, Kay-Christian; Lyle, Mitchell W; Flores, José-Abel; Hovan, Steven A (1995): Late Neogene sedimentation patterns in the eastern equatorial Pacific Ocean. In: Pisias, NG; Mayer, LA; Janecek, TR; Palmer-Julson, A; van Andel, TH (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 717-756, https://doi.org/10.2973/odp.proc.sr.138.143.1995
    Publication Date: 2024-01-09
    Description: The post-middle Miocene evolution of sedimentary patterns in the eastern equatorial Pacific Ocean has been deduced from a compilation and synthesis of CaCO3, opal, and nannofossil assemblage data from 11 sites drilled during Leg 138. Improvements in stratigraphic correlation and time scale development enabled the construction of lithostratigraphic and chronostratigraphic frameworks of exceptional quality. These frameworks, and the high sedimentation rates (often exceeding 4 cm/k.y.) provided a detailed and synoptic paleoceanographic view of a large and highly productive region. The three highlights that emerge are: (1) a middle late Miocene "carbonate crash" (Lyle et al., this volume); (2) a late Miocene-early Pliocene "biogenic bloom"; and (3) an early Pliocene "opal shift". During the carbonate crash, an interval of dissolution extending from -11.2 to 7.5 Ma, CaCO3 accumulation rates declined to near zero over much of the eastern equatorial Pacific, whereas opal accumulation rates remained substantially unchanged. The crash nadir, near 9.5 Ma, was marked by a brief shoaling of the regional carbonate compensation depth by more than 1400 m. The carbonate crash has been correlated over the entire tropical Pacific Ocean, and has been attributed to tectonically-induced changes in abyssal flow through the Panamanian seaway. The biogenic bloom extended from 6.7 to 4.5 Ma, and was characterized by an overall increase in biogenic accumulation and by a steepening of the latitudinal accumulation gradient toward the equator. The bloom has been observed over a large portion of the global ocean and has been linked to increased productivity. The final highlight, is a distinct and permanent shift in the locus of maximum opal mass accumulation rate at 4.4 Ma. This shift was temporally, and perhaps causally, linked to the final closure of the Panamanian seaway. Before 4.4 Ma, opal accumulation was greatest in the eastern equatorial Pacific Basin (near 0°N, 107°W). Since then, the highest opal fluxes in the equatorial Pacific have occurred in the Galapagos region (near 3°S, 92°W).
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Oyun, S; Elderfield, Henry; Klinkhammer, Gary P (1995): Strontium isotopes in pore waters of east equatorial Pacific sediments: Indicators of seawater advection through oceanic crust and sediments. In: Pisias, NG; Mayer, LA; Janecek, TR; Palmer-Julson, A; van Andel, TH (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 813-819, https://doi.org/10.2973/odp.proc.sr.138.156.1995
    Publication Date: 2024-01-09
    Description: Pore-water samples from the equatorial sedimentary bulge area show reversals in depth profiles of 87Sr/86Sr ratios at the sediment/basement interface. Results of this work support inferences made from previous pore-water data (from DSDP drilling in the area) that large-scale horizontal advection of seawater has occurred through the basement underlying the thick sedimentary sequence in this region. The area of apparent advection includes the eastern part of the equatorial high-productivity zone and part of the Guatemala Basin. We attempted to find links between the observed near-basement reversals in pore-water chemistry and sedimentary thickness, age, and topography of the area. Most of the sites that show horizontal advection have disturbed basement topography or outcrops within 10 to 20 km, suggesting that the cooling effects of outcrops may extend for at least 20 km horizontally. Heat-flow data from the area were compared to determine whether sites showing near-bottom chemistry reversals were consistent with areas of low conductive heat flow. This was generally true for the area of the sedimentary bulge and Guatemala Basin. Not enough pore-water data from the Nazca Plate were available to establish any reliable systematics. Because the high-productivity area is well-sealed from hydrothermal circulation, the missing heat must be lost by horizontal advective heat transport. From profiles of strontium isotopes and other elements that show departure from seawater values with increasing depth in the sediments, but return to seawater values near the basement, it appears that water flows relatively freely through much of the oceanic crust, even when sealed by considerable sedimentary cover.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lyle, Mitchell W; Dadey, Kathleen A; Farrell, John W (1995): The late Miocene (11–8 Ma) eastern Pacific carbonate crash: evidence for reorganization of deep-water circulation by the closure of the Panama gateway. In: Pisias, NG; Mayer, LA; Janecek, TR; Palmer-Julson, A; van Andel, TH (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 821-838, https://doi.org/10.2973/odp.proc.sr.138.157.1995
    Publication Date: 2024-01-09
    Description: In the eastern and central Pacific Ocean the most profound change in Neogene calcium carbonate deposition occurred at the late/middle Miocene boundary (about 10 Ma), when carbonate mass accumulation rates (MARs) abruptly dropped. East of the East Pacific Rise (EPR), carbonate deposition essentially ceased. The carbonate compensation depth (CCD) in the Guatemala Basin, for example, rose by 800 m in less than 0.5 Ma. Even the rise crests suffered carbonate losses - Site 846, at the time less than 300 meters deeper than the EPR axis, experienced intervals between 10 and 9 Ma where no carbonate at all was buried. By about 8 Ma carbonate deposition resumed and was concentrated along an equatorial band, suggestive of high surface water carbonate production. East of the EPR, however, CCDs remained shallow since 10 Ma. This event which we have termed the late Miocene carbonate crash marks a fundamental paleoceanographic change that occurred in the eastern Pacific Ocean. Here, we document the changing pattern of carbonate deposition from 13 Ma to 5 Ma by using maps of carbonate MAR reconstructed from ODP Leg 138 and DSDP data. Comparisons to modern oceanographic conditions demonstrate that the late Miocene carbonate crash could not have been caused by an abrupt increase in productivity at 10 Ma or by loss of Corg from continental shelves. Instead it was probably caused by a relatively small reduction in deep-water exchange between the Atlantic and Pacific Oceans through the Panama Gateway prior to the emergence of the isthmus. A small restriction of deep-water exchange through this gateway is sufficient to radically change carbonate MARs in the eastern Pacific.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: von Blanckenburg, Friedhelm; Nägler, Thomas F (2001): Weathering versus circulation-controlled changes in radiogenic isotope tracer composition of the Labrador Sea and North Atlantic Deep Water. Paleoceanography, 16(4), 424-434, https://doi.org/10.1029/2000PA000550
    Publication Date: 2024-01-09
    Description: Geological reconstructions and general circulation models suggest that the onset of both Northern Hemisphere glaciation, 2.7 Myr ago, and convection of Labrador Sea Water (LSW) were caused by the closure of the Panama Gateway ~4.5 Myr ago. Time series data that have been obtained from studies of ferromanganese crusts from the northwestern Atlantic suggest that radiogenic isotopes of intermediate ocean residence time (Pb and Nd) can serve as suitable tracers to reconstruct these events. However, it has been unclear until now as to whether the changes that have been observed in isotope composition at this time are the result of increased thermohaline circulation or due to the effects of increased glacial weathering. In this paper we adopt a box model approach to demonstrate that the shifts in radiogenic isotope compositions are unlikely to be due to changes in convection in LSW but can be explained in terms of increases of erosion levels due to the glaciation of Greenland and Canada. Furthermore, we provide experimental evidence for the incongruent release of a labile fraction of strongly radiogenic Pb and nonradiogenic Nd from continental detritus eroding into the Labrador Sea. This can be attributed to the glacial weathering of old continents and accounts for the paradox that one of the areas of the world most deficient in radiogenic Pb should provide such a rich supply of radiogenic Pb to the oceans. An important general conclusion is that the compositions of radiogenic isotopes in seawater are not always a reflection of their continental sources. Perhaps more importantly, the transition from chemical weathering to mechanical erosion is likely to result in significant variations in radiogenic tracers in seawater.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jansen, Eystein; Fronval, Torben; Rack, Frank R; Channell, James E T (2000): Pliocene-Pleistocene ice rafting history and cyclicity in the Nordic Seas during the last 3.5 Myr. Paleoceanography, 15(6), 709-721, https://doi.org/10.1029/1999PA000435
    Publication Date: 2024-01-09
    Description: A continuous 3.5 Myr IRD record was produced from Ocean Drilling Program (ODP) Site 907. A timescale based on magnetic polarity chrons, oxygen isotope stratigraphy (for the last 1Myr) and orbital tuning was developed. The record documents a stepwise inception of large-scale glacial cycles in the Nordic Seas region, the first being a marked expansion of the Greenland ice sheet at 3.3 Ma. A second step occurred at 2.74 Ma by an expansion of large scale ice sheets in the Northern Hemisphere. Ice sheet variability around the Nordic Seas was tightly coupled to global ice volume over the past 3.3 Myr. Between 3 and 1 Ma, most of the variance of the IRD signal is in the 41 kyr band, whereas the last 1 Myr is characterized by stronger 100 kyr variance. The Gamma Ray Porosity Evaluator (GRAPE) density record is closely linked with IRD variations and documents sub orbital variability resembling the late Quaternary Heinrich/Bond cycles.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wallace, Glen S (2000): Data report: Quantitative image analysis of relative porosity contributions in the décollement and proto-décollement, northern Barbados accretionary prism. In: Moore, JC; Klaus, A (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 171A, 1-19, https://doi.org/10.2973/odp.proc.sr.171A.102.2000
    Publication Date: 2024-01-09
    Description: This study quantitatively addresses the significance of porosity within radiolarian tests in the décollement zone at the toe of the northern Barbados accretionary prism. Quantification was accomplished using scanning electron microscope images of core samples taken from Ocean Drilling Program (ODP) Sites 671 and 672, representing the décollement and proto-décollement, respectively. The décollement is localized to a radiolarian claystone, and its depth correlates with a low-density anomaly that has been attributed to high porosity at all relevant ODP drilling sites in the area (Moore, Klaus, et al., 1998, doi:10.2973/odp.proc.ir.171A.1998; Shipley, Ogawa, Blum, et al., 1995, doi:10.2973/odp.proc.ir.153.1995; Mascle, Moore, et al., 1988, doi:10.2973/odp.proc.ir.110.1988). Porosity in the décollement zone is presumably lost between Sites 672 and 671 because of shear enhanced consolidation (Moore et al., 1998, doi:10.1130/0091-7613(1998)026〈0811:CPDIAE〉2.3.CO;2).
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bellier, Jean-Pierre; Moullade, Michel; Huber, Brian T (2000): Mid-Cretaceous planktonic foraminifers from Blake Nose: Revised biostratigraphic framework. In: Kroon, D; Norris, RD; Klaus, A (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 171B, 1-12, https://doi.org/10.2973/odp.proc.sr.171B.111.2000
    Publication Date: 2024-01-09
    Description: During Ocean Drilling Program Leg 171B, an Aptian to Turonian sedimentary succession yielding exceptionally well-preserved planktonic foraminiferal faunas was recovered at Sites 1049, 1050, and 1052. Most of the standard Tethyan planktonic foraminiferal zones have been recognized within the mid-Cretaceous section, with the exception of two Albian zones not reached by any of the drilled holes. In addition, some emphasis is brought here on the current problems concerning the definition of the Aptian/Albian and Albian/Cenomanian boundaries.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Faul, Kristina L; Delaney, Margaret Lois (2000): Data report: Phosphorus concentrations and geochemistry in Blake Nose sediments from Leg 171B. In: Kroon, D; Norris, RD; Klaus, A (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 171B, 1-10, https://doi.org/10.2973/odp.proc.sr.171B.120.2000
    Publication Date: 2024-01-09
    Description: Quantifying phosphorus (P) concentrations in marine sediments is necessary for constraining the oceanic record of phosphorus burial and helps to constrain P sedimentary geochemistry. To understand P geochemistry in the sediments, we must determine the geochemical forms of P as well as the transformations occurring between these P components with depth and age. Although several records now exist of P geochemistry in the western and eastern equatorial Pacific (Filippelli and Delaney, 1995, doi:10.2973/odp.proc.sr.138.144.1995; 1996, doi:10.1016/0016-7037(96)00042-7), the western equatorial Atlantic (Delaney and Anderson, 1997, doi:10.2973/odp.proc.sr.154.124.1997), the California Current (Delaney and Anderson, in press), and the Benguela Current (Anderson et al., 2001, doi:10.1029/2000GB001270), most of these are Neogene records. Relatively little data exist from sediments of the Paleogene or Cretaceous, time periods when carbon isotope records indicate major carbon shifts and when the nature of P geochemistry has not been well constrained. Samples from several sites at various water depths, oceanographic regions, and ages are needed to understand how P geochemistry and burial in sediments reflect ocean history. We determined P geochemistry and reactive P concentrations in Atlantic sediments of Eocene to Cretaceous age. These are the first records of P geochemistry with good age control from this period. Blake Nose sites are ideal for investigating P geochemistry, as the sediments are shallowly buried at a range of water depths and sedimentation rates. We determined P concentrations and geochemistry, along with calcium carbonate contents, in mid-Cretaceous to upper Eocene sediments drilled on Blake Nose (Ocean Drilling Program Leg 171B) in a depth transect of four sites (Sites 1052, 1051, 1050, and 1049; water depths: 1345, 1983, 2300, and 2656 m, respectively).
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Röhl, Ursula; Norris, Richard D; Ogg, James G (2003): Cyclostratigraphy of upper Paleocene and late Eocene sediments at Blake Nose Site 1051 (western North Atlantic). In: Gingerich, P, Schmitz, B, Thomas, E, & Wing, S (eds.) Causes and Consequences of Globally Warm Climates in the Early Paleogene, Geological Society of America (GSA) Special Paper Series, 369, 567-588, https://doi.org/10.1130/0-8137-2369-8.567
    Publication Date: 2024-01-09
    Description: Upper Paleocene to lower Eocene sediments drilled at Ocean Drilling Program (ODP) Site 1051 (Blake Nose, off Florida) display well-defined orbital cycles, a detailed magnetic stratigraphy, and a suite of planktonic foraminiferal datums. We derived a cyclostratigraphy by using spectral analysis of high-resolution records of elemental concentrations obtained by an X-ray fluorescence (XRF) Core Scanner. XRF counts of iron serve as a proxy for the relative amount of terrestrial material. Sliding-window spectral analysis, bandpass filtering, and direct counting of precession and obliquity cycles yield minimum durations for magnetic polarity chrons C22 to C26 (~49 to ~61 Ma), calculations of sediment accumulation rates, as well as constraints on the timing of biostratigraphic and climatological events in the vicinity of the Initial Eocene Thermal Maximum (IETM). Durations of polarity chrons as represented in sediments drilled at Site 1051 were estimated using a conservative assignment of 41 k.y. for obliquity cycles and 21 k.y. for precession cycles. Combined polarity chrons C26r and C26n span 3.61 m.y., and chron C25r spans 1.07 m.y. Polarity chron C24r is estimated as 2.877 m.y. The interpretation of polarity chron C24n is ambiguous, but its duration is probably 〈1.23 m.y. Polarity chron C23r spans 0.53 m.y., chron C23n is 0.74 m.y., and chron C22r is 0.9 m.y. Spectral analysis through this interval indicates that spectral peaks shift through time and are related to changes in sedimentation rate in Site 1051. The sedimentation rates dramatically increased ~200 k.y. after the IETM and remained high for most of chron C24r.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Röhl, Ursula; Brinkhuis, Henk; Stickley, Catherine E; Fuller, Michael D; Schellenberg, Stephen A; Wefer, Gerold; Wiliams, Graham L (2004): Sea level and astronomically induced environmental changes in middle and late Eocene sediments from the East Tasman Plateau. In: Exon, NF, Kennett, JP & Malone, M (eds.) The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica. American Geophysical Union (AGU), Geophysical Monograph Series, 151, 127-151, https://doi.org/10.1029/151GM09
    Publication Date: 2024-01-09
    Description: Eocene sediments drilled at the East Tasman Plateau (ETP) exhibit well-defined cycles, high-resolution magnetic stratigraphy, and environmentally-controlled dinoflagellate and diatom distribution patterns. We derive a cyclostratigraphy from the spectral analysis of high-resolution elemental concentration records (Ca, Fe) for this shallow marine time series spanning the middle to early late Eocene (C16n.2n - C21). Changes in carbonate content, the ratio between Gonyaulacoid and Peridinioid dinocysts, and relative abundance of "oligotrophic" diatoms serve as proxies for a high-resolution climatic and sea-level history with high values representing high sea-level stands and decreased eutrophy of surface waters. Changing ratios between high latitude dinocysts versus cosmopolitan species provide clues on sea surface temperature trends and water mass exchange. Our results show that the relatively shallow-water middle Eocene environments of the ETP are influenced by orbitally-forced climatic cycles superimposed on third order relative sea-level changes. Changes in the dominance of Milankovitch frequency at ~38.6 Ma (late Eocene) is related to an initial deepening-step within the Tasmanian Gateway prior to the major deepening during the middle late Eocene (~35.5 Ma). Decreasing sedimentation rates at 38 Ma and 37.2 Ma reflect winnowing associated with sea-level fall. This episode is followed by renewed transgression. Dinocyst distribution patterns indicate high latitude, probably cool temperate surface water conditions throughout, with the exception of a sudden surge in cosmopolitan species near the base of subchron C18.2r, at ~41 Ma; this event is tentatively correlated to the Middle Eocene Climatic Optimum.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Röhl, Ursula; Brinkhuis, Henk; Sluijs, Appy; Fuller, Michael D (2004): On the search for the Paleocene/Eocene boundary in the Southern Ocean: exploring ODP Leg 189 Holes 1171D and 1172D, Tasman Sea. In: Exon, NF; Malone, M and Kennett, JP (eds.), The Cenozoic Southern Ocean: Tectonics, Sedimentation, and Climate Change Between Australia and Antarctica. American Geophysical Union (AGU), Geophysical Monograph Series, 151, 113-125, https://doi.org/10.1029/151GM08
    Publication Date: 2024-01-09
    Description: The 'Paleocene/Eocene Thermal Maximum' or PETM (~55 Ma) was associated with dramatic warming of the oceans and atmosphere, pronounced changes in ocean circulation and chemistry, and upheaval of the global carbon cycle. Many relatively complete PETM sequences have by now been reported from around the world, but most are from ancient low- to midlatitude sites. ODP Leg 189 in the Tasman Sea recovered sediments from this critical phase in Earth history at Sites 1171 and 1172, potentially representing the southernmost PETM successions ever encountered (at ~70° to 65° S paleolatitude). Downhole and core logging data, in combination with dinoflagellate cyst biostratigraphy, magneto-stratigraphy, and stable isotope geochemistry indicate that the sequences at both sites were deposited in a high accumulation-rate, organic rich, marginal marine setting. Furthermore, Site 1172 indeed contains a fairly complete P-E transition, whereas at Site 1171, only the lowermost Eocene is recovered. However, at Site 1172, the typical PETM-indicative acme of the dinocyst Apectodinium was not recorded. We conclude that unfortunately, the critical latest Paleocene and PETM intervals are missing at Site 1172. We relate the missing section to a sea level driven hiatus and/or condensed section and recovery problems. Nevertheless, our integrated records provide a first-ever portrait of the trend toward, and aftermath of, the PETM in a marginal marine, southern high-latitude setting.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hoehler, Tori M; Borowski, Walter S; Alperin, Marc J; Rodriguez, Nancy M; Paull, Charles K (2000): Model, stable isotope, and radiotracer characterization of anaerobic methane oxidation in gas hydrate-bearing sediments of the Blake Ridge. In: Paull, CK; Matsumoto, R; Wallace, PJ; Dillon, WP (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 164, 1-7, https://doi.org/10.2973/odp.proc.sr.164.242.2000
    Publication Date: 2024-01-09
    Description: Anaerobic methane oxidation (AMO) was characterized in sediment cores from the Blake Ridge collected during Ocean Drilling Program (ODP) Leg 164. Three independent lines of evidence support the occurrence and scale of AMO at Sites 994 and 995. First, concentration depth profiles of methane from Hole 995B exhibit a region of upward concavity suggestive of methane consumption. Diagenetic modeling of the concentration profile indicates a 1.85-m-thick zone of AMO centered at 21.22 mbsf, with a peak rate of 12.4 nM/d. Second, subsurface maxima in tracer-based sulfate reduction rates from Holes 994B and 995B were observed at depths that coincide with the model-predicted AMO zone. The subsurface zone of sulfate reduction was 2 m thick and had a depth integrated rate that compared favorably to that of AMO (1.3 vs. 1.1 nmol/cm**2/d, respectively). These features suggest close coupling of AMO and sulfate reduction in the Blake Ridge sediments. Third, measured d13CH4 values are lightest at the point of peak model-predicted methane oxidation and become increasingly 13C-enriched with decreasing sediment depth, consistent with kinetic isotope fractionation during bacterially mediated methane oxidation. The isotopic data predict a somewhat (60 cm) shallower maximum depth of methane oxidation than do the model and sulfate reduction data.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Borowski, Walter S; Hoehler, Tori M; Alperin, Marc J; Rodriguez, Nancy M; Paull, Charles K (2000): Significance of anaerobic methane oxidation in methane-rich sediments overlying the Blake Ridge gas hydrates. In: Paull, CK; Matsumoto, R; Wallace, PJ; Dillon, WP (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 164, 1-13, https://doi.org/10.2973/odp.proc.sr.164.214.2000
    Publication Date: 2024-01-09
    Description: A unique set of geochemical pore-water data, characterizing the sulfate reduction and uppermost methanogenic zones, has been collected at the Blake Ridge (offshore southeastern North America) from Ocean Drilling Program (ODP) Leg 164 cores and piston cores. The d13C values of dissolved CO2 (sum CO2) are as 13C-depleted as -37.7 per mil PDB (Site 995) at the sulfate-methane interface, reflecting a substantial contribution of isotopically light carbon from methane. Although the geochemical system is complex and difficult to fully quantify, we use two methods to constrain and illustrate the intensity of anaerobic methane oxidation in Blake Ridge sediments. An estimate using a two-component mixing model suggests that ~24% of the carbon residing in the sum CO2 pool is derived from biogenic methane. Independent diagenetic modeling of a methane concentration profile (Site 995) indicates that peak methane oxidation rates approach 0.005 µmol/cm**3/yr, and that anaerobic methane oxidation is responsible for consuming ~35% of the total sulfate flux into the sediments. Thus, anaerobic methane oxidation is a significant biogeochemical sink for sulfate, and must affect interstitial sulfate concentrations and sulfate gradients. Such high proportions of sulfate depletion because of anaerobic methane oxidation are largely undocumented in continental rise sediments with overlying oxic bottom waters. We infer that the additional amount of sulfate depleted through anaerobic methane oxidation, fueled by methane flux from below, causes steeper sulfate gradients above methane-rich sediments. Similar pore water chemistries should occur at other methane-rich, continental-rise settings associated with gas hydrates.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pierre, Catherine; Rouchy, Jean Marie; Gaudichet, Annie (2000): Diagenesis in the gas hydrate sediments of the Blake Ridge: mineralogy and stable isotope compositions of the carbonate and sulfide minerals. In: Paull, CK; Matsumoto, R; Wallace, PJ; Dillon, WP (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 164, 1-8, https://doi.org/10.2973/odp.proc.sr.164.226.2000
    Publication Date: 2024-01-09
    Description: During Ocean Drilling Program Leg 164, gas hydrates were recovered in the Blake Ridge where the top of the gas hydrate zone lies at about 200 meters below seafloor (mbsf) and the bottom-simulating reflector (BSR) is located at about 450 mbsf. There is no sedimentological discontinuity crossing the BSR. The BSR is disrupted by the salt piercement of the Cape Fear Diapir. The authigenic carbonates (dolomite and siderite) are always present in small amounts (a few weight percent) in the sediments; they are also concentrated in millimeter- to centimeter-sized nodules and layers composed of dolomite above the top of the gas hydrate reservoir, and of siderite below the BSR. In the Blake Ridge, the dolomite/siderite boundary is located near 140 mbsf. The distribution with depth of the d18O values of dolomite and siderite shows a sharp decrease from high values (maximum 7.5 per mil) in the topmost 50 m, to very low values (minimum -2.7 per mil) at 140 mbsf, and at greater depth increase to positive values within the range of 1.8 per mil to 5.0 per mil. The d13C distribution is marked by the rapid increase with greater depth from low values (-31.3 per mil to -11.4 per mil) near 50 mbsf to positive values at 110 mbsf, which remain in the range of 1.7 to 5.4 down to 700 mbsf. Diagenetic carbonates were precipitated in pore waters in which d18O and d13C values were highly modified by strong fractionation effects, both in the water and in the CO2-CH4 systems associated with the formation and dissociation of gas hydrates.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Dickens, Gerald Roy; Wallace, Paul J; Paull, Charles K; Borowski, Walter S (2000): Detection of methane gas hydrate in the pressure core sampler (PCS): volume-pressure-time relations during controlled degassing experiments. In: Paull, CK; Matsumoto, R; Wallace, PJ; Dillon, WP (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 164, 1-14, https://doi.org/10.2973/odp.proc.sr.164.210.2000
    Publication Date: 2024-01-09
    Description: A pressurized core with CH4 hydrate or dissolved CH4 should evolve gas volumes in a predictable manner as pressure is released over time at isothermal conditions. Incremental gas volumes were collected as pressure was released over time from 29 pressure core sampler (PCS) cores from Sites 994, 995, 996, and 997 on the Blake Ridge. Most of these cores were kept at or near 0ºC with an ice bath, and many of these cores yielded substantial quantities of CH4. Volume-pressure plots were constructed for 20 of these cores. Only five plots conform to expected volume and pressure changes for sediment cores with CH4 hydrate under initial pressure and temperature conditions. However, other evidence suggests that sediment in these five and at least five other PCS cores contained CH4 hydrate before core recovery and gas release. Detection of CH4 hydrate in a pressurized sediment core through volume-pressure relationships is complicated by two factors. First, significant quantities of CH4-poor borehole water fill the PCS and come into contact with the core. This leads to dilution of CH4 concentration in interstitial water and, in many cases, decomposition of CH4 hydrate before a degassing experiment begins. Second, degassing experiments were conducted after the PCS had equilibrated in an ice-water bath (0ºC). This temperature is significantly lower than in situ values in the sediment formation before core recovery. Our results and interpretations for PCS cores collected on Leg 164 imply that pressurized containers formerly used by the Deep Sea Drilling Project (DSDP) and currently used by ODP are not appropriately designed for direct detection of gas hydrate in sediment at in situ conditions through volume-pressure relationships.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Monteleone, Brian D; Baldwin, Suzanne L; Ireland, Trevor R; Fitzgerald, Paul G (2001): Thermochronologic constraints for the tectonic evolution of the Moresby Seamount, Woodlark Basin, Papua New Guinea. In: Huchon, P; Taylor, B; Klaus, A (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 180, 1-35, https://doi.org/10.2973/odp.proc.sr.180.173.2001
    Publication Date: 2024-01-09
    Description: During Ocean Drilling Program (ODP) Leg 180, 11 sites were drilled in the vicinity of the Moresby Seamount to study processes associated with the transition from continental rifting to seafloor spreading in the Woodlark Basin. This paper presents thermochronologic (40Ar/39Ar, 238U/206Pb, and fission track) results from igneous rocks recovered during ODP Leg 180 that help constrain the latest Cretaceous to present-day tectonic development of the Woodlark Basin. Igneous rocks recovered (primarily from Sites 1109, 1114, 1117, and 1118) consist of predominantly diabase and metadiabase, with minor basalt and gabbro. Zircon ion microprobe analyses gave a 238U/206Pb age of 66.4 ± 1.5 Ma, interpreted to date crystallization of the diabase. 40Ar/39Ar plagioclase apparent ages vary considerably according to the degree to which the diabase was altered subsequent to crystallization. The least altered sample (from Site 1109) yielded a plagioclase isochron age of 58.9 ± 5.8 Ma, interpreted to represent cooling following intrusion. The most altered sample (from Site 1117) yielded an isochron age of 31.0 ± 0.9 Ma, interpreted to represent a maximum age for the timing of subsequent hydrothermal alteration. The diabase has not been thermally affected by Miocene-Pliocene rift-related events, supporting our inference that these rocks have remained at shallow and cool levels in the crust (i.e., upper plate) since they were partially reset as a result of middle Oligocene hydrothermal alteration. These results suggest that crustal extension in the vicinity of the Moresby Seamount, immediately west of the active seafloor spreading tip, is being accommodated by normal faulting within latest Cretaceous to early Paleocene oceanic crust. Felsic clasts provide additional evidence for middle Miocene and Pliocene magmatic events in the region. Two rhyolitic clasts (from Sites 1110 and 1111) gave zircon 238U/206Pb ages of 15.7 ± 0.4 Ma and provide evidence for Miocene volcanism in the region. 40Ar/39Ar total fusion ages on single grains of K-feldspar from these clasts yielded younger apparent ages of 12.5 ± 0.2 and 14.4 ± 0.6 Ma due to variable sericitization of K-feldspar phenocrysts. 238U/206Pb zircon, 40Ar/39Ar K-feldspar and biotite total fusion, and apatite fission track analysis of a microgranite clast (from Site 1108) provide evidence for the existence of a rapidly cooled 3.0 to 1.8 Ma granitic protolith. The clast may have been transported longitudinally from the west (e.g., from the D'Entrecasteaux Islands). Alternatively, it may have been derived from a more proximal, but presently unknown, source in the vicinity of the Moresby Seamount.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gardien, Véronique; Le Gall, Bernard; Célérier, Bernard; Louvel, Véronique; Huchon, Philippe (2002): Low pressure-temperature evolution of the continental crust exhumed during the opening of the Woodlark Basin. In: Huchon, P; Taylor, B; Klaus, A (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 180, 1-28, https://doi.org/10.2973/odp.proc.sr.180.178.2002
    Publication Date: 2024-01-09
    Description: During the last 8 m.y. the Papuan Peninsula region of Papua New Guinea has been affected by extension which opened the Woodlark Basin. The present-day spreading tip is located at the foot of the Moresby Seamount, a crustal block whose northern flank is an active low-angle normal fault related to this extension. During Ocean Drilling Program Leg 180 (7 June-11 August 1998), 11 sites (1108-1118) were drilled along a north-south-trending transect across the Woodlark Basin just ahead of the spreading tip. Four of these sites (1118, 1109, 1114, and 1117) reached the crystalline basement, which is composed of diabase and gabbro. Sites 1118 and 1109, located on the Woodlark Rise, belong to the hanging wall block, and Sites 1114 and 1117, located on the crest of the Moresby Seamount, belong to the footwall block and the fault zone itself. Most of the basalt, diabase, and gabbro that were recovered show a well-preserved magmatic texture. The diabase, which is the most abundant rock type, has a coarse-grained ophitic texture composed of poikilitic clinopyroxene including radiating, locally skeletal plagioclase laths with interstitial iron oxide grains. Secondary mineralogy consists of chlorite, zeolite, calcite, albite, and quartz. The gabbro shows a medium-grained granular texture. The magmatic mineralogy consists of euhedral laths of plagioclase and anhedral interstitial clinopyroxene. Secondary mineralogy consists of a magnesio to actinolitic hornblende, chlorite, clinozoisite, zeolite, quartz, and calcite. The retrograde metamorphic evolution of both gabbro and diabase occurred under low amphibolite to subgreenschist facies conditions associated mainly with brittle deformation and the development of a local low-temperature shear zone. This shows no evidence for high thermal gradient in the crust during the continental rifting.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Robertson, Alastair H F; Sharp, Timothy R (2002): Geochemical and mineralogical evidence for the provenance of mixed volcanogenic/terrigenous hemipelagic sediments in the Pliocene-Pleistocene Woodlark backarc rift basin, southwest Pacific: Ocean Drilling Program Leg 180. In: Huchon, P; Taylor, B; Klaus, A (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 180, 1-53, https://doi.org/10.2973/odp.proc.sr.180.156.2002
    Publication Date: 2024-01-09
    Description: Middle Miocene to Holocene fine-grained argillaceous sediments (clays, claystones/muds, and mudstones), which volumetrically dominated the sediment recovery in the Woodlark Basin during Leg 180, were chemically analyzed for major elements, trace elements, and some rare earth elements by X-ray fluorescence. Selected samples also underwent X-ray diffraction (XRD) analysis for mineral determination. The results shed light on sediment provenance when combined with shipboard sediment descriptions, smear slide study, and XRD. The oldest sediments recovered (Site 1108) of middle-late Miocene age include volcanogenic muds with distinctive high MgO and K2O, indicative of a relatively basic calc-alkaline source related to an inferred Miocene forearc succession. The forearc basement, composed of diabase and basalt, was locally exposed (Site 1109) and eroded in the late Miocene (〈5.4-9.93 Ma), giving rise to fluvial conglomerates (Sites 1109, 1115, and 1118). Chemically distinctive fine-grained claystones and siltstones (with relatively high Ti, low K) are compatible with derivation from tropically weathered basic igneous rocks, correlated with the Paleogene Papuan ophiolite. Overlying latest Miocene-Pleistocene fine-grained sediments throughout the Woodlark Basin were partly derived from calc-alkaline volcanic sources. However, relatively high abundances of Al2O3 and related element oxides (K2O and Na2O) and trace elements (e.g., Rb and Y) reflect an additional terrigenous input throughout the basin, correlated with pelitic metamorphic rocks exposed on Papua New Guinea and adjacent areas. In addition, sporadic high abundances of Cr and Ni, some other trace metals, and related minerals (talc, crysotile, and chlorite) reflect input from an ophiolitic terrain dominated by ultramafic rocks, correlated with the Paleogene Papuan ophiolite. The source areas possibly included serpentinized ultramafic ophiolitic rocks exposed in the Papua New Guinea interior highlands. Chemical evidence further indicates that fine-grained terrigenous sediment reached the Woodlark Basin throughout its entire late Miocene-Holocene history. Distinctive high-K volcanogenic muds rich in tephra and volcanic ash layers that appear at 〈2.3 Ma (Sites 1109 and 1115) are indicative of high-K calc-alkaline volcanic centers, possibly located in the Dawson Strait, Moresby Strait, or Dobu Seamount area. Chemical diagenesis of fine-grained sediments within the Woodlark Basin is reflected in clay neomorphism and localized formation of minerals including dolomite, ankerite, and zeolite but has had little effect on the bulk chemical composition of most samples.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sharp, Timothy R; Robertson, Alastair H F (2002): Petrography and provenance of volcaniclastic sands and sandstones recovered from the Woodlark rift basin and Trobriand forearc basin, Leg 180. In: Huchon, P; Taylor, B; Klaus, A (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 180, 1-58, https://doi.org/10.2973/odp.proc.sr.180.176.2002
    Publication Date: 2024-01-09
    Description: Modal analysis of middle Miocene to Pleistocene volcaniclastic sands and sandstones recovered from Sites 1108, 1109, 1118, 1112, 1115, 1116, and 1114 within the Woodlark Basin during Leg 180 of the Ocean Drilling Program indicates a complex source history for sand-sized detritus deposited within the basin. Volcaniclastic detritus (i.e., feldspar, ferromagnesian minerals, and volcanic rock fragments) varies substantially throughout the Woodlark Basin. Miocene sandstones of the inferred Trobriand forearc succession contain mafic and subordinate silicic volcanic grains, probably derived from the contemporary Trobriand arc. During the late Miocene, the Trobriand outerarc/forearc (including Paleogene ophiolitic rocks) was subaerially exposed and eroded, yielding sandstones of dominantly mafic composition. Rift-related extension during the late Miocene-late Pliocene led to a transition from terrestrial to neritic and finally bathyal deposition. The sandstones deposited during this period are composed dominantly of silicic volcanic detritus, probably derived from the Amphlett Islands and surrounding areas where volcanic rocks of Pliocene-Pleistocene age occur. During this time terrigenous and metamorphic detritus derived from the Papua New Guinea mainland reached the single turbiditic Woodlark rift basin (or several subbasins) as fine-grained sediments. At Sites 1108, 1109, 1118, 1116, and 1114, serpentinite and metamorphic grains (schist and gneiss) appear as detritus in sandstones younger than ~3 Ma. This is thought to reflect a major pulse of rifting that resulted in the deepening of the Woodlark rift basin and the prevention of terrigenous and metamorphic detritus from reaching the northern rift margin (Site 1115). The Paleogene Papuan ophiolite belt and the Owen Stanley metamorphics were unroofed as the southern margin of the rift was exhumed (e.g., Moresby Seamount) and, in places, subaerially exposed (e.g., D'Entrecasteaux Islands and onshore Cape Vogel Basin), resulting in new and more proximal sources of metamorphic, igneous, and ophiolitic detritus. Continued emergence of the Moresby Seamount during the late Pliocene-early Pleistocene bounded by a major inclined fault scarp yielded talus deposits of similar composition to the above sandstones. Upper Pliocene-Pleistocene sandstones were deposited at bathyal depths by turbidity currents and as subordinate air-fall ash. Silicic glassy (high-K calc-alkaline) volcanic fragments, probably derived from volcanic centers located in Dawson and Moresby Straits, dominated these sandstones.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Okada, Hisatake (2000): Neogene and Quaternary calcareous nannofossils from the Blake Ridge, Sites 994, 995, and 997. In: Paull, CK; Matsumoto, R; Wallace, PJ; Dillon, WP (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 164, 1-11, https://doi.org/10.2973/odp.proc.sr.164.232.2000
    Publication Date: 2024-01-09
    Description: Twenty routinely used nannofossil datums in the late Neogene and Quaternary were identified at three Blake Ridge sites drilled during Leg 164. The quantitative investigation of the nannofossil assemblages in 236 samples selected from Hole 994C provide new biostratigraphic and paleoceanographic information. Although mostly overlooked previously, Umbilicosphaera aequiscutum is an abundant component of the late Neogene flora, and its last occurrence at ~2.3 Ma is a useful new biostratigraphic event. Small Gephyrocapsa evolved within the upper part of Subzone CN11a (~4.3 Ma), and after an initial acme, it temporarily disappeared for 400 k.y., between 2.9 and 2.5 Ma. Medium-sized Gephyrocapsa evolved in the latest Pliocene ~2.2 Ma), and after two short temporary disappearances, common specimens occurred continuously just above the Pliocene/Pleistocene boundary. The base of Subzone CN13b should be recognized as the beginning of the continuous occurrence of medium-sized (〉4 µm) Gephyrocapsa. Stratigraphic variation in abundance of the very small placoliths and Florisphaera profunda alternated, indicating potential of the former as a proxy for the paleoproductivity. At this site, it is likely that upwelling took place during three time periods in the late Neogene (6.0-4.6 Ma, 2.3-2.1 Ma, and 2.0-1.8 Ma) and also in the early Pleistocene (1.4-0.9 Ma). Weak upwelling is also likely to have occurred intermittently through the late Pliocene. Due to the sharp and abrupt turnover of the nannofossils, which resulted from an evolution of very competitive species, the paleoproductivity of the late Pleistocene is not clear. The site was mostly in an oligotrophic central gyre setting during the 4.6- to 2.3-Ma interval, intermittently between 2.1 and 1.4 Ma, and continuously for the last several tens of thousand years.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stover, S Cheree; Screaton, Elizabeth J; Likos, William J; Ge, Shemin (2001): Data report: Hydrologic characteristics of shallow marine sediments of Woodlark Basin, Site 1109. In: Huchon, P; Taylor, B; Klaus, A (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 180, 1-22, https://doi.org/10.2973/odp.proc.sr.180.168.2001
    Publication Date: 2024-01-09
    Description: Vertical permeability testing was conducted on four samples collected from Site 1109, a borehole advanced during Ocean Drilling Program Leg 180. Closed conditions were applied during each test, and the samples were measured using a constant flow approach and permeant solutions that matched the geochemistry of nearby interstitial waters. Vertical permeabilities measured at 34.5 kPa effective stress generally decreased with depth and ranged from 10**-14 m**2 at 212.53 meters below seafloor (mbsf) to 10**-18 m**2 at 698.10 mbsf. The three deepest samples differed in permeability by less than one order of magnitude. Reconsolidation testing on the shallowest sample yielded a minimum permeability of 1.56 x 10**-16 m**2 at 276 kPa effective stress. Subsequent rebound testing yielded a hysteresis-type curve, with the final permeability measuring lower than the initial permeability by nearly 1.5 orders of magnitude. Dilution experiments indicated that use of a permeant solution matching the geochemistry of the interstitial waters may be necessary for accuracy in measurements and mitigation of clay swellage and collapse during testing, but further research is mandated.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mather, Ian D; Wellsbury, Peter; Parkes, R John; Maxwell, James R (2001): Purge-trap analysis of sediments of the western Woodlark Basin, Sites 1109 and 1115. In: Huchon, P; Taylor, B; Klaus, A (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 180, 1-14, https://doi.org/10.2973/odp.proc.sr.180.171.2001
    Publication Date: 2024-01-09
    Description: Low molecular weight hydrocarbon (LMWH) distributions were examined in sediments from Sites 1109 and 1115 in the western Woodlark Basin using purge-trap thermal adsorption/desorption gas analysis. A number of different hydrocarbon components 〉C1, which were not detected during shipboard gas analysis, were detected at both sites using the purge-trap procedure. Concentrations of ethane, propane, and butane remained relatively low (〈100 pmol/g) throughout Site 1109 and had no consistent trend with depth. In contrast, the longer-chain components increased in concentration with depth. Hexane concentrations rose to 716 pmol/g at the base of the site with a concomitant increase in both 2-methyl- and 3-methylpentane. At Site 1115, concentrations of ethane, propane, butane, and isobutylene + 1-butene remained low (〈60 pmol/g) throughout the site and again had no consistent trend with depth. 2-Methylpentane, 3-methylpentane, and hexane concentrations had a subsurface maximum that coincided with sediments containing abundant plant-rich material. The LMWH downhole profiles plus low in situ temperatures suggest that the LMWH components were formed in situ by low-temperature biological processes. Purge-trap analysis has indicated the presence of some unexpected deep low-temperature bacterial reactions, which demonstrates that further analysis of LMWH may provide valuable information at future Ocean Drilling Program sites.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Barker, Peter F (2001): Data report: Composite depths and spliced sections for Leg 178 Sites 1095 and 1096, Antarctic Peninsula continental rise. In: Barker, PF; Camerlenghi, A; Acton, GD; Ramsay, ATS (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, 178, 1-15, https://doi.org/10.2973/odp.proc.sr.178.219.2001
    Publication Date: 2024-01-09
    Description: During Leg 178, multiple advanced piston corer holes were drilled at four sites (1095, 1096, 1098, and 1099). Cores from the holes were correlated on board to produce composite depths and optimal spliced sections, but the time limitations aboard ship caused these to be preliminary. Recomputed composite depths for Sites 1098 and 1099 in Palmer Deep are reported elsewhere in this volume (doi:10.2973/odp.proc.sr.178.2002). This paper reports recomputed composite depths and spliced sections for Sites 1095 and 1096, located on a sediment drift on the continental rise of the Pacific margin of the Antarctic Peninsula. Limits on the validity of the spliced sections arise from limited multiple coverage and possibly from the effects of ocean swell.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hovan, Steven A; Kish, S W; Renyck, Heather J (2000): Late Pleistocene record of terrigenous mineral deposition along the northern California margin (Sites 1018 and 1020). In: Lyle, M; Koizumi, I; Richter, C; Moore, TC Jr (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 167, 1-8, https://doi.org/10.2973/odp.proc.sr.167.207.2000
    Publication Date: 2024-01-09
    Description: The terrigenous mineral fraction of sediments recovered by drilling during Ocean Drilling Program Leg 167 at Sites 1018 and 1020 is used to evaluate changes in the source and transport of fine-grained terrigenous sediment and its relation to regional climates and the paleoceanographic evolution of the California Current system during the late Pleistocene. Preliminary time scales developed by correlation of oxygen isotope stratigraphies with the global SPECMAP record show average linear sedimentation rates in excess of 100 m/m.y., which provide an opportunity for high-resolution studies of terrigenous flux, grain size, and mineralogy. The mass flux of terrigenous minerals at Site 1018 varies from 5 to 30 g/(cm**2 x k.y.) and displays a general trend toward increased flux during glacials. The terrigenous record at Site 1020 shows a similar pattern of increased glacial input, but overall accumulation rates are significantly lower. Spectral analysis demonstrates that most of this variability is concentrated in frequency bands related to orbital cycles of eccentricity, tilt, and precession. Detailed grain-size analysis performed on the isolated terrigenous mineral fraction shows that sediments from Site 1018 are associated with higher energy transport and depositional regimes than those found at Site 1020. Grain-size data are remarkably uniform throughout the last 500 k.y., with no discernible difference observed between glacial and interglacial size distributions within each site. X-ray diffraction analysis of the 〈2-µm clay component suggests that the deposition of minerals found at Site 1020 is consistent with transport from a southern source during intervals of increased terrigenous input.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Delaney, Margaret Lois; Anderson, Linda Davis (2000): Data Report: Phosphorus concentrations and geochemistry in California margin sediments. In: Lyle, M; Koizumi, I; Richter, C; Moore, TC Jr (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 167, 1-8, https://doi.org/10.2973/odp.proc.sr.167.227.2000
    Publication Date: 2024-01-09
    Description: The ocean history of reactive phosphorus (P) (i.e., dissolved P available to fuel oceanic primary productivity) is of interest because of the role of P as a biolimiting nutrient, and knowledge of P burial in marine sediments is key to testing hypotheses about temporal changes in P input or output fluxes. Our understanding of the history of the P cycle over the Cenozoic has increased substantially with temporal records of reactive P mass accumulation rates from open-ocean Pacific and Atlantic equatorial sites. However, questions about the relative importance of nutrient burial in ocean-margin sediments relative to burial in open-ocean sediments and about the extent of P remobilization in organic-rich, reducing environments characteristic of margin sediments remain unresolved. Nutrient burial in oceanic boundary current systems has been suggested to have a controlling role in oceanic nutrient budgets in certain time intervals (Vincent and Berger, 1985, doi:10.1029/GM032p0455), with higher sediment accumulation rates balancing the limited spatial extent of these sediments. Some investigators suggest that remobilization of P from reducing sediments in margin settings is a significant positive feedback to primary productivity (e.g., Van Cappellan and Ingall, 1994, doi:10.1029/94PA01455), whereas other results indicate that both P uptake and P release may occur in these settings depending on the balance of organic carbon and iron supply to the sediments and on the oxygenation of bottom waters (McManus et al., 1997, doi:10.1016/S0016-7037(97)00138-5). It is important to quantitatively understand the geochemistry of reactive P in margin sediments, where productivity and delivery of organic-rich material to the sediments in relatively shallow-water settings is often sufficient to promote anoxia in interstitial waters. To address these questions, we determined the P concentrations and geochemistry in sediment samples from eight sites drilled during Ocean Drilling Program (ODP) Leg 167, California margin (Sites 1010-1012, 1014, 1016-1017, and 1021-1022). These results are the first records of reactive P concentrations on long time scales-required for the calculation of P accumulation rates-for sediments from a highly productive eastern boundary current setting. In addition, we determined calcium carbonate contents and biogenic silica concentrations to define the environments of sedimentary production, burial, and diagenesis.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: MacKillop, Kevin (2000): Data Report: Correction of index properties and the meters composite depth scale using elastic properties of Leg 167 sediments. In: Lyle, M; Koizumi, I; Richter, C; Moore, TC Jr (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 167, 1-6, https://doi.org/10.2973/odp.proc.sr.167.244.2000
    Publication Date: 2024-01-09
    Description: Drilling during Leg 167 at the California margin was scheduled to recover continuous sedimentary sections. Multiple advanced piston core (APC) holes drilled at different depth offsets provided core overlap in successive APCs. Correlation of high-resolution laboratory physical properties data from adjacent APC holes was used to compile composite depth sections for each site. The composite depth sections were used to confirm continuous recovery and enable high-resolution sampling. The meters composite depth (mcd) scale differs from the shipboard meters below seafloor (mbsf) scale because of (1) core expansion following recovery (MacKillop et al., 1995, doi:10.2973/odp.proc.sr.138.118.1995), (2) coring gaps, and (3) stretching/compression of sediment during coring (Lyle, Koizumi, Richter, et al., 1997, doi:10.2973/odp.proc.ir.167.1997). Moran (1997, doi:10.2973/odp.proc.sr.154.132.1997) calculated that sediment expansion accounted for 90%-95% of the Leg 154 depth offset between shipboard mbsf and the mcd scales. Terzaghi's one-dimensional theory of consolidation (Terzaghi, 1943) describes the response of sediments to stress loading and release. Mechanical loading in marine environments is provided by the buoyant weight of the overlying sediments. The load increases with depth below seabed, resulting in sediment volume reduction as water is "squeezed" out of the voids in the sediment. Stress release during core recovery results in expansion of the sediment and volume increase as water returns to the sediment. The sediment expansion or rebound defines the elastic properties of the sediment. In this study we examine the elastic deformation properties of sediments recovered from Sites 1020 and 1021. These results are used to (1) correct the laboratory index properties measurements to in situ values and (2) determine the contribution of sediment rebound to the depth offset between the mbsf and mcd scales.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kroon, Dick; Reijmer, John J G; Rendle, Rebecca (2000): Mid- to late-Quaternary variations in the oxygen isotope signature of Globigerinoides ruber at Site 1006 in the western subtropical Atlantic. In: Swart, PK; Eberli, GP; Malone, MJ; Sarg, JF (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 166, 1-10, https://doi.org/10.2973/odp.proc.sr.166.104.2000
    Publication Date: 2024-01-09
    Description: The 1.4-m.y.-long stable oxygen isotope record of Site 1006 in the low-latitude North Atlantic Ocean shows large glacial/interglacial amplitude changes caused by a combination of temperature and salinity fluctuations. A trend of increased sea-surface temperatures during the interglacial periods is present in the record beginning at isotopic Stage 11 and ultimately leading to the lightest d18O values in isotopic Stages 9, 5, and 1. Maximum d18O values are recorded during glacial isotopic Stages 6 and 8. Stable isotopic variability increased during the Brunhes Chron at the 100-ka time scale. The large amplitude changes can best be explained by global and regional ocean circulation changes. Increased strengthened return flow of warm salty water from the Pacific may have occurred during interglacial periods since isotopic Stage 11, which was largely reduced during glacial periods. The large climate fluctuations had a profound effect on the shallow-water carbonate production of the Great Bahama Bank. The aragonite content of the sediments shows fluctuations that follow the d18O record. The leeward side of the Great Bahama Bank received increased input of platform material during sea-level highstands when the sea-surface waters were warm.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Baldauf, Jack G; Iwai, Masao (1995): Neogene diatom biostratigraphy for the eastern Equatorial Pacific Ocean, Leg 138. In: Pisias, NG; Mayer, LA; Janecek, TR; Palmer-Julson, A; van Andel, TH (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 105-128, https://doi.org/10.2973/odp.proc.sr.138.107.1995
    Publication Date: 2024-01-09
    Description: Ocean Drilling Program (ODP) Leg 138 recovered more than 5500 m of Quaternary to middle Miocene (~17 Ma) sediments from 11 sites in the eastern equatorial Pacific Ocean. These sediments represent the most complete stratigraphic sequence recovered since the start of scientific ocean drilling by the Deep Sea Drilling Project (DSDP) and ODP. The diatoms observed generally are common to abundant and well-preserved throughout the samples examined. The assemblages are characterized by species typical of low-latitudes and regions of high surface-water productivity and are dominated by Thalassiothrix longissima, Thalassionema nitzschioides, Azpeitia nodulifer, and numerous species of Thalassiosira and Nitzschia. Fifty-six biostratigraphic events were identified at Sites 844 through 852, allowing us, in part, to use the diatom zonation of Barron (1985a). This zonation was modified by replacing the Rhizosolenia preabergonii Zone and the upper portion of the Nitzschia jouseae Zone, as used by Barron (1985a), with the Nitzschia marina and Nitzschia jouseae zones, as used by Baldauf (1984, 1987). Twenty-nine biostratigraphic events have been correlated to the Leg 138 paleomagnetic stratigraphy of Schneider (this volume). Nineteen of these events are well constrained to permit recalibration. Diatoms were rare or absent in samples examined from Sites 853 and 854. As such, these sites are not included in the following discussion.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schneider, David A (1995): Paleomagnetism of some Leg 138 sediments: detailing Miocene magnetostratigraphy. In: Pisias, NG; Mayer, LA; Janecek, TR; Palmer-Julson, A; van Andel, TH (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 59-72, https://doi.org/10.2973/odp.proc.sr.138.105.1995
    Publication Date: 2024-01-09
    Description: The aims of this study are twofold. First, the study tries to provide the most reliable chronology possible for two critical sections by correlating the magnetic polarity stratigraphy measured in these sediments with a newly revised geomagnetic polarity time scale. Second, this study attempts to examine in detail the nature of seven short events not included in the shipboard standard time scale, but for which abundant magnetostratigraphic evidence was obtained during the Leg. Data presented here force some modifications of the shipboard interpretations of the magnetostratigraphy of Sites 845 and 844 on the basis of new data generated using discrete samples and from a greater appreciation of the magnetostratigraphic signature of Miocene-age short events. Those short events can be classified into two groups: those that probably reflect short, full-polarity intervals and those that more likely represent an interval of diminished geomagnetic intensity. Three of the seven events documented here correspond well with three subtle features, as seen in marine magnetic profiles, that have been newly included in the geomagnetic polarity time scale as short, full-polarity chrons. One of the seven events corresponds to a poorly defined feature of the marine magnetic record that has also been newly included in the geomagnetic polarity time scale, but which was considered of enigmatic origin. The three remaining events investigated here, although they have not been identified with features in the seafloor magnetic record, are suggested to be events of a similar nature, most likely times of anomalously low geomagnetic intensity. In addition to the Miocene magnetostratigraphic results given, several sets of averaged paleomagnetic inclinations are presented. Although these results clearly show the effects of a residual coring overprint, they demonstrate that paleomagnetic estimates of paleolatitudes can be made which are in good general agreement with ancient site positions calculated using hot spot-based plate reconstructions.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Farrell, John W; Murray, David W; McKenna, V S; Ravelo, Ana Christina (1995): Upper ocean temperature and nutrient contrasts inferred from Pleistocene planktonic foraminifer d18O and d13C in the eastern Equatorial Pacific. In: Pisias, NG; Mayer, LA; Janecek, TR; Palmer-Julson, A; van Andel, TH (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 289-319, https://doi.org/10.2973/odp.proc.sr.138.115.1995
    Publication Date: 2024-01-09
    Description: We present Pleistocene oxygen and carbon isotope records from two planktonic foraminifer species (Globigerinoides sacculifer and Neogloboquadrina dutertrei) from Ocean Drilling Program Site 847 (0°16'N, 95°19'W; 3334 m water depth). An average sample resolution of 4500 yr was obtained by sampling at an interval of 15 cm through a continuous 35-m section from 0 to 1.15 Ma. Our d18O-based chronology is similar to that derived independently by astronomically tuning the gamma-ray attenuation porosity evaluator (GRAPE) record (Shackleton et al., 1995), though offsets as large as ± 30 k.y. occur on occasion. The surface waters at eastern equatorial Pacific Site 847, 380 km west of the Galapagos, are characterized by strong and constant upwelling, elevated nutrient concentrations, and high productivity. The isotopic composition of G. sacculifer (300-355 µm) reflects conditions in the thin-surface mixed layer, and the composition of N. dutertrei (355-425 µm) monitors the subsurface waters of the permanent shallow (10-40 m) thermocline. The Pleistocene d18O difference (N. dutertrei minus G. sacculifer, Dd18Od-s) averages 0.9 per mil and ranges from 0 per mil to 1.7 per mil. Neglecting species effects and shell size, the average Pleistocene d13C difference (G. sacculifer minus N. dutertrei, Dd13Cs-d) is 0.0 per mil and ranges from -0.5 per mil to 0.5 per mil. The Dd18Od-s and Dd13Cs-d records are used to infer vertical contrasts in upper ocean water temperature and nutrient concentration, though d13C may also be influenced by other factors, such as CO2 gas exchange. Variations in the isotopic differences are often synchronous with glacial/interglacial climate change. Glacial periods are characterized by smaller vertical contrasts in both temperature and nutrient concentration, and by notably greater accumulation rates of N. dutertrei and CaCO3. We attribute these responses to greater upwelling at the equatorial divergence. Superimposed on the glacial/interglacial Dd18Od-s pattern is a long-term trend possibly associated with the advection of Peru Current waters. The temporal fluctuations in the isotopic contrasts are strikingly similar to those observed at Site 851 (Ravelo and Shackleton, this volume), suggesting that the inferred changes in thermal and chemical profiles occurred over a broad region in the equatorial Pacific.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ravelo, Ana Christina; Shackleton, Nicholas J (1995): Evidence for surface-water circulation changes at Site 851 in the eastern Tropical Pacific Ocean. In: Pisias, NG; Mayer, LA; Janecek, TR; Palmer-Julson, A; van Andel, TH (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 503-514, https://doi.org/10.2973/odp.proc.sr.138.126.1995
    Publication Date: 2024-01-09
    Description: This study investigates changes in the upper water column hydrography at Site 851 of the eastern tropical Pacific Ocean since the late Pliocene, using the oxygen and carbon isotopic composition of three species of planktonic foraminifers, each calcifying at different depths in the photic zone. The upper ocean seasonal hydrography in this region responds to the seasonally changing trade winds and thus is expected to respond to past changes in trade winds. One major change occurs at about 1.5 Ma, when the thermocline adjusts from a deep position to a shallower position. The thermocline remains in a relatively shallow position throughout the record up to recent time, with slight variations occurring synchronously with glacial/interglacial stages. In glacials, SSTs are probably a few degrees cooler and the thermocline is slightly deeper. From our knowledge of seasonal and interannual adjustments of the thermocline in this location, a deeper thermocline might be interpreted as either a decrease in the strength of the Equatorial Undercurrent (EUC) that results from lower mean wind strength or an increase in the Equatorial Countercurrent (ECC), which results from an increase in the strength of the southeasterly trade winds. A major shift from higher to lower carbon isotope values occurred at about 1.9 Ma, marking a transition to reduced planktonic-benthic d13C differences after 1.9 Ma. The carbon isotopic data indicate that changes in the carbon isotopic composition of intermediate upwelling water occurs at higher frequencies than the glacial/interglacial changes in ice volume.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pisias, Nicklas G; Moore, Theodore C (1995): Radiolarian response to oceanographic changes in the eastern Equatorial Pacific at 2.3 and 4.8 Ma: Relationship between changing carbonate deposition and surface oceanography. In: Pisias, NG; Mayer, LA; Janecek, TR; Palmer-Julson, A; van Andel, TH (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 461-478, https://doi.org/10.2973/odp.proc.sr.138.124.1995
    Publication Date: 2024-01-09
    Description: Two short time intervals centered at 2.3 and 4.7 Ma were studied to investigate short-term variations in surface-ocean processes as indicated by changes in the radiolarian microfossil population. These time intervals represent two different settings of late Neogene climate. The older interval represents a time when tropical circulation between the Pacific and Atlantic oceans was not blocked by the Isthmus of Panama, whereas the younger interval represents a time when Northern Hemisphere glaciation was present but did not display the dominance of the 100,000-yr cycle that characterizes the late Pleistocene. The younger time slice at 2.3 Ma was sampled at all Leg 138 sites except Site 844, where significant reworking was evident. All sites except 844, 853, and 854 were sampled for the older time slice. Samples were taken at 10- to 20-cm intervals at each site and spanned a GRAPE density maximum and minimum. Thus, it was possible to investigate whether the changes in carbonate content (as indicated by GRAPE density) were associated with changes in surface-ocean conditions (indicated by radiolarian assemblage variations). For both time slices, the radiolarian data indicate that intervals of decreased carbonate content are periods of cooler water conditions and possibly enhanced biogenic production. Times of increased carbonate content are associated with inferred warmer oceanographic conditions, as indicated by the dominance of tropical assemblages at 2.3 Ma and tropical and western Pacific assemblages during the time slice centered at 4.8 Ma. However, the spatial patterns of change during each time slice show a distinct difference in the mapped patterns of radiolarian assemblage dominance. The older time slice, representing a period before the closing of the Isthmus of Panama, shows more zonal patterns presumably associated with a more zonal character of equatorial circulation. After the closing of the isthmus, the shifts in faunal patterns between times of high and low carbonates are characterized by shifts in the dominance of the tropical and transitional assemblages, respectively, throughout the region.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Moore, Theodore C (1995): Radiolarian stratigraphy, Leg 138. In: Pisias, NG; Mayer, LA; Janecek, TR; Palmer-Julson, A; van Andel, TH (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 191-232, https://doi.org/10.2973/odp.proc.sr.138.111.1995
    Publication Date: 2024-01-09
    Description: A group of 46 radiolarian species was used in this study of Leg 138 sites. The recovery of the sections was complete in the intervals that were cored using the APC system and nearly complete in the deeper sections. The northeastern sites (844 and 845) were sampled down through the middle Miocene into the uppermost part of the lower Miocene (middle part of the Calocycletta costata Zone). In the southeastern sites and those of the eastern transect (846 through 854) sediments were of late Miocene age (Diartus petterssoni Zone) and younger. Preservation of the radiolarian fauna was good to moderately good in most of the sites. Only in Sites 853 and 854 was the section older than late Pliocene barren of radiolarians. Reworked older radiolarians were found in the upper Miocene and Pliocene parts of the sections in most sites. Reworked upper Miocene radiolarians were even found in the upper Pliocene of Sites 853 and 854 where the upper Miocene part of the sections were barren of radiolarians. The development of an orbitally tuned time scale for the last 10 m.y. allowed the differentiation between radiolarian datums that appear to be synchronous (within 150,000 yr) in the eastern equatorial Pacific Ocean and those which appear to be diachronous. Of the 39 datums examined in this time interval, only 10 met this working definition of synchrony within the study area.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 34 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Filippelli, Gabriel M; Delaney, Margaret Lois (1995): Phosphorus geochemistry and accumulation rates in the eastern equatorial Pacific Ocean: results from Leg 138. In: Pisias, NG; Mayer, LA; Janecek, TR; Palmer-Julson, A; van Andel, TH (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 757-767, https://doi.org/10.2973/odp.proc.sr.138.144.1995
    Publication Date: 2024-01-09
    Description: We determined phosphorus (P) concentrations in Leg 138 sediment samples from Sites 844, 846, and 851, using a sequential extraction technique to identify the P associated with five sedimentary components. Total concentrations of P (sum of the five components) ranged from 4 to 35 µmol P/g sediment, with mean values relatively similar between the three sites (11, 14, and 12 for Sites 844,846, and 851, respectively). Authigenic/biogenic P was the most important component in terms of percentage of total P (about 75%), with iron-bound P (13%), adsorbed P (2%-9%), and organic P (4%) of secondary importance; detrital P was a minor P sink (1%) in these sediments. Profiles of adsorbed P and iron-bound P show decreasing concentrations with age, indicating that these components have been affected by diagenesis and reorganization of P. A peak in iron-bound P may reflect higher fluxes of hydrothermally derived Fe to eastern equatorial Pacific Ocean sediments from 11 to 8 Ma. Lower detrital P values for western Site 851 reflect a greater distance of this site from a terrigenous source area, compared to that of Sites 844 and 846. Phosphorus mass accumulation rates (P-MARs; units of µmol P/cm**2/k.y.) were calculated using total P concentrations (not including the minor and oceanically unreactive detrital P component) and sedimentation rates and dry-bulk densities averaged over time intervals of 0.5 m.y. P-MARs generally decrease from 17 Ma to the present. Eastern transect Sites 844 and 846 display a decrease in P-MARs from about 30 to 10 in the interval from 17 to 8 Ma, while western transect Site 851 is highly variable during this interval. P-MARs increase to about 45 and stay relatively high from 8 to 6 Ma, then decrease toward the present to some of the lowest values of the record (about 10). The general trend of high P-MARs at about 6 Ma and decreasing values toward the present is correlated with other geochemical and sedimentary trends through this interval and may reflect (1) a change in net sediment and P burial, (2) a reorganization of fluxes with no change of net burial, or (3) a combination of the two.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Vincent, Edith; Toumarkine, M (1995): Data Report: Miocene planktonic foraminifers from the eastern equatorial Pacific. In: Pisias, NG; Mayer, LA; Janecek, TR; Palmer-Julson, A; van Andel, TH (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 895-907, https://doi.org/10.2973/odp.proc.sr.138.159.1995
    Publication Date: 2024-01-09
    Description: Neogene calcareous sediments were recovered at 11 sites along two north-south transects in the eastern equatorial Pacific Ocean during Ocean Drilling Program (ODP) Leg 138. An overview of planktonic foraminifer distribution in these sediments was presented in Mayer, Pisias, Janecek, et al. (1992) based on a preliminary examination of core-catcher samples. In general, the preservation state of the foraminifers is poor throughout most of the sedimentary sequences, making this microfossil group here of much less value for biostratigraphy than other microfossil groups. Pliocene-Pleistocene planktonic foraminifers from several sites have been analyzed in great detail for their oxygen and carbon isotope composition in various high-resolution studies (Farrell et al., this volume; Mix et al., this volume; Ravello et al., this volume; Shackleton et al., this volume). Planktonic foraminiferal datums of biostratigraphic value have been identified in several of these studies. This report presents planktonic foraminiferal distribution in selected Miocene sediments.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: McCartney, Kevin; Churchill, J H; Woestendiek, Linda (1995): Silicoflagellates and ebridians from Leg 138, eastern equatorial Pacific. In: Pisias, NG; Mayer, LA; Janecek, TR; Palmer-Julson, A; van Andel, TH (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 138, 129-162, https://doi.org/10.2973/odp.proc.sr.138.108.1995
    Publication Date: 2024-01-09
    Description: The biostratigraphic distribution and abundance of middle Miocene to Pleistocene silicoflagellates is documented from Ocean Drilling Program (ODP) Leg 138 Holes 844B, 847B, 848B, 849B, 850B, 85 IB, 852B, and 854B from the eastern Equatorial Pacific Ocean. The silicoflagellates were generally abundant and well preserved and frequently exhibited an unusually large range of variation. The upper Miocene of near-equatorial sites includes an assemblage of Bachmannocena diodon nodosa, which includes a bridge across the width of the basal ring. Stratigraphically below this, at sites within 5° of the equator is a lengthy interval of specimens of Distephanus speculum tenuis, which have a fragile apical structure. Both the intervals of Bachmannocena diodon nodosa plexus and Distephanus speculum tenuis are biostratigraphically useful within 5° of the equator, but are less useful beyond that. An unusual range of variation also is observed for Dictyocha in the Pliocene sediments at about the point where D. perlaevis and D. messanensis appear in the geologic record. This variation may be explained by hybridization between diverging species.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rea, David K; Snoeckx, Hilde; Joseph, Leah H (1998): Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13(3), 215-224, https://doi.org/10.1029/98PA00123
    Publication Date: 2024-01-09
    Description: A newly constructed record of eolian dust accumulation from the central North Pacific shows that dust deposition increased by an order of magnitude quite rapidly at 3.6 Ma. We associate this sudden drying with the uplift of at least the northern portion of the Tibetan Plateau, shutting off the Indian Ocean moisture source to central and western China. This ten-fold increase in atmospheric dust loading appears to be associated with the 1-m.y.-long shift toward heavy d18O values that occurred at 3.6-2.6 Ma. The dust grain-size record of wind intensity begins its late Cenozoic coarsening a million years before the drying event, at ~4.5 Ma. The northern hemisphere cooling that results in intensification of the subpolar westerly winds may have as its ultimate cause the drawdown of atmospheric CO2 in the latest Miocene and the early Pliocene closing of the Panamanian Seaway.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hoefs, Marcel JL; Versteegh, Gerard J M; Rijpstra, W Irene C; de Leeuw, Jan W; Sinninghe Damsté, Jaap S (1998): Postdepositional oxic degradation of alkenones: Implications for the measurement of palaeo sea surface temperatures. Paleoceanography, 13(1), 42-49, https://doi.org/10.1029/97PA02893
    Publication Date: 2024-01-09
    Description: Free and 'bound' long-chain alkenones (C37:2 and C37:3) in oxidized and unoxidized sections of four organic matter-rich Pliocene and Miocene Madeira Abyssal Plain turbidites (one from Ocean Drilling Program site 951B and three from site 952A) were analyzed to determine the effect of severe post depositional oxidation on the value of Uk'37. The profiles of both alkenones across the redox boundary show a preferential degradation of the C37:3 compared to the C37:2 compound. Because of the high initial Uk'37 values and the way of calculating the Uk'37 this degradation hardly influences the Uk'37 profiles. However, for lower Uk'37 values, measured selective degradation would increase Uk'37 up to 0.17 units, equivalent to 5°C. For most of the Uk'37 band-width, much smaller degradation already increases Uk'37 beyond the analytical error (0.017 units). Consequently, for interpreting the Uk'37 record in terms of past sea surface temperatures, selective degradation needs serious consideration.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Raymo, Maureen E (1997): The timing of major climate terminations. Paleoceanography, 12(4), 577-585, https://doi.org/10.1029/97PA01169
    Publication Date: 2024-01-09
    Description: A simple, untuned "constant sedimentation rate" timescale developed using three radiometric age constraints and eleven d18O records longer than 0.8 Myr provides strong support for the validity of the SPECMAP timescale of the late Quaternary (Imbrie et al., 1984). In particular, the present study independently confirms the link between major deglaciations (terminations) and increases in northern hemisphere summer radiation at high latitudes and shows that this correlation is not an artifact of orbital tuning. In addition, the excess ice characteristic of late Quaternary "100-kyr" climate cycles typically accumulates when July insolation at 65°N has been unusually low for more than a full precessional cycle, or 〉21 kyr, and once established does not last beyond the next increase in summer insolation. Thus, the timing of the growth and decay of large 100-kyr ice sheets, as depicted in the deep sea d18O record, is strongly (and semipredictably) influenced by eccentricity through its modulation of the orbital precession component of northern hemisphere summer insolation.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Smith Nagihara, Susan; Casey, John F (2001): Whole-rock geochemistry of amphibolites and metagabbros from the west Iberia Margin, Leg 173. In: Beslier, M-O; Whitmarsh, RB; Wallace, PJ; Girardeau, J (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 173, 1-20, https://doi.org/10.2973/odp.proc.sr.173.011.2001
    Publication Date: 2024-02-03
    Description: The Leg 173 Site 1067 and 1068 amphibolites and metagabbros from the west Iberia margin exhibit variable whole-rock compositions from primitive to more evolved (Mg numbers = 49-71) that are generally incompatible trace and rare earth element enriched (light rare earth element [LREE] = 11-89 x chondrite). The Site 1067 amphibolites are compositionally similar to the basalts reported at Site 899 from this same region, based on trace and rare earth element contents. The Site 1068 amphibolites and metagabbros are similar to the Site 899 diabases but are more LREE enriched. However, the Sites 1067 and 1068 amphibolites and metagabbros are not compositionally similar to the Site 900 metagabbros, which are from the same structural high as the Leg 173 samples. The Leg 173 protoliths may be represented by basalts, diabases, and/or fine-grained gabbros that formed from incompatible trace element-enriched liquids.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bernet, Karin H; Eberli, Gregor P; Gilli, Adrian (2000): Turbidite frequency and composition in the distal part of the Bahamas Transect. In: Swart, PK; Eberli, GP; Malone, MJ; Sarg, JF (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 166, 1-16, https://doi.org/10.2973/odp.proc.sr.166.105.2000
    Publication Date: 2024-02-03
    Description: The lower slope and toe-of-slope sediments of the western flank of the Great Bahama Bank (Sites 1003 and 1007) are characterized by an intercalation of turbidites and periplatform ooze. In general, turbidites form up to 12% of the total mass of the sedimentary column. Based primarily on data from the Bahamas, it has been postulated that steep-sided carbonate platforms shed most of their sediments into the basin during sea-level highstands when the platforms are flooded. This highstand shedding is assumed to be less pronounced along platforms with a ramp-like depositional profile where sediment production is not restricted to sea-level highstand. Miocene to Pliocene sediments recovered in five drill holes during Leg 166 at the western margin of the Great Bahama Bank reveal that turbidite distribution follows a complex pattern that is dependent on several factors such as sedimentation rates, sea-level changes, and slope morphology. To identify the depositional sequences in the cores, the depths of seismic-sequence boundaries were used. The distribution of turbidites within sedimentary sequences varies strongly. Generally, turbidites are clustered at the upper and/or lower portions of the sequences indicating deposition of carbonate turbidites during both highstand and lowstand of sea level. Analyses of the Miocene turbidites show that (1) during high sea level, 60% of all turbidites were deposited at Site 1003 (309 out of 518 turbidites), while during low sea level, two thirds of all turbidites were deposited at Site 1007 (332 out of 486 turbidites); (2) the average thickness of highstand turbidites is 1.5 times higher than the average thickness of lowstand turbidites; and (3) the turbidites display slight differences in composition and sorting. In general, highstand turbidites are less sorted and contain an abundant amount of shallow-water constituents such as green algae, red algae, shallow-water benthic foraminifers (miliolids), and intraclasts. The lowstand turbidites are better sorted and contain abundant planktonic foraminifers and micrite. To complicate matters, highstand and lowstand turbidites seem to be deposited at different locations on the slope. At the lower slope (Site 1003), more turbidites were deposited during highstands, while at the toe of the slope, turbidites were dominantly deposited during sea-level lowstands. The result is a slope section with laterally discontinuous turbidite lenses within periplatform ooze, which is controlled by the interplay of sea-level changes, sediment production, and platform morphology.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Henderson, Gideon M; Rendle, Rebecca; Slowey, Niall C; Reijmer, John J G (2000): U-Th dating and diagenesis of Pleistocene highstand sediments from the Bahamas Slope. In: Swart, PK; Eberli, GP; Malone, MJ; Sarg, JF (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 166, 1-9, https://doi.org/10.2973/odp.proc.sr.166.106.2000
    Publication Date: 2024-03-09
    Description: We have performed U-Th isotope analyses on pure aragonite samples from the upper sections of Leg 166 cores to assign each aragonite-rich sediment package to the correct sea-level highstand. The uppermost sediment package from each of the four sites investigated (Sites 1003, 1005, 1006, and 1007) yielded a Holocene U-Th age. Sediment packages from deeper in the cores have suffered diagenesis. This diagenesis consists of significant U loss (up to 40%) in the site nearest the platform (Site 1005), slight U gain in sites further from the platform, and continuous loss of pure 234U caused by alpha recoil at all sites. The difference in diagenesis between the sites can be explained by the different fluid-flow histories they have experienced. Site 1005 is sufficiently close to the platform to have probably experienced a change in flow direction whenever the banks have flooded or become exposed. Other sites have probably experienced continuous flow into the sediment. Although diagenesis prevents assignment of accurate ages, it is sufficiently systematic that it can be corrected for and each aragonite-rich package assigned to a unique highstand interval. Site 1005 has sediment packages from highstands associated with marine isotope Stages 1, 5, 7, 9, and 11. Site 1006 is similar, except that the Stage 7 highstand is missing, at least in Hole 1006A. Site 1003 has sediment only from Stage 1 and 11 highstands within the U-Th age range. And Site 1007 has sediment only from the stage 1 highstand. This information will allow the construction of better age models for these sites. No high-aragonite sediments are seen for Stage 3 or Substages 5a and 5c. Unless rather unusual erosion has occurred, this indicates that the banks did not flood during these periods. If true, this would require the sea level for Substages 5a and 5c to have remained at least ~10 m lower than today.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Oppo, Delia W; Keigwin, Lloyd D; McManus, Jerry F; Cullen, James L (2001): Persistent suborbital climate variability in marine isotope stage 5 and termination II. Paleoceanography, 16(3), 280-292, https://doi.org/10.1029/2000PA000527
    Publication Date: 2024-03-02
    Description: New surface water records from two high sedimentation rate sites, located in the western subtropical North Atlantic near the axis of the Gulf Stream, provide clear evidence of suborbital climate variations through marine isotope stage (MIS) 5 persisting even into the warm peak of the interglaciation (substage 5e). We found that the amplitude of suborbital climate oscillations did not vary significantly for the whole of MIS 5, implying that ice volume has little or no influence on the amplitude of suborbital climate variability in this region. Although some records suggest that longer suborbital variations (4-10 kyr) during MIS 5 are linked to deepwater changes, none of the existing records is of sufficient resolution to assess if a linkage occurred for oscillations shorter than 4 kyr. However, when examined in conjunction with published data from the Norwegian Sea, new evidence from the subpolar North Atlantic suggests that coupled surface-deepwater oscillations occurred during the penultimate deglaciation. This supports the hypothesis that during glacial and deglacial times, ocean-ice interactions and deepwater variability amplify suborbital climate change at higher latitudes. We suggest that during the penultimate deglaciation the North Atlantic deepwater source varied between Nordic Sea and open North Atlantic locations, in parallel with surface temperature oscillations.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 12 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Holm, Paul Martin (2002): Sr, Nd and Pb isotopic composition of in situ lower crust at the Southwest Indian Ridge; results from ODP Leg 176. Chemical Geology, 184(3-4), 195-216, https://doi.org/10.1016/S0009-2541(01)00364-3
    Publication Date: 2024-01-09
    Description: The composition of gabbroic rocks from the drill core of Hole 735B (ODP Leg 176) at the 11 Ma Atlantis II bank close to the slow spreading Southwest Indian Ridge (SWIR) has been analyzed for major and trace elements and Sr, Nd and Pb isotopic composition. The samples are thought to represent much of the mineralogical and geochemical variation in a vertical 1-km section (500-1500 m below the sea floor) of the lower ocean crust. Primitive troctolitic gabbros, olivine gabbros and gabbros that have Mg#=84-70, Ca#〉61 and low Na# (Na/(Na+Al)) (8-17) are intruded by patches or veins of more evolved FeTi-oxide rich gabbroic and dioritic rocks with Mg# to 20, Ca# to 32, Na#=14-23, TiO2〈7 wt.% and FeOtotal〈18 wt.%. All rocks are acdcumulates, and incompatible element concentrations are low, e.g. Pb=0.1-0.7 ppm and U〈/=0.005 ppm in the primitive rocks and up to 2 ppm Pb and 0.2 ppm U in the evolved. The range of isotopic compositions of the unleached rocks is: 87Sr/86Sr=0.70280-0.70299, average 0.70287+/-0.00005 (1 S.D., N=30 samples) (except one felsic vein with 87Sr/86Sr=0.7045), 143Nd/144Nd=0.51304-0.51314, average 0.51310+/-0.00002 (1 S.D., N=28), 206Pb/204Pb=17.43-18.55, 207Pb/204Pb=15.40-15.61 and 208Pb/204Pb=37.19-38.28. The range of Sr and the almost constant Nd isotopic composition resemble that found in the upper 500 m of Hole 735B, while Pb ranges to more radiogenic compositions. In general, there is a decrease in isotopic variation of Sr and Pb as well as ? (238U/204Pb), U and Pb with depth, with a trend towards relatively unradiogenic compositions. This correlates with a decrease in alteration and frequency of evolved rock-types in the core. Leached samples generally have less radiogenic Pb with values trending towards 206Pb/204Pb=17.35, 207Pb/204Pb=15.35 and 208Pb/204Pb=37.0, while their 87Sr/86Sr ratios deviate less systematically from unleached rocks and reach both higher, 0.70307, and lower values, 0.70276. Separated clinopyroxene has elevated 87Sr/86Sr up to 0.7035, while plagioclase generally has close to whole rock Sr. Leaching reduced 87Sr/86Sr in clinopyroxene and in two (out of nine) cases leached separates and whole rock display isotopic equilibrium. Relatively minor hydrothermal seawater alteration is thought to have increased 87Sr/86Sr in the rocks, while a secondary high temperature percolation of a mantle-derived agent is thought to be the cause for the trend towards radiogenic Pb. This material had intermediate 87Sr/86Sr and may have originated from non-MORB off axis mantle. The main primary igneous isotopic variation of the gabbros is suggested to have been derived from the MORB-mantle and is defined mainly by leached samples from both ODP Leg 176 and Leg 118 and can be explained by two-component mixing of an end-member with composition like Central Indian Ridge basalts and an end-member with composition unlike any MORB. The latter is characterized by very unradiogenic Pb, in particular 207Pb/204Pb, and may have an origin with affinity to old depleted mantle (DM). The isotopic composition of the magmas parental to the FeTi-oxide rich rocks cannot be distinguished from the magmas parental to the primitive gabbros and an intimate relationship is indicated. The small-scale inhomogeneity indicated for the SWIR MORB-mantle at the Atlantis II Fracture Zone was probably inherited by the lower crustal rocks due to small-scale melting and monogenetic magma chambers at this slow spreading ridge.
    Keywords: 176-735B; DRILL; Drilling/drill rig; Indian Ocean; Joides Resolution; Leg176; Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Swart, Peter K (2000): The oxygen isotopic composition of interstitial waters: evidence for fluid flow and recrystallization in the margin of Great Bahama Bank. In: Swart, PK; Eberli, GP; Malone, MJ; Sarg, JF (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 166, 1-8, https://doi.org/10.2973/odp.proc.sr.166.130.2000
    Publication Date: 2024-01-09
    Description: This study investigates the d18O of pore waters from Sites 1003 through 1007, drilled along the western margin of the Great Bahama Bank during Leg 166 of the Ocean Drilling Program. These pore waters generally show a positive correlation between d18O and the concentration of chloride. The exception to this trend is Site 1006, where the pore waters exhibit nonlinear behavior with respect to chloride. The correlation between the concentration of Cl- and d18O at most of the sites appears to be a coincidence because although the increase in Cl- is a result of diffusion from an underlying source, the increases in d18O result from the recrystallization of metastable carbonates in the presence of a geothermal gradient. The difference in behavior in the d18O of the pore water at Site 1006 is probably a result of the relative reduced rate of carbonate recrystallization at this site. The d18O of the pore waters in the upper portion of the cores shows a pattern similar to the concentration of chloride in that there is an interval of 30-50 m in which neither the d18O nor the concentration of Cl- changes. This interval is consistent with either an interval of very rapid deposition of sediment or the advection of fluid through the platform. Both the d18O and the concentration of Cl- increase toward the platform, suggesting an input of saline and isotopically heavy water from the platform surface.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Malone, Mitchell J (2000): Data Report: Geochemistry and mineralogy of periplatform carbonate sediments: Sites 1006, 1008, and 1009. In: Swart, PK; Eberli, GP; Malone, MJ; Sarg, JF (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 166, 1-8, https://doi.org/10.2973/odp.proc.sr.166.125.2000
    Publication Date: 2024-01-09
    Description: An intensive mineralogic and geochemical investigation was conducted on sediments recovered during Ocean Drilling Program Leg 166 from the western Great Bahama Bank at Sites 1006, 1008, and 1009. Pleistocene through middle Miocene sediments recovered from Site 1006, the distal location on the Leg 166 transect, are a mixture of bank-derived and pelagic carbonates with lesser and varying amounts of siliciclastic clays. A thick sequence of Pleistocene periplatform carbonates was recovered near the platform edge at Sites 1008 and 1009. Detailed bulk mineralogic, elemental (Ca, Mg, Sr, and Na), and stable isotopic (d18O and d13C) analyses of sediments are presented from a total of 317 samples from all three sites.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Frank, Tracy D (2000): Data Report: Geochemistry of Miocene sediments, Sites 1006 and 1007, Leeward Margin, Great Bahama Bank. In: Swart, PK; Eberli, GP; Malone, MJ; Sarg, JF (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 166, 1-7, https://doi.org/10.2973/odp.proc.sr.166.124.2000
    Publication Date: 2024-01-09
    Description: Total carbon and carbonate contents, quantitative carbonate mineralogy, trace metal concentrations, and stable isotope compositions were determined on a suite of samples from the Miocene sections at Sites 1006 and 1007. The Miocene section at Site 1007, located at the toe-of-slope, contains a relatively high proportion of bank-derived components and becomes fully lithified at a depth of ~300 meters below seafloor (mbsf). By contrast, Miocene sediments at Site 1006, situated in Neogene drift deposits in the Straits of Florida and composed primarily of pelagic carbonates, do not become fully lithified until a depth of ~675 mbsf. Diagenetic and compositional contrasts between Sites 1006 and 1007 are reflected in geochemical data derived from sediment samples from each site.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kramer, Philip A; Swart, Peter K; De Carlo, Eric Heinen; Schovsbo, Neils H (2000): Overview of interstitial fluid and sediment geochemistry, Sites 1003-1007 (Bahamas Transect). In: Swart, PK; Eberli, GP; Malone, MJ; Sarg, JF (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 166, 1-17, https://doi.org/10.2973/odp.proc.sr.166.117.2000
    Publication Date: 2024-01-09
    Description: A review of interstitial water samples collected from Sites 1003-1007 of the Bahamas Transect along with a shore-based analysis of oxygen and carbon isotopes, minor and trace elements, and sediment chemistry are presented. Results indicate that the pore-fluid profiles in the upper 100 meters below seafloor (mbsf) are marked by shifts between 20 and 40 mbsf that are thought to be caused by changes in sediment reactivity, sedimentation rates, and the influence of strong bottom currents that have been active since the late Pliocene. Pore-fluid profiles in the lower Pliocene-Miocene sequences are dominated by diffusion and do not show significant evidence of subsurface advective flow. Deeper interstitial waters are believed to be the in situ fluids that have evolved through interaction with sediments and diffusion. Pore-fluid chemistry is strongly influenced by carbonate recrystallization processes. Increases in pore-fluid Cl- and Na+ with depth are interpreted to result mainly from carbonate remineralization reactions that are most active near the platform margin. A lateral gradient in detrital clay content observed along the transect, leads to an overall lower carbonate reactivity, and enhances preservation of metastable aragonite further away from the platform margin. Later stage burial diagenesis occurs at slow rates and is limited by the supply of reactive elements through diffusion.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kameo, Koji; Bralower, Timothy J (2000): Neogene calcareous nannofossil biostratigraphy of Sites 998, 999, and 1000, Caribbean Sea. In: Leckie, RM; Sigurdsson, H; Acton, GD; Draper, G (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 165, 1-15, https://doi.org/10.2973/odp.proc.sr.165.012.2000
    Publication Date: 2024-01-09
    Description: A total of 53 calcareous nannofossil datums were detected in Quaternary and Neogene sections recovered during Ocean Drilling Program Leg 165 in the Caribbean Sea. Most of the low-latitude nannofossil zonal markers of Okada and Bukry could be determined at all of the sites. Additionally, size distribution patterns of specimens of Reticulofenestra, a common genus in Neogene and Quaternary sediments, were examined to interpret the biostratigraphic utility of changes in size.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mallinson, David; Flower, Benjamin P; Hine, Albert C; Brooks, Gregg R; Molina-Garza, Roberto S; Drexler, Tina M; ODP Leg 182 Shipboard Scientific Party (2003): Data report: Mineralogy and geochemistry of ODP Site 1128, Great Australian Bight. In: Hine, AC; Feary, DA; Malone, MJ (eds.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 182, 1-17, https://doi.org/10.2973/odp.proc.sr.182.001.2003
    Publication Date: 2024-01-09
    Description: This report presents mineralogic and geochemical data from Ocean Drilling Program Leg 182 Site 1128 in the Great Australian Bight. Clay mineralogy is dominated by mixed-layer illite-smectite, followed by minor amounts of kaolinite and illite, with intervals of pure smectite. Carbonate mineralogy is exclusively low-Mg calcite, except for one interval of dolomite in lower Oligocene sediments. Carbonate increases significantly in upper Eocene sediments, decreases through the lower Oligocene, then increases again in the Neogene. Quartz is present as a minor component that covaries inversely with carbonate. High-resolution sampling associated with Chron 13 normal (early Oligocene) reveals high-frequency (~23 k.y.) fluctuations in clay mineralogy and carbonate abundance and a positive oxygen and carbon isotope excursion (in bulk carbonates) related to Antarctic glaciation.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: McGonigal, Kristeen L; Di Stefano, Agata (2002): Calcareous nannofossil biostratigraphy of the Eocene-Oligocene transition, ODP Sites 1123 and 1124. In: Richter, C (ed.) Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 181, 1-22, https://doi.org/10.2973/odp.proc.sr.181.207.2002
    Publication Date: 2024-01-09
    Description: Seven sites were drilled off the eastern shore of New Zealand during Ocean Drilling Program Leg 181 to gain knowledge of southwest Pacific ocean history, in particular, the evolution of the Pacific Deep Western Boundary Current (DWBC). Holes 1123C and 1124C penetrated lower Oligocene to middle Eocene sediments containing moderately to poorly preserved calcareous nannofossils. Nannofossil assemblages show signs of dissolution and overgrowth, but key marker species can be identified. Nannofossil abundance ranges from abundant to barren. The lower Oligocene sediments are distinctly separated from the overlying Neogene sequences by the Marshall Paraconformity, a regional marker of environmental and sea level change. An age-depth model for Hole 1123C through this sequence was constructed using nine nannofossil age datums and three magnetostratigraphic datums. There is good agreement between the biostratigraphy and magnetostratigraphy, which indicates that the Marshall Paraconformity spans ~12 m.y. in Hole 1123C. The same sequence in Hole 1124C is disrupted by at least three hiatuses, complicating interpretation of the sedimentation history. The Marshall Paraconformity spans at least 3 m.y. in Hole 1124C. A 4- m.y. gap separates lower Oligocene and middle Eocene sediments, and a ~15 m.y. hiatus separates middle Eocene mudstones from middle Paleocene nannofossil-bearing mudstones. Nannofossil biostratigraphy from Holes 1123C and 1124C indicates that the Eocene-Oligocene transition was a time of fluctuating biota and intensification of the DWBC along the New Zealand margin.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...