ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (3)
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (3)
  • Agu  (4)
  • Association for Environmental Archaeology - Maney  (1)
  • Blackwell Publishing Ltd  (1)
  • Annual Reviews
  • 2005-2009  (6)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 2005-2009  (6)
Jahr
  • 1
    Publikationsdatum: 2017-04-04
    Beschreibung: The statistical modeling of the time-size distribution of volcanic eruptions is a fundamental tool to understand better the physics of the eruptive process, and to make reliable forecasts [Newhall and Hoblitt, 2002; Connor et al., 2003; Marzocchi et al., 2004a; Sparks and Aspinall, 2004]. Eruption forecasting is commonly associated to different timescales (short-, intermediate-, and long-term; see definition by Newhall and Hoblitt [2002]). Regardless of the time frame, the statistical modeling of the past behavior of a volcano is a key ingredient for quantitative forecasting (usually, but not necessarily, over long time intervals) when the volcano has an almost stationary state (for instance, it is dormant). In this case, monitoring data are not particularly informative of the future evolution of the system, at least until the volcano becomes restless and/or changes its stationary state. Hereinafter, the terms ‘‘eruption forecasting’’ and ‘‘volcanic hazard’’ refer to this stationary case. [3] The main difficulties in providing a general model of eruptive activity are linked to the existence of different types of volcanic activity, to the paucity of eruptive data for most volcanoes, and to the intrinsic complexity of eruptive processes. As a consequence, most of the past papers devoted to this issue are focused on single (or very few) volcanoes [e.g., Wickman, 1976; Klein, 1982; Burt et al., 1994; Bebbington and Lai, 1996; Marzocchi, 1996; Connor et al., 2003; Gusev et al., 2003; Sandri et al., 2005] where detailed eruptive catalogs exist. This approach limits the generality of the results. We cannot know if the behavior of the volcano analyzed represents a generic feature of a specific type of volcanism, or if it is peculiar of the volcano itself. Under this perspective, part of the different statistical distributions found by analyzing single eruptive catalogs can be explained by the existence of some peculiarities in volcanic activity. [4] One way to overcome this drawback, which we use here, is to perform a common analysis on data from several volcanoes. In particular, we test the Poisson hypothesis in the time domain, and the reliability of time-size distributions such as the time predictable model and size predictable model. The results obtained are then used to build a quantitative model of the statistical time-size distribution for some classes of volcanic activities that can be used for volcanic hazard assessment.
    Beschreibung: Published
    Beschreibung: B04204
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): quantitative model ; eruptions ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: Knowledge of past precursor patterns is crucial for the correct interpretation of monitoring data and reliable volcano forecasting. In the case of Vesuvius, one of the world’s riskiest volcanoes, very little information is available about unrest signals following long periods of quiescence. The translation and analysis of three Latin treatises written from eye-witnesses immediately after the A.D. 1631 subplinian eruption allowed us to reconstruct the sequence of precursors. The progression in the signals was remarkably clear starting at least two to three weeks before the event. Widespread gas emission from the ground coupled with deformation was followed by an increase in seismic activity in the eight days before the eruption. Seismicity escalated both in frequency and intensity in the night before the eruption, heralding the opening of fissures on the volcanic cone. The details of phenomena occurring in the medium-term (months before the eruption) are difficult to evaluate, though it is worth noticing that no major tectonic earthquakes were felt in the area of the volcano. Civil protection preparedness plans should be organized in order to complete the evacuation of people in a time span significantly shorter than the duration of expected short-term precursors.
    Beschreibung: Published
    Beschreibung: L18317
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Vesuvius ; A. D. 1631 ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-04
    Beschreibung: New seismological and structural data from the central Adriatic-Gargano promontory area demonstrate that the current models of an aseismic and slightly deformed Adriatic block have to be revised. A seismically active deformational belt is mapped along two main fault systems, the Tremiti Islands and Mattinata faults. Moreover, geologic and geophysical evidence suggests that a more extensive lithospheric boundary may cut across the central Italian peninsula to the Tyrrhenian basin.
    Beschreibung: Published
    Beschreibung: 109-117
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Adriatic Sea ; Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-04-04
    Beschreibung: In the Greek and Roman periods, the fortified town of Tindari’s military and trading importance combined with its strategic location in north-east Sicily allowed it to control traffic on the Tyrrhenian Sea for many centuries. Historical sources (Polybius, Cicero, Livy and Appian) testify to the flourishing maritime activity of the ancient town, but do not supply any information on the location, size or configuration of its harbour. Because a town as important as Tindari must have had a landing place for ships, we examined new sources of information with the aim of identifying its location. Historiographical and archaeological surveys produced evidence of a well-organised harbour. Geomorphological investigations, performed along the Tindari Promontory, identified Holocene uplifted and submerged notches indicating past sea level changes. Furthermore, it was found that in the last four centuries the combined actions of marine and fluvial dynamics had produced a progressive filling of the Oliveri lowland and a progradation of the shoreline, which was responsible for the burial of ancient buildings. The palaeotopographic reconstruction of the Tindari Cape Promontory and Oliveri coastal plain in the 4th century BC shows a safe landing place south-east of the Tindari Cape that was suitably protected from prevailing winds.
    Beschreibung: Published
    Beschreibung: 37-49
    Beschreibung: 3.3. Geodinamica e struttura dell'interno della Terra
    Beschreibung: N/A or not JCR
    Beschreibung: reserved
    Schlagwort(e): geoarchaeology ; Tindari harbour ; marine notches ; paleotopographic reconstruction ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2012-02-03
    Beschreibung: We analyse P-wave traveltimes for the Mediterranean area, using both teleseismic and regional arrivals for shallow earthquakes reported in the Bulletins of the International Seismological Centre. We model delays between pairs of 0.5° × 0.5° cells, obtaining a detailed representation of the P traveltime heterogeneities. Examination of these anomalies shows the clear presence of geographically coherent patterns—consistent with known geological features—due to significant structure in the upper mantle. We present a scheme, based on an empirical heterogeneity correction (EHC) to P-wave traveltimes, to improve earthquake location. This method provides similar benefits to those of a location procedure based on ray tracing in a 3-D model, but it is simpler and computationally more efficient. The definition of the traveltime heterogeneity model, being based on a statistical procedure, bypasses most of the critical points and possible instabilities involved in model inversion. EHC relocation, applied to Mediterranean earthquakes, allows one to predict about 70 per cent of the estimated signal due to heterogeneity and produces epicentral and origin time-shifts of, respectively, 4.22 km and 0.35 s (rms). From a synthetic experiment, in which we use the proposed algorithm to retrieve known source locations, we estimate that the rms improvement achieved by the EHC relocation over a simpler, standard, 1-D location is more than 20 per cent for both epicentral mislocation and origin time-shifts.
    Beschreibung: Published
    Beschreibung: 232-254
    Beschreibung: 3.3. Geodinamica e struttura dell'interno della Terra
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): earthquake location ; Mediterranean ; P waves ; traveltime ; upper mantle ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2017-04-04
    Beschreibung: Numerical simulation of pyroclastic density currents has developed significantly in recent years and is increasingly applied to volcanological research. Results from physical modeling are commonly taken into account in volcanic hazard assessment and in the definition of hazard mitigation strategies. In this work, we modeled pyroclastic density currents in the Phlegrean Fields caldera, where flows propagating along the flat ground could be confined by the old crater rims that separate downtown Naples from the caldera. The different eruptive scenarios (mass eruption rates, magma compositions, and water contents) were based on available knowledge of this volcanic system, and appropriate vent conditions were calculated for each scenario. Simulations were performed along different topographic profiles to evaluate the effects of topographic barriers on flow propagation. Simulations highlighted interesting features associated with the presence of obstacles such as the development of backflows. Complex interaction between outward moving fronts and backflows can affect flow propagation; if backflows reach the vent, they can even interfere with fountain dynamics and induce a more collapsing behavior. Results show that in the case of large events ( 108 kg/s), obstacles affect flow propagation by reducing flow velocity and hence dynamic pressure in distal regions, but they cannot stop the advancement of flows. Deadly conditions (in terms of temperature and ash concentration) characterize the entire region invaded by pyroclastic flows. In the case of small events (2.5 107 kg/s), flows are confined by distal topographic barriers which provide valuable protection to the region beyond.
    Beschreibung: Published
    Beschreibung: Q11003
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Phlegrean Fields ; multiphase flow ; pyroclastic flows ; dynamic pressure ; volcanic hazard ; caldera ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...