ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Chemical Geology 451 (2017): 38-54, doi:10.1016/j.chemgeo.2017.01.008.
    Description: Sedimentary records in the southwestern South China Sea reflect the evolving erosion and drainage systems that have operated in Southeast Asia during the Neogene. Analyses of the chemistry and clay mineral composition of sediments from International Ocean Discovery Program (IODP) Site U1433 allow us to examine these processes over the last 17 Ma. Sediment older than 8 Ma was deposited relatively slowly. Sr and Nd isotopes indicate a variable provenance with sequences of less and more altered material accompanied by strong changes in the proportion of smectite. Sediment flux was probably from Indochina, as well as from a more primitive volcanic source, most likely the Palawan ophiolite and/or Luzon. Sediments younger than 8 Ma show a more stable Sr and Nd isotope character, indicating sources close to those seen in the modern Mekong River, although with some influx from smaller rivers draining the Indochina margin especially from 4–8 Ma. Our data are consistent with seismic estimates for an onset to the Mekong in its present location after 8 Ma, following an avulsion from the Gulf of Thailand.
    Description: Funding for this research was provided by U.S. Science Support Program and the Charles T. McCord chair in petroleum geology at Louisiana State University.
    Keywords: Geochemistry ; Clay minerals ; Isotopes ; Provenance
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Progress in Earth and Planetary Science 5 (2018): 19, doi:10.1186/s40645-018-0167-8.
    Description: The Quaternary hemipelagic sediments of the Japan Sea are characterized by centimeter- to decimeter-scale alternation of dark and light clay to silty clay, which are bio-siliceous and/or bio-calcareous to a various degree. Each of the dark and light layers are considered as deposited synchronously throughout the deeper (〉 500 m) part of the sea. However, attempts for correlation and age estimation of individual layers are limited to the upper few tens of meters. In addition, the exact timing of the depositional onset of these dark and light layers and its synchronicity throughout the deeper part of the sea have not been explored previously, although the onset timing was roughly estimated as ~ 1.5 Ma based on the result of Ocean Drilling Program legs 127/128. Consequently, it is not certain exactly when their deposition started, whether deposition of dark and light layers was synchronous and whether they are correlatable also in the earlier part of their depositional history. The Quaternary hemipelagic sediments of the Japan Sea were drilled at seven sites during Integrated Ocean Drilling Program Expedition 346 in 2013. Alternation of dark and light layers was recovered at six sites whose water depths are 〉 ~ 900 m, and continuous composite columns were constructed at each site. Here, we report our effort to correlate individual dark layers and estimate their ages based on a newly constructed age model at Site U1424 using the best available paleomagnetic datum and marker tephras. The age model is further tuned to LR04 δ18O curve using gamma ray attenuation density (GRA) since it reflects diatom contents that are higher during interglacial high-stands. The constructed age model for Site U1424 is projected to other sites using correlation of dark layers to form a high-resolution and high-precision paleo-observatory network that allows to reconstruct changes in material fluxes with high spatio-temporal resolutions.
    Description: This work was supported by a grant from IODP Exp. 346 After Cruise Research Program, JAMSTEC, awarded to TR, IK, Irino T, Itaki T, ST, KY, SS, and KA and from JSPS KAKENHI grant number 16H01765 awarded to TR.
    Keywords: Quaternary sediments ; Japan Sea ; Inter-site correlation ; High-resolution age model ; IODP ; Expedition 346 ; U1424 ; U1425 ; U1426 ; U1430
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 19 (2018): 2463-2477, doi:10.1029/2017GC007339.
    Description: We examine the paleoceanographic record over the last ∼400 kyr derived from major, trace, and rare earth elements in bulk sediment from two sites in the East China Sea drilled during Integrated Ocean Drilling Program Expedition 346. We use multivariate statistical partitioning techniques (Q‐mode factor analysis, multiple linear regression) to identify and quantify five crustal source components (Upper Continental Crust (UCC), Luochuan Loess, Xiashu Loess, Southern Japanese Islands, Kyushu Volcanics), and model their mass accumulation rates (MARs). UCC (35–79% of terrigenous contribution) and Luochuan Loess (16–55% contribution) are the most abundant end‐members through time, while Xiashu Loess, Southern Japanese Islands, and Kyushu Volcanics (1–22% contribution) are the lowest in abundance when present. Cycles in UCC and Luochuan Loess MARs may indicate continental and loess‐like material transported by major rivers into the Okinawa Trough. Increases in sea level and grain size proxy (e.g., SiO2/Al2O3) are coincident with increased flux of Southern Japanese Islands, indicating localized sediment supply from Japan. Increases in total terrigenous MAR precede minimum relative sea levels by several thousand years and may indicate remobilization of continental shelf material. Changes in the relative contribution of these end‐members are decoupled from total MAR, indicating compositional changes in the sediment are distinct from accumulation rate changes but may be linked to variations in sea level, riverine and eolian fluxes, and shelf‐bypass processes over glacial‐interglacials, complicating accurate monsoon reconstructions from fluvial dominated sediment.
    Description: U.S. National Science Foundation Grant Numbers: NSF‐EAR1434175, NSF‐EAR1433665, NSF‐EAR1434138
    Keywords: East China Sea ; Bulk sediment ; Provenance ; Multivariate statistics ; East Asian Monsoon ; Loess
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 8 (2017): 844, doi:10.1038/s41467-017-00853-5.
    Description: Authigenic clay minerals formed on or in the seafloor occur in every type of marine sediment. They are recognized to be a major sink of many elements in the ocean but are difficult to study directly due to dilution by detrital clay minerals. The extremely low dust fluxes and marine sedimentation rates in the South Pacific Gyre (SPG) provide a unique opportunity to examine relatively undiluted authigenic clay. Here, using Mg isotopes and element concentrations combined with multivariate statistical modeling, we fingerprint and quantify the abundance of authigenic clay within SPG sediment. Key reactants include volcanic ash (source of reactive aluminium) and reactive biogenic silica on or shallowly buried within the seafloor. Our results, together with previous studies, suggest that global reorganizations of biogenic silica burial over the Cenozoic reduced marine authigenic clay formation, contributing to the rise in seawater Mg/Ca and decline in atmospheric CO2 over the past 50 million years.
    Description: Funding for this research was provided by the U.S. National Science Foundation to R.W.M. (OCE1130531) and to J.A.H. (OCE1654571).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochemistry, Geophysics, Geosystems 18 (2017): 1053–1064, doi:10.1002/2016GC006715.
    Description: During International Ocean Discovery Program (IODP) expeditions, shipboard-generated data provide the first insights into the cored sequences. The natural gamma radiation (NGR) of the recovered material, for example, is routinely measured on the ocean drilling research vessel DV JOIDES Resolution. At present, only total NGR counts are readily available as shipboard data, although full NGR spectra (counts as a function of gamma-ray energy level) are produced and archived. These spectra contain unexploited information, as one can estimate the sedimentary contents of potassium (K), thorium (Th), and uranium (U) from the characteristic gamma-ray energies of isotopes in the 40K, 232Th, and 238U radioactive decay series. Dunlea et al. (2013) quantified K, Th, and U contents in sediment from the South Pacific Gyre by integrating counts over specific energy levels of the NGR spectrum. However, the algorithm used in their study is unavailable to the wider scientific community due to commercial proprietary reasons. Here, we present a new MATLAB algorithm for the quantification of NGR spectra that is transparent and accessible to future NGR users. We demonstrate the algorithm's performance by comparing its results to shore-based inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma-emission spectrometry (ICP-ES), and quantitative wavelength-dispersive X-ray fluorescence (XRF) analyses. Samples for these comparisons come from eleven sites (U1341, U1343, U1366-U1369, U1414, U1428-U1430, and U1463) cored in two oceans during five expeditions. In short, our algorithm rapidly produces detailed high-quality information on sediment properties during IODP expeditions at no extra cost.
    Keywords: IODP ; Physical properties ; Natural gamma radiation ; Downhole logging
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Vuillemin, A., Vargas, S., Coskun, O. K., Pockalny, R., Murray, R. W., Smith, D. C., D'Hondt, S., & Orsi, W. D. Atribacteria reproducing over millions of years in the Atlantic abyssal subseafloor. Mbio, 11(5), (2020): e01937-20, doi:10.1128/mBio.01937-20.
    Description: How microbial metabolism is translated into cellular reproduction under energy-limited settings below the seafloor over long timescales is poorly understood. Here, we show that microbial abundance increases an order of magnitude over a 5 million-year-long sequence in anoxic subseafloor clay of the abyssal North Atlantic Ocean. This increase in biomass correlated with an increased number of transcribed protein-encoding genes that included those involved in cytokinesis, demonstrating that active microbial reproduction outpaces cell death in these ancient sediments. Metagenomes, metatranscriptomes, and 16S rRNA gene sequencing all show that the actively reproducing community was dominated by the candidate phylum “Candidatus Atribacteria,” which exhibited patterns of gene expression consistent with fermentative, and potentially acetogenic, metabolism. “Ca. Atribacteria” dominated throughout the 8 million-year-old cored sequence, despite the detection limit for gene expression being reached in 5 million-year-old sediments. The subseafloor reproducing “Ca. Atribacteria” also expressed genes encoding a bacterial microcompartment that has potential to assist in secondary fermentation by recycling aldehydes and, thereby, harness additional power to reduce ferredoxin and NAD+. Expression of genes encoding the Rnf complex for generation of chemiosmotic ATP synthesis were also detected from the subseafloor “Ca. Atribacteria,” as well as the Wood-Ljungdahl pathway that could potentially have an anabolic or catabolic function. The correlation of this metabolism with cytokinesis gene expression and a net increase in biomass over the million-year-old sampled interval indicates that the “Ca. Atribacteria” can perform the necessary catabolic and anabolic functions necessary for cellular reproduction, even under energy limitation in millions-of-years-old anoxic sediments.
    Description: This work was supported primarily by the Deutsche Forschungsgemeinschaft (DFG) project OR 417/1-1 granted to W.D.O. Preliminary work was supported by the Center for Dark Energy Biosphere Investigations project OCE-0939564 also granted to W.D.O. The expedition was funded by the US National Science Foundation through grant NSF-OCE-1433150 to S.D. and R.P. R.W.M. led the expedition. Shipboard microbiology efforts were supported by the Center for Dark Energy Biosphere Investigations (C-DEBI grant NSF-OCE-0939564). This is C-DEBI publication 545. This is a contribution of the Deep Carbon Observatory (DCO).
    Keywords: Deep biosphere ; Energy limit to life ; Atribacteria ; Acetogenesis ; Metagenomics ; Transcriptomics ; Fermentation ; Bacterial microcompartment ; Clade JS1 ; Metatranscriptomics ; Subseafloor life
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dunlea, A. G., Murray, R. W., Tada, R., Alvarez-Zarikian, C. A., Anderson, C. H., Gilli, A., Giosan, L., Gorgas, T., Hennekam, R., Irino, T., Murayama, M., Peterson, L. C., Reichart, G., Seki, A., Zheng, H., & Ziegler, M. Intercomparison of XRF core scanning results from seven labs and approaches to practical calibration. Geochemistry Geophysics Geosystems, 21(9), (2020): e2020GC009248, doi:10.1029/2020GC009248.
    Description: X‐ray fluorescence (XRF) scanning of marine sediment has the potential to yield near‐continuous and high‐resolution records of elemental abundances, which are often interpreted as proxies for paleoceanographic processes over different time scales. However, many other variables also affect scanning XRF measurements and convolute the quantitative calibrations of element abundances and comparisons of data from different labs. Extensive interlab comparisons of XRF scanning results and calibrations are essential to resolve ambiguities and to understand the best way to interpret the data produced. For this study, we sent a set of seven marine sediment sections (1.5 m each) to be scanned by seven XRF facilities around the world to compare the outcomes amidst a myriad of factors influencing the results. Results of raw element counts per second (cps) were different between labs, but element ratios were more comparable. Four of the labs also scanned a set of homogenized sediment pellets with compositions determined by inductively coupled plasma‐optical emission spectrometry (ICP‐OES) and ICP‐mass spectrometry (MS) to convert the raw XRF element cps to concentrations in two ways: a linear calibration and a log‐ratio calibration. Although both calibration curves are well fit, the results show that the log‐ratio calibrated data are significantly more comparable between labs than the linearly calibrated data. Smaller‐scale (higher‐resolution) features are often not reproducible between the different scans and should be interpreted with caution. Along with guidance on practical calibrations, our study recommends best practices to increase the quality of information that can be derived from scanning XRF to benefit the field of paleoceanography.
    Description: Funding for this research was provided by the U.S. National Science Foundation to R. W. M. (Grant 1130531). USSSP postcruise support was provided to Expedition 346 shipboard participants A. G. D., R. W. M., L. G., C. A. Z., and L. P. Portions of this material are based upon work supported while R. W. M. was serving at the National Science Foundation.
    Keywords: XRF scanning ; Quantitative XRF ; Paleoceanography ; Sedimentary geochemistry ; XRF calibration ; XRF intercomparison
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(7), (2021): e2020PA004088, https://doi.org/10.1029/2020PA004088.
    Description: We reconstruct deep water-mass salinities and spatial distributions in the western North Atlantic during the Last Glacial Maximum (LGM, 19–26 ka), a period when atmospheric CO2 was significantly lower than it is today. A reversal in the LGM Atlantic meridional bottom water salinity gradient has been hypothesized for several LGM water-mass reconstructions. Such a reversal has the potential to influence climate, ocean circulation, and atmospheric CO2 by increasing the thermal energy and carbon storage capacity of the deep ocean. To test this hypothesis, we reconstructed LGM bottom water salinity based on sedimentary porewater chloride profiles in a north-south transect of piston cores collected from the deep western North Atlantic. LGM bottom water salinity in the deep western North Atlantic determined by the density-based method is 3.41–3.99 ± 0.15% higher than modern values at these sites. This increase is consistent with: (a) the 3.6% global average salinity change expected from eustatic sea level rise, (b) a northward expansion of southern sourced deep water, (c) shoaling of northern sourced deep water, and (d) a reversal of the Atlantic's north-south deep water salinity gradient during the LGM.
    Description: This work was supported by the US National Science Foundation (grant numbers 1433150 and 1537485).
    Description: 2021-10-24
    Keywords: Carbon cycle ; Climate change ; Deep water ; Glaciation ; Meridional overturning circulation ; Paleosalinity ; Porewater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-19
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 36(9), (2021): e2021PA004226, https://doi.org/10.1029/2021PA004226.
    Description: The deep ocean has long been recognized as the reservoir that stores the carbon dioxide (CO2) removed from the atmosphere during Pleistocene glacial periods. The removal of glacial atmospheric CO2 into the ocean is likely modulated by an increase in the degree of utilization of macronutrients at the sea surface and enhanced storage of respired CO2 in the deep ocean, known as enhanced efficiency of the biological pump. Enhanced biological pump efficiency during glacial periods is most easily documented in the deep ocean using proxies for oxygen concentrations, which are directly linked to respiratory CO2 levels. We document the enhanced storage of respired CO2 during the Last Glacial Maximum (LGM) in the Pacific Southern Ocean and deepest Equatorial Pacific using records of deglacial authigenic manganese, which form as relict peaks during increases in bottom water oxygen (BWO) concentration. These peaks are found at depths and regions where other oxygenation histories have been ambiguous, due to diagenetic alteration of authigenic uranium, another proxy for BWO. Our results require that the entirety of the abyssal Pacific below approximately 1,000 m was enriched in respired CO2 and depleted in oxygen during the LGM. The presence of authigenic Mn enrichment in the deep Equatorial Pacific for each of the last five deglaciations suggests that the storage of respired CO2 in the deep ocean is a ubiquitous feature of late-Pleistocene ice ages.
    Description: This work was performed with support from the National Science Foundation (NSF) over about 30 years. The TT013 and NBP9802 cores were collected during the U.S. JGOFS program. Their collection and analyses were supported by NSF OCE-9022301 and OPP-95303398 to R. F. Anderson, and NSF OCE 9301097 to R. W. Murray. Coring and radiocarbon analyses on NBP1702 were funded by NSF OPP-1542962. XRF analysis on NBP9802 and NBP1702 cores, as well as additional radiocarbon measurements, was funded by an LDEO Climate Center Grant to F. J. Pavia.
    Description: 2022-02-17
    Keywords: Manganese ; Southern Ocean ; Pacific Ocean ; Respired carbon ; Bottom water oxygen ; Deglaciations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-19
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhou, P., Stockli, D. F., Ireland, T., Murray, R. W., & Clift, P. D. Zircon U-Pb age constraints on NW Himalayan exhumation from the Laxmi Basin, Arabian Sea. Geochemistry Geophysics Geosystems, 23(1), (2022): e2021GC010158, https://doi.org/10.1029/2021GC010158.
    Description: The Indus Fan, located in the Arabian Sea, contains the bulk of the sediment eroded from the Western Himalaya and Karakoram. Scientific drilling in the Laxmi Basin by the International Ocean Discovery Program recovered a discontinuous erosional record for the Indus River drainage dating back to at least 9.8 Ma, and with a single sample from 15.6 Ma. We dated detrital zircon grains by U-Pb geochronology to reconstruct how erosion patterns changed through time. Long-term increases in detrital zircon U-Pb components of 750–1,200 and 1,500–2,300 Ma record increasing preferential erosion of the Himalaya relative to the Karakoram between 8.3–7.0 and 5.9–5.7 Ma. The average contribution of Karakoram-derived sediment to the Indus Fan fell from 70% of the total at 8.3–7.0 Ma to 35% between 5.9 and 5.7 Ma. An increase in the contribution of 1,500–2,300 Ma zircons starting between 2.5 and 1.6 Ma indicates significant unroofing of the Inner Lesser Himalaya (ILH) by that time. The trend in zircon age spectra is consistent with bulk sediment Nd isotope data. The initial change in spatial erosion patterns at 7.0–5.9 Ma occurred during a time of drying climate in the foreland. The increase in ILH erosion postdated the onset of dry-wet glacial-interglacial cycles suggesting some role for climate control. However, erosion driven by rising topography in response to formation of the ILH thrust duplex, especially during the Pliocene, also played an important role, while the influence of the Nanga Parbat Massif to the total sediment flux was modest.
    Description: This work was partially funded by a grant from the USSSP, as well as additional funding from the Charles T. McCord Chair in petroleum geology at LSU, and the Chevron (Gulf) Centennial professorship and the UTChron Laboratory at the University of Texas.
    Keywords: Erosion ; Zircon ; Monsoon ; Himalaya ; Provenance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...