ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2,896)
  • Spacecraft Design, Testing and Performance  (882)
  • Astrophysics  (790)
  • Instrumentation and Photography  (569)
  • Technology Utilization and Surface Transportation  (540)
  • AERODYNAMICS
  • Animals
  • General Chemistry
  • 2005-2009  (2,762)
  • 1955-1959  (115)
  • 1950-1954  (18)
  • 1930-1934
  • 1925-1929  (1)
Collection
Source
Keywords
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: We present the discovery of a 70 kpc X-ray tail behind the small late-type galaxy ESO 137-001, in the nearby, hot (T=6.5 keV) merging cluster A3627, from both Chandra and XMM-Newton observations. The tail has a length-to-width ratio of approx. 10. It is luminous (L(0.5-2keV) approx 1041 ergs/s), with a temperature of approx. 0.7 keV and an X-ray gas mass of approx 10(exp 9) solar masses (approx 10% of the galaxy's stellar mass). We interpret this tail as the stripped interstellar medium of ESO 137-001 mixed with the hot cluster medium, with this blue galaxy being converted into a gas-poor galaxy. Three X-ray point sources are detected in the axis of the tail, which may imply active star formation there. The straightness and narrowness of the tail also imply that the turbulence in the intracluster medium is not strong on scales of 20-70 kpc.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 637; Part 2; L81-L85
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2005-04-25
    Description: The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) is an integral component of the Mars Express mission. A low-frequency sounding radar was carried on the Russian Mars 96 spacecraft, and in keeping with the concept of re-flying the science experiments lost on that mission, a call for a radar sounder was part of the Announcement of Opportunity for the 2003 ESA Mars Express mission. MARSIS is the only totally new instrument on Mars Express. The instrument was developed, delivered and operated as a joint effort between the Italian Space Agency and the U.S space agency NASA. The MARSIS science mission has been delayed due to concerns about the safety of the antenna deployment. As a testament to the importance placed on the
    Keywords: Instrumentation and Photography
    Type: Workshop on Radar Investigations of Planetary and Terrestrial Environments; 68; LPI-Contrib-1231
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-10-26
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-10-26
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-10-26
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-03-16
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-10
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-05-11
    Keywords: AERODYNAMICS
    Type: RM-2419-NASA , RM-2419-NASA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-18
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: A simple, systematic, optimized vortex-lattice approach is developed for application to lifting-surface problems. It affords a significant reduction in computational costs when compared to current methods. Extensive numerical experiments have been carried out on a wide variety of configurations, including wings with camber and single or multiple flaps, as well as high-lift jetflap systems. Rapid convergence as the number of spanwise or chordwise lattices are increased is assured, along with accurate answers. The results from this model should be useful not only in preliminary aircraft design but also, for example, as input for wake vortex roll-up studies and transonic flow calculations.
    Keywords: AERODYNAMICS
    Type: NASA. Langley Res. Center Vortex-Lattice Utilization; p 325-342
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-11
    Description: Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-11
    Description: A method for measuring the acoustic velocity in a thin sheet of a graphite epoxy composite (GEC) material was investigated. This method uses two identical acoustic-emission (AE) sensors, one to transmit and one to receive. The delay time as a function of distance between sensors determines a bulk velocity. A lightweight fixture (balsa wood in the current implementation) provides a consistent method of positioning the sensors, thus providing multiple measurements of the time delay between sensors at different known distances. A linear fit to separation, x, versus delay time, t, will yield an estimate of the velocity from the slope of the line.
    Keywords: Instrumentation and Photography
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 48-49/50; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-11
    Description: SIM PlanetQuest (hereafter, just SIM) is a NASA mission to measure the angular positions of stars with unprecedented accuracy. We outline the main astrophysical science programs planned for SIM, and related opportunities for community participation. We focus especially on SIM's ability to detect exoplanets as small as the Earth around nearby stars. The planned synergy between SIM and other planet-finding missions including Kepler and GAIA, and planet-characterizing missions including the James Webb Space Telescope (JWST), Terrestrial Planet Finder--Coronagraph (TPF-C), and Terrestrial Planet Finder--Interferometer (TPF-I), is a key element in NASA's Navigator Program to find Earth-like planets, determine their habitability, and search for signs of life in the universe. SIM's technology development is now complete and the project is proceeding towards a launch in the next decade.
    Keywords: Astrophysics
    Type: Acta Astronautica; Volume 61; 52-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-11
    Description: We present the design of a compact, wide-angle pushbroom imaging spectrometer suitable for exploration of solar system bodies from low orbit. The spectrometer is based on a single detector array with a broadband response that covers the range 400 to 3000 nm and provides a spectral sampling of 10 nm. The telescope has a 24-deg field of view with 600 spatially resolved elements (detector pixels). A specially designed convex diffraction grating permits optimization of the signal-to-noise ratio through the entire spectral band. Tolerances and design parameters permit the achievement of high uniformity of response through field and wavelength. The spectrometer performance is evaluated in terms of predicted spectral and spatial response functions and from the point of view of minimizing their variation through field and wavelength. The design serves as an example for illustrating the design principles specific to this type of system.
    Keywords: Instrumentation and Photography
    Type: Optical Engineering; Volume 46; No. 6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-11
    Description: We have updated the orbits of the small inner Saturnian satellites using additional Cassini imaging observations through 2007 March. Statistically significant changes from previously published values appear in the eccentricities and inclinations of Pan and Daphnis, but only small changes have been found in the estimated orbits of the other satellites. We have also improved our knowledge of the masses of Janus and Epimetheus as a result of their close encounter observed in early 2006.
    Keywords: Astrophysics
    Type: The Astronomical Journal; Volume 135; 261
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-11
    Description: With a dynamic atmosphere and a large supply of particulate material, the surface of Mars is heavily influenced by wind-driven, or aeolian, processes. The High Resolution Imaging Science Experiment (HiRISE) camera on the Mars Reconnaissance Orbiter (MRO) provides a new view of Martian geology, with the ability to see decimeter-size features. Current sand movement, and evidence for recent bedform development, is observed. Dunes and ripples generally exhibit complex surfaces down to the limits of resolution. Yardangs have diverse textures, with some being massive at HiRISE scale, others having horizontal and cross-cutting layers of variable character, and some exhibiting blocky and polygonal morphologies. 'Reticulate' (fine polygonal texture) bedforms are ubiquitous in the thick mantle at the highest elevations.
    Keywords: Instrumentation and Photography
    Type: Geophysical Research Letters; Volume 34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-11
    Description: With the end of the Space Shuttle era anticipated in this decade and the requirements for the Crew Exploration Vehicle (CEV) now being defined, an opportune window exists for incorporating 'lessons learned' from relevant aircraft and space flight experience into the early stages of designing the next generation of human spacecraft. This includes addressing not only the technological and overall mission challenges, but also taking into account the comprehensive effects that space flight has on the pilot, all of which must be balanced to ensure the safety of the crew. This manuscript presents a unique and timely overview of a multitude of competing, often unrelated, requirements and constraints governing spacecraft design that must be collectively considered in order to ensure the success of future space exploration missions.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-11
    Description: A pinpoint landing capability will be a critical component for many planned NASA missions to Mars and beyond. Implicit in the requirement is the ability to accurately localize the spacecraft with respect to the terrain during descent. In this paper, we present evidence that a vision-based solution using craters as landmarks is both practical and will meet the requirements of next generation missions. Our emphasis in this paper is on the feasibility of such a system in terms of (a) localization accuracy and (b) applicability to Martian terrain. We show that accuracy of well under 100 meters can be expected under suitable conditions. We also present a sensitivity analysis that makes an explicit connection between input data and robustness of our pose estimate. In addition, we present an analysis of the susceptibility of our technique to inherently ambiguous configurations of craters. We show that probability of failure due to such ambiguity is becoming increasingly small.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Photogrammetric Engineering and Remote Sensing (ISSN 0099-1112); Volume 71; No. 10; 1197-1204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-11
    Description: The Orbiter radiator system consists of eight individual 4.6 m x 3.2 m panels located with four on each payload bay door. Forward panels #1 and #2 are 2.3 cm thick while the aft panels #3 and #4 have a smaller overall thickness of 1.3 cm. The honeycomb radiator panels consist of 0.028 cm thick Aluminum 2024-T81 facesheets and Al5056-H39 cores. The face-sheets are topped with 0.005 in. (0.127 mm) silver-Teflon tape. The radiators are located on the inside of the shuttle payload bay doors, which are closed during ascent and reentry, limiting damage to the on-orbit portion of the mission. Post-flight inspections at the Kennedy Space Center (KSC) following the STS-115 mission revealed a large micrometeoroid/orbital debris (MMOD) impact near the hinge line on the #4 starboard payload bay door radiator panel. The features of this impact make it the largest ever recorded on an orbiter payload bay door radiator. The general location of the damage site and the adjacent radiator panels can be seen in Figure 2. Initial measurements of the defect indicated that the hole in the facesheet was 0.108 in. (2.74 mm) in diameter. Figure 3 shows an image of the front side damage. Subsequent observations revealed exit damage on the rear facesheet. Impact damage features on the rear facesheet included a 0.03 in. diameter hole (0.76 mm), a approx.0.05 in. tall bulge (approx.1.3 mm), and a larger approx.0.2 in. tall bulge (approx.5.1 mm) that exhibited a crack over 0.27 in. (6.8 mm) long. A large approx.1 in. (25 mm) diameter region of the honeycomb core was also damaged. Refer to Figure 4 for an image of the backside damage to the panel. No damage was found on thermal blankets or payload bay door structure under the radiator panel. Figure 5 shows the front facesheet with the thermal tape removed. Ultrasound examination indicated a maximum facesheet debond extent of approximately 1 in. (25 mm) from the entry hole. X-ray examinations revealed damage to an estimated 31 honeycomb cells with an extent of 0.85 in. x 1.1 in. (21.6 x 27.9 mm). Pieces of the radiator at and surrounding the impact site were recovered during the repair procedures at KSC. They included the thermal tape, front facesheet, honeycomb core, and rear facesheet. These articles were examined at JSC using a scanning electron microscope (SEM) with an energy dispersive x-ray spectrometer (EDS). Figure 6 shows SEM images of the entry hole in the facesheet. The asymmetric height of the lip may be attributed to projectile shape and impact angle. Numerous instances of a glass-fiber organic matrix composite were observed in the facesheet tape sample. The fibers were approximately 10 micrometers in diameter and variable lengths. EDS analysis indicated a composition of Mg, Ca, Al, Si, and O. Figures 7 and 8 present images of the fiber bundles, which were believed to be circuit board material based on similarity in fiber diameter, orientation, consistency, and composition. A test program was initiated in an attempt to simulate the observed damage to the radiator facesheet and honeycomb. Twelve test shots were performed using projectiles cut from a 1.6 mm thick fiberglass circuit board substrate panel. Results from test HITF07017, shown in figures 9 and 10, correlates with the observed impact features reasonably well. The test was performed at 4.14 km/sec with an impact angle of 45 degrees using a cylindrical projectile with a diameter and length of 1.25 mm. The fiberglass circuit board material had a density of 1.65 g/cu cm, giving a projectile mass of 2.53 mg. An analysis was performed using the Bumper code to estimate the probability of impact to the shuttle from a 1.25 mm diameter particle. Table 1 shows a 1.6% chance (impact odds = 1 in 62) of a 1.25 mm or larger MMOD impact on the radiators of the vehicle during a typical ISS mission. There is a 0.4% chance (impact odds = 1 in 260) that a 1.25 mm or larger MMOD particle would impact the RCC wing leading edge and nose cap during a typical miion. Figure 11 illustrates the vulnerable areas of the wing leading edge reinforced carbon-carbon (RCC), an area of the vehicle that is very sensitive to impact damage. The highlighted red, orange, yellow, and light green areas would be expected to experience critical damage if impacted by an OD particle such as the one that hit the RH4 radiator panel on STS-115.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Orbital Debris Quarterly News, Vol. 11, No. 3; 2-5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-11
    Description: HEALPix the Hierarchical Equal Area isoLatitude Pixelization is a versatile structure for the pixelization of data on the sphere. An associated library of computational algorithms and visualization software supports fast scientific applications executable directly on discretized spherical maps generated from very large volumes of astronomical data. Originally developed to address the data processing and analysis needs of the present generation of cosmic microwave background experiments (e.g., BOOMERANG, WMAP), HEALPix can be expanded to meet many of the profound challenges that will arise in confrontation with the observational output of future missions and experiments, including, e.g., Planck, Herschel, SAFIR, and the Beyond Einstein inflation probe. In this paper we consider the requirements and implementation constraints on a framework that simultaneously enables an efficient discretization with associated hierarchical indexation and fast analysis/synthesis of functions defined on the sphere. We demonstrate how these are explicitly satisfied by HEALPix.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 622; Issue 2; 759-771
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-11
    Description: We report the discovery that impacts in the Stardust cometary collector are not distributed randomly in the collecting media, but appear to be clustered on scales smaller than 10 cm. We also report the discovery of at least two populations of oblique tracks. We evaluated several hypotheses that could explain the observations. No hypothesis was consistent with all the observations, but the preponderance of evidence points toward at least one impact on the central Whipple shield of the spacecraft as the origin of both clustering and low-angle oblique tracks. High-angle oblique tracks unambiguously originate from a non-cometary impact on the spacecraft bus just forward of the collector.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-11
    Description: We report interferometric observations of the semiregular variable star RS CrB, a red giant with strong silicate emission features. The data were among the first long-baseline mid-infrared stellar fringes obtained between the Keck telescopes, using parts of the new nulling beam combiner.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 634; L169-L172.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-11
    Description: We have analyzed the high-resolution ultraviolet (UV) emission spectrum of molecular deuterium hydride (HD) excited by electron impact at 100 eV under optically thin, single-scattering experimental conditions. The high-resolution spectrum (FWHM=160 mA) spans the wavelength range from 900 to 1650 A and contains the two Rydberg series of HD: (sup 1)Sigma(sub u)(sup +)1s(sigma), np(si n=2, 3, 4) --〉 X(sup 1)Sigma(sub g)(sup +) and (sup 1)Pi(sub u)(sup +)1s(sigma), np(pi)(C,D,D',D'', n=2, 3, 4, 5) --〉X(sup 1)Sigma(sub g)(sup +). A model spectrum of HD, based on newly calculated tra rovibrational coupling for the strongest band systems, B (sup 1)Sigma(sub u)(sup +)-X(sup 1)Sigma(sub g)(sup +),B'(sup 1)Sigma(sub g)(sup +)-X(sup 1)Sigma(sub g)(sup +),C(sup 1)Pi(sub u)-X(sup 1)Sigm sections for direct excitation at 100 eV of the B (sup 1)Sigma(sub u)(sup +), B' (sup 1)Sigma(sub u)(sup +), C(sup 1)Pi(sub u), and D(sup 1)Pi(sub u) states were derived from a model analysis of the state. The absolute cross section values for excitation to the B (sup 1)Sigma(sub u)(sup +), B' (sup 1)Sigma(sub u)(sup +), C(sup 1)Pi(sub u), and D(sup 1)Pi(sub u) states were found to be (2.57+/-0. and (0.17+/-0.04)x10(exp -17) sq cm, respectively. We have also determined the dissociative excitation cross sections at 100 eV for the emission of Ly(alpha) at 1216 A and Ly(Beta) at 1025 A lines, which are (7.98+/-1.12)x10(exp -18) and (0.40+/-0.10)x10(exp -18) sq cm, respectively. The summed excitation function of the closely spaced pair of lines, H Ly(alpha) and D Ly(Beta), resulting from excitation of HD, has been measured from the threshold to 800 eV and is analytically modeled with a semiempirical relation. The model cross sections are in good agreement with the corrected Ly(alpha) cross sections of Mohlmann et al. up to 2 keV. Based on measurements of H, D (2s) production cross section values by Mohlmann et al., the H, D (n=2) cross section is estimated to be 1.6 x 10(exp -17) sq cm at 100 eV.
    Keywords: Astrophysics
    Type: The Astrophysical Journal Supplement Series; Volume 159; 314-330
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-11
    Description: In a recent paper, Kuchner, Crepp, and Ge describe new image-plane coronagraph mask designs that reject to eighth order the leakage of starlight caused by image motion at the mask, resulting in a substantial relaxation of image centroiding requirements compared to previous fourth-order and second-order masks. They also suggest that the new masks are effective at rejecting leakage caused by low-order aberrations (e.g., focus, coma, and astigmatism). In this paper, we derive the sensitivity of eighth-order masks to aberrations of any order and provide simulations of coronagraph behavior in the presence of optical aberrations.We find that the masks leak light as the fourth power of focus, astigmatism, coma, and trefoil. This has tremendous performance advantages for the Terrestrial Planet Finder Coronagraph.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 628; 474-477
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-11
    Description: Of the three major groups of comets approaching the Sun to between 6 and 12 solar radii and discovered with the coronagraphs on board SOHO, we investigate the Marsden and Kracht groups.We call these comets ''sunskirters'' to distinguish them from the Kreutz system sungrazers. Our objective is to understand the origin, history, and orbital evolution of the two groups.
    Keywords: Astrophysics
    Type: The Astrophysical Journal Supplement Series; Volume 161; 551-586
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-11
    Description: The Stellar Planet Survey is an ongoing astrometric search for giant planets and brown dwarfs around a sample of ~30 M dwarfs. We have discovered several low-mass companions by measuring the motion of our target stars relative to their reference frames. The lowest mass discovery thus far is GJ 802b, a companion to the M5 dwarf GJ 802A. The orbital period is 3.14 +/-0:03 yr, the system mass is 0:214 +/- 0:045 M(circled dot operator), and the semimajor axis is 1:28+/- 0:10 AU or 81 + 6 mas. Imaging observations indicate that GJ 802b is likely to be a brow with the astrometrically determined mass 0:058 +/- 0:021 M(circled dot operator) (1 (sigma) limits). The remaining uncertainty in the orbit is the eccentricity that is now loosely constrained. We dis the system age limits the mass and the prospects of further narrowing the mass range when e is more precisely determined.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-11
    Description: Viewgraph topics include: optical image of Taurus; dust extinction in IR has provided a new tool for probing cloud morphology; observations of the gas can contribute critical information on gas temperature, gas column density and distribution, mass, and kinematics; the Taurus molecular cloud complex; average spectra in each mask region; mas 2 data; dealing with mask 1 data; behavior of mask 1 pixels; distribution of CO column densities; conversion to H2 column density; variable CO/H2 ratio with values much less than 10(exp -4) at low N indicated by UV results; histogram of N(H2) distribution; H2 column density distribution in Taurus; cumulative distribution of mass and area; lower CO fractional abundance in mask 0 and 1 regions greatly increases mass determined in the analysis; masses determined with variable X(CO) and including diffuse regions agrees well with the found from L(CO); distribution of young stars as a function of molecular column density; star formation efficiency; star formation rate and gas depletion; and enlarged images of some of the regions with numerous young stars. Additional slides examine the origin of the Taurus molecular cloud, evolution from HI gas, kinematics as a clue to its origin, and its relationship to star formation.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: SIM-PlanetQuest is a NASA astrophysics mission that is implementing the National Research Counsel's recommended Astrometric Interferometry Mission (AIM) to develop the first, in-space, optical, long-baseline Michelson Stellar Interferometer for performing micro-arcsecond-level astrometry. This level of astrometric precision will enable characterization of planetary systems around nearby stars and enable a number of key investigations in astrophysics including calibration of the cosmological distance scale, stellar and galactic structure and evolution, and dark matter/energy distribution. This paper provides an update on the SIM-PlanetQuest Mission covering the results of the 2005 mission redesign and the recent completion of the last in a series of technology "gates." The SIM-PlanetQuest mission redesign was directed by NASA to recover eroded mass and power margins and to meet specific implementation cost targets. The resulting mission redesign met all redesign objectives with minimal impact to mission science performance. This paper provides the mission redesign objectives and describes the resulting mission and system design including changes in science capability. SIM-PlanetQuest also completed the last of eight major technology development gates that were established in 2001 by NASA, completing the enabling technology development. The technology development program, the last gate, and its significance to the project's flight verification and validation (V&V) approach are briefly described (covered in more detail in a separate paper at this conference). An update on project programmatic status and plans is also provided.
    Keywords: Astrophysics
    Type: Proceedings SPIE, Space Missions and Technology; Volume 6268
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-12
    Description: We analyze the effect of a highly dispersive element placed inside a modulated optical cavity on the frequency and amplitude of the output modulation to determine the conditions for enhanced gyroscopic sensitivities. The element is treated as both a phase and amplitude filter, and the time-dependence of the cavity field is considered. Both atomic gases (two-level and multi-level) and optical resonators (single and coupled) are considered and compared as dispersive elements. We find that it is possible to simultaneously enhance the gyro scale factor sensitivity and suppress the dead band by using an element with anomalous dispersion that has greater loss at the carrier frequency than at the side-band frequencies, i.e., an element that simultaneously pushes and intensifies the perturbed cavity modes, e.g. a two-level absorber or an under-coupled optical resonator. The sensitivity enhancement is inversely proportional to the effective group index, becoming infinite at a group index of zero. However, the number of round trips required to reach a steady-state also becomes infinite when the group index is zero (or two). For even larger dispersions a steady-state cannot be achieved, and nonlinear dynamic effects such as bistability and periodic oscillations are predicted in the gyro response.
    Keywords: Instrumentation and Photography
    Type: Physical Review A; Volume 78; Issue 5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-12
    Description: We investigate here the effects of plasma instabilities driven by rapid e(sup +/-) pair cascades, which arise in the environment of GRB sources as a result of back-scattering of a seed fraction of their original spectrum. The injection of e(sup +/-) pairs induces strong streaming motions in the ambient medium. One therefore expects the pair-enriched medium ahead of the forward shock to be strongly sheared on length scales comparable to the radiation front thickness. Using three-dimensional particle-in-cell simulations, we show that plasma instabilities driven by these streaming e(sup +/-) pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between e(sup +/-) pairs and ions, and may help explain the origin of large upstream fields in GRB shocks.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: This slide presentation reviews theoretical considerations of the formation of massive stars. It addresses the questions that assuming a gravitationally unstable massive clump, how does enough material become concentrated into a sufficiently small volume within a sufficiently short time? and how does the forming massive star influence its immediate surroundings to limit its mass?
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-28
    Description: Thermal protection systems (TPS) insulate planetary probes and Earth re-entry vehicles from the aerothermal heating experienced during hypersonic deceleration to the planet s surface. The systems are typically designed with some additional capability to compensate for both variations in the TPS material and for uncertainties in the heating environment. This additional capability, or robustness, also provides a surge capability for operating under abnormal severe conditions for a short period of time, and for unexpected events, such as meteoroid impact damage, that would detract from the nominal performance. Strategies and approaches to developing robust designs must also minimize mass because an extra kilogram of TPS displaces one kilogram of payload. Because aircraft structures must be optimized for minimum mass, reliability-based design approaches for mechanical components exist that minimize mass. Adapting these existing approaches to TPS component design takes advantage of the extensive work, knowledge, and experience from nearly fifty years of reliability-based design of mechanical components. A Non-Dimensional Load Interference (NDLI) method for calculating the thermal reliability of TPS components is presented in this lecture and applied to several examples. A sensitivity analysis from an existing numerical simulation of a carbon phenolic TPS provides insight into the effects of the various design parameters, and is used to demonstrate how sensitivity analysis may be used with NDLI to develop reliability-based designs of TPS components.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Critical Technologies for Hypersonic Vehicle Development; 13-1 - 13-28; RTO-EN-AVT-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-28
    Description: An important element of the Space Shuttle Orbiter safety improvement plan is the improved understanding of its aerodynamic performance so as to minimize the "black zones" in the contingency abort trajectories [1]. These zones are regions in the launch trajectory where it is predicted that, due to vehicle limitations, the Orbiter will be unable to return to the launch site in a two or three engine-out scenario. Reduction of these zones requires accurate knowledge of the aerodynamic forces and moments to better assess the structural capability of the vehicle. An interesting aspect of the contingency abort trajectories is that the Orbiter would need to achieve angles of attack as high as 60deg. Such steep attitudes are much higher than those for a nominal flight trajectory. The Orbiter is currently flight certified only up to an angle of attack of 44deg at high Mach numbers and has never flown at angles of attack larger than this limit. Contingency abort trajectories are generated using the data in the Space Shuttle Operational Aerodynamic Data Book (OADB) [2]. The OADB, a detailed document of the aerodynamic environment of the current Orbiter, is primarily based on wind-tunnel measurements (over a wide Mach number and angle-of-attack range) extrapolated to flight conditions using available theories and correlations, and updated with flight data where available. For nominal flight conditions, i.e., angles of attack of less than 45deg, the fidelity of the OADB is excellent due to the availability of flight data. However, at the off-nominal conditions, such as would be encountered on contingency abort trajectories, the fidelity of the OADB is less certain. The primary aims of a recent collaborative effort (completed in the year 2001) between NASA and Boeing were to determine: 1) accurate distributions of pressure and shear loads on the Orbiter at select points in the contingency abort trajectory space; and 2) integrated aerodynamic forces and moments for the entire vehicle and the control surfaces (body flap, speed brake, and elevons). The latter served the useful purpose of verification of the aerodynamic characteristics that went into the generation of the abort trajectories.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Critical Technologies for Hypersonic Vehicle Development; 11-1 - DP-17; RTO-EN-AVT-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-06
    Description: NASA explores for answers that power our future by building a new space exploration vehicle that will become America s human spacecraft workhorse after the shuttle is retired in 2010. The new spacecraft is called Orion. Orion is part of the Constellation Program to send human explorers back to the Moon and beyond
    Keywords: Spacecraft Design, Testing and Performance
    Type: 2007 NASA Seal/Secondary Air System Workshop; 25-39; NASA/CP-2008-215263/VOL1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-12
    Description: This viewgraph presentation reviews the use Automatic Fusion of Image Data System (AFIDS) for Automatic Co-Registration of QuickBird Data to ascertain if changes have occurred in images. The process is outlined, and views from Iraq and Los Angelels are shown to illustrate the process.
    Keywords: Instrumentation and Photography
    Type: Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop; SSTI-2220-0039
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-12
    Description: The Sample Analysis at Mars (SAM) instrument will analyze Martian samples collected by the Mars Science Laboratory Rover with a suite of spectrometers. This paper discusses the driving requirements, design, and lessons learned in the development of the Sample Manipulation System (SMS) within SAM. The SMS stores and manipulates 74 sample cups to be used for solid sample pyrolysis experiments. Focus is given to the unique mechanism architecture developed to deliver a high packing density of sample cups in a reliable, fault tolerant manner while minimizing system mass and control complexity. Lessons learned are presented on contamination control, launch restraint mechanisms for fragile sample cups, and mechanism test data.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 39th Aerospace Mechanisms Symposium; 303-316; NASA/CP-2008-215252
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-12
    Description: The future human lunar missions are expected to undertake far more ambitious activities than those of the Apollo program with the possibility of some missions lasting up to several months. Such extended missions require the use of large-size lunar outposts to accommodate living quarters for the astronauts as well as indoor laboratory facilities. The greatest obstacle to the prolonged human presence on the Moon is the threat posed by the harsh lunar environment that is plagued with multi-source high-energy radiation exposure as well as frequent barrage of meteoroids. Hence, for such extended missions to succeed, it is vital that the future lunar outposts be designed to provide a safe habitat for the astronauts. Over the past few years, a variety of ideas and concepts for future lunar outposts and bases have been proposed. With shielding as the primary concern, some have suggested the use of natural structures such as lava tubes while others have taken a more industrial approach and suggested the construction of fixed structures in the form of inflatable, inflatable with rigid elements, and tent-style membrane. For evaluation of these structural design concepts, Drake and Richter1 have proposed a rating system based on such factors as effectiveness, importance, and timing. While all of these designs, in general, benefit from in-situ resource utilization (i.e., lunar regolith) for shielding, they share a common disadvantage of being fixed to one particular location that would limit exploration to the region in close proximity of the outpost.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXXIV-1 - XXXIV-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-12
    Description: Solar Sailcraft, the stuff of dreams of the H.G. Wells generation, is now a rapidly maturing reality. The promise of unlimited propulsive power by harnessing stellar radiation is close to realization. Currently, efforts are underway to build, prototype and test two configurations. These sails are designed to meet a 20m sail requirement, under guidance of the In-Space Propulsion (ISP) technology program office at MSFC. While these sails will not fly , they are the first steps in improving our understanding of the processes and phenomena at work. As part of the New Millennium Program (NMP) the ST9 technology validation mission hopes to launch and fly a solar sail by 2010 or sooner. Though the Solar Sail community has been studying and validating various concepts over two decades, it was not until recent breakthroughs in structural and material technology, has made possible to build sails that could be launched. With real sails that can be tested (albeit under earth conditions), the real task of engineering a viable spacecraft has finally commenced. Since it is not possible to accurately or practically recreate the actual operating conditions of the sailcraft (zero-G, vacuum and extremely low temperatures), much of the work has focused on developing accurate models that can be used to predict behavior in space, and for sails that are 6-10 times the size of currently existing sails. Since these models can be validated only with real test data under "earth" conditions, the process of modeling and the identification of uncertainty due to model assumptions and scope need to be closely considered. Sailcraft models that exist currently, are primarily focused on detailed physical representations at the component level, these are intended to support prototyping efforts. System level models that cut across different sail configurations and control concepts while maintaining a consistent approach are non-existent. Much effort has been focused on the areas of thrust performance, solar radiation prediction, and sail membrane behavior vis-a-vis their reflective geometry, such as wrinkling/folding/furling as it pertains to thrust prediction. A parallel effort has been conducted on developing usable models for developing attitude control systems (ACS), for different sail configurations in different regimes. There has been very little by way of a system wide exploration of the impact of the various control schemes, thrust prediction models for different sail configurations being considered.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXXVII-1 - XXXVII-6; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: This research was in support of exploring the need for more flexible "center of gravity (CG) specifications than those currently established by NASA for the Multi-Purpose Logistics Module (MPLM). The MPLM is the cargo carrier for International Space Station (ISS) missions. The MPLM provides locations for 16 standard racks, as shown in Figure 1; not all positions need to be filled in any given flight. The MPLM coordinate system (X(sub M), Y(sub M), Z(sub M)) is illustrated as well. For this project, the primary missions of interest were those which supply the ISS and remove excess materials on the return flights. These flights use a predominate number of "Resupply Stowage Racks" (RSR) and "Resupply Stowage Platforms" (RSP). In these two types of racks, various smaller items are stowed. Hence, these racks will exhibit a considerable range of mass values as well as a range as to where their individual CG are located.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XLIV-1 - XLIV-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-12
    Description: In this report, we summarize recent findings regarding the use spherical microcavities in the amplification of light that is inelastically scattered by either fluorescent or Raman-active molecules. This discussion will focus on Raman scattering, with the understanding that analogous processes apply to fluorescence. Raman spectra can be generated through the use of a very strong light source that stimulates inelastic light scattering by molecules, with the scattering occurring at wavelengths shifted from that of the source and being most prominent at shifts associated with the molecules natural vibrational frequencies. The Raman signal can be greatly enhanced by exposing a molecule to the intense electric fields that arise near surfaces (typically of gold or silver) exhibiting nanoscale roughness. This is known as surface-enhanced Raman scattering (SERS). SERS typically produces gain factors of 103 - 106, but under special conditions, factors of 1010 - 1014 have been achieved.
    Keywords: Instrumentation and Photography
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XVI-1 - XVI-6; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-12
    Description: Space travel propelled by solar sails is motivated by the fact that the momentum exchange that occurs when photons are reflected and/or absorbed by a large solar sail generates a small but constant acceleration. This acceleration can induce a constant thrust in very large sails that is sufficient to maintain a polar observing satellite in a constant position relative to the Sun or Earth. For long distance propulsion, square sails (with side length greater than 150 meters) can reach Jupiter in two years and Pluto in less than ten years. Converting such design concepts to real-world systems will require accurate analytical models and model parameters. This requires extensive structural dynamics tests. However, the low mass and high flexibility of large and light weight structures such as solar sails makes them unsuitable for ground testing. As a result, validating analytical models is an extremely difficult problem. On the other hand, a fundamental question can be asked. That is whether an analytical model that represents a small-scale version of a solar-sail boom can be extended to much larger versions of the same boom. To answer this question, we considered a long deployable boom that will be used to support the solar sails of the sail-craft. The length of fully deployed booms of the actual solar sail-craft will exceed 100 meters. However, the test-bed we used in our study is a 30 meter retractable boom at MSFC. We first develop analytical models based on Lagrange s equations and the standard Euler-Bernoulli beam. Then the response of the models will be compared with test data of the 30 meter boom at various deployed lengths. For this stage of study, our analysis was limited to experimental data obtained at 12ft and 18ft deployment lengths. The comparison results are positive but speculative. To observe properly validate the analytic model, experiments at longer deployment lengths, up to the full 30 meter, have been requested. We expect the study to answer the extendibility question of the analytical models. In operation, rapid temperature changes can be induced in solar sails as they transition from day to night and vice versa. This generates time dependent thermally induced forces, which may in turn create oscillation in structural members such as booms. Such oscillations have an adverse effect on system operations, precise pointing of instruments and antennas and can lead to self excited vibrations of increasing amplitude. The latter phenomenon is known as thermal flutter and can lead to the catastrophic failure of structural systems. To remedy this problem, an active vibration suppression system has been developed. It was shown that piezoelectric actuators used in conjunction with a Proportional Feedback Control (PFC) law (or Velocity Feedback Control (VFC) law) can induce moments that can suppress structural vibrations and prevent flutter instability in spacecraft booms. In this study, we will investigate control strategies using piezoelectric transducers in active, passive, and/or hybrid control configurations. Advantages and disadvantages of each configuration will be studied and experiments to determine their capabilities and limitations will be planned. In particular, special attention will be given to the hybrid control, also known as energy recycling, configuration due to its unique characteristics.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXIII-1 - XXIII-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-12
    Description: Planning is underway for new NASA missions to the moon and to MARS. These missions carry a great deal of risk, as the Challenger and Columbia accidents demonstrate. In order to minimize the risks to the crew and the mission, risk reduction must be done at every stage, not only in quality manufacturing, but also in design. It is necessary, therefore, to be able to compare the risks posed in different launch vehicle designs. Further, these designs have not yet been implemented, so it is necessary to compare these risks without being able to test the vehicles themselves. This paper will discuss some of the issues involved in this type of comparison. It will start with a general discussion of reliability estimation. It will continue with a short look at some software designed to make this estimation easier and faster. It will conclude with a few recommendations for future tools.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; V-1 - V-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: Cryogenic fluids play an important role in space transportation. Liquid oxygen and hydrogen are vital fuel components for liquid rocket engines. It is also difficult to accurately measure the liquid level in the cryogenic tanks containing the liquids. The current methods use thermocouple rakes, floats, or sonic meters to measure tank level. Thermocouples have problems examining the boundary between the boiling liquid and the gas inside the tanks. They are also slow to respond to temperature changes. Sonic meters need to be mounted inside the tank, but still above the liquid level. This causes problems for full tanks, or tanks that are being rotated to lie on their side.
    Keywords: Instrumentation and Photography
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XIV-1 - XIV-6; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-12
    Description: Part 2, which will be discussed in this report, will discuss the development of a Lunar Cargo Lander (unmanned launch vehicle) that will transport usable payload from Trans- Lunar Injection to the moon. The Delta IV-Heavy was originally used to transport the Lunar Cargo Lander to TLI, but other launch vehicles have been studied. In order to uncover how much payload is possible to land on the moon, research was needed in order to design the sub-systems of the spacecraft. The report will discuss and compare the use of a hypergolic and cryogenic system for its main propulsion system. The guidance, navigation, control, telecommunications, thermal, propulsion, structure, mechanisms, landing gear, command, data handling, and electrical power sub-systems were designed by scaling off other flown orbiters and moon landers. Once all data was collected, an excel spreadsheet was created to accurately calculate the usable payload that will land on the moon along with detailed mass and volume estimating relations. As designed, The Lunar Cargo Lander can plant 5,400 lbm of usable payload on the moon using a hypergolic system and 7,400 lbm of usable payload on the moon using a cryogenic system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; X-1 - X-8; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-12
    Description: EXO 2030+375, a 42 s transient X-ray pulsar with a Be star companion, has been observed to undergo an outburst at nearly every periastron passage for the last 13.5 years. From 1994 through 2002, the global trend in the pulsar spin frequency was spin-down. Using Rossi X-Ray Timing Explorer (RXTE) data from 2003 September, we have observed a transition to global spin-up in EXO 2030+375. Although the spin-frequency observations are sparse, the relative spin-up between 2002 June and 2003 September observations, along with an overall brightening of the outbursts since mid-2002 observed with the RXTE All-Sky Monitor, accompanied by an increase in density of the Be disk, indicated by infrared magnitudes, suggest that the pattern observed with BATSE of a roughly constant spin frequency, followed by spin-up, followed by spin-down is repeating. If so, this pattern has approximately an 11 yr period, similar to the 15 +/- 3 yr period derived by Wilson et al. for the precession period of a one-armed oscillation in the Be disk. If this pattern is indeed repeating, we predict a transition from spin-up to spin-down in 2005.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 620; No. 2; L99-L102
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: This slide presentation shows several case studies for fault protection. The cases involve a discovery-class mission to excavate material from a comet, rendezvous with two asteroids and develop a prototype system for a next-generation Deep Space Network consisting of ndca large array of small antennas.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-11
    Description: The following sections describe Ares V performance and its payoff to a wide array of potential solar system exploration missions. Application to potential Astrophysics missions is addressed in Reference 3.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-11
    Description: In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about one micron. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the -2.6 to -3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-11
    Description: This viewgraph presentation reviews the Orion Crew Exploration vehicle (CEV) and its usage in the exploration of the moon and subsequent travel to Mars. Schedules for development and testing of the CEV are shown. Also displayed are various high level design views of the CEV, the launch abort system, the Atlas Docking adapter, and the service module.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-11
    Description: Every day, ISS astronauts photograph designated sites and dynamic events on the Earth's surface using digital cameras equipped with a variety of lenses. Depending on observation parameters, astronauts can collect high resolution (4-6 m pixel size) or synoptic views (lower resolution but covering very large areas) digital data in 3 (red-green-blue) color bands. ISS crews have daily opportunities to document a variety of high-latitude phenomena. Although lighting conditions, ground track and other viewing parameters change with orbital precessions and season, the 51.6o orbital inclination and 400 km altitude of the ISS provide the crew an unique vantage point for collecting image-based data of polar phenomena, including surface observations to roughly 65o latitude, and upper atmospheric observations that reach nearly to the poles. During the 2007-2009 timeframe of the IPY, polar observations will become a scientific focus for the CEO experiment; the experiment is designated ISS-IPY. We solicit requests from scientists for observations from the ISS that are coordinated with or complement ground-based polar studies. The CEO imagery website for ISS-IPY provides an on-line form that allows IPY investigators to interact with CEO scientists and define their imagery requests. This information is integrated into daily communications with the ISS astronauts about their Earth Observations targets. All data collected are cataloged and posted on the website for downloading and assimilation into IPY projects. Examples of imagery and detailed information about scientific observations from the ISS can also be downloaded from the ISS-IPY web site.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-11
    Description: Characteristic X-ray emission lines are detected from simulants of comet surfaces as they undergo collisions with highly charged ions (HCIs). The HCI projectiles are O+2-O+7. Ion energies are varied in the range (2-7)q keV, where q is the ion charge state. The targets are the insulator minerals olivine, augite, and quartz. It is found that the emission of characteristic K-L, K-M X-rays appears to proceed during positive charging of the surface by the HCI beam. When one uses low-energy, flood-gun electrons to neutralize the surface charge, the X-ray emission is eliminated or greatly reduced, depending on the flood-gun current. Acceleration of background electrons onto the charged surface results in excitation of elemental transitions, including the K-L2 and K-L3 target X-ray emission lines of Mg and Si located spectroscopically at 1253.6 and 1739.4 eV, respectively. Also observed are emission lines from O, Na, Ca, Al, and Fe atoms in the target and charge-exchange lines via surface extraction of electrons by the O+q electric field. Good agreement is found in the ratio of the measured X-ray yields for Mg and Si relative to the ratio of their electron-impact K-shell ionization cross sections. The present study may serve as a guide to astronomers as to specific observing X-ray energies indicative of solar/stellar wind or magnetospheric ion interactions with a comet, planetary surface, or circumstellar dust.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-11
    Description: Filamentary structures following magnetic field lines pervade the Sun's atmosphere and offer us insight into the solar magnetic field. Radio propagation measurements have shown that the smallest filamentary structures in the solar corona are more than 2 orders of magnitude finer than those seen in solar imaging. Here we use radio Doppler measurements to characterize their transverse density gradient and determine their finest scale in the outer corona at 20-30 R(circled dot operator), where open magnetic fields prevail. Filamentary structures overly active regions have the steepest gradient and finest scale, while those overlying coronal holes have the shallowest gradient and least finest scale. Their organization by the underlying corona implies that these subresolution structures extend radially from the entire Sun, confirming that they trace the coronal magnetic field responsible for the radial expansion of the solar wind. That they are rooted all over the Sun elucidates the association between the magnetic field of the photosphere and that of the corona, as revealed by the similarity between the power spectra of the photospheric field and the coronal density fluctuations. This association along with the persistence of filamentary structures far from the Sun demonstrate that subresolution magnetic fields must play an important role not only in magnetic coupling of the photosphere and corona, but also in coronal heating and solar wind acceleration through the process of small-scale magnetic reconnection. They also explain why current widely used theoretical models that extrapolate photospheric magnetic fields into the corona do not predict the correct source of the solar wind.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 639; L95-L98
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-11
    Description: Experimental cross sections are reported for the 1s(2)2s(2) S-1 -〉 1s(2)2s2p P-1(o) transition in O+4 located at 19.689 eV. Use is made of the electron energy-loss method, using a merged electron-ion beam geometry. The center-of-mass interaction energies for the measurements in the S-1 -〉 P-1(o) transition are in the range 18 eV ( below the threshold) to 30 eV. Data are compared with other previous electron energy-loss measurements and with results of a 26 term R-matrix calculation that includes fine structure explicitly via the Breit-Pauli Hamiltonian. Clear resonance enhancement is observed in all experimental and theoretical results near the threshold for this S-1 -〉 P-1(o) transition.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-11
    Keywords: Spacecraft Design, Testing and Performance
    Type: 5th IAA Symposium on Small Satellites for Earth Observation; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-12
    Description: 'SIM PlanetQuest will exploit the classical measuring tool of astrometry (interferometry) with unprecedented precision to make dramatic advances in many areas of astronomy and astrophysics'(1). In order to obtain interferometric data two large steerable mirrors, or Siderostats, are used to direct starlight into the interferometer. A gimbaled mechanism actuated by linear actuators is chosen to meet the unprecedented pointing and angle tracking requirements of SIM. A group of JPL engineers designed, built, and tested a linear ballscrew actuator capable of performing submicron incremental steps for 10 years of continuous operation. Precise, zero backlash, closed loop pointing control requirements, lead the team to implement a ballscrew actuator with a direct drive DC motor and a precision piezo brake. Motor control commutation using feedback from a precision linear encoder on the ballscrew output produced an unexpected incremental step size of 20 nm over a range of 120 mm, yielding a dynamic range of 6,000,000:1. The results prove linear nanometer positioning requires no gears, levers, or hydraulic converters. Along the way many lessons have been learned and will subsequently be shared.
    Keywords: Instrumentation and Photography
    Type: 39th Aerospace Mechanisms Symposium; 373-386; NASA/CP-2008-215252
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-12
    Description: This viewgraph presentation reviews the carbon atmospheric exchange with Arctic tundra. In the Arctic the ecosystem has been a net carbon sink. The project investigates the question of how might climate warming effect high latitude ecosystems and the Earth ecosystems and how to measure the changes.
    Keywords: Instrumentation and Photography
    Type: Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop; SSTI-2220-0039
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-12
    Description: This viewgraph presentation reviews the principles of establishing and verifying the traceability of remote sensing measurements to national and international scales. Doing this allows comparisons to be made independent of time or locale, and improves understanding of instrument performance, provides confidence in the accuracy of the measurements, improves measurement accuracy and helps contractors understand and meet agency requirements, protecting contractor and customer.
    Keywords: Instrumentation and Photography
    Type: Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop; SSTI-2220-0039
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-12
    Description: We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture groundbased telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hours after the trigger shows a continuum break at lambda approx. equals 8070 A, produced by neutral hydrogen absorption at zeta = 5.6. We also detect an absorption line at 8158 A which we interpret as Si II lambda 1260 at zeta = 5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Ly(alpha) profile with a column density with log(N(sub HI)/sq cm) = 22.50 +/- 0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: i) GRB afterglows originating from zeta greater than or approx. equal to 6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; ii) The presence of large H I column densities in some GRBs host galaxies at zeta 〉 5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; iii) GRBs appear crucial to locate typical star-forming galaxies at zeta 〉 5 and therefore the type of galaxies responsible for the reionization of the universe.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-12
    Description: Hybrid Rocket powered vehicles have had a limited number of flights. Most recently in 2004, Scaled Composites had a successful orbital trajectory that put a private vehicle twice to over 62 miles high, the edge of space to win the X-Prize. This endeavor man rates a hybrid system. Hybrids have also been used in a number of one time launch attempts - SET-1, HYSR, HPDP. Hybrids have also been developed for use and flown in target drones. This chapter discusses various flight-test programs that have been conducted, hybrid vehicles that are in development, other hybrid vehicles that have been proposed and some strap-on applications have also been examined.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-12
    Description: We present a systematic spectral analysis of 350 bright Gamma-Ray Bursts (GRBs) observed by the Burst and Transient Source Experiment (BATSE; approx. 30 keV - 2 MeV; including 17 short GRBs) with high energy and time resolution. Our sample was selected from the complete set of 2704 BATSE GRBs based on their energy fluence or peak photon flux values to assure good statistics. To obtain well-constrained, model-unbiased spectral parameters, a set of various photon models is used to fit each spectrum, and internal characteristics of each model are also investigated. A thorough analysis has been performed on 342 time-integrated and 8459 time-resolved burst spectra, and the effects of integration times in determining the spectral parameters are explored. The analysis results presented here provide the most detailed perspective of spectral aspects of the GRB prompt emission to date. Using the results, we study correlations among spectral parameters and spectral evolutions. The results of all spectral fits are available electronically in FITS format, from the High-Energy Astrophysics Science Archive Research Center (HEASARC).
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-06
    Description: The broad-line radio galaxy 3C 111 has been suggested as the counterpart of the y-ray source 3EG J0416+3650. While 3C 111 meets most of the criteria for a high-probability identification, like a bright flat-spectrum radio core and a blazar-like broadband SED, in the Third EGRET Catalog, the large positional offset of about 1.5' put 3C 111 outside the 99% probability region for 3EG J0416+3650, making this association questionable. We present a re-analysis of all available archival data for 3C 111 from the EGRET archives, resulting in detection of variable hard-spectrum high-energy gamma-ray emission above 1000 MeV from a position close to the nominal position of 3C 111, in three separate viewing periods (VPs), at a 3sigma level in each. A second variable hard-spectrum source is present nearby. At 〉100 MeV, one variable soft-spectrum source seems to account for most of the EGRET-detected emission of 3EG J0416+3650. A follow-up Swift UVOT/XRT observation reveals one moderately bright X-ray source in the error box of 3EG J0416+3650, but because of the large EGRET position uncertainty, it is not certain that the X-ray and gamma-ray sources are associated. Another Swift observation near the second (unidentified) hard gamma-ray source detected no X-ray source nearby.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-06
    Description: I review photo-polarimetric and spectropolarimetric observations of V838 Mon, which revealed that it had an asymmetrical inner circumstellar envelope following its 2nd photometric outburst. Electron scattering, modified by pre- or post-scattering H absorption, is the polarizing mechanism in V838 Mon's envelope. The simplest geometry implied by these observations is that of a spheroidal shell, flattened by at least 10% and having a projected position angle on the sky of approx.37deg. Analysis of V838 Mon's polarized flux reveals that this electron scattering shell lies interior to the envelope region in which Ha and Ca I1 triplet emission originates. To date, none of the theoretical models proposed for V838 Mon have demonstrated that they can reproduce the evolution of V838 Mon's inner circumstellar environment, as probed by spectropolarimetry.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-06
    Description: This viewgraph presentation reviews the Laser Interferometer Space Antenna (LISA). LISA os a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector. The 5 million Kilometer long detector will consist of three spacecraft orbiting the Sun in a triangular formation. Space-Time strains induced by gravitational waves are detected by measuring changes in the separation of fiducial masses with laser interferometry. LISA is expected to detect signals from merging massive black holes, compact stellar objects spiraling into super massive black holes in galactic nuclei, thousands of close binaries of compact objects in the Milky way and possible backgrounds of cosmological origin.
    Keywords: Astrophysics
    Type: LISA meeting held on 9 Apr. 2008 at the Columbia University, New York, NY
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-06
    Description: We report the detection with the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) of 530 Hz burst oscillations in a thermonuclear (Type I) burst from the transient X-ray source A1744-361. This is only the second burst ever observed from this source, and the first to be seen in any detail. Our results confirm that A1744-361 is a low mass X-ray binary (LMXB) system harboring a rapidly rotating neutron star. The oscillations are first detected along the rising edge of the burst, and show evidence for frequency evolution of a magnitude similar to that seen in other burst sources. The modulation amplitude and its increase with photon energy are also typical of burst oscillations. The lack of any strong indication of photospheric radius expansion during the burst suggests a 9 kpc upper limit of the source distance. We also find energy dependent dips, establishing A1744-361 as a high inclination, dipping LMXB. The timescale between the two episodes of observed dips suggests an orbital period of approx. 97 min. We have also detected a 2 - 4 Hz quasi-periodic-oscillation (QPO) for the first time from this source. This QPO appears consistent with approx. 1 Hz QPOs seen from other high inclination systems. We searched for kilohertz QPOs, and found a suggestive 2.3 sigma feature at 800 Hz in one observation. The frequency, strength and quality factor are consistent with that of a lower frequency kilohertz QPO, but the relatively low significance argues for caution, so we consider this a tentative detection requiring confirmation.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-06
    Description: Gamma-ray astrophysics depends in many ways on multiwavelength studies. The Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) Collaboration has started multiwavelength planning well before the scheduled 2007 launch of the observatory. Some of the high-priority multiwavelength needs include: (1) availability of contemporaneous radio and X-ray timing of pulsars; (2) expansion of blazar catalogs, including redshift measurements; (3) improved observations of molecular clouds, especially at high galactic latitudes; (4) simultaneous broad-spectrum blazar monitoring; (5) characterization of gamma-ray transients, including gamma ray bursts; (6) radio, optical, X-ray and TeV counterpart searches for reliable and effective sources identification and characterization. Several of these activities are needed to be in place before launch.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-06
    Description: We studied extended X-ray emission from the Carina Nebula taken with the Suzaku CCD camera XIS on 2005 Aug. 29. The X-ray morphology, plasma temperature and absorption to the plasma are consistent with the earlier Einstein results. The Suzaku spectra newly revealed emission lines from various spices including oxygen, but not from nitrogen. This result restricts the N/O ratio significantly low, compared with evolved massive stellar winds, suggesting that the diffuse emission is originated in an old supernova remnant or a super shell produced by multiple supernova remnants. The X-ray spectra from the north and south of eta Car showed distinct differences between 0.3-2 keV. The south spectrum shows strong L-shell lines of iron ions and K-shell lines of silicon ions, while the north spectrum shows them weak in intensity. This means that silicon and iron abundances are a factor of 2-4 higher in the south region than in the north region. The abundance variation may be produced by an SNR ejecta, or relate to the dust formation around the star forming core.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-06
    Description: We analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the transient low mass X-ray binary (LMXB) system A1744-361. We explore the X-ray intensity and spectral evolution of the source, perform timing analysis, and find that A1744-361 is a weak LMXB, that shows atoll behavior at high intensity states. The color-color diagram indicates that this LMXB was observed in a low intensity spectrally hard (low-hard) state and in a high intensity banana state. The low-hard state shows a horizontal pattern in the color-color diagram, and the previously reported dipper QPO appears only during this state. We also perform energy spectral analyses, and report the first detection of broad iron emission line and iron absorption edge from A1744-361.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-06
    Description: We have developed and investigated the use of holographic optical elements (HOEs) and holographic transmission gratings for scanning lidar telescopes. For example, rotating a flat HOE in its own plane with the focal spot on the rotation axis makes a very simple and compact conical scanning telescope. We developed and tested transmission and reflection HOEs for use at the first three harmonic wavelengths of Nd:YAG lasers. The diffraction efficiency, diffraction angle, focal length, focal spot size and optical losses were measured for several HOEs and holographic gratings, and found to be suitable for use as lidar receiver telescopes, and in many cases could also serve as the final collimating and beam steering optic for the laser transmitter. Two lidar systems based on this technology have been designed, built, and successfully tested in atmospheric science applications. This technology will enable future spaceborne lidar missions by significantly lowering the size, weight, power requirement and cost of a large aperture, narrow field of view scanning telescope.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-06
    Description: Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behaviour precisely. We have studied the intensity and polarisation response of free-space bolometers, and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns, and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behaviour. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behaviour. The ability to model easily the intensity, polarisation, and straylight characteristics of electrically-small detectors will be of great value when designing high-performance polarimetric imaging arrays.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-06
    Description: We quantify the rapid variations in X-ray brightness ("flares") from the extremely massive colliding wind binary Eta Carinae seen during the past three orbital cycles by RXTE. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the LBV component entering and compressing the hard X-ray emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like powerlaw distribution of clumps, decreasing in number towards larger sizes, as seen in Wolf-Rayet winds.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-06
    Description: We present a study of the correlations between spectral, timing properties and mass accretion rate observed in X-rays from the Galactic Black Hole (BH) binary GRS 1915+105 during the transition between hard and soft states. We analyze all transition episodes from this source observed with Rossi X-ray Timing Explorer (RXTE), coordinated with Ryle Radio Telescope (RT) observations. We show that broad-band energy spectra of GRS 1915+105 during all these spectral states can be adequately presented by two Bulk Motion Comptonization (BMC) components: a hard component (BMC1, photon index Gamma(sub 1) = 1.7 -- 3.0) with turnover at high energies and soft thermal component (BMC2, Gamma(sub 2) = 2.7 -- 4.2) with characteristic color temperature 〈 or = 1 keV, and the red-skewed iron line (LAOR) component. We also present observable correlations between the index and the normalization of the disk "seed" component. The use of "seed" disk normalization, which is presumably proportional to mass accretion rate in the disk, is crucial to establish the index saturation effect during the transition to the soft state. We discovered the photon index saturation of the soft and hard spectral components at values of 〈 or approximately equal 4.2 and 3 respectively. We present a physical model which explains the index-seed photon normalization correlations. We argue that the index saturation effect of the hard component (BMC1) is due to the soft photon Comptonization in the converging inflow close to 1311 and that of soft component is due to matter accumulation in the transition layer when mass accretion rate increases. Furthermore we demonstrate a strong correlation between equivalent width of the iron line and radio flux in GRS 1915+105. In addition to our spectral model components we also find a strong feature of "blackbody-like" bump which color temperature is about 4.5 keV in eight observations of the intermediate and soft states. We discuss a possible origin of this "blackbody-like" emission.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-06
    Description: We report the detection of a 115 day periodicity in SWIFT/XRT monitoring data from the ultraluminous X-ray source (ULX) NGC 5408 X-1. Our o ngoing campaign samples its X-ray flux approximately twice weekly and has now achieved a temporal baseline of ti 485 days. Periodogram ana lysis reveals a significant periodicity with a period of 115.5 +/- 4 days. The modulation is detected with a significance of 3.2 x 10(exp -4) . The fractional modulation amplitude decreases with increasing e nergy, ranging from 0.13 +/- 0.02 above 1 keV to 0.24 +/- 0.02 below 1 keV. The shape of the profile evolves as well, becoming less sharply peaked at higher energies. The periodogram analysis is consistent wi th a periodic process, however, continued monitoring is required to c onfirm the coherent nature of the modulation. Spectral analysis indic ates that NGC 5408 X-1 can reach 0.3 - 10 keV luminosities of approxi mately 2 x 10 40 ergs/s . We suggest that, like the 62 day period of the ULX in M82 (X41.4-1-60), the periodicity detected in NGC 5408 X-1 represents the orbital period of the black hole binary containing the ULX. If this is true then the secondary can only be a giant or super giant star.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-06
    Description: We present unambiguous evidence for a parsec scale wind in the Broad-Line Radio Galaxy (BLRG) 3C 382, the first radio-loud AGN whereby an outflow has been measured with X-ray grating spectroscopy. A 118 ks Chandra grating (HETG) observation of 3C 382 has revealed the presence of several high ionization absorption lines in the soft X-ray band, from Fe, Ne, Mg and Si. The absorption lines are blue-shifted with respect to the systemic velocity of 3C 382 by -840+/-60 km/s and are resolved by Chandra with a velocity width of sigma = 340+/-70 km/s. The outflow appears to originate from a single zone of gas of column density N(sub H) = 1.3 x 10(exp 21)/sq cm and ionization parameter log(E/erg/cm/s) = 2.45. From the above measurements we calculate that the outflow is observed on parsec scales, within the likely range from 10-1000 pc, i.e., consistent with an origin in the Narrow Line Region. Finally we also discuss the possibility of a much faster (0.1c) outflow component, based on a blue-shifted iron K(alpha) emission line in the Suzaku observation of 3C 382, which could have an origin in an accretion disk wind.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-06
    Description: Ultrahigh energy cosmic rays that produce giant extensive showers of charged particles and photons when they interact in the Earth's atmosphere provide a unique tool to search for new physics. Of particular interest is the possibility of detecting a very small violation of Lorentz invariance such as may be related to the structure of space-time near the Planck scale of approximately 10 (exp -35) m. We discuss here the possible signature of Lorentz invariance violation on the spectrum of ultrahigh energy cosmic rays as compared with present observations of giant air showers. We also discuss the possibilities of using more sensitive detection techniques to improve searches for Lorentz invariance violation in the future. Using the latest data from the Pierre Auger Observatory, we derive a best fit to the LIV parameter of 3 .0 + 1.5 - 3:0 x 10 (exp -23) ,corresponding to an upper limit of 4.5 x 10-23 at a proton Lorentz factor of approximately 2 x 10(exp 11) . This result has fundamental implications for quantum gravity models.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-06
    Description: We present a new way of looking at the very long term evolution of GRBs in which the disk of material surrounding the putative black hole powering the GRB jet modulates the mass flow, and hence the efficacy of the process that extracts rotational energy from the black hole and inner accretion disk. The pre-Swift paradigm of achromatic, shallow-to-steep "breaks" in the long term GRB light curves has not been borne out by detailed Swift data amassed in the past several years. We argue that, given the initial existence of a fall-back disk near the progenitor, an unavoidable consequence will be the formation of an "external disk" whose outer edge continually moves to larger radii due to angular momentum transport and lack of a confining torque. The mass reservoir at large radii moves outward with time and gives a natural power law decay to the GRB light curves. In this model, the different canonical power law decay segments in the GRB identified by Zhang et al. and Nousek et al. represent different physical states of the accretion disk. We identify a physical disk state with each power law segment.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-06
    Description: We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015-2025 planning cycle. SPACE aims at producing the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts of more than half a billion galaxies at 0 〈 z 〈 2 down to AB approximately 23 over 37r sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB approximately 26 and at 2 〈 z 〈 l0+. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover, the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, the large scale distribution of galaxies. The datasets from the SPACE mission will represent a long lasting legacy that will be data mined for many years to come.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-06
    Description: Since launch in December 1999, Terra MODIS has been making continuous Earth observations for more than seven years. It has produced a broad range of land, ocean, and atmospheric science data products for improvements in studies of global climate and environmental change. Among its 36 spectral bands, there are 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). MODIS thermal emissive bands cover the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions with wavelengths from 3.7 to 14.4pm. They are calibrated on-orbit using an on-board blackbody (BB) with its temperature measured by a set of thermistors on a scan-by-scan basis. This paper will provide a brief overview of MODIS TEB calibration and characterization methodologies and illustrate on-board BB functions and TEB performance over more than seven years of on-orbit operation and calibration. Discussions will be focused on TEB detector short-term stability and noise characterization, and changes in long-term response (or system gain). Results show that Terra MODIS BB operation has been extremely stable since launch. When operated at its nominal controlled temperature of 290K, the BB temperature variation is typically less than +0.30mK on a scan-by-scan basis and there has been no time-dependent temperature drift. In addition to excellent short-term stability, most TEB detectors continue to meet or exceed their specified noise characterization requirements, thus enabling calibration accuracy and science data product quality to be maintained. Excluding the noisy detectors identified pre-launch and those that occurred post-launch, the changes in TEB responses have been less than 0.7% on an annual basis. The optical leak corrections applied to bands 32-36 have been effective and stable over the entire mission
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-06
    Description: We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal metal-features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition, and, using these parameters, have modeled all aspects of the detector performance.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-06
    Description: The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX), the first of the Small Explorer series of spacecraft, was launched on July 3, 1992 into an 82' inclination orbit with an apogee of 670 km and a perigee of 520 km and a mission lifetime goal of 3 years. After more than 15 years of continuous operation, the reaction wheel began to fail on August 18,2007. With a set of three magnetic torquer bars being the only remaining attitude actuator, the SAMPEX recovery team decided to deviate from its original attitude control system design and put the spacecraft into a spin stabilized mode. The necessary operations had not been used for many years, which posed a challenge. However, on September 25, 2007, the spacecraft was successfully spun up to 1.0 rpm about its pitch axis, which points at the sun. This paper describes the diagnosis of the anomaly, the analysis of flight data, the simulation of the spacecraft dynamics, and the procedures used to recover the spacecraft to spin stabilized mode.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-06
    Description: We have made comparative studies of ion anisotropy and high-energy variability of solar energetic particle (SEP) events previously examined by the Solar, Heliospheric, and Interplanetary Environment (SHINE) Workshop campaign. We have found distinctly different characteristics of SEPs between two large "gradual" events having very similar solar progenitors (the 2002 April 21 and August 24 events). Since the scattering centers of SEPs are approximately frozen in the solar wind, we emphasize work in the solar-wind frame where SEPs tend to be isotropized, and small anisotropies are easier to detect. While in the August event no streaming reversal occurred, in the April event the field-aligned anisotropy of all heavy ions showed sign of streaming reversal. The difference in streaming reversal was consistent with the difference in the presence of the outer reflecting boundary. In the April event the magnetic mirror, which was located behind the interplanetary shock driven by the preceding coronal mass ejection (CME), could block the stream of SEPs, while in the August event SEPs escaped freely because of the absence of nearby boundary. The magnetic mirror was formed at the bottleneck of magnetic field lines draped around a flank of the preceding CME. In the previous SHINE event analysis the contrasting event durations and Fe/O ratios of the both events were explained as the interplay between shock geometry and seed population. Our new findings, however, indicate that event duration and time as well as spectral variation are also affected by the presence of a nearby reflecting boundary.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-06-06
    Description: We report the results of more than seven years of monitoring of PSR J0537-6910, the 16 ms pulsar in the Large Magellanic Cloud, using data acquired with the Rossi X-ray Timing Explorer. During this campaign the pulsar experienced 22 sudden increases in frequency ("glitches" - 21 with increases of at least eight microHz) amounting to a total gain of over six parts per million of rotation frequency superposed on its gradual spindown of nu-dot = -2 x 10(exp -l0) Hz /s. The time interval from one glitch to the next obeys a strong linear correlation to the amplitude of the first glitch, with a mean slope of about 400 days per part per million (6.5 days per micro Hz), such that these intervals can be predicted to within a few days, an accuracy which has never before been seen in any other pulsar. There appears to be an upper limit of approximately 40 micro Hz for the size of glitches in all pulsars, with the 1999 April glitch of PSR J0537-6910 as the largest so far. The change of its spindown across the glitches, delta (nu-dot), appears to have the same hard lower limit of -1.5 x 10 (exp -13) Hz/s, as, again, that observed in all other pulsars. The spindown continues to increase in the long term, nu-dot = -10(exp -21) Hz / s(exp 2), and thus the timing age of PSR 505374910 (-0.5 nu nu-dot (exp -1) continues to decrease at a rate of nearly one year every year, consistent with movement of its magnetic moment away from its rotational axis by one radian every 10,000 years, or about one meter per year. PSR J0537-6910 was likely to have been born as a nearly-aligned rotator spinning at 75-80 Hz, with a absolute value of nu considerably smaller than its current value of 2x 10(exp -10) Hz per second. Its pulse profile consists of a single pulse which is found to be flat at its peak for at least 0.02 cycles. Glitch activity may grow exponentially with a timescale of 170 years nu nu-dot ((nu nu-dot)(sub crab))exp -l in all young pulsars.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-06
    Description: "Qualification" of fiber optic components holds a very different meaning than it did ten years ago. In the past, qualification meant extensive prolonged testing and screening that led to a programmatic method of reliability assurance. For space flight programs today, the combination of using higher performance commercial technology, with shorter development schedules and tighter mission budgets makes long term testing and reliability characterization unfeasible. In many cases space flight missions will be using technology within years of its development and an example of this is fiber laser technology. Although the technology itself is not a new product the components that comprise a fiber laser system change frequently as processes and packaging changes occur. Once a process or the materials for manufacturing a component change, even the data that existed on its predecessor can no longer provide assurance on the newer version. In order to assure reliability during a space flight mission, the component engineer must understand the requirements of the space flight environment as well as the physics of failure of the components themselves. This can be incorporated into an efficient and effective testing plan that "qualifies" a component to specific criteria defined by the program given the mission requirements and the component limitations. This requires interaction at the very initial stages of design between the system design engineer, mechanical engineer, subsystem engineer and the component hardware engineer. Although this is the desired interaction what typically occurs is that the subsystem engineer asks the components or development engineers to meet difficult requirements without knowledge of the current industry situation or the lack of qualification data. This is then passed on to the vendor who can provide little help with such a harsh set of requirements due to high cost of testing for space flight environments. This presentation is designed to guide the engineers of design, development and components, and vendors of commercial components with how to make an efficient and effective qualification test plan with some basic generic information about many space flight requirements. Issues related to the ~ physics of failure, acceptance criteria and lessons learned will also be discussed to assist with understanding how to approach a space flight mission in an ever changing commercial photonics industry.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-06
    Description: The ST5 payload, part of NASA s New Millennium Program headquartered at JPL, consisted of three micro satellites (approx. 30 kg each) deployed into orbit from the Pegasus XL launch. ST5 was a technology demonstration mission, intended to test new technologies for potential use for future missions. In order to meet the launch date schedule of ST 5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The I&T phase was planned for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 in tandem. A team of engineers and technicians planned and executed the integration of all three spacecraft emphasizing versatility and commonality. They increased their knowledge and efficiency through spacecraft #1 integration and testing and utilized their experience and knowledge to safely execute I&T for spacecraft #2 and #3. Each integration team member could perform many different roles and functions and thus better support activities on any of the three spacecraft. The I&T campaign was completed with STS s successful launch on March 22,2006
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-06
    Description: The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-06
    Description: Table 1 in our paper had erroneous numbers for the coefficients fitting the parametric form for the optical depth of the universe to gamma-rays; tau. The correct values for these parameters as described in the original text are given in the table for various redshifts for the baseline model (upper row) and fast evolution (lower row) for each individual redshift.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-06
    Description: The GLAST Large Area Telescope (LAT) science objectives and capabilities in the detection of high energy electrons in the energy range from 20 GeV to approx. 1 TeV are presented. LAT simulations are used to establish the event selections. It is found that maintaining the efficiency of electron detection at the level of 30% the residual hadron contamination does not exceed 2-3% of the electron flux. LAT should collect approx. ten million of electrons with the energy above 20 GeV for each year of observation. Precise spectral reconstruction with high statistics presents us with a unique opportunity to investigate several important problems such as studying galactic models of IC radiation, revealing the signatures of nearby sources such as high energy cutoff in the electron spectrum, testing the propagation model, and searching for KKDM particles decay through their contribution to the electron spectrum.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2018-06-06
    Description: Non-photospheric-radius-expansion(non-PRE) double-peaked bursts may be explained in terms of spreading (and temporary stalling) of thermonuclear flames on the neutron star surface, as we argued in a previous study of a burst assuming polar ignition. Here we analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of such a burst (but with a considerably different intensity profile from the previous one) from the low mass X-ray binary (LMXB) system 4U 1636-536, and show that this model can qualitatively explain the observed burst profile and spectral evolution, if we assume an off-polar, but high-latitude ignition, and burning front stalling at a higher latitude compared to that for the previous burst. The off-polar ignition can account for the millisecond period brightness oscillations detected from this burst. This is the first time oscillations have been seen from such a burst. Our model can qualitatively explain the oscillation amplitude measured during the first (weaker) peak, and the absence of oscillations during the second peak. The higher latitude front stalling facilitates the first clear detection of a signature of this stalling, which is the primary result of this work, and may be useful for understanding thermonuclear flame spreading on neutron stars.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-06
    Description: We report an analysis of the archival Rossi X-ray Timing Explorer (RXTE) data from the December 2004 hyperflare from SGR 1806-20. In addition to the approx. equal to 90 Hz QPO first discovered by Israel et al., we report the detection of higher frequency oscillations at approx. equal to 150, 625, and 1,835 Hz. In addition to these frequencies there are indications of oscillations at approx. equal to 720, and 2,384 Hz, but with lower significances. The 150 Hz QPO has a width (FWHM) of about 17 Hz, an average amplitude (rms) of 6.5%, and is detected in average power spectra centered on the rotational phase of the strongest peak in the pulse profile. This is approximately half a rotational cycle from the phase at which the 90 Hz QPO is strongly detected. The 625 Hz oscillation was first detected in an average power spectrum from nine successive cycles beginning approximately 180 s after the initial hard spike. It has a width (FWHM) of approx. equal to 2 Hz and an average amplitude (rms) during this interval of 9%. We find a strong detection of the 625 Hz oscillation in a pair of successive rotation cycles beginning about 230 s after the start of the flare. In these cycles we also detect the 1,835 Hz QPO with the 625 Hz oscillation. The rotational phase in which the 625 Hz &PO is detected is similar to that for the 90 Hz QPO, indeed, this feature is seen in the same average power spectrum. During the time the 625 Hz QPO is detected we also confirm the simultaneous presence of 30 and 92 Hz QPOs, first reported by Israel et al. The centroid frequency of the 625 Hz QPO detected with RXTE is within 1 Hz of the M 626 Hz oscillation recently found in RHESSI data from this hyperflare by Watts & Strohmayer, however, the two detections were made in different phase and energy intervals. Nevertheless, we argue that the two results likely represent detections of the same oscillation frequency intrinsic to the source, but we comment on some of the difficulties in making direct comparisons between the RXTE and RHESSI measurements
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-06
    Description: As part of the automated response to a new gamma-ray burst (GRB), the Ultraviolet and Optical Telescope (UVOT) instrument on Swift starts a 200-second exposure with the V filter within approximately 100 seconds of the BAT burst trigger. The instrument searches for sources in a 8' x 8' region, and sends the list of sources and a 160" x 160" sub-image centered on the burst position to the ground via Tracking and Data Relay Satellite System (TDRSS). These raw products and additional products calculated on the ground are then distributed through the GCN within a few minutes of the trigger. We describe the sensitivity of these data for detecting afterglows, summarize current results, and outline plans for rapidly distributing future detections.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-06
    Description: We have obtained Fourier-resolved spectra of the black-hole binary 4U 1543-47 in the canonical states (high/soft, very high, intermediate and low/hard) observed in this source during the decay of an outburst that took place in 2002. Our objective is to investigate the variability of the spectral components generally used to describe the energy spectra of black-hole systems, namely a disk component, a power-law component attributed to Comptonization by a hot corona and the contribution of the iron line due to reprocessing of the high energy (E greater than or approx, equal to 7 keV) radiation. We find that i) the disk component is not variable on time scales shorter than approx. 100 seconds, ii) the reprocessing emission as manifest by the variability of the Fe K(alpha) line responds to the primary radiation variations down to time scales of approx. 70 ms in the high and very-high states, but longer than 2 s in the low state, iii) the low-frequency QPOs are associated with variations of the X-ray power law spectral component and not to the disk component and iv) the spectra corresponding to the highest Fourier frequency are the hardest (show the flatter spectra) at a given spectral state. These results questions the models that explain the observed power spectra as due to modulations of the accretion rate only.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-06
    Description: In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-06
    Description: Contents include the following: 1. Funded instruments in development. Advanced technology microwave sounder (ATMS) on NPOESS preperatory mission (NPP). Aquarius microwave radiometer. Global precipitation measurement (GPM) microwave imager (GMI). Hydros microwave radiometer. 2. Proposed/notional instruments. Cirrus clouds submmw radiometer. Cold-lends microwave radiometer. Geostationary millimeterwave radiometer (GeoSTAR). Geostationary soil moisture and salinity radiometer.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-06
    Description: The dependence of Swift#s detection sensitivity on a burst#s temporal and spectral properties shapes the detected burst population. Using s implified models of the detector hardware and the burst trigger syste m I find that Swift is more sensitive to long, soft bursts than CGRO# s BATSE, a reference mission because of its large burst database. Thu s Swift has increased sensitivity in the parameter space region into which time dilation and spectral redshifting shift high redshift burs ts.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-06
    Description: The launching by the Soviet Union of the Sputnik satellite in 19457 was an impetuous to the United States. The Intercontinental ballistic Missile (ICBM) that launched the Earth's first satellite, could have been armed with a nuclear warhead, that could destroy an American city. The primary intelligence requirement that the US had was to determine the actual size of the Soviet missile program. To this end, a covert, high-risk photoreconnaissance satellite was developed. The code name of this program was "Corona." This article describes the trials and eventual successes of the Corona program.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ITEA Journal; Volume 28; No. 4; 135-137
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This viewgraph presentation gives a general overview of the X-43A program. The contents include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; and 5) Flight 3 and Results.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-06
    Description: The National Aeronautics and Space Administration is currently designing the Crew Exploration Vehicle (CEV) as a replacement for the Space Shuttle for manned missions to the International Space Station, as a command module for returning astronauts to the moon, and as an earth reentry vehicle for the final leg of manned missions to the moon and Mars. The CEV resembles a scaled-up version of the heritage Apollo vehicle; however, the CEV seal requirements are different than those from Apollo because of its different mission requirements. A review is presented of some of the seals used on the Apollo spacecraft for the gap between the heat shield and backshell and for penetrations through the heat shield, docking hatches, windows, and the capsule pressure hull.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-06
    Description: A viewgraph presentation describing the hypersonics program at NASA Dryden Flight Research Center is shown. The topics include: 1) X-43A Program Overview; 2) Vehicle Description; 3) Flight 1, MIB & Return to Flight; 4) Flight 2 and Results; 5) Flight 3 and Results; and 6) Concluding Remarks
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: An overview of the NASA Glenn Research Center Drive Systems Research will be presented. The primary purpose of this research is to improve performance, reliability, and integrity of aerospace drive systems and space mechanisms. The research is conducted through a combination of in-house, academia, and through contractors. Research is conducted through computer code development and validated through component and system testing. The drive system activity currently has four major thrust areas including: thermal behavior of high speed gearing, health and usage monitoring, advanced components, and space mechanisms.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-06-06
    Description: This paper describes the development of a Framework for benchmarking and comparing signal-extraction and noise-interference-removal methods that are applicable to interferometric Gravitational Wave detector systems. The primary use is towards comparing signal and noise extraction techniques at LISA frequencies from multiple (possibly confused) ,gravitational wave sources. The Framework includes extensive hybrid learning/classification algorithms, as well as post-processing regularization methods, and is based on a unique plug-and-play (component) architecture. Published methods for signal extraction and interference removal at LISA Frequencies are being encoded, as well as multiple source noise models, so that the stiffness of GW Sensitivity Space can be explored under each combination of methods. Furthermore, synthetic datasets and source models can be created and imported into the Framework, and specific degraded numerical experiments can be run to test the flexibility of the analysis methods. The Framework also supports use of full current LISA Testbeds, Synthetic data systems, and Simulators already in existence through plug-ins and wrappers, thus preserving those legacy codes and systems in tact. Because of the component-based architecture, all selected procedures can be registered or de-registered at run-time, and are completely reusable, reconfigurable, and modular.
    Keywords: Astrophysics
    Type: LISA Science Analysis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-06-06
    Description: A great deal of work has been devoted to the accumulation of accurate quantities describing atomic processes for use in analysis of astrophysical spectra. But in many situations of interest the interpretation of a quantity which is observed, such as a line flux, depends on the results of a modeling- or spectrum synthesis code. The results of such a code depends in turn on many atomic rates or cross sections, and the sensitivity of the observable quantity on the various rates and cross sections may be non-linear and if so cannot easily be derived analytically. This paper describes simple numerical experiments designed to examine some of these issues. Similar studies have been carried out previously in the context of solar UV lines by Gianetti et al. (2000); Savin & Laming (2002) and in the context of the iron M shell UTA in NGC 3783 by Netzer (2004).
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 124-128; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...