ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mt. Etna  (29)
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (19)
  • Elsevier  (36)
  • Springer  (12)
  • American Chemical Society (ACS)
  • Blackwell Publishing Ltd
  • Molecular Diversity Preservation International
  • 2005-2009  (48)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2020-09-29
    Description: This chapter summarizes a comparative study of shear-wave velocity models and seismic sources in the Campanian volcanic areas of Vesuvius and Phlegraean Fields. These velocity models were obtained through the nonlinear inversion of surfacewave tomography data, using as a priori constraints the relevant information available in the literature. Local group velocity data were obtained by means of the frequency–time analysis for the time period between 0.3 and 2 s and were combined with the group velocity data for the time period between 10 and 35 s from the regional events located in the Italian peninsula and bordering areas and two station phase velocity data corresponding to the time period between 25 and 100 s. In order to invert Rayleigh wave dispersion curves, we applied the nonlinear inversion method called hedgehog and retrieved average models for the first 30–35km of the lithosphere, with the lower part of the upper mantle being kept fixed on the basis of existing regional models. A feature that is common to the two volcanic areas is a low shear velocity layer which is centered at the depth of about 10 km, while on the outside of the cone and along a path in the northeastern part of the Vesuvius area this layer is absent. This low velocity can be associated with the presence of partial melting and, therefore, may represent a quite diffused crustal magma reservoir which is fed by a deeper one that is regional in character and located in the uppermost mantle. The study of seismic source in terms of the moment tensor is suitable for an investigation of physical processes within a volcano; indeed, its components, double couple, compensated linear vector dipole, and volumetric, can be related to the movements of magma and fluids within the volcanic system. Although for many recent earthquake events the percentage of double couple component is high, our results also show the presence of significant non-double couple components in both volcanic areas.
    Description: Published
    Description: 287-309
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Format: 8247786 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-17
    Description: Mt. Etna in Sicily (Italy) is one of the best monitored basaltic volcanoes in the world due to the frequent eruptions from its summit and flanks. Routine monitoring carried out by the Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, for surveillance purposes permits following the evolution of volcanic events. In this paper, a description of the ash monitoring system as occurred during the August-December 2006 summit eruption at the Southeast Crater (SEC) is shown. This eruption was characterized by lava flow effusions and vigorous Strombolian activity. Eighteen paroxysmal episodes occurred up to the end of November, forming weak ash plumes accompanied by moderate tephra fallout over Etna’s slopes. During these events, we applied a multidisciplinary approach to promptly monitor the paroxysmal activity and the associated tephra fallout, through analysis from seismic tremor and observation from live-cameras, sampling operations, mapping and analysis of the deposit. During the most significant episodes, we carried out textural and grain-size analysis on tephra samples and evaluated the whole grain-size deposit and the erupted volume, while numerical simulations of tephra dispersal allowed better understanding eruptive dynamics. An example of this methodology is applied to the 16 November episode, during which seismic tremor furnished important constraints on the chronology. This paroxysmal eruption produced light fallout on the north-east sector of the volcano for about ten hours and a number of debris-avalanches over the slopes of the SEC cone. The erupted deposit was composed for the most part of lithic components and characterized by a whole grain-size distribution centered on 2.2 , while its total mass was evaluated 7 x 106 kg. On the whole, such integrated studies help to obtain information on magma fragmentation and eruptive mechanisms, to characterize the explosive styles shown by Etna and finally, to better approach the monitoring of imminent eruptions.
    Description: FIRB Italian project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali” funded by Italian Minister of University and Research
    Description: Published
    Description: 123-134
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Description: open
    Keywords: Mt. Etna ; volcanic ash monitoring ; tephra deposit ; 2006 eruption ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-15
    Description: The eruptive events of the July–August 2001 and October 2002–January 2003 at Mt. Etna provide new insights for reconstructing the complex geometry of the feeding system and their relationship to regional tectonics. The 2001 eruption took place mainly on the upper southern sector of the volcano. The eruption was preceded by a large earthquake swarm for a few days before its onset and accompanied by ground deformation and fracturing. The development of surface cracking along with the seismic pattern has allowed us to recognize three distinct eruptive systems (the SW–NE, NNW–SSE and N–S systems) which have been simultaneously active. Such eruptive systems are only the upper portions of a complex feeding system that was fed at the same time by two distinct magmas. The SW–NE and NNW–SSE systems, connected with the SE crater conduit, were fed by magma coming from depth, whereas the N–S system served instead as an ascending pathway for an amphibole-bearing magma residing in a shallow reservoir. The eruptive activity started again on October 2002 on the NE Rift Zone, where about 20 eruptive vents were aligned between 2500 and 1900 m a.s.l., and on the southern flank, from the central crater to the Montagnola. The onset of eruptive activity was accompanied by a seismic swarm. As in the 2001 eruptive event, two independent feeding systems formed, characterized by distinct magmas. The SW–NE system controlled the feeding of the Northeast Rift and was accommodated by left-lateral displacement along the WNW–ESE trending Pernicana Fault. The N–S system fed the eruptions on the southern flank. Moreover, the associated crustal deformation triggered seismic reactivation of tectonic structures in the eastern flank of the volcano and offshore. These two last eruptions indicate that at Mt. Etna the ascent of magma, as well as the accommodation of deformation, is strongly dominated by local extensional structures that are connected to a regional tectonic regime.
    Description: Published
    Description: 211-233
    Description: partially_open
    Keywords: extensional tectonics ; volcanic activity ; seismicity ; Sicily ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 520 bytes
    Format: 5898384 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-21
    Description: Earthquake early warning systems (EEWS), based on real-time prediction of ground motion or structural response measures, may play a role in re- ducing vulnerability and/or exposure of buildings and lifelines. Indeed, seismologists have recently developed efficient methods for real-time es- timation of an event’s magnitude and location based on limited informa- tion of the P-waves. Therefore, when an event occurs, estimates of magni- tude and source-to-site distance are available, and the prediction of the structural demand at the site may be performed by Probabilistic Seismic Hazard Analysis (PSHA) and then by Probabilistic Seismic Demand Analysis (PSDA) depending upon EEWS measures. Such an approach contains a higher level of information with respect to traditional seismic risk analysis and may be used for real-time risk management. However, this kind of prediction is performed in very uncertain conditions which may affect the effectiveness of the system and therefore have to be taken into due account. In the present study the performance of the EWWS under development in the Campania region (southern Italy) is assessed by simu- lation. The earthquake localization is formulated in a Voronoi cells ap- proach, while a Bayesian method is used for magnitude estimation. Simu- lation has an empirical basis but requires no recorded signals. Our results, in terms of hazard analysis and false/missed alarm probabilities, lead us to conclude that the PSHA depending upon the EEWS significantly improves seismic risk prediction at the site and is close to what could be produced if magnitude and distance were deterministically known.
    Description: Published
    Description: 211-232
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: Earthquake Early ; Campania Region ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-21
    Description: The development and implementation of an earthquake early warning system (EEWS), both in regional or on-site configurations can help to mitigate the losses due to the occurrence of moderate-to-large earthquakes in densely populated and/or industrialized areas. The capability of an EEWS to provide real-time estimates of source parameters (location and magnitude) can be used to take some countermeasures during the earthquake occurrence and before the arriving of the most destructive waves at the site of interest. However, some critical issues are peculiar of EEWS and need further investigation: (1) the uncertainties on earthquake magnitude and location estimates based on the measurements of some observed quantities in the very early portion of the recorded signals; (2) the selection of the most appropriate parameter to be used to predict the ground motion amplitude both in near-and far-source ranges; (3) the use of the estimates provided by the EEWS for structural engineering and risk mitigation applications. In the present study, the issues above are discussed using the Campania–Lucania region (Southern Apennines) in Italy, as test-site area. In this region a prototype system for earthquake early warning, and more generally for seismic alert management, is under development. The system is based on a dense, wide dynamic accelerometric network deployed in the area where the moderate-to-large earthquake causative fault systems are located. The uncertainty analysis is performed through a real-time probabilistic seismic hazard analysis by using two different approaches. The first is the Bayesian approach that implicitly integrate both the time evolving estimate of earthquake parameters, the probability density functions and the variability of ground motion propagation providing the most complete information. The second is a classical point estimate approach which does not account for the probability density function of the magnitude and only uses the average of the estimates performed at each seismic station. Both the approaches are applied to two main towns located in the area of interest, Napoli and Avellino, for which a missed and false alarm analysis is presented by means of a scenario earthquake: an M 7.0 seismic event located at the centre of the seismic network. Concerning the ground motion prediction, attention is focused on the response spectra as the most appropriate function to characterize the ground motion for earthquake engineering applications of EEWS.
    Description: Published
    Description: On line First
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquake early-warning ; Real-time seismology ; Bayesian analysis ; Missed and false alarm ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The development of the 2004–2005 eruption at Etna (Italy) is investigated by means of field surveys to define the current structural state of the volcano. In 2004–2005, a fracture swarm, associated with three effusive vents, propagated downslope from the SE summit crater towards the SE. Such a scenario is commonly observed at Etna, as a pressure increase within the central conduits induces the lateral propagation of most of the dikes downslope. Nevertheless, some unusual features of this eruption (slower propagation of fractures, lack of explosive activity and seismicity, oblique shear along the fractures) suggest a more complex triggering mechanism. A detailed review of the recent activity at Etna enables us to better define this possible mechanism. In fact, the NW–SE-trending fractures formed in 2004–2005 constitute the southeastern continuation of a N–S-trending fracture system which started to develop in early 1998 to the east of the summit craters. The overall 1998–2005 deformation pattern therefore forms an arcuate feature, whose geometry and kinematics are consistent with the head of a shallow flank deformation on the E summit of Etna. Similar deformation patterns have also been observed in analogue models of deforming volcanic cones. In this framework, the 2004–2005 eruption was possibly induced by a dike resulting from the intersection of this incipient fracture system with the SE Crater. A significant acceleration of this flank deformation may be induced by any magmatic involvement. The central conduit of the volcano is presently open, constantly buffering any increase in magmatic pressure and any hazardous consequence can be expected to be limited. A more hazardous scenario may be considered with a partial or total closing of the central conduit. In this case, magmatic overpressure within the central conduit may enhance the collapse of the upper eastern flank, triggering an explosive eruption associated with a landslide reaching the eastern lower slope of the volcano.
    Description: Published
    Description: 195–206
    Description: reserved
    Keywords: eruption triggering ; volcano-tectonics ; fracture fields ; flank spreading ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2594507 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We estimated the source parameters of 53 local earthquakes (2.0 〈ML 〈 5.7) of the Friuli-Venezia Giulia (Northeastern Italy) area, recorded by the short-period local seismic network of the Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS), in the period 1995–2003. Data were selected on the basis of high quality locations and focal mechanisms. Standard H/V spectral ratios (HVRS) of the three-component stations of the network were performed in order to assess local amplifications, and only stations showing HVRS not exceeding two were considered for the source parameters estimation. Both velocity and acceleration data were used to compute the SH-wave spectra. Observed spectra were corrected for attenuation effects using an independent regional estimate of the quality factor Q and a station dependent estimate of the spectral decay parameter k. Only earthquakes withML 〉 3.0 recorded with a sampling rate of 125 cps were used to compute k, thus allowing to visualize a linear trend of the high frequency acceleration spectrum up to 40–50 Hz. SH-wave spectra, corrected for attenuation, showed an ω−2 shape allowing a good fit with the Brune model. Seismic moments and Brune radii ranged between 1.5 × 1012 and 1.1 × 1017 Nm and between 0.1 and 2.7 km respectively.We obtainedMo = 1.1 × 1017 Nm for the seismic moment of the Kobarid (SLO) main shock, in good agreement with the Harvard CMT solution (Mo = 3.5 × 1017 Nm). Brune stress drops were confined to the range from 0.07 to 5.31MPa, with an average value of 0.73MPa and seem to be approximately constant over five orders of magnitude of seismic moment. Radiated seismic energy computed from two nearby stations scales with seismic moment according to logEs = 1.30 logMo − 9.06, and apparent stress values are between 0.02 and 4.26MPa. The observed scatter of Brune stress drop data allowed to hypothesize a scaling relation Mo ∝ f −3.43 c between seismic moment and corner frequency in order to accommodate both Brune stress drop and apparent stress scalings. No systematic differences are evidenced between stress parameters of earthquakes with different focal mechanisms. As a consequence, a relation of the seismic stress release with the strength of rocks can be hypothesized. A high correlation (r 〉 0.9) of Brune stress drop is found with both apparent stress and RMS stress drop, according to σB = 2.0 σa and σrms = 2.26 σB respectively.
    Description: Published
    Description: 148-167
    Description: JCR Journal
    Description: reserved
    Keywords: Earthquakes ; Attenuation ; Seismic spectra ; Seismic moment ; Seismic stress ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The inner regions of the Antarctic continent are generally regarded as nearly aseismic, although microseismicity is known to occur beneath some outlet ice streams, related to the interaction between the fast flowing ice and the bedrock. Here we show the occurrence of unusual earthquakes beneath an Antarctic outlet glacier that share almost the same magnitude, pointing to the repeated rupture of a single asperity. These seismic events produce waveforms with very high similarity and uncommon spectrum and are tightly clustered in space but, unlike other reported instances of repeating earthquakes on a patch of the San Andreas Fault, they occur in frequent irregular swarms. Evidence locates these events at the rock–ice interface under the glacier, and shows the existence of stick–slip motion on a smaller scale than the large slow slip events detected by global seismographs. Seismic behaviour of large glaciers can presumably be connected to surges in ice motion. This study determines a little known environment for fracture dynamics studies, while also contributing to the understanding of the coupling processes between fast flowing glaciers and bedrock that influence ice stream evolution and stability.
    Description: Progetto Nazionale di Ricerca in Antartide (PNRA) Antarctica New Zealand (ANZ)
    Description: Published
    Description: 151–158
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Glacial earthquakes ; Glacial dynamics ; Gutenberg-Richter relationship ; Double-difference hypocentre location ; Repeating earthquake ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: For early-warning applications in particular, the reliability and efficiency of rapid scenario generation strongly depend on the availability of reliable strong ground-motion prediction tools. If shake maps are used to represent patterns of potential damage as a consequence of large earthquakes, attenuation relations are used as a tool for predicting peak ground-motion parameters and intensities. One of the limitations in the use of attenuation relations is that these have only rarely been retrieved from data collected in the same tectonic environment in which the prediction has to be performed. As a consequence, strong ground motion can result in underestimations or overestimations with respect to the recorded data. This also holds for Italy, and in particular for the Southern Apennines, due to limitations in the available databases, both in terms of distances and magnitude. Moreover, for “real-time” early-warning applications, it is important to have attenuation models for which the parameters can be easily upgraded when new data are collected, whether this has to be done during the earthquake rupture occurrence or in the post-event, when all the strong motion waveforms are available. Here we present a strong-motion attenuation relation for early-warning applications in the Campania region (Southern Apennines), Italy. The model has a classical analytical formulation, and its coefficients were retrieved from a synthetic strong-motion database created by using a stochastic approach. The input parameters for the simulation technique were obtained through the spectral analysis of waveforms of earthquakes recorded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) network for a magnitude range Md (1.5,5.0) in the last fifteen years, and they have been extrapolated to cover a larger range. To validate the inferred relation, comparisons with two existing attenuation relations are presented. The results show that the calibration of the attenuation parameters, i.e., geometric spreading, quality factor Q, static stress drop values along with their uncertainties, are the main concern.
    Description: Published
    Description: 133-152
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: A Strong Motion ; Earlywarning ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: In the framework of an ongoing project financed by the Campania Region, a prototype system for seismic early and post-event warning is being developed and tested, based on a dense, wide dynamic seismic network (ISNet) and under installation in the Apennine belt region. This paper reports the characteristics of the seismic network, focussing on the required technological innovation of the different seismic network components (data-logger, sensors and data communication). To ensure a highly dynamic recording range, each station is equipped with two types of sensors: a strong-motion accelerometer and a velocimeter. Data acquisition at the seismic stations is performed using Osiris-6 model data-loggers made by Agecodagis. Each station is supplied with two (120 W) solar panels and two 130 Ah gel cell batteries, ensuring 72-h autonomy for the seismic and radio communication equipment. The site is also equipped with a GSM/GPRS programmable control/alarm system connected to several environmental sensors (door forcing, solar panel controller, battery, fire, etc) and through which the site status is known in real time. The data are stored locally on the hard-disk and, at the same time, continuously transmitted by the SeedLink protocol to local acquisition/analysis nodes (Local Control Center) via Wireless LAN bridge. At each LCC site runs a linux Earthworm system which stores and manages the acquired data stream. The real-time analysis system will perform event detection and localization based on triggers coming from data-loggers and parametric information coming from the other LCCs. Once an event is detected, the system will performs automatic magnitude and focal mechanism estimations. In the immediate post-event period, the RISSC performs shaking map calculations using parameters from the LCCs and/or data from the event database. The recorded earthquake data are stored into an event database, to be available for distribution and visualization for further off-line analyses. The seismic network will be completed in two stages: • Deployment of 30 seismic stations along the southern Apennine chain (to date almost completed) • Setting up a carrier-class radio communication system for fast and reliable data transmission, and installation of 10 additional seismic stations.
    Description: Published
    Description: 325 - 341
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: reserved
    Keywords: Monitoring Infrastructure ; Early-warning Applications ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...