ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (112)
  • AMS (American Meteorological Society)  (70)
  • Wiley-Blackwell  (42)
  • American Meteorological Society
  • Institut für Meereskunde
  • 2005-2009  (112)
  • 1925-1929
  • 1
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Zoology, 179 (3). pp. 291-295.
    Publication Date: 2020-07-17
    Description: The cartilaginous tubercles of the mantle of the squid Cranchia scabra have been examined with the scanning electron microscope. Some tubercles are small, simple nodules whereas others are large with a complex Maltese cross form. The varying shapes and sizes probably represent a developmental sequence. The possible role of the tubercles is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Quaternary Science, 23 (1). pp. 3-20.
    Publication Date: 2017-04-06
    Description: Investigations indicate that the Iceland Ice Sheet was reduced in size during MIS 3 but readvanced to the shelf break at the LGM. Retreat occurred very rapidly around 15 k–16 k cal. yr BP. By contrast, the margin of the ice sheet on the East Greenland shelf, north of the Denmark Strait, was at or close to the shelf break during MIS 3 and 2 and retreat starting ∼17 k cal. yr BP. Quantitative X-ray diffraction analysis of the 〈2 mm sediment fraction was undertaken on 161 samples from Iceland and East Greenland diamictons, and from cores on the slopes and margins of the Denmark Strait. Weight% mineralogical data are used in a principal component analysis to differentiate sediments derived from the two margins. The first two PC axes explain 52% of the variance. These associations are used to characterise sediments as being affiliated with (a) Iceland, (b) East Greenland or (c) mixed. The contribution from Iceland becomes prominent during MIS 2. The extensive outcrop of early Tertiary basalts on East Greenland between 68° and 71° N is an alternative source for basaltic clasts and North Atlantic sediments with εNd(0) values close to ±0.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Quaternary Science, 25 (5). pp. 633-650.
    Publication Date: 2017-12-19
    Description: Two cores were recovered in the southeastern part of Lake Shkodra (Montenegro and Albania) and sampled for identification of tephra layers. The first core (SK13, 7.8 m long) was recovered from a water depth of 7 m, while the second core (SK19, 5.8 m long) was recovered close to the present-day shoreline (water depth of 2 m). Magnetic susceptibility investigations show generally low values with some peaks that in some cases are related to tephra layers. Naked-eye inspection of the cores allowed the identification of four tephra layers in core SK13 and five tephra layers in core SK19. Major element analyses on glass shards and mineral phases allowed correlation of the tephra layers between the two cores, and their attribution to six different Holocene explosive eruptions of southern Italy volcanoes. Two tephra layers have under-saturated composition of glass shards (foiditic and phonolitic) and were correlated to the AD 472 and the Avellino (ca. 3.9 cal. ka BP) eruptions of Somma-Vesuvius. One tephra layer has benmoreitic composition and was correlated to the FL eruption of Mount Etna (ca. 3.4 cal. ka BP). The other three tephra layers have trachytic composition and were correlated to Astroni (ca. 4.2 cal. ka BP), Agnano Monte Spina (ca. 4.5 cal. ka BP) and Agnano Pomici Principali (ca. 12.3 cal. ka BP) eruptions of Campi Flegrei. The ages of tephra layers are in broad agreement with eight 14C accelerator mass spectrometric measurements carried out on plant remains and charcoal from the lake sediments at different depths along the two cores. The recognition of distal tephra layers from Italian volcanoes allowed the physical link of the Holocene archive of Lake Shkodra to other archives located in the central Mediterranean area and the Balkans (i.e. Lake Ohrid). Five of the recognised tephra layers were recognised for the first time in the Balkans area, and this has relevance for volcanic hazard assessment and for ash dispersal forecasting in case of renewed explosive activity from some of the southern Italy volcanoes. Copyright © 2009 John Wiley & Sons, Ltd.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Quaternary Science, 24 (5). pp. 437-449.
    Publication Date: 2018-05-15
    Description: This paper presents a temperature reconstruction of the past 1000 years for Central Europe, based on chronological records. The advantages and limitations of this hermeneutic, text-based approach are discussed and the statistic methodology is introduced. Historical documents represent direct observation of weather and atmospheric conditions with highest temporal resolution available and precise dating. A major advantage of these extensive data is that they allow the reconstruction of large numbers of variables such as winter temperature, precipitation, pressure patterns or climate extremes as well as floods or storms. Within this hermeneutic climatological research approach, even human impacts and social dimensions of climate development can be examined. In order to quantify the historical information, statistical methods are applied, based on an index approach.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Zoology, 170 (4). pp. 451-462.
    Publication Date: 2020-07-17
    Description: The dry weight and the crest length of the upper and lower beak, the length of the radula ribbon, the average width of the base of the six proximal and distal rachidian teeth as well as the total number of these teeth have all been related to the live body weight of octopuses between 1.1 and 4440 g. From any one of these parameters it is possible to estimate the size and approximate age of the animal.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Zoology, 181 (4). pp. 527-559.
    Publication Date: 2020-07-17
    Description: Features of the brain of this oceanic squid have been investigated and related, as far as possible, to its habits and mode of life. The body and arms are much vacuolated for buoyancy and the animal probably lives with the head upwards. The very long whip-like tentacles are not vacuolated and perhaps hang downwards. They are covered by numerous minute pedunculated suckers, perhaps providing a sticky surface. A special nerve running outside the brain carries signals from the arms and tentacles to the magnocellular lobe, which is very large and of complex structure. However, there are no giant cells and the mantle is weak. Propulsion is mainly by the large fins, which are controlled from the magnocellular lobe, presumably using the information from the arms and tentacles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Marine Ecology, 28 (1). pp. 152-159.
    Publication Date: 2020-07-14
    Description: Meiobenthos densities and higher taxon composition were studied in an active gas seepage area at depths from 182 to 252 m in the submarine Dnieper Canyon located in the northwestern part of the Black Sea. The meiobenthos was represented by Ciliata, Foraminifera, Nematoda, Polychaeta, Bivalvia, Gastropoda, Amphipoda, and Acarina. Also present in the sediment samples were juvenile stages of Copepoda and Cladocera which may be of planktonic origin. Nematoda and Foraminifera were the dominant groups. The abundance of the meiobenthos varied between 2397 and 52,593 ind.·m−2. Maximum densities of Nematoda and Foraminifera were recorded in the upper sediment layer of a permanent H2S zone at depths from 220 to 250 m. This dense concentration of meiobenthos was found in an area where intense methane seeps were covered by methane-oxidizing microbial mats. Results suggest that methane and its microbial oxidation products are the factors responsible for the presence of a highly sulfidic and biologically productive zone characterized by specially adapted benthic groups. At the same time, an inverse correlation was found between meiofauna densities and methane concentrations in the uppermost sediment layers. The hypothesis is that the concentration of Nematoda and Foraminifera within the areas enriched with methane is an ecological compromise between the food requirements of these organisms and their adaptations to the toxic H2S.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Zoology, 158 (4). pp. 475-483.
    Publication Date: 2020-07-17
    Description: An automatic food dispenser was designed for use with Octopus vulgaris Lamarck. One live crab was delivered each time the octopus pulled a white shape attached to the dispenser. The apparatus provided a continuous record of the time and frequency of feeding over periods of up to 15 days.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-19
    Description: This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake-level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north-central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub-millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI-1d), Intra-Allerød (GI-1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice-core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra-Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake-level record shows that the sub-millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Zoology, 188 (1). pp. 53-67.
    Publication Date: 2020-07-17
    Description: The movements of the isolated buccal mass of Octopus vulgaris have been investigated. The beaks undergo rhythmic cycles of activity in the absence of applied stimulation and after electrical stimulation of the inter-buccal connective. Initial opening, closing, retraction and re-opening phases of movement are described. This cycle of movements is taken to resemble those in the intact animal. Anatomical and electrical evidence identifies the superior mandibular muscle as being partly responsible for the closing and retraction phases of movement. The inferior buccal ganglion determines the sequence of these buccal movements, but modification by sensory feed-back from the musculature is also implied. The preparation will allow a closer comparison of the control of movement in cephalopods and gastropods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Zoology, 179 (1). pp. 19-83.
    Publication Date: 2020-07-17
    Description: Taonius megalops is a neutrally buoyant oceanic squid, very different in form when young and old. The young, has a round, sac-like mantle and relatively long tentacles, while the adult has an elongated cone-like mantle and relatively short tentacles. The transition in shape and form is gradual and has been followed in animals of between 3 and 180 mm dorsal mantle length. Statistical tests on various parameters investigated, both external and internal, revealed good correlation with the dorsal mantle length and confirmed the descriptions of the development of the chromatophores and subocular light organs with growth. It was concluded that these animals, captured in the Atlantic Ocean, all belonged to the species T. megalops Prosch 1849. This study has permitted us to suggest a tentative outline of the life cycle, although no adults were present in the material available.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Zoology, 202 (3). pp. 441-447.
    Publication Date: 2020-07-17
    Description: A crab which has been captured and paralysed by an octopus but retrieved 1 1/2 min later cannot at first be pulled apart by the experimenter: 27 min later it can be dismembered easily. This demonstrates that there is external digestion when Octopus vulgaris feeds upon crabs. However, it is strictly limited at this stage to the arthrodial membrane and the musculo-skeletal attachment mechanisms as the exoskeleton separates at the joints allowing the muscles to be drawn out of the appendages. And yet, two hours after capture, pieces of crab meat are still recognizable in the octopus's stomach. The process of paralysing and cleaning a crab was noticeably slowed after the surgical removal of the radula, salivary papilla or the lateral buccal palps.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Zoology, 150 (1). pp. 1-9.
    Publication Date: 2020-07-17
    Description: The changes in body weight of 12 octopuses, fed on fish or crabs, were followed under laboratory conditions for periods of 1 to 7 1/2 months. The food intake was estimated and compared with the changes in body weight of the octopuses; 25 to 55% of the total intake of food appeared to be incorporated. The range of the average increase in weight over the whole observation period of each of the animals was 1.9 to 7.7g per day (1 to 7 1/2 months); the mean value was 4.8g per day. The effect of changing the diet of small octopuses (fish or crab)was followed for four weeks but there was no evidence that alteration of the diet affected the rate of changes in body weight of animals of more than 47g initial body weight.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 36 (1). pp. 43-63.
    Publication Date: 2017-11-15
    Description: The circulation of the northeastern Atlantic Ocean at intermediate depths is characterized by watermass transformation processes that involve Iceland–Scotland Overflow Water (ISOW) from the northeast, Labrador Sea Water (LSW) from the west, and Mediterranean Water from the south. Field observations were carried out with 89 eddy-resolving floats (RAFOS and MARVOR types). The data coverage achieved is remarkably high and enables a comprehensive study of the eastern basins between Iceland and the Azores. The trajectories show typical pathways of the water masses involved and the role that the complex bottom topography plays in defining them. The ISOW paths tend to lean against the slopes of the Reykjanes Ridge and Rockall Plateau. Westward escapes through multiple gaps in the ridge are possible, superimposed on a sustained southward flow in the eastern basin along the Mid-Atlantic Ridge. LSW pathways leading to the eastern basins are subject to high variability in flow direction and eddy activity. In addition to a selection of characteristic trajectories, maps of the horizontal distributions of Lagrangian eddy kinetic energy and integral time scales are presented. These reveal distinct areas of intensified mixing in the Iceland Basin, as well as the sharp contrast between the subpolar and subtropical dynamics. A self-contained eddy detection scheme is applied to obtain statistics on individual eddy properties and their abundance. It is suggested that much of the intensified mixing can be related to cyclonic activity, particularly in the subpolar region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-07-16
    Description: The Vasco—Cirene field experiment, in January—February 2007, targeted the Seychelles—Chagos thermocline ridge (SCTR) region, with the main purpose of investigating Madden—Julian Oscillation (MJO)-related SST events. The Validation of the Aeroclipper System under Convective Occurrences (Vasco) experiment (Duvel et al. 2009) and Cirene cruise were designed to provide complementary views of air—sea interaction in the SCTR region. While meteorological balloons were deployed from the Seychelles as a part of Vasco, the Research Vessel (R/V) Suroît was cruising the SCTR region as a part of Cirene. more: The Vasco—Cirene program explores how strong air—sea interactions promoted by the shallow thermocline and high sea surface temperature in the Seychelles—Chagos thermocline ridge results in marked variability at synoptic, intraseasonal, and interannual time scales. The Cirene oceanographic cruise collected oceanic, atmospheric, and air—sea flux observations in this region in January—February 2007. The contemporaneous Vasco field experiment complemented these measurements with balloon deployments from the Seychelles. Cirene also contributed to the development of the Indian Ocean observing system via deployment of a mooring and 12 Argo profilers. Unusual conditions prevailed in the Indian Ocean during January and February 2007, following the Indian Ocean dipole climate anomaly of late 2006. Cirene measurements show that the Seychelles—Chagos thermocline ridge had higher-than-usual heat content with subsurface anomalies up to 7°C. The ocean surface was warmer and fresher than average, and unusual eastward currents prevailed down to 800 m. These anomalous conditions had a major impact on tuna fishing in early 2007. Our dataset also sampled the genesis and maturation of Tropical Cyclone Dora, including high surface temperatures and a strong diurnal cycle before the cyclone, followed by a 1.5°C cooling over 10 days. Balloonborne instruments sampled the surface and boundary layer dynamics of Dora. We observed small-scale structures like dry-air layers in the atmosphere and diurnal warm layers in the near-surface ocean. The Cirene data will quantify the impact of these finescale features on the upper-ocean heat budget and atmospheric deep convection.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Magnetic Resonance in Chemistry, 45 (12). pp. 1072-1075.
    Publication Date: 2020-07-15
    Description: Diosmetin, 5,7,3′-trihydroxy-4′-methoxyflavone shows chemopreventive, antimutagenic, and antiallergic effects. On the other hand, chrysoeriol, 5,7,4′-trihydroxy-3′-methoxyflavone induced nodABC-lacZ in Rhizobium meliloti. Both of them belong to hydroxymethoxy- flavones. One major difference between diosmetin and chrysoeriol is the substituted position of hydroxyl and methoxyl groups. In order to elucidate the relationships between their structures and activity, one of the first things to be done is the determination of their structures. However, most flavones occur widely in nature, and thus it is difficult to obtain in sufficient amounts from natural sources to identify their structures. Assignments of NMR data of several hydroxymethoxyflavones may help us to identify novel flavonoid compounds isolated from natural sources based on their NMR experiments. Therefore, we report here the complete assignments of 1H and 13C NMR data of 13 hydroxymethoxyflavones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Zoology, 186 (1). pp. 95-108.
    Publication Date: 2020-07-17
    Description: Reproductive mechanisms in the seven species of the thecosomatous pteropod genus Limacina are described and compared. All species are protandrous hermaphrodites. Five species–L. bulimoides, L. helicina, L. lesueuri, L. retroversa and L. trochiformis–have a similar reproductive anatomy in which the gonoduct leading from the gonad to the common genital pore functions as a seminal vesicle in the male and is elaborated into mucous and albumen glands in the female. The male system consists of a prostate gland and penis connected to the common genital pore by an external ciliary tract. All five species have a free-swimming veliger stage which hatches from free-floating egg masses. Limacina helicoides has the same reproductive anatomy but is ovoviviparous, with embryos retained in capsules in the mucous gland until they are juveniles of 50 mm in shell diameter. Limacina inflata lacks mucous and albumen glands and a penis; a spermatophore formed by the prostate gland is used in aphallic sperm transfer. This species exhibits brood protection with un-encapsulated embryos retained in the mantle cavity until they are released as veligers measuring 0067 mm in diameter. L. inflata is the most abundant of the seven species despite lowered fecundity; reasons for its ecological success are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-08-23
    Description: An empirical model for the temperature of subsurface water entrained into the ocean mixed layer (Te) is presented and evaluated to improve sea surface temperature anomaly (SSTA) simulations in an intermediate ocean model (IOM) of the tropical Pacific. An inverse modeling approach is adopted to estimate Te from an SSTA equation using observed SST and simulated upper-ocean currents. A relationship between Te and sea surface height (SSH) anomalies is then obtained by utilizing a singular value decomposition (SVD) of their covariance. This empirical scheme is able to better parameterize Te anomalies than other local schemes and quite realistically depicts interannual variability of Te, including a nonlocal phase lag relation of Te variations relative to SSH anomalies over the central equatorial Pacific. An improved Te parameterization naturally leads to better depiction of the subsurface effect on SST variability by the mean upwelling of subsurface temperature anomalies. As a result, SSTA simulations are significantly improved in the equatorial Pacific; a comparison with other schemes indicates that systematic errors of the simulated SSTAs are significantly small—apparently due to the optimized empirical Teparameterization. Cross validation and comparisons with other model simulations are made to illustrate the robustness and effectiveness of the scheme. In particular it is demonstrated that the empirical Te model constructed from one historical period can be successfully used to improve SSTA simulations in another.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-08-24
    Description: The western Pacific subtropical high (WPSH) is closely related to Asian climate. Previous examination of changes in the WPSH found a westward extension since the late 1970s, which has contributed to the inter-decadal transition of East Asian climate. The reason for the westward extension is unknown, however. The present study suggests that this significant change of WPSH is partly due to the atmosphere's response to the observed Indian Ocean-western Pacific (IWP) warming. Coordinated by a European Union's Sixth Framework Programme, Understanding the Dynamics of the Coupled Climate System (DYNAMITE), five AGCMs were forced by identical idealized sea surface temperature patterns representative of the IWP warming and cooling. The results of these numerical experiments suggest that the negative heating in the central and eastern tropical Pacific and increased convective heating in the equatorial Indian Ocean/ Maritime Continent associated with IWP warming are in favor of the westward extension of WPSH. The SST changes in IWP influences the Walker circulation, with a subsequent reduction of convections in the tropical central and eastern Pacific, which then forces an ENSO/Gill-type response that modulates the WPSH. The monsoon diabatic heating mechanism proposed by Rodwell and Hoskins plays a secondary reinforcing role in the westward extension of WPSH. The low-level equatorial flank of WPSH is interpreted as a Kelvin response to monsoon condensational heating, while the intensified poleward flow along the western flank of WPSH is in accord with Sverdrup vorticity balance. The IWP warming has led to an expansion of the South Asian high in the upper troposphere, as seen in the reanalysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  In: Biofouling. , ed. by Dürr, S. and Thomason, J. Wiley-Blackwell, Weinheim, pp. 73-86. ISBN 978-1-4051-6926-4
    Publication Date: 2012-02-23
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 22 (20). pp. 5319-5345.
    Publication Date: 2019-09-23
    Description: Seasonal reconstructions of the Southern Hemisphere annular mode (SAM) index are derived to extend the record before the reanalysis period, using station sea level pressure (SLP) data as predictors. Two reconstructions using different predictands are obtained: one [Jones and Widmann (JW)] based on the first principal component (PC) of extratropical SLP and the other (Fogt) on the index of Marshall. A regional-based SAM index (Visbeck) is also considered.These predictands agree well post-1979; correlations decline in all seasons except austral summer for the full series starting in 1958. Predictand agreement is strongest in spring and summer; hence agreement between the reconstructions is highest in these seasons. The less zonally symmetric SAM structure in winter and spring influences the strength of the SAM signal over land areas, hence the number of stations included in the reconstructions. Reconstructions from 1865 were, therefore, derived in summer and autumn and from 1905 in winter and spring. This paper examines the skill of each reconstruction by comparison with observations and reanalysis data. Some of the individual peaks in the reconstructions, such as the most recent in austral summer, represent a full hemispheric SAM pattern, while others are caused by regional SLP anomalies over the locations of the predictors. The JW and Fogt reconstructions are of similar quality in summer and autumn, while in winter and spring the Marshall index is better reconstructed by Fogt than the PC index is by JW. In spring and autumn the SAM shows considerable variability prior to recent decades.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 18 (23). pp. 4925-4936.
    Publication Date: 2020-08-04
    Description: Climate models used to produce global warming scenarios exhibit widely diverging responses of the thermohaline circulation (THC). To investigate the mechanisms responsible for this variability, a regional Atlantic Ocean model driven with forcing diagnosed from two coupled greenhouse gas simulations has been employed. One of the coupled models (MPI) shows an almost constant THC, the other (GFDL) shows a declining THC in the twenty-first century. The THC evolution in the regional model corresponds rather closely to that of the respective coupled simulation, that is, it remains constant when driven with the forcing from the MPI model, and declines when driven with the GFDL forcing. These findings indicate that a detailed representation of ocean processes in the region covered by the Atlantic model may not be critical for the simulation of the overall THC changes in a global warming scenario, and specifically that the coupled model’s rather coarse representation of water mass formation processes in the subpolar North Atlantic is unlikely to be the primary cause for the large differences in the THC evolution. Sensitivity experiments have confirmed that a main parameter governing the THC response to global warming is the density of the intermediate waters in the Greenland–Iceland–Norwegian Seas, which in turn influences the density of the North Atlantic Deep Water, whereas changes in the air–sea heat and freshwater fluxes over the subpolar North Atlantic are only of moderate importance, and mainly influence the interannual–decadal variability of THC. Finally, as a consequence of changing surface fluxes, the Labrador Sea convection ceases by about 2030 under both forcings (i.e., even in a situation where the overall THC is stable) indicating that the eventual breakdown of the convection is likely but need not coincide with substantial THC changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 20 (11). pp. 2558-2571.
    Publication Date: 2017-08-23
    Description: Shortly after the advent of the first imaging passive microwave sensor on board a research satellite an anomalous climate feature was observed within the Weddell Sea. During the years 1974–1976, a 250 × 103 km2 area within the seasonal sea ice cover was virtually free of winter sea ice. This feature, the Weddell Polynya, was created as sea ice formation was inhibited by ocean convection that injected relatively warm deep water into the surface layer. Though smaller, less persistent polynyas associated with topographically induced upwelling at Maud Rise frequently form in the area, there has not been a reoccurrence of the Weddell Polynya since 1976. Archived observations of the surface layer salinity within the Weddell gyre suggest that the Weddell Polynya may have been induced by a prolonged period of negative Southern Annular Mode (SAM). During negative SAM the Weddell Sea experiences colder and drier atmospheric conditions, making for a saltier surface layer with reduced pycnocline stability. This condition enables Maud Rise upwelling to trigger sustained deep-reaching convection associated with the polynya. Since the late 1970s SAM has been close to neutral or in a positive state, resulting in warmer, wetter conditions over the Weddell Sea, forestalling repeat of the Weddell Polynya. A contributing factor to the Weddell Polynya initiation may have been a La Niña condition, which is associated with increased winter sea ice formation in the polynya area. If the surface layer is made sufficiently salty due to a prolonged negative SAM period, perhaps aided by La Niña, then Maud Rise upwelling meets with positive feedback, triggering convection, and a winter persistent Weddell Polynya.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 18 (1). pp. 58-70.
    Publication Date: 2020-08-04
    Description: This study explores the influence of phytoplankton on the tropical Pacific heat budget. A hybrid coupled model for the tropical Pacific that is based on a primitive equation reduced-gravity multilayer ocean model, a dynamic ocean mixed layer, an atmospheric mixed layer, and a statistical atmosphere is used. The statistical atmosphere relates deviations of the sea surface temperature from its mean to wind stress anomalies and allows for the rectification of the annual cycle and the El Niño–Southern Oscillation (ENSO) phenomenon through the positive Bjerknes feedback. Furthermore, a nine-component ecosystem model is coupled to the physical variables of the ocean. The simulated chlorophyll concentrations can feed back onto the ocean heat budget by their optical properties, which modify solar light absorption in the surface layers. It is shown that both the surface layer concentration as well as the vertical profile of chlorophyll have a significant effect on the simulated mean state, the tropical annual cycle, and ENSO. This study supports a previously suggested hypothesis (Timmermann and Jin) that predicts an influence of phytoplankton concentration of the tropical Pacific climate mean state and its variability. The bioclimate feedback diagnosed here works as follows: Maxima in the subsurface chlorophyll concentrations lead to an enhanced subsurface warming due to the absorption of photosynthetically available shortwave radiation. This warming triggers a deepening of the mixed layer in the eastern equatorial Pacific and eventually a reduction of the surface ocean currents (Murtugudde et al.). The weakened south-equatorial current generates an eastern Pacific surface warming, which is strongly enhanced by the Bjerknes feedback. Because of the deepening of the mixed layer, the strength of the simulated annual cycle is also diminished. This in turn leads to an increase in ENSO variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 35 . pp. 757-774.
    Publication Date: 2018-04-11
    Description: The authors present the first quantitative comparison between new velocity datasets and high-resolution models in the North Atlantic subpolar gyre [1/10° Parallel Ocean Program model (POPNA10), Miami Isopycnic Coordinate Ocean Model (MICOM), ° Atlantic model (ATL6), and Family of Linked Atlantic Ocean Model Experiments (FLAME)]. At the surface, the model velocities agree generally well with World Ocean Circulation Experiment (WOCE) drifter data. Two noticeable exceptions are the weakness of the East Greenland coastal current in models and the presence in the surface layers of a strong southwestward East Reykjanes Ridge Current. At depths, the most prominent feature of the circulation is the boundary current following the continental slope. In this narrow flow, it is found that gridded float datasets cannot be used for a quantitative comparison with models. The models have very different patterns of deep convection, and it is suggested that this could be related to the differences in their barotropic transport at Cape Farewell. Models show a large drift in watermass properties with a salinization of the Labrador Sea Water. The authors believe that the main cause is related to horizontal transports of salt because models with different forcing and vertical mixing share the same salinization problem. A remarkable feature of the model solutions is the large westward transport over Reykjanes Ridge [10 Sv (Sv ≡ 106 m3 s−1) or more]
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-12-31
    Description: Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system. Here the authors demonstrate, through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century the central Arctic Ocean became increasingly saltier with a rate of freshwater loss of 239 ± 270 km3 decade−1. In contrast, long-term (1920–2003) freshwater content (FWC) trends over the Siberian shelf show a general freshening tendency with a rate of 29 ± 50 km3 decade−1. These FWC trends are modulated by strong multidecadal variability with sustained and widespread patterns. Associated with this variability, the FWC record shows two periods in the 1920s–30s and in recent decades when the central Arctic Ocean was saltier, and two periods in the earlier century and in the 1940s–70s when it was fresher. The current analysis of potential causes for the recent central Arctic Ocean salinification suggests that the FWC anomalies generated on Arctic shelves (including anomalies resulting from river discharge inputs) and those caused by net atmospheric precipitation were too small to trigger long-term FWC variations in the central Arctic Ocean; to the contrary, they tend to moderate the observed long-term central-basin FWC changes. Variability of the intermediate Atlantic Water did not have apparent impact on changes of the upper–Arctic Ocean water masses. The authors’ estimates suggest that ice production and sustained draining of freshwater from the Arctic Ocean in response to winds are the key contributors to the salinification of the upper Arctic Ocean over recent decades. Strength of the export of Arctic ice and water controls the supply of Arctic freshwater to subpolar basins while the intensity of the Arctic Ocean FWC anomalies is of less importance. Observational data demonstrate striking coherent long-term variations of the key Arctic climate parameters and strong coupling of long-term changes in the Arctic–North Atlantic climate system. Finally, since the high-latitude freshwater plays a crucial role in establishing and regulating global thermohaline circulation, the long-term variations of the freshwater content discussed here should be considered when assessing climate change and variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-07-24
    Description: Myrionecta rubra, a ubiquitous planktonic ciliate, has received much attention due to its wide distribution, occurrence as a red tide organism, and unusual cryptophyte endosymbiont. Although well studied in coastal waters, M. rubra is poorly examined in the open ocean. In the Irminger Basin, North Atlantic, the abundance of M. rubra was 0–5 cells/ml, which is low compared with that found in coastal areas. Distinct patchiness (100 km) was revealed by geostatistical analysis. Multiple regression indicated there was little relationship between M. rubra abundance and a number of environmental factors, with the exception of temperature and phytoplankton biomass, which influenced abundance in the spring. We also improve on studies that indicate distinct size classes of M. rubra; we statistically recognise four significantly distinct width classes (5–16, 12–23, 18–27, 21–33 μm), which decrease in abundance with increasing size. A multinomial logistic regression revealed the main variable correlated with this size distribution was ambient nitrate concentration. Finally, we propose a hypothesis for the distribution of sizes, involving nutrients, feeding, and dividing of the endosymbiont.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-07-27
    Description: Understanding the influence of growth temperature and carbon dioxide (CO2) on seed quality in terms of seed composition, subsequent seedling emergence and early seedling vigour is important under present and future climates. The objective of this study was to determine the combined effects of elevated temperature and CO2 during seed-filling of parent plants on seed composition, subsequent seedling emergence and seedling vigour of red kidney bean (Phaseolus vulgaris). Plants of cultivar ‘Montcalm’, were grown at daytime maximum/nighttime minimum sinusoidal temperature regimes of 28/18 and 34/24 °C at ambient CO2 (350 μmol mol−1) and at elevated CO2 (700 μmol mol−1) from emergence to maturity. Seed size and seed composition at maturity and subsequent per cent emergence, early seedling vigour (rate of development) and seedling dry matter production were measured. Elevated CO2 did not influence seed composition, emergence, or seedling vigour of seeds produced either at 28/18 or 34/24 °C. Seed produced at 34/24 °C had smaller seed size, decreased glucose concentration, but significantly increased concentrations of sucrose and raffinose compared to 28/18 °C. Elevated growth temperatures during seed production decreased the subsequent per cent emergence and seedling vigour of the seeds and seedling dry matter production of seed produced either at ambient or elevated CO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-09-01
    Description: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is a high spatial resolution analytical method which has been applied to the analysis of silicic tephras. With current instrumentation, around 30 trace elements can be determined from single glass shards as small as ∼ 40 µm, separated from tephra deposits. As a result of element fractionation during the ablation process using a 266 nm laser, a relatively complex calibration strategy is required. Nonetheless, such a strategy gives analyses which are accurate (typically within ±5%) and have an analytical precision which varies from ∼ ±2% at 100 ppm, to ∼ ±15% at 1 ppm. Detection limits for elements used in correlation and discrimination studies are well below 1 ppm. Examples of the application of trace element analysis by LA-ICP-MS in tephra studies are presented from the USA, New Zealand and the Mediterranean. Improvements in instrumental sensitivity in recent years have the potential to lower detection limits and improve analytical precision, thus allowing the analysis of smaller glass shards from more distal tephras. Laser systems operating at shorter wavelengths (e.g. 193 nm) are now more widely available, and produce a much more controllable ablation in glasses than 266 nm lasers. Crater sizes of 〈10 µm are easily achieved, and at 193 nm many of the elemental fractionation issues which mar longer wavelengths are overcome. By coupling a short wavelength laser to a modern ICP-MS it should be possible to determine the trace element composition of glass shards as small as 20 µm and, providing sample preparation issues can be overcome, the determination of the more abundant trace elements in glass shards as small as 10 µm is within instrumental capabilities. This will make it possible to chemically fingerprint tephra deposits which are far from their sources, and will greatly extend the range over which geochemical correlation of tephras can be undertaken.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Fish Biology, 75 (5). pp. 960-996.
    Publication Date: 2015-09-14
    Description: Absolute barriers to dispersal are not common in marine systems, and the prevalence of planktonic larvae in marine taxa provides potential for gene flow across large geographic distances. These observations raise the fundamental question in marine evolutionary biology as to whether geographic and oceanographic barriers alone can account for the high levels of species diversity observed in marine environments such as coral reefs, or whether marine speciation also operates in the presence of gene flow between diverging populations. In this respect, the ecological hypothesis of speciation, in which reproductive isolation results from divergent or disruptive natural selection, is of particular interest because it may operate in the presence of gene flow. Although important insights into the process of ecological speciation in aquatic environments have been provided by the study of freshwater fishes, comparatively little is known about the possibility of ecological speciation in marine teleosts. In this study, the evidence consistent with different aspects of the ecological hypothesis of speciation is evaluated in marine fishes. Molecular approaches have played a critical role in the development of speciation hypotheses in marine fishes, with a role of ecology suggested by the occurrence of sister clades separated by ecological factors, rapid cladogenesis or the persistence of genetically and ecologically differentiated species in the presence of gene flow. Yet, ecological speciation research in marine fishes is still largely at an exploratory stage. Cases where the major ingredients of ecological speciation, namely a source of natural divergent or disruptive selection, a mechanism of reproductive isolation and a link between the two have been explicitly documented are few. Even in these cases, specific predictions of the ecological hypothesis of speciation remain largely untested. Recent developments in the study of freshwater fishes illustrate the potential for molecular approaches to address specific questions related to the ecological hypothesis of speciation such as the nature of the genes underlying key ecological traits, the magnitude of their effect on phenotype and the mechanisms underlying their differential expression in different ecological contexts. The potential provided by molecular studies is fully realized when they are complemented with alternative (e.g. ecological, theoretical) approaches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-04-28
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-04-11
    Description: Data from an array of six moorings deployed east of Abaco, Bahamas, along 26.5°N during March 2004–May 2005 are analyzed. These moorings formed the western boundary array of a transbasin observing system designed to continuously monitor the meridional overturning circulation and meridional heat flux in the subtropical North Atlantic, under the framework of the joint U.K.–U.S. Rapid Climate Change (RAPID)–Meridional Overturning Circulation (MOC) Program. Important features of the western boundary circulation include the southward-flowing deep western boundary current (DWBC) below 1000 m and the northward-flowing “Antilles” Current in the upper 1000 m. Transports in the western boundary layer are estimated from direct current meter observations and from dynamic height moorings that measure the spatially integrated geostrophic flow between moorings. The results of these methods are combined to estimate the time-varying transports in the upper and deep ocean over the width of the western boundary layer to a distance of 500 km offshore of the Bahamas escarpment. The net southward transport of the DWBC across this region, inclusive of northward deep recirculation, is −26.5 Sv (Sv ≡ 106 m3 s−1), which is divided nearly equally between upper (−13.9 Sv) and lower (−12.6 Sv) North Atlantic Deep Water (NADW). In the top 1000 m, 6.0 Sv flows northward in a thermocline-intensified jet near the western boundary. These transports are found to agree well with historical current meter data in the region collected between 1986 and 1997. Variability in both shallow and deep components of the circulation is large, with transports above 1000 m varying between −15 and +25 Sv and deep transports varying between −60 and +3 Sv. Much of this transport variability, associated with barotropic fluctuations, occurs on relatively short time scales of several days to a few weeks. Upon removal of the barotropic fluctuations, slower baroclinic transport variations are revealed, including a temporary stoppage of the lower NADW transport in the DWBC during November 2004.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Geofluids, 6 . pp. 241-250. Date online first: 2006
    Publication Date: 2017-08-02
    Description: Groundwater seeps are known to occur in Eckernförde Bay, Baltic Sea. Their discharge rate and dispersion were investigated with a new schlieren technique application, which is able to visualize heterogeneous water parcels with density anomalies down to Drt ¼ 0.049 on the scale of millimeters. With the use of an inverted funnel, discharged fluids can be captured and the outflow velocity can be determined. Overall, 46 stations could be categorized by three different cases: active vent sites, seep-influenced sites, and non-seep sites. New seep locations were discovered, even at shallow near-shore sites, lacking prominent sediment depression, which indicate submarine springs. The detection of numerous seeps was possible and the groundwater-influenced area was defined to be approximately 6.3 km2. Flow rates of between 0.05 and 0.71 l m)2 min)1 were measured. A single focused fluid plume, which was not disturbed by the funnel was recorded and revealed a flux of 59.6 ± 20 ml cm)2 min)1 and it was calculated that this single focused plume would be strong enough to produce a flow rate through the funnel of 1.32 ± 0.44 l m)2 min)1. The effect of different seep-meter funnel sizes is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 37 . pp. 1282-1296.
    Publication Date: 2020-08-04
    Description: A generalization of the transformed Eulerian and temporal residual means is presented. The new formulation uses rotational fluxes of buoyancy, and the full hierarchy of statistical density moments, to reduce the cross-isopycnal eddy flux to the physically relevant component associated with the averaged water mass properties. The resulting eddy-induced diapycnal diffusivity vanishes for adiabatic, statistically steady flow, and is related to either the growth or decay of mesoscale density variance and/or the covariance between small-scale forcing (mixing) and density fluctuations, such as that associated with the irreversible removal of density variance by dissipation. The relationship between the new formulation and previous approaches is described and is illustrated using results from an eddying channel model. The formalism is quite general and applies to all kinds of averaging and to any tracer (not just density).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 36 (1). pp. 64-86.
    Publication Date: 2018-04-11
    Description: Chlorofluorocarbon (component CFC-11) and hydrographic data from 1997, 1999, and 2001 are presented to track the large-scale spreading of the Upper Labrador Sea Water (ULSW) in the subpolar gyre of the North Atlantic Ocean. ULSW is CFC rich and comparatively low in salinity. It is located on top of the denser “classical” Labrador Sea Water (LSW), defined in the density range σΘ = 27.68–27.74 kg m−3. It follows spreading pathways similar to LSW and has entered the eastern North Atlantic. Despite data gaps, the CFC-11 inventories of ULSW in the subpolar North Atlantic (40°–65°N) could be estimated within 11%. The inventory increased from 6.0 ± 0.6 million moles in 1997 to 8.1 ± 0.6 million moles in 1999 and to 9.5 ± 0.6 million moles in 2001. CFC-11 inventory estimates were used to determine ULSW formation rates for different periods. For 1970–97, the mean formation rate resulted in 3.2–3.3 Sv (Sv ≡ 106 m3 s−1). To obtain this estimate, 5.0 million moles of CFC-11 located in 1997 in the ULSW in the subtropical/tropical Atlantic were added to the inventory of the subpolar North Atlantic. An estimate of the mean combined ULSW/LSW formation rate for the same period gave 7.6–8.9 Sv. For the years 1998–99, the ULSW formation rate solely based on the subpolar North Atlantic CFC-11 inventories yielded 6.9–9.2 Sv. At this time, the lack of classical LSW formation was almost compensated for by the strongly pronounced ULSW formation. Indications are presented that the convection area needed in 1998–99 to form this amount of ULSW exceeded the available area in the Labrador Sea. The Irminger Sea might be considered as an additional region favoring ULSW formation. In 2000–01, ULSW formation weakened to 3.3–4.7 Sv. Time series of layer thickness based on historical data indicate that there exists considerable variability of ULSW and classical LSW formation on decadal scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 22 (9). pp. 2276-2301.
    Publication Date: 2019-09-23
    Description: Extratropical cyclones and how they may change in a warmer climate have been investigated in detail with a high-resolution version of the ECHAM5 global climate model. A spectral resolution of T213 (63 km) is used for two 32-yr periods at the end of the twentieth and twenty-first centuries and integrated for the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Extremes of pressure, vorticity, wind, and precipitation associated with the cyclones are investigated and compared with a lower-resolution simulation.Comparison with observations of extreme wind speeds indicates that the model reproduces realistic values. This study also investigates the ability of the model to simulate extratropical cyclones by computing composites of intense storms and contrasting them with the same composites from the 40-yr ECMWF Re-Analysis (ERA-40). Composites of the time evolution of intense cyclones are reproduced with great fidelity; in particular the evolution of central surface pressure is almost exactly replicated, but vorticity, maximum wind speed, and precipitation are higher in the model. Spatial composites also show that the distributions of pressure, winds, and precipitation at different stages of the cyclone life cycle compare well with those from ERA-40, as does the vertical structure. For the twenty-first century, changes in the distribution of storms are very similar to those of previous study. There is a small reduction in the number of cyclones but no significant changes in the extremes of wind and vorticity in both hemispheres. There are larger regional changes in agreement with previous studies. The largest changes are in the total precipitation, where a significant increase is seen. Cumulative precipitation along the tracks of the cyclones increases by some 11% per track, or about twice the increase in global precipitation, while the extreme precipitation is close to the globally averaged increase in column water vapor (some 27%). Regionally, changes in extreme precipitation are even higher because of changes in the storm tracks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-08-04
    Description: Using the same approach as in Part I, here it is shown how sampling problems in voluntary observing ship (VOS) data affect conclusions about interannual variations and secular changes of surface heat fluxes. The largest uncertainties in linear trend estimates are found in relatively poorly sampled regions like the high-latitude North Atlantic and North Pacific as well as the Southern Ocean, where trends can locally show opposite signs when computed from the regularly sampled and undersampled data. Spatial patterns of shorter-period interannual variability, quantified through the EOF analysis, also show remarkable differences between the regularly sampled and undersampled flux datasets in the Labrador Sea and northwest Pacific. In particular, it is shown that in the Labrador Sea region, in contrast to regularly sampled NCEP–NCAR reanalysis fluxes, VOS-like sampled NCEP–NCAR reanalysis fluxes neither show significant interannual variability nor significant trends. These regions, although quite localized covering small parts of the globe, play a crucial role for the coupled atmosphere–ocean system. In the Labrador Sea, for instance, interannual and decadal-scale changes of the surface net heat fluxes are known to affect oceanic convection and, thus, the meridional overturning circulation of the Atlantic Ocean. From a discussion of current atmospheric data assimilation systems it is argued that in poorly sampled regions reanalysis products are superior to VOS-based products for studying interannual and interdecadal variations of atmosphere–ocean interaction. In well-sampled regions, on the other hand, conclusions about surface heat flux variations are relatively insensitive to the choice of the flux products used (VOS versus reanalysis data). The results are confirmed for two different datasets, that is, ECMWF 40-yr Re-Analysis (ERA-40) data and seasonal integrations with a recent version of the ECMWF model in which no actual data were assimilated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-08-23
    Description: Perfect model ensemble experiments are performed with five coupled atmosphere-ocean models to investigate the potential for initial-value climate forecasts on interannual to decadal time scales. Experiments are started from similar initial states and common diagnostics of predictability are used. We find that; variations in the ocean Meridional Overturning Circulation are potentially predictable on interannual to decadal time scales, a more consistent picture of the surface temperature impact of decadal variations in the MOC is now apparent, and variations of surface air temperatures in the N. Atlantic are also potentially predictable on interannual to decadal time scales, albeit with potential skill levels which are less than those seen for MOC variations. This inter-comparison represents a step forward in assessing the robustness of model estimates of potential skill and is a pre-requisite for the development of any operational forecasting system
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  In: Biofouling. , ed. by Dürr, S. and Thomason, J. Wiley-Blackwell, Weinheim, pp. 100-108. ISBN 978-1-4051-6926-4
    Publication Date: 2012-02-23
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 18 (7). pp. 982-995.
    Publication Date: 2020-08-04
    Description: The dependence of the air–sea interactions over the North Atlantic on the ocean dynamics is explored by analyzing multicentury integrations with two different coupled ocean–atmosphere models. One is a coupled general circulation model (CGCM), in which both the atmospheric and the oceanic components are represented by general circulation models (GCMs). The second coupled model employs the same atmospheric GCM, but the oceanic GCM is replaced by a fixed-depth mixed layer model, so that variations of the ocean dynamics are excluded. The coupled model including active ocean dynamics simulates strong multidecadal variability in the sea surface temperature (SST) of the North Atlantic, with a monopolar spatial structure. In contrast, the coupled model that employs an oceanic mixed layer model and thus does not carry active ocean dynamics simulates a tripolar SST anomaly pattern at decadal time scales. The tripolar SST anomaly pattern is characterized by strong horizontal gradients and is by definition the result of the action of surface heat flux anomalies on the oceanic mixed layer. The differences in the spatial structures of the dominant decadal SST anomaly patterns yield rather different atmospheric responses. While the response to the monopolar SST anomaly pattern is shallow and thermal, the response to the tripolar SST anomaly pattern involves changes in the transient eddy statistics. The latter can be explained by the strong horizontal SST gradients that affect the surface baroclinicity, which in turn affects the growth rate of the transient eddies. The differences in the atmospheric response characteristics yield completely different response patterns. In the coupled run with active ocean dynamics, the sea level pressure (SLP) anomalies exhibit a rather homogeneous pattern that resembles somewhat the East Atlantic Pattern (EAP), while a dipolar (North Atlantic Oscillation) NAO-like SLP anomaly pattern is simulated in the coupled run without active ocean dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2017-08-23
    Description: A tangent linear adjoint for a low-resolution dynamical model of the atmosphere is used to derive the optimal forcing perturbations for all state variables such that after a specified lead time the model response has a given projection, in terms of an energy norm, on the pattern associated with the 51-yr trend in the Northern Hemisphere winter tropospheric circulation, 1948/49–1998/99. A feature of the derived forcing sensitivity is a Rossby wave–like feature that emanates from the western tropical Pacific and is associated with the deepening of the Aleutian low, whereas an annular pattern in the forcing sensitivity in the uppermost model level is shown to be associated with the pattern of the trend over the Euro-Atlantic/Asian sectors, including the upward trend in the North Atlantic Oscillation index. The authors argue that the Rossby wave–type feature is consistent with studies that have argued a role for the upward trend in tropical sea surface temperature during the 51-yr period. On the other hand, the authors interpret the annular pattern in the forcing sensitivity as being consistent with studies that have argued that the trend over the Euro-Atlantic sector was associated with influences from the stratosphere. In particular, a nonlinear model driven by the optimal forcing perturbation applied only to the top model level is successful at reproducing the trend pattern with the correct amplitude in the Euro-Atlantic sector, but implies a trend over the North Pacific toward a weaker Aleutian low, contrary to what was observed but similar to the spatial pattern associated with the northern annular mode. These results show that the adjoint approach can shed light on previous apparently different interpretations of the trend. The study also presents a successful application of a tangent linear adjoint model to a climate problem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Weather and Forecasting, 22 (3). pp. 480-500.
    Publication Date: 2019-09-23
    Description: On 19 October 2000, Hurricane Michael merged with an approaching baroclinic trough over the western North Atlantic Ocean south of Nova Scotia. As the hurricane moved over cooler sea surface temperatures (SSTs; less than 25°C), it intensified to category-2 intensity on the Saffir–Simpson hurricane scale [maximum sustained wind speeds of 44 m s−1 (85 kt)] while tapping energy from the baroclinic environment. The large “hybrid” storm made landfall on the south coast of Newfoundland with maximum sustained winds of 39 m s−1 (75 kt) causing moderate damage to coastal communities east of landfall. Hurricane Michael presented significant challenges to weather forecasters. The fundamental issue was determining which of two cyclones (a newly formed baroclinic low south of Nova Scotia or the hurricane) would become the dominant circulation center during the early stages of the extratropical transition (ET) process. Second, it was difficult to predict the intensity of the storm at landfall owing to competing factors: 1) decreasing SSTs conducive to weakening and 2) the approaching negatively tilted upper-level trough, favoring intensification. Numerical hindcast simulations using the limited-area Mesoscale Compressible Community model with synthetic vortex insertion (cyclone bogus) prior to the ET of Hurricane Michael led to a more realistic evolution of wind and pressure compared to running the model without vortex insertion. Specifically, the mesoscale model correctly simulates the hurricane as the dominant circulation center early in the transition process, versus the baroclinic low to its north, which was the favored development in the runs not employing vortex insertion. A suite of experiments is conducted to establish the sensitivity of the ET to various initial conditions, lateral driving fields, domain sizes, and model parameters. The resulting storm tracks and intensities fall within the range of the operational guidance, lending support to the possibility of improving numerical forecasts using synthetic vortex insertion prior to ET in such a model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2017-08-23
    Description: Recent observations show dramatic changes of the Arctic atmosphere–ice–ocean system. Here the authors demonstrate, through the analysis of a vast collection of previously unsynthesized observational data, that over the twentieth century the central Arctic Ocean became increasingly saltier with a rate of freshwater loss of 239 ± 270 km3 decade−1. In contrast, long-term (1920–2003) freshwater content (FWC) trends over the Siberian shelf show a general freshening tendency with a rate of 29 ± 50 km3 decade−1. These FWC trends are modulated by strong multidecadal variability with sustained and widespread patterns. Associated with this variability, the FWC record shows two periods in the 1920s–30s and in recent decades when the central Arctic Ocean was saltier, and two periods in the earlier century and in the 1940s–70s when it was fresher. The current analysis of potential causes for the recent central Arctic Ocean salinification suggests that the FWC anomalies generated on Arctic shelves (including anomalies resulting from river discharge inputs) and those caused by net atmospheric precipitation were too small to trigger long-term FWC variations in the central Arctic Ocean; to the contrary, they tend to moderate the observed long-term central-basin FWC changes. Variability of the intermediate Atlantic Water did not have apparent impact on changes of the upper–Arctic Ocean water masses. The authors’ estimates suggest that ice production and sustained draining of freshwater from the Arctic Ocean in response to winds are the key contributors to the salinification of the upper Arctic Ocean over recent decades. Strength of the export of Arctic ice and water controls the supply of Arctic freshwater to subpolar basins while the intensity of the Arctic Ocean FWC anomalies is of less importance. Observational data demonstrate striking coherent long-term variations of the key Arctic climate parameters and strong coupling of long-term changes in the Arctic–North Atlantic climate system. Finally, since the high-latitude freshwater plays a crucial role in establishing and regulating global thermohaline circulation, the long-term variations of the freshwater content discussed here should be considered when assessing climate change and variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2017-01-31
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-06-29
    Description: Quantitative X-ray diffraction analysis of the 〈2mm sediment fraction was carried out on 1257 samples (from the seafloor and 16 cores) from the Iceland shelf west of 188 W. All but one core (B997-347PC) were from transects along troughs on theNW to N-central shelf, an area that in modern and historic times has been affected by drift ice. The paper focuses on the non-clay mineralogy of the sediments (excluding calcite and volcanic glass). Quartz and potassium feldspars occupy similar positions in an R-mode principal component analysis, and oligoclase feldspar tracks quartz; these minerals are used as a proxy for ice-rafted detritus (IRD). Accordingly, the sum of these largely foreign minerals (Q&K) (to Icelandic bedrock) is used as a proxy for drift ice. A stacked, equi-spaced 100 a record is developed which shows both low-frequency trends and higher-frequency events. The detrended stacked record compares well with the flux of quartz (mg cm-2 a-1) at MD99-2269 off N Iceland. The multi-taper method indicated that there are three significant frequencies at the 95% confidence level with periods of ca. 2500, 445 and 304 a. Regime shift analysis pinpoints intervals when there was a statistically significant shift in the average Q&K weight %, and identifies four IRDrich events separated by intervals with lower inputs. There is some association between peaks of IRD input, less dense surface waters (from d18O data on planktonic foraminifera) and intervals of moraine building.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-09-07
    Description: The interaction of clouds with solar and terrestrial radiation is one of the most important topics of climate research. In recent years it has been recognized that only a full three-dimensional (3D) treatment of this interaction can provide answers to many climate and remote sensing problems, leading to the worldwide development of numerous 3D radiative transfer (RT) codes. The international Intercomparison of 3D Radiation Codes (I3RC), described in this paper, sprung from the natural need to compare the performance of these 3D RT codes used in a variety of current scientific work in the atmospheric sciences. I3RC supports intercomparison and development of both exact and approximate 3D methods in its effort to 1) understand and document the errors/limits of 3D algorithms and their sources; 2) provide “baseline” cases for future code development for 3D radiation; 3) promote sharing and production of 3D radiative tools; 4) derive guidelines for 3D radiative tool selection; and 5) improve atmospheric science education in 3D RT. Results from the two completed phases of I3RC have been presented in two workshops and are expected to guide improvements in both remote sensing and radiative energy budget calculations in cloudy atmospheres.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 19 (23). pp. 5971-5987.
    Publication Date: 2020-08-04
    Description: This review paper discusses the physical basis and the potential for decadal climate predictability over the Atlantic and its adjacent land areas. Many observational and modeling studies describe pronounced decadal and multidecadal variability in the Atlantic Ocean. However, it still needs to be quantified to which extent the variations in the ocean drive variations in the atmosphere and over land. In particular, although a clear impact of the Tropics on the midlatitudes has been demonstrated, it is unclear if and how the extratropical atmosphere responds to midlatitudinal sea surface temperature anomalies. Although the mechanisms behind the decadal to multidecadal variability in the Atlantic sector are still controversial, there is some consensus that some of the longer-term multidecadal variability is driven by variations in the thermohaline circulation. The variations in the North Atlantic thermohaline circulation appear to be predictable one to two decades ahead, as shown by a number of perfect model predictability experiments. The next few decades will be dominated by these multidecadal variations, although the effects of anthropogenic climate change are likely to introduce trends. Some impact of the variations of the thermohaline circulation on the atmosphere has been demonstrated in some studies so that useful decadal predictions with economic benefit may be possible.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 18 . pp. 2842-2859.
    Publication Date: 2017-08-23
    Description: Changes of the North Atlantic thermohaline circulation (THC) excite wave patterns that readjust the thermocline globally. This paper examines the impact of a freshwater-induced THC shutdown on the depth of the Pacific thermocline and its subsequent modification of the El Niño–Southern Oscillation (ENSO) variability using an intermediate-complexity global coupled atmosphere–ocean–sea ice model and an intermediate ENSO model, respectively. It is shown by performing a numerical eigenanalysis and transient simulations that a THC shutdown in the North Atlantic goes along with reduced ENSO variability because of a deepening of the zonal mean tropical Pacific thermocline. A transient simulation also exhibits abrupt changes of ENSO behavior, depending on the rate of THC change. The global oceanic wave adjustment mechanism is shown to play a key role also on multidecadal time scales. Simulated multidecadal global sea surface temperature (SST) patterns show a large degree of similarity with previous climate reconstructions, suggesting that the observed pan-oceanic variability on these time scales is brought about by oceanic waves and by atmospheric teleconnections.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-08-04
    Description: A new, non-flux-corrected, global climate model is introduced, the Kiel Climate Model (KCM), which will be used to study internal climate variability from interannual to millennial time scales and climate predictability of the first and second kind. The version described here is a coarse-resolution version that will be employed in extended-range integrations of several millennia. KCM's performance in the tropical Pacific with respect to mean state, annual cycle, and El Nino-Southern Oscillation (ENSO) is described. Additionally, the tropical Pacific response to global warming is studied.Overall, climate drift in a multicentury control integration is small. However, KCM exhibits an equatorial cold bias at the surface of the order 1 degrees C, while strong warm biases of several degrees are simulated in the eastern tropical Pacific on both sides off the equator, with maxima near the coasts. The annual and semiannual cycles are realistically simulated in the eastern and western equatorial Pacific, respectively. ENSO performance compares favorably to observations with respect to both amplitude and period. An ensemble of eight greenhouse warming simulations was performed, in which the CO2 concentration was increased by 1% yr(-1) until doubling was reached, and stabilized thereafter. Warming of equatorial Pacific sea surface temperature (SST) is, to first order, zonally symmetric and leads to a sharpening of the thermocline. ENSO variability increases because of global warming: during the 30-yr period after CO2 doubling, the ensemble mean standard deviation of Nino-3 SST anomalies is increased by 26% relative to the control, and power in the ENSO band is almost doubled. The increased variability is due to both a strengthened (22%) thermocline feedback and an enhanced (52%) atmospheric sensitivity to SST; both are associated with changes in the basic state. Although variability increases in the mean, there is a large spread among ensemble members and hence a finite probability that in the "model world" no change in ENSO would be observed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 20 (10). pp. 2058-2075.
    Publication Date: 2017-08-23
    Description: In this paper, a version of the European Centre for Medium-Range Weather Forecasts (ECMWF) operational model is used to (i) diagnose the diabatic heating associated with the winter North Atlantic Oscillation (NAO) and (ii) assess the role of this heating in the dynamics of the NAO in the model. Over the North Atlantic sector, the NAO-related diabatic heating is dominated above the planetary boundary layer by the latent heat release associated with precipitation, and within the boundary layer by vertical diffusion associated with sensible heat flux from the ocean. An association between La Niña–El Niño–type conditions in the tropical Pacific and the positive/negative NAO is found in model runs using initial conditions and sea surface temperature (SST) lower boundary conditions from the period 1982–2001, but not in a companion set of model runs for the period 1962–81. Model experiments are then described in which the NAO-related diabatic heating diagnosed from the 1982–2001 control run is applied as a constant forcing in the model temperature equation using both 1982–2001 and 1962–81 model setups. To assess the local feedback from the diabatic heating, the specified forcing is first restricted to the North Atlantic sector alone. In this case, the model response (in an ensemble mean sense) is suggestive of a weak negative feedback, but exhibits more baroclinic structure and has its centers of action shifted compared to those of the NAO. On the other hand, forcing with only the tropical Pacific part of the diabatic heating leads to a robust model response in both the 1982–2001 and 1962–81 model setups. The model response projects on to the NAO with the same sign as that used to diagnose the forcing, arguing that the link between the tropical Pacific and the NAO is real in the 1982–2001 control run. The missing link in the corresponding run for 1962–81 is a result of a change in the tropical forcing between the two periods, and not the extratropical flow regime.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2017-09-14
    Description: An experimental study was performed to disentangle parental and environmental effects on the growth of Atlantic cod Gadus morhua larvae and juveniles. Eggs were collected during the spawning season from spawning pairs (families) kept separately in specially designed spawning compartments. Newly hatched larvae were released simultaneously into two mesocosms of 2500 and 4400 m3. Larval growth was monitored by sampling over a 10 week period, after which juveniles were transferred to on-growing tanks, where they were tagged and kept for up to 2 years. Maternal origin was determined by individual microsatellite genotyping of the larvae (n = 3949, 24 families) and juveniles (n = 600). The results showed significant positive correlations between egg size and larval size during the whole mesocosm period. Correlations, however, weakened with time and were no longer significant at the first tank-rearing sampling at an age of 9 months. Significant family-specific differences in growth were observed. The coefficient of variation (c.v.) was calculated in order to examine variation in standard length of larvae during the mesocosm period. Inter-family c.v. was on average 69% of intra-family c.v. Differences in zooplankton densities between the two mesocosms were reflected in larval growth, condition factor and c.v. Low food abundance appeared to reduce c.v. and favour growth of larvae that showed relatively slow growth at high food abundance. It is suggested that genetically determined variation in growth potential is maintained by environmental variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 37 . pp. 1445-1454.
    Publication Date: 2020-08-04
    Description: The depth of winter convection in the central Labrador Sea is strongly influenced by the prevailing stratification in late summer. For this late summer stratification salinity is as important as temperature, and in the upper water layers salinity even dominates. To analyze the source of the spring and summer freshening in the central region, seasonal freshwater cycles have been constructed for the interior Labrador Sea, the West Greenland Current, and the Labrador Current. It is shown that none of the local freshwater sources is responsible for the spring–summer freshening in the interior, which appears to occur in two separate events in April to May and July to September. Comparing the timing and volume estimates of the seasonal freshwater cycles of the boundary currents with the central Labrador Sea helps in understanding the origin of the interior freshwater signals. The first smaller pulse cannot be attributed clearly to either of the boundary currents. The second one is about three times stronger and supplies 60% of the seasonal summer freshwater. Transport estimates and calculated mixing properties provide evidence that its source is the West Greenland Current. The finding implies a connection also on interannual time scales between Labrador Sea surface salinity and freshwater sources in the West Greenland Current and farther upstream in the East Greenland Current. The freshwater input from the West Greenland Current thus also is the likely pathway for the known modulation of Labrador Sea Water mass formation by freshwater export from the Arctic (via the East Greenland Current), which implies some predictability on longer time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 20 (14). pp. 3452-3469.
    Publication Date: 2020-08-04
    Description: Multichannel singular spectrum analysis (MSSA) of surface zonal wind, sea surface temperature (SST), 20° isotherm depth, and surface zonal current observations (between 1990 and 2004) identifies three coupled ocean–atmosphere modes of variability in the tropical Pacific: the El Niño–Southern Oscillation (ENSO), the annual cycle, and a mode with a 14–18-month period, which is referred to as sub-ENSO in this study. The sub-ENSO mode accounts for the near 18-month (near annual) variability prior to (following) the 1997/98 El Niño event. It was strongest during this El Niño event, with SST anomalies exceeding 1°C. Sub-ENSO peak SST anomalies are ENSO-like in structure and are associated with eastward propagating heat content variations. However, the SST anomalies are preceded by and in near quadrature with relatively strong remotely forced westward propagating zonal current variations, suggesting the sub-ENSO mode arises from the zonal-advective feedback. The sub-ENSO mode is found to exist also in an intermediate complexity model (ICM) of the tropical Pacific. A heat budget analysis of the model’s sub-ENSO mode shows it indeed arises from the zonal-advective feedback. In the model, both ENSO and sub-ENSO modes coexist, but there is a weak nonlinear interaction between them. Experiments also show that the observed changes in sub-ENSO’s characteristics may be explained by changes in the relative importance of zonal and vertical advection SST tendencies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 35 . pp. 729-746.
    Publication Date: 2018-04-11
    Description: The interannual heat content variability in the tropical south Indian Ocean (SIO) and its relationship with El Niño–Southern Oscillation (ENSO) is studied. The baroclinic ocean response to stochastic wind stress predicted by a simple analytical model is compared with two integrations of the ECHO-G coupled general circulation model. In one integration, ocean–atmosphere interactions are suppressed in the tropical Pacific Ocean, so that this integration does not simulate ENSO. In the other integration, interactions are allowed everywhere and ENSO is simulated. The results show that basinwide variability in the SIO heat content can be produced by two mechanisms: 1) oscillatory forcing by ENSO-related wind stress and 2) temporally stochastic and spatially coherent wind stress forcing. Previous studies have shown that transmission of energy from the tropical Pacific to the southern Indian Ocean occurs through coastal Kelvin waves along the western coast of Australia. The results in this paper confirm the occurrence of such transmission. In the ECHO-G simulations, this transmission occurs both at the annual time scale and at interannual time scales. Generation of offshore Rossby waves by these coastal Kelvin waves at interannual time scales—and, in particular, at the ENSO time scale—was found.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 39 (12). pp. 3091-3110.
    Publication Date: 2019-09-23
    Description: The temporal evolution of the strength of the Atlantic Meridional Overturning Circulation (AMOC) in the subtropical North Atlantic is affected by both remotely forced, basin-scale meridionally coherent, climate-relevant transport anomalies, such as changes in high-latitude deep water formation rates, and locally forced transport anomalies, such as eddies or Rossby waves, possibly associated with small meridional coherence scales, which can be considered as noise. The focus of this paper is on the extent to which local eddies and Rossby waves when impinging on the western boundary of the Atlantic affect the temporal variability of the AMOC at 26.5 degrees N. Continuous estimates of the AMOC at this latitude have been made since April 2004 by combining the Florida Current, Ekman, and midocean transports with the latter obtained from continuous density measurements between the coasts of the Bahamas and Morocco, representing, respectively, the western and eastern boundaries of the Atlantic at this latitude.Within 100 km of the western boundary there is a threefold decrease in sea surface height variability toward the boundary, observed in both dynamic heights from in situ density measurements and altimetric heights. As a consequence, the basinwide zonally integrated upper midocean transport shallower than 1000 m-as observed continuously between April 2004 and October 2006-varies by only 3.0 Sv (1 Sv = 10(6) m(3) s(-1)) RMS. Instead, upper midocean transports integrated from western boundary stations 16, 40, and 500 km offshore to the eastern boundary vary by 3.6, 6.0, and 10.7 Sv RMS, respectively. The reduction in eddy energy toward the western boundary is reproduced in a nonlinear reduced-gravity model suggesting that boundary-trapped waves may account for the observed decline in variability in the coastal zone because they provide a mechanism for the fast equatorward export of transport anomalies associated with eddies impinging on the western boundary. An analytical model of linear Rossby waves suggests a simple scaling for the reduction in thermocline thickness variability toward the boundary. Physically, the reduction in amplitude is understood as along-boundary pressure gradients accelerating the fluid and rapidly propagating pressure anomalies along the boundary. The results suggest that the local eddy field does not dominate upper midocean transport or AMOC variability at 26.5 degrees N on interannual to decadal time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 18 . pp. 2826-2846.
    Publication Date: 2020-08-04
    Description: A coupled global atmosphere–ocean model of intermediate complexity is used to study the influence of glacial boundary conditions on the atmospheric circulation during the Last Glacial Maximum in a systematical manner. A web of atmospheric interactions is disentangled, which involves changes in the meridional temperature gradient and an associated modulation of the atmospheric baroclinicity. This in turn drives anomalous transient eddy momentum fluxes that feed back onto the zonal mean circulation. Moreover, the modified transient activity (weakened in the North Pacific and strengthened in the North Atlantic) leads to a meridional reorganization of the atmospheric heat transport, thereby feeding back onto the meridional temperature structure. Furthermore, positive barotropic conversion and baroclinic production rates over the Laurentide ice sheets and the far eastern North Pacific have the tendency to decelerate the westerlies, thereby feeding back to the stationary wave changes triggered by orographic forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 22 . pp. 302-308.
    Publication Date: 2020-08-04
    Description: Two state-of-the-art profiling floats were equipped with novel optode-based oceanographic oxygen sensors. Both floats were simultaneously deployed in the central Labrador Sea gyre on 7 September 2003. They drift at a depth of 800 db and perform weekly profiles of temperature, salinity, and oxygen in the upper 2000 m of the water column. The initial results from the first 6 months of operation are presented. Data are compared with a small hydrographic oxygen survey of the deployment site. They are further examined for measurement quality, including precision, accuracy, and drift aspects. The first 28 profiles obtained are of high quality and show no detectable sensor drift. A method of long-term drift control is described and a few suggestions for the operation protocol are provided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 88 . pp. 1383-1394.
    Publication Date: 2017-05-11
    Description: A coordinated set of global coupled climate model [atmosphere–ocean general circulation model (AOGCM)] experiments for twentieth- and twenty-first-century climate, as well as several climate change commitment and other experiments, was run by 16 modeling groups from 11 countries with 23 models for assessment in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). Since the assessment was completed, output from another model has been added to the dataset, so the participation is now 17 groups from 12 countries with 24 models. This effort, as well as the subsequent analysis phase, was organized by the World Climate Research Programme (WCRP) Climate Variability and Predictability (CLIVAR) Working Group on Coupled Models (WGCM) Climate Simulation Panel, and constitutes the third phase of the Coupled Model Intercomparison Project (CMIP3). The dataset is called the WCRP CMIP3 multimodel dataset, and represents the largest and most comprehensive international global coupled climate model experiment and multimodel analysis effort ever attempted. As of March 2007, the Program for Climate Model Diagnostics and Intercomparison (PCMDI) has collected, archived, and served roughly 32 TB of model data. With oversight from the panel, the multimodel data were made openly available from PCMDI for analysis and academic applications. Over 171 TB of data had been downloaded among the more than 1000 registered users to date. Over 200 journal articles, based in part on the dataset, have been published so far. Though initially aimed at the IPCC AR4, this unique and valuable resource will continue to be maintained for at least the next several years. Never before has such an extensive set of climate model simulations been made available to the international climate science community for study. The ready access to the multimodel dataset opens up these types of model analyses to researchers, including students, who previously could not obtain state-of-the-art climate model output, and thus represents a new era in climate change research. As a direct consequence, these ongoing studies are increasing the body of knowledge regarding our understanding of how the climate system currently works, and how it may change in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 18 . pp. 5382-5389.
    Publication Date: 2017-08-23
    Description: The dominant pattern of atmospheric variability in the North Atlantic sector is the North Atlantic Oscillation (NAO). Since the 1970s the NAO has been well characterized by a trend toward its positive phase. Recent atmospheric general circulation model studies have linked this trend to a progressive warming of the Indian Ocean. Unfortunately, a clear mechanism responsible for the change of the NAO could not be given. This study provides further details of the NAO response to Indian Ocean sea surface temperature (SST) anomalies. This is done by conducting experiments with a coupled ocean–atmosphere general circulation model (OAGCM). The authors develop a hypothesis of how the Indian Ocean impacts the NAO.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  International Journal of Climatology, 29 (12). pp. 1731-1744.
    Publication Date: 2020-03-19
    Description: The annual cycle of extreme 1-day precipitation events across the UK is investigated by developing a statistical model and fitting it to data from 689 rain gauges. A generalized extreme-value distribution (GEV) is fit to the time series of monthly maxima, across all months of the year simultaneously, by approximating the annual cycles of the location and scale parameters by harmonic functions, while keeping the shape parameter constant throughout the year. We average the shape parameter of neighbouring rain gauges to decrease parameter uncertainties, and also interpolate values of all model parameters to give complete coverage of the UK. The model reveals distinct spatial patterns for the estimated parameters. The annual mean of the location and scale parameter is highly correlated with orography. The annual cycle of the location parameter is strong in the northwest UK (peaking in late autumn or winter) and in East Anglia (where it peaks in late summer), and low in the Midlands. The annual cycle of the scale parameter exhibits a similar pattern with strongest amplitudes in East Anglia. The spatial patterns of the annual cycle phase suggest that they are linked to the dominance of frontal precipitation for generating extreme precipitation in the west and convective precipitation in the southeast of the UK. The shape parameter shows a gradient from positive values in the east to negative values in some areas of the west. We also estimate 10-year and 100-year return levels at each rain gauge, and interpolated across the UK.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 19 (12). pp. 2906-2915.
    Publication Date: 2020-08-04
    Description: The multidecadal climate variability in the North Pacific region is investigated by using a 2000-yr-long integration with a coupled ocean–atmosphere general circulation model. It is shown that the multidecadal variability evolves largely independent of the variations in the tropical Pacific, so that this kind of multidecadal variability may be regarded as internal to the North Pacific. The coupled model results suggest that the multidecadal variability can be explained by the dynamical ocean response to stochastic wind stress forcing. Superimposed on the red background variability, a multidecadal mode with a period of about 40 yr is simulated by the coupled model. This mode can be understood through the concept of spatial resonance between the ocean and the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 86 . pp. 89-93.
    Publication Date: 2016-09-07
    Description: The Coupled Model Intercomparison Project (CMIP) involves study and intercomparison of multimodel simulations of present and future climate. The simulations of the future use idealized forcing in which CO, increase is compounded 1% yr(-1) until it doubles (near year 70) with global coupled models that contain, typically, components representing atmosphere, ocean, sea ice, and land surface. Results from CMIP diagnostic sub-projects were presented at the Second CMIP Workshop held at the Max Planck Institute for Meteorology in Hamburg, Germany, in September 2003. Significant progress in diagnosing and understanding results from global coupled models has been made since the time of the First CMIP Workshop in Melbourne, Australia, in 1998. For example, the issue of flux adjustment is slowly fading as more and more models obtain stable multicentury surface climates without them. El Nino variability, usually about half the observed amplitude in the previous generation of coupled models, is now more accurately simulated in the present generation of global coupled models, though there are still biases in simulating the patterns of maximum variability. Typical resolutions of atmospheric component models contained in coupled models are now usually around 2.5degrees latitude-longitude, with the ocean components often having about twice the atmospheric model resolution, with even higher resolution in the equatorial Tropics. Some new-generation coupled models have atmospheric resolutions of around 1.5degrees latitude - longitude. Modeling groups now routinely run the CMIP control and 1% CO2 simulations in addition to twentieth- and twenty-first-century climate simulations with a variety of forcings e.g., volcanoes, solar variability, anthropogenic sulfate aerosols, ozone, and greenhouse gases, with the anthropogenic forcings for future climate as well. However, persistent systematic errors noted in previous generations of global coupled models are still present in the current generation (e.g., overextensive equatorial Pacific cold tongue, double ITCZ). This points to the next challenge for the global coupled climate modeling community. Planning and commencement of the Intergovernmental Panel on Climate Change Fourth Assessment Report (AR4) has prompted rapid coupled model development, which is leading to an expanded CMIP-like activity to collect and analyze results for the control, 1% CO2, and twentieth-, twenty-first, and twenty-second-century simulations performed for the AR4. The international climate community is encouraged to become involved in this analysis effort.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 62 (7). pp. 2274-2283.
    Publication Date: 2018-04-16
    Description: The solar radiative properties of cirrus clouds depend on ice particle shape, size, and orientation, as well as on the spatial cloud structure. Radiation schemes in atmospheric circulation models rely on estimates of cloud optical thickness only. In the present work, a Monte Carlo radiative transfer code is applied to various cirrus cloud scenarios to obtain the radiative response of uncertainties in the above-mentioned microphysical and spatial cloud properties (except orientation). First, plane-parallel homogeneous (0D) clouds with different crystal shapes (hexagonal columns, irregular polycrystals) and 114 different size distributions have been considered. The resulting variabilities in the solar radiative fluxes are in the order of a few percent for the reflected and about 1% for the diffusely transmitted fluxes. Largest variabilities in the order of 10% to 30% are found for the solar broadband absorptance. However, these variabilities are smaller than the flux differences caused by the choice of ice particle geometries. The influence of cloud inhomogeneities on the radiative fluxes has been examined with the help of time series of Raman lidar extinction coefficient profiles as input for the radiative transfer calculations. Significant differences between results for inhomogeneous and plane-parallel clouds were found. These differences are in the same order of magnitude as those arising from using extremely different crystal shapes for the radiative transfer calculations. From this sensitivity study, the ranking of cirrus cloud properties according to their importance in solar broadband radiative transfer is optical thickness, ice crystal shape, ice particle size, and spatial structure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 35 (4). pp. 489-511.
    Publication Date: 2018-04-11
    Description: The Labrador Sea is one of the few regions of the World Ocean where deep convection takes place. Several moorings across the Labrador continental slope just north of Hamilton Bank show that convection does take place within the Labrador Current. Mixing above the lower Labrador slope is facilitated by the onshore along-isopycnal intrusions of low-potential-vorticity eddies that weaken the stratification, combined with baroclinic instability that sustains slanted mixing while restratifying the water column through horizontal fluxes. Above the shelf break, the Irminger seawater core is displaced onshore while the stratification weakens with the increase in isopycnal slope. The change in stratification is partially due to the onshore shift of the “classical” Labrador Current, baroclinic instability, and possibly slantwise convection.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 20 (2). pp. 279-301.
    Publication Date: 2020-08-04
    Description: Sampling uncertainties in the voluntary observing ship (VOS)-based global ocean–atmosphere flux fields were estimated using the NCEP–NCAR reanalysis and ECMWF 40-yr Re-Analysis (ERA-40) as well as seasonal forecasts without data assimilation. Air–sea fluxes were computed from 6-hourly reanalyzed individual variables using state-of-the-art bulk formulas. Individual variables and computed fluxes were subsampled to simulate VOS-like sampling density. Random simulation of the number of VOS observations and simulation of the number of observations with contemporaneous sampling allowed for estimation of random and total sampling uncertainties respectively. Although reanalyses are dependent on VOS, constituting an important part of data assimilation input, it is assumed that the reanalysis fields adequately reproduce synoptic variability at the sea surface. Sampling errors were quantified by comparison of the regularly sampled (i.e., 6 hourly) and subsampled monthly fields of surface variables and fluxes. In poorly sampled regions random sampling errors amount to 2.5°–3°C for air temperature, 3 m s−1 for the wind speed, 2–2.5 g kg−1 for specific humidity, and 15%–20% of the total cloud cover. The highest random sampling errors in surface fluxes were found for the sensible and latent heat flux and range from 30 to 80 W m−2. Total sampling errors in poorly sampled areas may be higher than random ones by 60%. In poorly sampled subpolar latitudes of the Northern Hemisphere and throughout much of the Southern Ocean the total sampling uncertainty in the net heat flux can amount to 80–100 W m−2. The highest values of the uncertainties associated with the interpolation/extrapolation into unsampled grid boxes are found in subpolar latitudes of both hemispheres for the turbulent fluxes, where they can be comparable with the sampling errors. Simple dependencies of the sampling errors on the number of samples and the magnitude of synoptic variability were derived. Sampling errors estimated from different reanalyses and from seasonal forecasts yield qualitatively comparable spatial patterns, in which the actual values of uncertainties are controlled by the magnitudes of synoptic variability. Finally, estimates of sampling uncertainties are compared with the other errors in air–sea fluxes and the reliability of the estimates obtained is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-09-23
    Description: The tropical oceans have long been recognized as the most important region for large-scale ocean–atmosphere interactions, giving rise to coupled climate variations on several time scales. During the Tropical Ocean Global Atmosphere (TOGA) decade, the focus of much tropical ocean research was on understanding El Niño–related processes and on development of tropical ocean models capable of simulating and predicting El Niño. These studies led to an appreciation of the vital role the ocean plays in providing the memory for predicting El Niño and thus making seasonal climate prediction feasible. With the end of TOGA and the beginning of Climate Variability and Prediction (CLIVAR), the scope of climate variability and predictability studies has expanded from the tropical Pacific and ENSO-centric basis to the global domain. In this paper the progress that has been made in tropical ocean climate studies during the early years of CLIVAR is discussed. The discussion is divided geographically into three tropical ocean basins with an emphasis on the dynamical processes that are most relevant to the coupling between the atmosphere and oceans. For the tropical Pacific, the continuing effort to improve understanding of large- and small-scale dynamics for the purpose of extending the skill of ENSO prediction is assessed. This paper then goes beyond the time and space scales of El Niño and discusses recent research activities on the fundamental issue of the processes maintaining the tropical thermocline. This includes the study of subtropical cells (STCs) and ventilated thermocline processes, which are potentially important to the understanding of the low-frequency modulation of El Niño. For the tropical Atlantic, the dominant oceanic processes that interact with regional atmospheric feedbacks are examined as well as the remote influence from both the Pacific El Niño and extratropical climate fluctuations giving rise to multiple patterns of variability distinguished by season and location. The potential impact of Atlantic thermohaline circulation on tropical Atlantic variability (TAV) is also discussed. For the tropical Indian Ocean, local and remote mechanisms governing low-frequency sea surface temperature variations are examined. After reviewing the recent rapid progress in the understanding of coupled dynamics in the region, this study focuses on the active role of ocean dynamics in a seasonally locked east–west internal mode of variability, known as the Indian Ocean dipole (IOD). Influences of the IOD on climatic conditions in Asia, Australia, East Africa, and Europe are discussed. While the attempt throughout is to give a comprehensive overview of what is known about the role of the tropical oceans in climate, the fact of the matter is that much remains to be understood and explained. The complex nature of the tropical coupled phenomena and the interaction among them argue strongly for coordinated and sustained observations, as well as additional careful modeling investigations in order to further advance the current understanding of the role of tropical oceans in climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 35 . pp. 2031-2053.
    Publication Date: 2020-08-04
    Description: Repeated shipboard observation sections across the boundary flow off northeastern Brazil as well as acoustic Doppler current profiler (ADCP) and current-meter records from a moored boundary array deployed during 2000–04 near 11°S are analyzed here for both the northward warm water flow by the North Brazil Undercurrent (NBUC) above approximately 1100 m and the southward flow of North Atlantic Deep Water (NADW) underneath. At 5°S, the mean from nine sections yields an NBUC transport of 26.5 ± 3.7 Sv (Sv ≡ 106 m3 s−1) along the boundary; at 11°S the mean NBUC transport from five sections is 25.4 ± 7.4 Sv, confirming that the NBUC is already well developed at 11°S. At both latitudes a persistent offshore southward recirculation between 200- and 1100-m depth reduces the net northward warm water flow through the 5°S section (west of 31.5°W) to 22.1 ± 5.3 Sv and through the 11°S section to 21.7 ± 4.1 Sv (west of 32.0°W). The 4-yr-long NBUC transport time series from 11°S yields a seasonal cycle of 2.5 Sv amplitude with its northward maximum in July. Interannual NBUC transport variations are small, varying only by ±1.2 Sv during the four years, with no detectable trend. The southward flow of NADW within the deep western boundary current at 5°S is 25.5 ± 8.3 Sv with an offshore northward recirculation, yielding a nine-section mean of 20.3 ± 10.1 Sv west of 31.5°W. For Antarctic Bottom Water, a net northward flow of 4.4 ± 3.0 Sv is determined at 5°S. For the 11°S section, the moored array data show a pronounced energy maximum at 60–70-day period in the NADW depth range, which was identified in related work as deep eddies translating southward along the boundary. Based on a kinematic eddy model fit to the first half of the moored time series, the mean NADW transfer by the deep eddies at 11°S was estimated to be about 17 Sv. Given the large interannual variability of the deep near-boundary transport time series, which ranged from 14 to 24 Sv, the 11°S mean was considered to be not distinguishable from the mean at 5°S
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 22 (18). pp. 4930-4938.
    Publication Date: 2020-08-04
    Description: Several recent general circulation model studies discuss the predictability of the Indian Ocean dipole (IOD) mode, suggesting that it is predictable because of coupled ocean-atmosphere interactions in the Indian Ocean. However, it is not clear from these studies how much of the predictability is due to the response to El Nino. It is shown in this note that a simple statistical model that treats the Indian Ocean as a red noise process forced by tropical Pacific SST shows forecast skills comparable to those of recent general circulation model studies. The results also indicate that some of the eastern tropical Indian Ocean SST predictability in recent studies may indeed be beyond the skill of the simple model proposed in this note, indicating that dynamics in the Indian Ocean may have caused this improved predictability in this region. The model further indicates that the IOD index may be the least predictable index of Indian Ocean SST variability. The model is proposed as a null hypothesis for Indian Ocean SST predictions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 22 (18). pp. 4939-4952.
    Publication Date: 2020-08-04
    Description: A characteristic feature of global warming is the land-sea contrast, with stronger warming over land than over oceans. Recent studies find that this land-sea contrast also exists in equilibrium global change scenarios, and it is caused by differences in the availability of surface moisture over land and oceans. In this study it is illustrated that this land-sea contrast exists also on interannual time scales and that the ocean-land interaction is strongly asymmetric. The land surface temperature is more sensitive to the oceans than the oceans are to the land surface temperature, which is related to the processes causing the land-sea contrast in global warming scenarios. It suggests that the ocean's natural variability and change is leading to variability and change with enhanced magnitudes over the continents, causing much of the longer-time-scale (decadal) global-scale continental climate variability. Model simulations illustrate that continental warming due to anthropogenic forcing (e. g., the warming at the end of the last century or future climate change scenarios) is mostly (80%-90%) indirectly forced by the contemporaneous ocean warming, not directly by local radiative forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Zoology, 210 (1). pp. 137-147.
    Publication Date: 2020-07-17
    Description: Epipelagic pterotracheid heteropods and young cranchiid squids rely primarily on transparency for concealment; yet they have opaque structures, the eyes and visceral organs that compose the visceral nuclei, which can only be camouflaged in other ways. These two groups have achieved convergent solutions to this problem. The visceral nucleus has a narrow and conical shape and a covering layer of iridophores that lies parallel to the surface of the organ. The eyes also have iridophore layers and tapered shapes. A minimal ventral silhouette results when the long axes of the visceral nucleus and eyes are oriented vertically, with the narrowest ends directed downward. In pterotracheids, this is actively achieved by tilting the nucleus and eyes and flexing the body and proboscis. In cranchiids, tilting of the organs alone suffices and adjustments are accomplished much more rapidly than in the pterotracheids.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2016-07-28
    Description: Coccoliths were studied from the ODP Hole 1002C and core PL07-39PC in the Cariaco Basin. Increases in Emiliania huxleyi are synchronous with decreases of Gephyrocapsa oceanica and vice versa. A new index (GEX) based on the relative abundances of these two taxa is proposed, and correlates with various other proxies. It is shown that GEX can serve as upwelling proxy. This confirms that the Intertropical Convergence Zone shifted north during the Bølling/Allerød, south during the Younger Dryas and back north during the Preboreal. The upwelling proxy shows few discrepancies with the terrigenous record.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2016-05-27
    Description: A visible tephra horizon in the NGRIP ice core has been identified by geochemical analysis as the Fugloyarbanki Tephra, a widespread marker horizon in marine cores from the Faroe Islands area and the northern North Atlantic. An age of 26 740 ± 390 yr b2k (1s uncertainty) is derived for this tephra according to the new Greenland Ice Core Chronology (GICC05) based on multiparameter counting of annual layers. Detection of this tephra for the first time within the NGRIP ice core provides a key tie-point between marine and ice-core records during the transition between MIS 3 and 2. Identification of this volcanic event within the Greenland records demonstrates the future potential of using tephrochronology to precisely correlate palaeoarchives in widely separated localities that span the last glacial period, as well as providing a potential method for examining the extent of the radiocarbon marine reservoir effect at this time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Zoology, 207 (4). pp. 511-519.
    Publication Date: 2020-07-17
    Description: A study of the diet of Sepia officinalis and S. elegans in the Ria de Vigo has shown that crustaceans are the most abundant prey in both species, followed by fish. Changes in the food composition of both species occur with growth. The type of prey eaten by the two sexes of these species is very similar. The possibility of trophic competition between juveniles of S. qficinalis and S. elegans is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-08-04
    Description: The causes and characteristics of interannual–decadal variability of the meridional overturning circulation (MOC) in the North Atlantic are investigated with a suite of basin-scale ocean models [the Family of Linked Atlantic Model Experiments (FLAME)] and global ocean–ice models (ORCA), varying in resolution from medium to eddy resolving (½°–1/12°), using various forcing configurations built on bulk formulations invoking atmospheric reanalysis products. Comparison of the model hindcasts indicates similar MOC variability characteristics on time scales up to a decade; both model architectures also simulate an upward trend in MOC strength between the early 1970s and mid-1990s. The causes of the MOC changes are examined by perturbation experiments aimed selectively at the response to individual forcing components. The solutions emphasize an inherently linear character of the midlatitude MOC variability by demonstrating that the anomalies of a (non–eddy resolving) hindcast simulation can be understood as a superposition of decadal and longer-term signals originating from thermohaline forcing variability, and a higher-frequency wind-driven variability. The thermohaline MOC signal is linked to the variability in subarctic deep-water formation, and rapidly progressing to the tropical Atlantic. However, throughout the subtropical and midlatitude North Atlantic, this signal is effectively masked by stronger MOC variability related to wind forcing and, especially north of 30°–35°N, by internally induced (eddy) fluctuations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 37 . pp. 727-742.
    Publication Date: 2020-08-04
    Description: Output from an eddy-resolving model of the North Atlantic Ocean is used to estimate values for the thickness diffusivity κ appropriate to the Gent and McWilliams parameterization. The effect of different choices of rotational eddy fluxes on the estimated κ is discussed. Using the raw fluxes (no rotational flux removed), large negative values (exceeding −5000 m2 s−1) of κ are diagnosed locally, particularly in the Gulf Stream region and in the equatorial Atlantic. Removing a rotational flux based either on the suggestion of Marshall and Shutts or the more general theory of Medvedev and Greatbatch leads to a reduction of the negative values, but they are still present. The regions where κ 〈 0 correspond to regions where eddies are acting to increase, rather than decrease (as in baroclinic instability) the mean available potential energy. In the subtropical gyre, κ ranges between 500 and 2000 m2 s−1, rapidly decreasing to zero below the thermocline in all cases. Rotational fluxes and κ are also estimated using an optimization technique. In this case, |κ| can be reduced or increased by construction, but the regions where κ 〈 0 are still present and the optimized rotational fluxes also remain similar to a priori values given by the theoretical considerations. A previously neglected component (ν) of the bolus velocity is associated with the horizontal flux of buoyancy along, rather than across, the mean buoyancy contours. The ν component of the bolus velocity is interpreted as a streamfunction for eddy-induced advection, rather than diffusion, of mean isopycnal layer thickness, showing up when the lateral eddy fluxes cannot be described by isotropic diffusion only. All estimates show a similar large-scale pattern for ν, implying westward advection of isopycnal thickness over much of the subtropical gyre. Comparing ν with a mean streamfunction shows that it is about 10% of the mean in midlatitudes and even larger than the mean in the Tropics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 19 (16). pp. 3973-3987.
    Publication Date: 2017-08-23
    Description: The influence of phytoplankton on the seasonal cycle and the mean global climate is investigated in a fully coupled climate model. The control experiment uses a fixed attenuation depth for shortwave radiation, while the attenuation depth in the experiment with biology is derived from phytoplankton concentrations simulated with a marine biogeochemical model coupled online to the ocean model. Some of the changes in the upper ocean are similar to the results from previous studies that did not use interactive atmospheres, for example, amplification of the seasonal cycle; warming in upwelling regions, such as the equatorial Pacific and the Arabian Sea; and reduction in sea ice cover in the high latitudes. In addition, positive feedbacks within the climate system cause a global shift of the seasonal cycle. The onset of spring is about 2 weeks earlier, which results in a more realistic representation of the seasons. Feedback mechanisms, such as increased wind stress and changes in the shortwave radiation, lead to significant warming in the midlatitudes in summer and to seasonal modifications of the overall warming in the equatorial Pacific. Temperature changes also occur over land where they are sometimes even larger than over the ocean. In the equatorial Pacific, the strength of interannual SST variability is reduced by about 10%–15% and phase locking to the annual cycle is improved. The ENSO spectral peak is broader than in the experiment without biology and the dominant ENSO period is increased to around 5 yr. Also the skewness of ENSO variability is slightly improved. All of these changes lead to the conclusion that the influence of marine biology on the radiative budget of the upper ocean should be considered in detailed simulations of the earth’s climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 19 (18). pp. 4631-4637.
    Publication Date: 2020-08-04
    Description: Analyses of ocean observations and model simulations suggest that there have been considerable changes in the thermohaline circulation (THC) during the last century. These changes are likely to be the result of natural multidecadal climate variability and are driven by low-frequency variations of the North Atlantic Oscillation (NAO) through changes in Labrador Sea convection. Indications of a sustained THC weakening are not seen during the last few decades. Instead, a strengthening since the 1980s is observed. The combined assessment of ocean hydrography data and model results indicates that the expected anthropogenic weakening of the THC will remain within the range of natural variability during the next several decades
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 22 (4). pp. 940-950.
    Publication Date: 2020-08-04
    Description: Atmospheric pressure observations from the Southern Hemisphere are used to estimate monthly and annually averaged indexes of the southern annular mode (SAM) back to 1884. This analysis groups all relevant observations in the following four regions: one for Antarctica and three in the subtropical zone. Continuous surface pressure observations are available at a number of locations in the subtropical regions since the end of the nineteenth century. However, year-round observations in the subpolar region near the Antarctic continent began only during the 1940-60 period. The shorter Antarctic records seriously compromise the length of a traditionally estimated SAM index. To improve the situation "proxy'' estimates of Antarctic sea level pressure anomalies are provided based on the concept of atmospheric mass conservation poleward of 208S. This allows deriving a longer SAM index back to 1884. Several aspects of the new record, its statistical properties, seasonal trends, and the regional pressure anomaly correlations, are presented.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2017-08-23
    Description: This paper describes the mean ocean circulation and the tropical variability simulated by the Max Planck Institute for Meteorology (MPI-M) coupled atmosphere–ocean general circulation model (AOGCM). Results are presented from a version of the coupled model that served as a prototype for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) simulations. The model does not require flux adjustment to maintain a stable climate. A control simulation with present-day greenhouse gases is analyzed, and the simulation of key oceanic features, such as sea surface temperatures (SSTs), large-scale circulation, meridional heat and freshwater transports, and sea ice are compared with observations. A parameterization that accounts for the effect of ocean currents on surface wind stress is implemented in the model. The largest impact of this parameterization is in the tropical Pacific, where the mean state is significantly improved: the strength of the trade winds and the associated equatorial upwelling weaken, and there is a reduction of the model’s equatorial cold SST bias by more than 1 K. Equatorial SST variability also becomes more realistic. The strength of the variability is reduced by about 30% in the eastern equatorial Pacific and the extension of SST variability into the warm pool is significantly reduced. The dominant El Niño–Southern Oscillation (ENSO) period shifts from 3 to 4 yr. Without the parameterization an unrealistically strong westward propagation of SST anomalies is simulated. The reasons for the changes in variability are linked to changes in both the mean state and to a reduction in atmospheric sensitivity to SST changes and oceanic sensitivity to wind anomalies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 22 . pp. 550-567.
    Publication Date: 2020-08-04
    Description: Statistical analysis of observations (including atmospheric reanalysis and forced ocean model simulations) is used to address two questions: First, does an analogous mechanism to that of El Niño–Southern Oscillation (ENSO) exist in the equatorial Atlantic or Indian Ocean? Second, does the intrinsic variability in these basins matter for ENSO predictability? These questions are addressed by assessing the existence and strength of the Bjerknes and delayed negative feedbacks in each tropical basin, and by fitting conceptual recharge oscillator models, both with and without interactions among the basins. In the equatorial Atlantic the Bjerknes and delayed negative feedbacks exist, although weaker than in the Pacific. Equatorial Atlantic variability is well described by the recharge oscillator model, with an oscillatory mixed ocean dynamics–sea surface temperature (SST) mode present in boreal spring and summer. The dynamics of the tropical Indian Ocean, however, appear to be quite different: no recharge–discharge mechanism is found. Although a positive Bjerknes-like feedback from July to September is found, the role of heat content seems secondary. Results also show that Indian Ocean interaction with ENSO tends to damp the ENSO oscillation and is responsible for a frequency shift to shorter periods. However, the retrospective forecast skill of the conceptual model is hardly improved by explicitly including Indian Ocean SST. The interaction between ENSO and the equatorial Atlantic variability is weaker. However, a feedback from the Atlantic on ENSO appears to exist, which slightly improves the retrospective forecast skill of the conceptual model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2017-10-05
    Description: Natural communities are constantly changing due to a variety of interacting external processes and the temporal occurrence and intensity of these processes can have important implications for the diversity and structure of marine sessile assemblages. In this study, we investigated the effects of temporal variation in a disturbance regime, as well as the specific timing of events within different regimes, on the composition and diversity of marine subtidal fouling assemblages. We did this in a multi-factorial experiment using artificial settlement tiles deployed at two sites on the North East coast of England. We found that although there were significant effects of disturbances on the composition of assemblages, there were no effects of either the variation in the disturbance regime or the specific timing of events on the diversity or assemblage composition at either site. In contrast to recent implications we conclude that in marine fouling assemblages, the variability in disturbance regimes (as a driving force) is unimportant, while disturbance itself is an important force for structuring robust ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  In: Microbial Ecology of the Oceans. Wiley-Blackwell, Hoboken, NJ, pp. 383-441. 2. Edition ISBN 978-0-470-04344-8
    Publication Date: 2019-12-06
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Fish and Fisheries, 9 (4). pp. 450-461.
    Publication Date: 2016-12-13
    Description: Archived scales and otoliths constitute a unique source of DNA that potentially enables extension of the temporal scale of genetic studies of fish populations by decades and even centuries. We review recent insights into fish population and conservation genetics obtained using analysis of DNA from archived samples. This involves both new knowledge about demographic parameters and population structure in wild populations and insights into consequences of anthropogenic pressure resulting from over-harvesting, habitat degradation and stocking. We show that the latter category of studies have led to significant changes of management practices. Ongoing improvement of genetic methods will undoubtedly further expand the ability to utilize historical DNA samples. We envisage that temporal comparisons of large numbers of coding genes will lead to novel insights into selective responses of fish populations to anthropogenic challenges, particularly fisheries-induced selection and global warming. However, both acquisition and storage of historical DNA samples can be hurdles to temporal genetic analyses, while degradation and low copy number in historical DNA samples render genetic data from such sources prone to technical artefacts. We summarize recommendations for storage of samples and DNA extraction and provide checklists for validation of genotyping results. Finally, we stress that validation procedures also involve documentation of the time and population of origin of historical samples, and the inferences drawn should account for the technical and statistical uncertainties associated with historical DNA analysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Quaternary Science, 21 (6). pp. 645-675.
    Publication Date: 2018-10-22
    Description: Intra‐plate volcanism in western Europe shows statistically significant episodicity during the Quaternary period. By comparing the known ages for eruptions in France and Germany, which are compiled here, with a composite oxygen isotope record, we have investigated the link between this episodic volcanism and the climate record over the last two million years. We show that increased volcanism between 415–400 ka and 17–5 ka correlates with warming phases at the end of the last Weichselian (Devensian) and earlier Elsterian (Anglian) glacial stages. The three significant caldera explosions in the eastern Eifel, Germany, are all associated with warming phases at the onset of interglacials. The growth and decay of nearby ice sheets suggest that surface changes in continental mass distribution during glacial Milankovich cycles could provide a mechanism for this correlation by means of the distal effects of flexural loading on the lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 21 . pp. 4691-4709.
    Publication Date: 2019-09-23
    Description: The relative impact of the subtropical North and South Pacific Oceans on the tropical Pacific climate mean state and variability is estimated using an ocean–atmosphere–sea ice coupled general circulation model. Tailored experiments are performed in which the model is forced by idealized sea surface temperature anomalies (SSTAs) in the subtropics of both hemispheres. The main results of this study suggest that subtropical South Pacific climate variations play a dominant role in tropical Pacific decadal variability and in the decadal modulation of El Niño–Southern Oscillation (ENSO). In response to a 2°C warming in the subtropical South Pacific, the equatorial Pacific SST increases by about 0.6°C, approximately 65% larger than the change in the North Pacific experiment. The subtropics affect equatorial SST mainly through atmosphere–mixed layer interactions in the South Pacific experiments; the response is mostly accomplished within a decade. The “oceanic tunnel” dominates in the North Pacific experiments; the response takes at least 100 yr to be accomplished. Similar sensitivity experiments conducted with the stand-alone atmosphere model showed that both air–sea interactions and ocean dynamics are crucial in shaping the tropical climate response. The statistics of ENSO exhibit significant changes in amplitude and frequency in response to a warming/cooling of the subtropical South Pacific: a 2°C warming (cooling) of subtropical South Pacific SST reduces (increases) the interannual standard deviation by about 30% (20%) and shortens (lengthens) the ENSO period. The simulated changes in the equatorial zonal SST gradient are the main contributor to the modulation of ENSO variability. The simulated intensification (weakening) of the annual cycle in response to an enhanced warming (cooling) in subtropical South Pacific partly explains the shifts in frequency, but may also lead to a weaker (stronger) ENSO. The subtropical North Pacific thermal forcing did not change the statistical properties of ENSO as strongly.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-09-14
    Description: An analysis of mass (M) and standard length (LS) data for larval, juvenile and adult sprat (Sprattus sprattus; Clupeidae) revealed marked changes in the allometric scaling factor (b in inline image). For sprat 〈44 mm LS, b was 5·0, whereas in larger juveniles and adults, b was c. 3·4 indicating a relatively protracted metamorphic period for this species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-09-23
    Description: Combined simultaneous satellite observations are used to evaluate the performance of parameterizations of the microphysical and optical properties of cirrus clouds used for radiative flux computations in climate models. Atmospheric and cirrus properties retrieved from Television and Infrared Observation Satellite (TIROS-N) Operational Vertical Sounder (TOVS) observations are given as input to the radiative transfer model developed for the Met Office climate model to simulate radiative fluxes at the top of the atmosphere (TOA). Simulated cirrus shortwave (SW) albedos are then compared to those retrieved from collocated Scanner for Radiation Budget (ScaRaB) observations. For the retrieval, special care has been given to angular direction models. Three parameterizations of cirrus ice crystal optical properties are represented in the Met Office radiative transfer model. These parameterizations are based on different physical approximations and different hypotheses on crystal habit. One parameterization assumes pristine ice crystals and two ice crystal aggregates. By relating the cirrus ice water path (IWP) retrieved from the effective infrared emissivity to the cirrus SW albedo, differences between the parameterizations are amplified. This study shows that pristine crystals seem to be plausible only for cirrus with IWP less than 30 g m−2. For larger IWP, ice crystal aggregates lead to cirrus SW albedos in better agreement with the observations. The data also indicate that climate models should allow the cirrus effective ice crystal diameter (De) to increase with IWP, especially in the range up to 30 g m−2. For cirrus with IWP less than 20 g m−2, this would lead to SW albedos that are about 0.02 higher than the ones of a constant De of 55 μm.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 19 . pp. 5667-5685.
    Publication Date: 2020-08-04
    Description: This paper analyses secular changes and interannual variability in the wind wave, swell, and significant wave height (SWH) characteristics over the North Atlantic and North Pacific on the basis of wind wave climatology derived from the visual wave observations of voluntary observing ship (VOS) officers. These data are available from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS) collection of surface meteorological observations for 1958–2002, but require much more complicated preprocessing than standard meteorological variables such as sea level pressure, temperature, and wind. Visual VOS data allow for separate analysis of changes in wind sea and swell, as well as in significant wave height, which has been derived from wind sea and swell estimates. In both North Atlantic and North Pacific midlatitudes winter significant wave height shows a secular increase from 10 to 40 cm decade−1 during the last 45 yr. However, in the North Atlantic the patterns of trend changes for wind sea and swell are quite different from each other, showing opposite signs of changes in the northeast Atlantic. Trend patterns of wind sea, swell, and SWH in the North Pacific are more consistent with each other. Qualitatively the same conclusions hold for the analysis of interannual variability whose leading modes demonstrate noticeable differences for wind sea and swell. Statistical analysis shows that variability in wind sea is closely associated with the local wind speed, while swell changes can be driven by the variations in the cyclone counts, implying the importance of forcing frequency for the resulting changes in significant wave height. This mechanism of differences in variability patterns of wind sea and swell is likely more realistic than the northeastward propagation of swells from the regions from which the wind sea signal originates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 18 (19). pp. 4013-4031.
    Publication Date: 2017-08-23
    Description: Analyses of a 500-yr control integration with the non-flux-adjusted coupled atmosphere–sea ice–ocean model ECHAM5/Max-Planck-Institute Ocean Model (MPI-OM) show pronounced multidecadal fluctuations of the Atlantic overturning circulation and the associated meridional heat transport. The period of the oscillations is about 70–80 yr. The low-frequency variability of the meridional overturning circulation (MOC) contributes substantially to sea surface temperature and sea ice fluctuations in the North Atlantic. The strength of the overturning circulation is related to the convective activity in the deep-water formation regions, most notably the Labrador Sea, and the time-varying control on the freshwater export from the Arctic to the convection sites modulates the overturning circulation. The variability is sustained by an interplay between the storage and release of freshwater from the central Arctic and circulation changes in the Nordic Seas that are caused by variations in the Atlantic heat and salt transport. The relatively high resolution in the deep-water formation region and the Arctic Ocean suggests that a better representation of convective and frontal processes not only leads to an improvement in the mean state but also introduces new mechanisms determining multidecadal variability in large-scale ocean circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 23 (11). pp. 1583-1592.
    Publication Date: 2018-07-04
    Description: It is becoming increasingly recognized that the eddy field plays an important—possibly dominating—role for oceanic motions in many aspects (e.g., transport of properties and risk assessment in the case of extreme events). This motivates the study of individual eddy events. In the Lagrangian coordinate system, vorticity possibly associated with eddies appears in two forms: as shear vorticity between neighboring particles, and as curvature of the trajectory of a single particle. Typical field experiments in physical oceanography using surface drifters or subsurface floats do not reach data densities high enough to produce enough encounters of drifters to calculate shear vorticity between them. However, curvature in individual tracks is easily observed. This study presents a methodology that extracts segments from within a trajectory that are “looping,” which will be interpreted as a drifter being caught in an eddy. The method makes use of autoregressive processes, a simple type of stochastic processes, which easily enables a fit to the nonperfectly shaped trajectory data usually expected from field experiments. These processes also deliver frequency and persistence of the detected eddies by a very simple calculation, which makes the methodology highly suited for automatized scanning of larger datasets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-09-11
    Description: To investigate and disentangle the role of major histocompatibility complex (MHC)‐based ‘good genes' and ‘compatible genes' in mate choice, three‐spined sticklebacks Gasterosteus aculeatus with specific MHC IIB genotypes were allowed to reproduce in an outdoor enclosure system. Here, fish were protected from predators but encountered their natural parasites. Mate choice for an intermediate genetic distance between parental MHC genotypes was observed, which would result in intermediate diversity in the offspring, but no mate choice based on good genes was found under the current semi‐natural conditions. Investigation of immunological variables revealed that the less‐specific innate immune system was more active in individuals with a genetically more divergent MHC allele repertoire. This suggests the need to compensate for an MHC‐diminished T‐cell repertoire and potentially explains the observed mate choice for intermediate MHC genetic distance. The present findings support a general pattern of mate choice for intermediate MHC diversity (i.e. compatible genes). In addition, the potentially dynamic role of MHC good genes in mate choice under different parasite pressures is discussed in the light of present and previous results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 21 (12). pp. 2810-2823.
    Publication Date: 2020-08-04
    Description: The manner in which monthly mean sea surface temperature anomalies (SSTAs) show enhanced variance at the annual period in the extratropics (an annual peak in the variance spectrum) is illustrated by observations and model simulations. A mechanism, related to the reemergence of winter SST anomalies, is proposed to explain the annual peak in SST spectrum. The idea is supported by the analysis of a hierarchy of models, including Intergovernmental Panel on Climate Change model simulations. The results of the model experiments further suggest that the annual peak is either weak or absent if decadal SST variability is forced by local air–sea interaction. However, if ocean subsurface temperature variability forces decadal SST variability, the annual peak is much stronger. Strong annual peaks may therefore be seen as an indication of ocean-forced decadal SST variability in the extratropics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Fish Biology, 75 . pp. 290-294.
    Publication Date: 2017-09-14
    Description: Individual behaviour of Atlantic cod Gadus morhua in the presence of hypoxic water was measured in situ in the vertically stratified Bornholm Basin of the Baltic Sea. Considering all recaptured individuals, the use of hypoxic habitat was comparable to data derived by traditional survey data, but some G. morhua had migrated towards the centre of the c.100 m deep basin and spent about a third of their time at oxygen saturation 〈50%, possibly to forage on zoobenthos. Maximal residence time per visit in such hypoxic water was limited to a few hours, allowing for the digestion of consumed prey items in waters with sufficient dissolved oxygen.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 38 (1). pp. 177-192.
    Publication Date: 2020-08-04
    Description: The shallow subtropical–tropical cells (STC) of the Atlantic Ocean have been studied from the output fields of a 50-yr run of the German partner of the Estimating the Circulation and Climate of the Ocean (GECCO) consortium assimilation model. Comparison of GECCO with time-mean observational estimates of density and meridional currents at 10°S and 10°N, which represent the boundaries between the tropics and subtropics in GECCO, shows good agreement in transports of major currents. The variability of the GECCO wind stress in the interior at 10°S and 10°N remains consistent with the NCEP forcing, although temporary changes can be large. On pentadal and longer time scales, an STC loop response is found between the poleward Ekman divergence and STC-layer convergence at 10°S and 10°N via the Equatorial Undercurrent (EUC) at 23°W, where the divergence leads the EUC and the convergence, suggesting a “pulling” mechanism via equatorial upwelling. The divergence is also associated with changes in the eastern equatorial upper-ocean heat content. Within the STC layer, partial compensation of the western boundary current (WBC) and the interior occurs at 10°S and 10°N. For the meridional overturning circulation (MOC) at 10°S it is found that more than one-half of the variability in the upper limb can be explained by the WBC. The explained MOC variance can be increased to 85% by including the geostrophic (Sverdrup) part of the wind-driven transports.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Journal of Fish Biology, 67 . pp. 1585-1602.
    Publication Date: 2017-09-14
    Description: The seasonal growth trajectories of wild Atlantic salmon Salmo salar juveniles by age group within the Margaree River, Canada, are described. Circuli counts from scales were used to infer growth rates at different ages and these were used to predict the proportions of age 2‐ and 3‐year old smolts from different portions of the watershed. In the wild Atlantic salmon juveniles from the Margaree River, there was no bimodality in fork length frequencies and no 1 year old smolts were produced. Water temperature differences during the growing season were insufficient to explain the differences in growth rates and size at age among the sites sampled. There was a positive association between the growth rate in the first year and the subsequent age at smoltification. In the Margaree River, differences in tributary specific growth rates and size at age were expected to produce important differences in the relative ages at smoltification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 39 . pp. 2417-2435.
    Publication Date: 2020-08-04
    Description: The Agulhas Current system has been analyzed in a nested high-resolution ocean model and compared to observations. The model shows good performance in the western boundary current structure and the transports off the South African coast. This includes the simulation of the northward-flowing Agulhas Undercurrent. It is demonstrated that fluctuations of the Agulhas Current and Undercurrent around 50–70 days are due to Natal pulses and Mozambique eddies propagating downstream. A sensitivity experiment that excludes those upstream perturbations significantly reduces the variability as well as the mean transport of the undercurrent. Although the model simulates undercurrents in the Mozambique Channel and east of Madagascar, there is no direct connection between those and the Agulhas Undercurrent. Virtual float releases demonstrate that topography is effectively blocking the flow toward the north.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 19 (23). pp. 6062-6067.
    Publication Date: 2017-08-23
    Description: The influence of the natural multidecadal variability of the Atlantic meridional overturning circulation (MOC) on European climate is investigated using a simulation with the coupled atmosphere–ocean general circulation model ECHAM5/Max Planck Institute Ocean Model (MPI-OM). The results show that Atlantic MOC fluctuations, which go along with changes in the northward heat transport, in turn affect European climate. Additionally, ensemble predictability experiments with ECHAM5/MPI-OM show that the probability density functions of surface air temperatures in the North Atlantic/European region are affected by the multidecadal variability of the large-scale oceanic circulation. Thus, some useful decadal predictability may exist in the Atlantic/European sector.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 37 (4). pp. 946-961.
    Publication Date: 2020-08-04
    Description: A model of the subpolar North Atlantic Ocean is used to study different aspects of ventilation and water mass transformation during a year with moderate convection intensity in the Labrador Sea. The model realistically describes the salient features of the observed hydrographic structure and current system, including boundary currents and recirculations. Ventilation and transformation rates are defined and compared. The transformation rate of Labrador Sea Water (LSW), defined in analogy to several observational studies, is 6.3 Sv (Sv ≡ 106 m3 s−1) in the model. Using an idealized ventilation tracer, mimicking analyses based on chlorofluorocarbon inventories, an LSW ventilation rate of 10 Sv is found. Differences between both rates are particularly significant for those water masses that are partially transformed into denser water masses during winter. The main export route of the ventilated LSW is the deep Labrador Current (LC). Backward calculation of particle trajectories demonstrates that about one-half of the LSW leaving the Labrador Sea within the deep LC originates in the mixed layer during that same year. Near the offshore flank of the deep LC at about 55°W, the transformation of LSW begins in January and is at a maximum in February/March. While the export of transformed LSW out of the central Labrador Sea continues for several months, LSW generated near the boundary current is exported more rapidly, with maximum transport rates during March/April within the deep LC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-09-23
    Description: Climate models predict a gradual weakening of the North Atlantic meridional overturning circulation (MOC) during the twenty-first century due to increasing levels of greenhouse gas concentrations in the atmosphere. Using an ensemble of 16 different coupled climate models performed for the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), the evolution of the MOC during the twentieth and twenty-first centuries is analyzed by combining model simulations for the IPCC scenarios Twentieth-Century Climate in Coupled Models (20C3M) and Special Report on Emission Scenarios, A1B (SRESA1B). Earlier findings are confirmed that even for the same forcing scenario the model response is spread over a large range. However, no model predicts abrupt changes or a total collapse of the MOC. To reduce the uncertainty of the projections, different weighting procedures are applied to obtain “best estimates” of the future MOC evolution, considering the skill of each model to represent present day hydrographic fields of temperature, salinity, and pycnocline depth as well as observation-based mass transport estimates. Using different methods of weighting the various models together, all produce estimates that the MOC will weaken by 25%–30% from present day values by the year 2100; however, absolute values of the MOC and the degree of reduction differ among the weighting methods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 20 (1). pp. 131-142.
    Publication Date: 2020-08-04
    Description: An observational-based analysis of coupled variability in the equatorial Atlantic and its seasonality is presented. Regression analysis shows that the three elements of the Bjerknes positive feedback exist in the Atlantic and are spatially similar to those of the Pacific. The cross-correlation functions of the elements of the Bjerknes feedback are also similar and consistent with an ocean–atmosphere coupled mode. However, the growth rate in the Atlantic is up to 50% weaker, and explained variance is significantly lower. The Bjerknes feedback in the Atlantic is strong in boreal spring and summer, and weak in other seasons, which explains why the largest sea surface temperature anomalies (SSTAs) occur in boreal summer. Its seasonality is determined by seasonal variations in both atmospheric sensitivity to SSTA and SSTA sensitivity to subsurface temperature anomalies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...