ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (23)
  • 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous  (18)
  • Elsevier  (36)
  • Blackwell Publishing Ltd  (2)
  • Springer Nature
  • 2005-2009  (38)
  • 1980-1984
  • 1925-1929
Collection
Years
Year
  • 1
    Publication Date: 2020-11-26
    Description: During the July^August 2001 eruption of Mt. Etna development of extensional fractures/faults and grabens accompanied magma intrusion and subsequent volcanic activity. During the first days of the eruption, we performed an analysis of attitude, displacement and propagation of fractures and faults exposed on the ground surface in two sites, Torre del Filosofo and Valle del Leone, located along the same fracture system in the region surrounding the Valle del Bove depression on the eastern flank of Mt. Etna. Fractures and faults formed as the consequence of a shallow intruding dyke system that fed the several volcanic centres developed along the fracture system. The investigated sites differ in slope attitude and in geometrical relationships between fractures and slopes. In particular, the fracture system propagated parallel to the gentle slope (67‡ dip) in the Torre del Filosofo area, and perpendicular to the steep slope (V25‡ dip) in the Valle del Leone area. In the Torre del Filosofo area, slight graben subsidence and horizontal extension of the ground surface by about 3 m were recorded. In the Valle del Leone area, extensional faulting forming a larger and deeper graben with horizontal extension of the ground surface by about 10 m was recorded. For the Valle del Leone area, we assessed a downhill dip of 14‡ for the graben master fault at the structural level beneath the graben where the fault dip shallows. These results suggest that dyke intrusion at Mount Etna, and particularly in the region surrounding the Valle del Bove depression, may be at the origin of slope failure and subsequent slumps where boundary conditions, i.e. geometry of dyke, slope dip and initial shear stress, amongst others, favour incipient failures.
    Description: Published
    Description: 281-294
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dykes ; extensional fractures ; grabens ; slope failures ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-03
    Description: A study of the He isotopic ratios of fluid inclusions in olivine and pyroxene from the Roman Comagmatic Province (RCP),Italy, is presented together with 87Sr/86Sr isotope compositions of the whole rock or pyroxene phenocrysts. A clear covariation in He and Sr isotopes is apparent, with a strong northward increase in radiogenic He and Sr being evident. He and Sr isotopes ratios range from 3He/4He = 5.2 Ra and 87Sr/86Sr = 0.7056 in south Campania, to 3He/4He = 0.44 Ra and 87Sr/86Sr = 0.715905 in the northernmost Latium. Helium isotope ratios are significantly lower than MORB values and are among the lowest yet measured in subduction zone volcanism. The 3He/4He of olivine and pyroxene phenocryst-hosted volatiles appear to be little influenced by posteruptive processes and magma–crust interaction. The 3He/4He–87Sr/86Sr covariation is consistent with binary mixing between an asthenospheric mantle similar to HIMU ocean island basalts, and an enriched (radiogenic) mantle end member generated from subduction of the Ionian/Adriatic plate. The contribution of radiogenic He from metasomatic fluids and postmetasomatism radiogenic ingrowth in the wedge is strongly dependent on the initial He concentration of the mantle. Only when asthenosphere He concentrations are substantially lower than the MORB source mantle, and metasomatism occurred at the beginning of the subduction (f30 Ma), can ingrowth in the mantle wedge account for the 3He/4He of the most radiogenic basalts.
    Description: - European Social Fund - Scottish Universities - Carnegie Trust for the Universities of Scotland.
    Description: Published
    Description: 295–308
    Description: partially_open
    Keywords: Roman Comagmatic Province ; fluid inclusions ; helium ; strontium ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 516427 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-21
    Description: The lithological and compositional characteristics of eighteen different pyroclastic deposits of Campanian origin, dated between 125 cal ky BP and 22 cal ky BP, were described. The pyroclastic deposits were correlated among different outcrops mainly located on the Apennine slopes that border the southern Campanian Plain. They were grouped in two main stratigraphic and chronologic intervals of regional significance: a) between Pomici di Base (22.03 cal ky BP; Somma–Vesuvius) and Campanian Ignimbrite (39 cal ky BP; Campi Flegrei) eruptions; and b) older than Campanian Ignimbrite eruption. Three new 14C AMS datings support the proposed correlations. Six eruptions were attributed to the Pomici di Base- Campanian Ignimbrite stratigraphic interval, while twelve eruptions are older than Campanian Ignimbrite. Of the studied deposits two originated from Ischia island, five are related to Campi Flegrei, and three to Somma– Vesuvius. Two eruptions have an uncertain correlation with Somma–Vesuvius or Campi Flegrei, while six eruptions remain of uncertain source. Minimum volumes of five eruptions were assessed, ranging between 0.5 km3 and 4 km3. Two of the studied deposits were correlated with Y-3 and X-5 tephra layers, which are widely dispersed in the central Mediterranean area. The new stratigraphic and chronologic data provide an upgraded chrono-stratigraphy for the explosive activity of Neapolitan volcanoes in the period between 125 and 22 cal ky BP.
    Description: Published
    Description: 19–48
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Neapolitan volcanoes ; late Pleistocene ; explosive eruptions ; Somma–Vesuvius ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The development of the 2004–2005 eruption at Etna (Italy) is investigated by means of field surveys to define the current structural state of the volcano. In 2004–2005, a fracture swarm, associated with three effusive vents, propagated downslope from the SE summit crater towards the SE. Such a scenario is commonly observed at Etna, as a pressure increase within the central conduits induces the lateral propagation of most of the dikes downslope. Nevertheless, some unusual features of this eruption (slower propagation of fractures, lack of explosive activity and seismicity, oblique shear along the fractures) suggest a more complex triggering mechanism. A detailed review of the recent activity at Etna enables us to better define this possible mechanism. In fact, the NW–SE-trending fractures formed in 2004–2005 constitute the southeastern continuation of a N–S-trending fracture system which started to develop in early 1998 to the east of the summit craters. The overall 1998–2005 deformation pattern therefore forms an arcuate feature, whose geometry and kinematics are consistent with the head of a shallow flank deformation on the E summit of Etna. Similar deformation patterns have also been observed in analogue models of deforming volcanic cones. In this framework, the 2004–2005 eruption was possibly induced by a dike resulting from the intersection of this incipient fracture system with the SE Crater. A significant acceleration of this flank deformation may be induced by any magmatic involvement. The central conduit of the volcano is presently open, constantly buffering any increase in magmatic pressure and any hazardous consequence can be expected to be limited. A more hazardous scenario may be considered with a partial or total closing of the central conduit. In this case, magmatic overpressure within the central conduit may enhance the collapse of the upper eastern flank, triggering an explosive eruption associated with a landslide reaching the eastern lower slope of the volcano.
    Description: Published
    Description: 195–206
    Description: reserved
    Keywords: eruption triggering ; volcano-tectonics ; fracture fields ; flank spreading ; Mt. Etna ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2594507 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In this paper, we discuss the possibility that the North Anatolian fault (NAF) results from the deep deformation of the slab beneath the Bitlis–Hellenic subduction zone. We described the tectonic evolution of the Anatolia–Aegean area in three main steps, before, during and after the formation of the NAF. We remark that the tectonic conditions that are assumed to have triggered the formation of the NAF, i.e. collision to the east and extension to the west, was already achieved before the onset of that strike-slip fault system. We also highlight that the formation of the NAF was accompanied by the uplift of the Turkish–Iranian plateau and by a surge of volcanism in the eastern Anatolia collisional area and probably by the acceleration of the Aegean trench retreat. We show tomographic images from global P-wave model of Piromallo and Morelli [C. Piromallo, A. Morelli, P wave tomography of the mantle under the Alpine–Mediterranean area, J. Geophys. Res. 108 (2003) doi: 10.1029/2002JB001757.] showing that the slab beneath the Bitlis collisional belt is not continuous and that its possible rupture pursues to the west at least up to Cyprus and possibly up to the eastern end of the Hellenic trench. All these observations suggest that the plate tectonic re-organization occurred in the Late Miocene–Early Pliocene in the region results from slab break-off in the Bitlis area and from its lateral propagation to the West. This idea is tested in analogue laboratory experiments, which confirm that the break of the slab under the collisional belt may trigger, (1) the acceleration of slab retreat to the west due to the increase in slab pull force, (2) the indentation of the continent in the collisional area and (3) produce the conditions that permit the lateral escape of material towards the west and the formation of the NAF.
    Description: Published
    Description: 85-97
    Description: JCR Journal
    Description: reserved
    Keywords: Mediterranean ; subduction ; collision ; analogue experiments ; seismic tomography ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Major and trace element and Sr–Nd–Hf–Pb isotopic data for the most primitive Tertiary lavas from the Veneto region (South-Eastern Alps, Italy) show the typical features of HIMU hotspot volcanism, variably diluted by a depleted asthenospheric mantle component (87Sr/86Sri=0.70306–0.70378; "Ndi=+3.9 to +6.8; "Hfi=+6.4 to +8.1, 206Pb/204Pbi=18.786–19.574). P-wave seismic tomography of the mantle below the Veneto region shows the presence of low-velocity anomalies at depth, which is consistent with possible upwellings of plume material. Between the depths of 100–250 km the velocity anomalies are approximately 2–2.5% slower than average, implying a temperature excess of about 220–280 K, in agreement with estimates for other mantle plumes in the world. In this context, the Veneto volcanics may represent the shallow expression of a mantle upflow. The presence of a HIMU-DM component in a collision environment has significant geodynamic implications. Slab detachment and ensuing rise of deep mantle material into the lithospheric gap is proposed to be a viable mechanism of hotspot magmatism in a subduction zone setting.
    Description: Published
    Description: 563–590
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: trace-element ; isotopic composition ; alkali basalts ; central-Europe ; slab break-off ; plume ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: One of the most challenging issues about the Tertiary–Quaternary alkaline magmatism spreading across the Euro-Mediterranean region is the assessment of both the nature of its mantle source and the mechanism responsible for the common HIMU-like (High μ=high 238U/204Pb) character of erupted lavas, enduring over about 100 million years in diverse tectonic environments. In this paper we try to reconcile geochemical and geophysical data through a multidisciplinary investigation on geochemistry, timing and locations of the main Na-rich alkaline volcanic centers, seismic tomographic images and plate kinematics. We propose that the common component of the Euro-Mediterranean mantle derives from a contamination episode triggered by the rise of the Central Atlantic Plume (CAP) head. Plate reconstruction shows that at late Cretaceous- Paleocene time the oldest magmatic centers of the Euro-Mediterranean region were located more than 2000 km SW of their present day position, in proximity of the CAP hot spot location, where seismic tomography detects a broad low seismic velocity region in the lower mantle. The northeastward migration of the Eurasian and African plates could have involved also part of the CAP contaminated mantle, which moved in the same direction being coupled to the lithospheric plates, thus explaining the presence of geochemically-uniform material spread in the sub-lithospheric Euro-Mediterranean mantle. During the Tertiary, regional-scale convection and related processes such as rifting, back-arc spreading, slab detachment/windows, may have favored upwelling and partial melting of the frayed plume head material via adiabatic decompression, shaping the spatial and temporal distribution of HIMU-like volcanics. The growing supply of subducted lithosphere may explain as well the increase of crustal isotopic signatures of alkaline magmas with time. In our opinion, the Euro-Mediterranean upper mantle contamination can be eventually related to a global event occurred during the Cretaceous as a consequence of a mantle avalanche caused by the Tethys closure.
    Description: MIUR 2005-2007, prot. n. 2005055415_002, Poli G.
    Description: Published
    Description: 15–27
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Cenozoic HIMU–OIB volcanism ; Euro-Mediterranean mantle ; geochemistry ; mantle tomography ; plate kinematics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The controversial relationship between the orogenic segments of the Western Alps and the Northern Apennines is here explored integrating recently published 3D tomographic models of subduction with new and re-interpreted geological observations from the eclogitic domain of the Voltri Massif (Ligurian Alps, Italy), where the two belts joint each other. The Voltri Massif is here described as an extensional domain accommodating the opposing outward migration of the Alpine and Apennine thrust fronts, since about 30–35 Ma. Using tomographic images of the upper mantle and paleotectonic reconstructions, we propose that this extensional setting represents the surface manifestation of an along strike change in polarity of the subducted oceanic slab whose polarity changed laterally in space and in time. Our tectonic model suggests that the westward shift of the Alpine thrust front from the Oligocene onward was the consequence of the toroidal asthenospheric flow induced by the retreat of the Apenninic slab.
    Description: Published
    Description: 34–50
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Western Alps ; Northern Apennines ; Voltri Massif ; Tomography ; Kinematic reconstruction ; Extensional detachment ; Toroidal flow ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We report on new paleomagnetic results obtained from 27 sites sampled in the Plio-Pleistocene sequences at the external front of the central-northern Apennines. Previous analyses of Miocene (Messinian) sediments indicated that the present shape of the northern Apenninic arc is due to the oroclinal bending of an originally straight belt oriented around N320° and that vertical axis rotations accompanied the migration of the thrust fronts toward the Adriatic foreland [F. Speranza et al., J. Geophys. Res. 102 (1997) 3153-3166]. We tried to provide new paleomagnetic constraints for the timing and rates of the oroclinal bending process during the Pliocene and the Pleistocene. The results suggest that CCW rotations observed in the northern part of the studied area are possibly younger than 3 Ma. No regional rotation is recorded in the Pliocene and Pleistocene sediments from the southern part of the study area, analogously to the Messinian sediments of the 'Acquasanta' domain of Speranza et al. [F. Speranza et al., J. Geophys. Res. 102 (1997) 3153-3166]. A local significant CCW rotation (23° ± 10°) is identified in the Early Pleistocene sediments that crop out along the Adriatic coast between Ascoli and Pescara, indicating differential motion of the thrust sheets. This rotation must be younger than 1.43 Ma.
    Description: Published
    Description: 243-257
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: paleomagnetism ; Apennines ; tectonics ; Pliocene ; Pleistocene ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Invited reply to the Comment on: “Geomorphological, paleontological and 87Sr/86Sr isotope analyses on early Pleistocene paleoshorelines to define the uplift of Central Apennines (Italy)”
    Description: In response to the comment of Cosentino and Fubelli (2007) on the stratigraphy of the Middle Valley of Tiber River basin (MVT) and on the chronological attribution of the uppermost paleoshorelines (UPS), we recall that we performed a detailed sampling campaign to date the youngest marine deposits underlying or laterally related to the UPS, through the 87Sr/86Sr method. Unfortunately, we cannot have taken advantage from the new stratigraphic data of the comment, being that all these data are still unpublished. On the sections presented in the comment, which concern only the southernmost tract of the UPS alignment, we do not know exactly how close these sections are to the UPS and how accurate the stratigraphic relationships are. This is due to the absence in the comment of detailed geographic locations of sections and of any stratigraphic scheme or geological map that might help link the data presented in Mancini et al. (2007) with the new ones. In general, the age of the new proposed sections are considered older (Gelasian) than our age estimate (1.65–1.50 Ma, i.e. late Santernian) for the UPS.
    Description: Published
    Description: 165-167
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Early Pleistocene ; shoreline ; uplift ; Apennines ; Sr isotope ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: The October 17 to November 5, 1999, eruption of Mount Etna’s Bocca Nuova crater emplaced a V15U106 m3 flow field. The eruption was characterized by 11 paroxysmal events during which intense Strombolian and lava fountain activity fed vigorous channelized PaPa flows at eruption rates of up to 120 m3 s31. Each paroxysm lasted between 75 and 450 min, and was separated by periods of less intense Strombolian activity and less vigorous (610 m3 s31) effusion. Ground-based, satellite- and model-derived volumetric data show that the eruption was characterized by two periods during which eruption rates and cumulative volume showed exponential decay. This is consistent with a scenario whereby the system was depressurized during the first eruptive period (October 17^23), repressurized during an October 24 pause, and then depressurized again during the second period (October 25^28). The imbalance between the erupted and supplied volumes mean that the two periods involved the collection of 1.5^5.7U106 m3 and 1.2^ 3.6U106 m3, respectively, or an increase in the time-averaged supply to 11.6^13.6 m3 s31 and 12.5^14.9 m3 s31. Two models are consistent with the observed episodic fountaining, derived volumetric trends and calculated volume imbalance: a magma collection model and a pulsed supply model. In the former case, depressurization of a shallow reservoir cause the observed volumetric trends and foam collapse at the reservoir roof powers fountaining. In the pulsing case, variations in magma flux account for pressurization^depressurization and supply the excess volume. Increases in rise rate and volatile flux, coupled with rapid exsolution during ascent, trigger fountaining. Limiting equations that define critical foam layer volumes and magma rise rates necessary for Hawaiian-style fountaining favor the latter model.
    Description: Published
    Description: 79-95
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Etna ; lava fountaining ; eruption rates ; lava channel ; foam layers ; rise rates ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: We present a morphological analysis of Nevado de Toluca volcano located 80 km WSW of Mexico City based on digital elevation model study, where slope and aspect maps have been generated and analysed. Aerial photograph and satellite image observations improve the morphological analysis. The synoptic view which is offered by this analysis allowed for recognition and localization of the main volcanic and tectonic features of the area. On the basis of digital elevation model value distribution and surface textures, five morphological domains were defined. The most interesting domain, south of the crater, reflects the occurrence of an ancient complex volcano distinct from the adjacent areas. Interaction between the volcanic and volcano– tectonic evolution and the basement produced the other domains. Single volcanic edifices, like lava domes and scoria cones, and eruptive fractures were recognized. Finally, flank collapse scarps opened to the east and to the north were identified and four relevant morphostructural lineaments and their possible role in the Nevado de Toluca geological and structural evolution are discussed.
    Description: CONACYT J37889-T
    Description: Published
    Description: 47–61
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Nevado de Toluca ; Mexico ; Volcanic geomorphology ; DEM analysis ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: In this paper we present a collection of good quality shear wave splitting measurements in Southern Italy. In addition to a large amount of previous splitting measurements, we present new data from 15 teleseisms recorded from 2003 to 2006 at the 40 stations of the CAT/SCAN temporary network. These new measurements provide additional constraints on the anisotropic behaviour of the study region and better define the fast directions in the southern part of the Apulian Platform. For our analysis we have selected wellrecorded SKS phases and we have used the method of Silver and Chan to obtain the splitting parameters: the azimuth of the fast polarized shear wave (φ) and delay time (δt). Shear wave splitting results reveal the presence of a strong seismic anisotropy in the subduction system below the region. Three different geological and geodynamic regions are characterized by different anisotropic parameters. The Calabrian Arc domain has fast directions oriented NNE–SSW and the Southern Apennines domain has fast directions oriented NNW–SSE. This rotation of fast axes, following the arcuate shape of the slab, is marked by a lack of resolved measurements which occurs at the transition zone between those two domains. The third domain is identified in the Apulian Platform: here fast directions are oriented almost N–S in the northern part and NNE–SSW to ENE–WSW in the southern one. The large number of splitting parameters evaluated for events coming from different back-azimuth allows us to hypothesize the presence of a depth-dependent anisotropic structure which should be more complicated than a simple 2 layer model below the Southern Apennines and the Calabrian Arc domains and to constrain at 50 km depth the upper limit of the anisotropic layer, at least at the edge of Southern Apennines and Apulian Platform. We interpret the variability in fast directions as related to the fragmented subduction system in the mantle of this region. The trench-parallel φ observed in Calabrian Arc and in Southern Apennines has its main source in the asthenospheric flow below the slab likely due to the pressure induced by the retrograde motion of the slab itself. The pattern of φ in the Apulian Platform does not appear to be the direct result of the rollback motion of the slab, whose influence is limited to about 100 km from the slab. The anisotropy in the Apulian Platform may be related to an asthenospheric flow deflected by the complicated structure of the Adriatic microplate or may also be explained as frozen-in lithospheric anisotropy.
    Description: Published
    Description: 49-67
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Shear wave splitting ; Subduction ; Mantle flow ; Southern Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: We present here some criticism to the scientific content of the paper of Milia et al. [2007. The dark nature of Somma-Vesuvius volcano: evidence from the 3.5 ka B.P. Avellino eruption. Quaternary International, 173–174, 57–66] published in Quaternary International. Milia et al. (2007) interpreted seismic lines in the Gulf of Naples (southern Italy), and inferred the presence of deposits from a large debris avalanche which occurred just before the Avellino eruption of Somma-Vesuvius volcano. The authors supported their seismic profile interpretation with on-land stratigraphies and logs. However, we present here different on-land data that demonstrate the inconsistency of the occurrence of any debris avalanche before or after the Avellino eruption, and we provide also an alternative interpretation for the observed seismic facies offshore of Somma-Vesuvius.
    Description: Published
    Description: 102–109
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: open
    Keywords: Somma-Vesuvius volcano ; Avellino eruption ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: The Lower Paleozoic assemblages in the E. Meditterranean comprise a Southern (Tauride-Anatolide,SE Anatolia and Central Iranian terranes) and a Northern (Carpathian-Balkan, Istanbul, Zonguldak and the Main Range terranes) Zone. A detailed stratigrapic account is given for these terranes for the Early Paleozoic and their paleogeographical settings are discussed to evaluate the Early Paleozoic geodynamic interpretation of this critical area between Gondwana-Perigondwana and Laurussia..
    Description: Published
    Description: 315-323
    Description: JCR Journal
    Description: open
    Keywords: Palaeozoic, evolution, Turkey ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: The biomarker compositions of iron sulfide nodules (ISNs; upper Pliocene Valle Ricca section near Rome, Italy) that contain the ferrimagnetic mineral greigite (Fe3S4) were examined. In addition to the presence of specific terrestrial and marine biomarkers, consistent with formation in coastal marine sediments, these ISNs contain compounds thought to originate from sulfate reducing bacteria (SRB). These compounds include a variety of low-molecular-weight and branched alkanols and several non-isoprenoidal dialkyl glycerol diethers (DGDs). In addition, archaeal biomarkers, including archaeol, macrocyclic isoprenoidal DGDs and isoprenoidal glycerol dialkyl glycerol tetraethers are also present. Both SRB and archaeal lipid d13C values are depleted in 13C (d13C values are typically less than 50‰), which suggests that the SRB and archaea consumed 13C depleted methane. These biomarker and isotopic signatures are similar to those found in cold seeps and marine sediments where anaerobic oxidation of methane (AOM) occurs with sulfate serving as the terminal electron acceptor. Association of AOM with formation of greigite-containing ISNs could provide an explanation for documented remagnetization of the Valle Ricca sediments. Upward migration of methane, subsequent AOM and associated authigenic greigite formation are widespread processes in the geological record that have considerable potential to compromise paleomagnetic records. 2007 Elsevier Ltd. All rights reserved.
    Description: Published
    Description: 5155-5167
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: sulfide nodules ; Valle Ricca section ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: We provide new data on relative sea-level change from the late Holocene for two locations in the central Mediterranean: Sardinia and NE Adriatico. They are based on precise measures of submerged archaeological and tide notch markers that are good indicators of past sea-level elevation. Twelve submerged archaeological sites were studied: six, aged between 2.5 and 1.6 ka BP, located along the Sardinia coast, and a further six, dated 2.0 ka BP, located along the NE Adriatic coast (Italy, Slovenia and Croatia). For Sardinia, we also use beach rock and core data that can be related to Holocene sea level. The elevations of selected significant archaeological markers were measured with respect to the present sea level, applying corrections for tide and atmospheric pressure values at the time of surveys. The interpretation of the functional heights related to sea level at the time of their construction provides data on the relative changes between land and sea; these data are compared with predictions derived from a new glacio–hydro-isostatic model associated with the Last Glacial cycle. Sardinia is tectonically relatively stable and we use the sea-level data from this island to calibrate our models for eustatic and glacio–hydro-isostatic change. The results are consistent with those from another tectonically stable site, the Versilia Plain of Italy. The northeast Adriatic (Italy, Slovenia and Croatia) is an area of subsidence and we use the calibrated model results to separate out the isostatic from the tectonic contributions. This indicates that the Adriatic coast from the Gulf of Trieste to the southern end of Istria has Q1 tectonically subsided by 1.5m since Roman times.
    Description: Published
    Description: 2463-2486
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: sea level, archaeology, tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Many of the mountain belts displaying a curved shape are "oroclines", i.e. are produced after progressive bending of an originally straight fold and thrust belt. The bending process was previously explained as a consequence of several possible events taking place in the crustal orogenic wedge, such as occurrence of obstacles, non-coaxial deformation, and mouvements on wrench faults. Recent paleomagnetic results from the northern Apenninic Arc document that this belt is properly an orocline and results from Late Messinian-Early Pliocene bending of a Messinian straight belt-foredeep system. Tomographic images in turn show the presence of a high-velocity body, interpreted as subducted slab, in the upper mantle beneath the northern Apennines, between 35 and 670 km depth. Down to 100 km, this body displays an arcuate shape which closely mirrors the geological outlines, while it appears to be straight (and parallel to the Messinian pre-rotated belt) at depth. We explore here the possibility that the arcuate shape of the northern Apennines is a consequence, closely following in time, on much deeper processes than previously suggested, i.e. the lateral bending of the subducting Adriatic plate.
    Description: Published
    Description: 53-64
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; seismic tomography ; Northern Apennines ; orocline ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamic of the volcano, marking the passage from a period (March 1993 – June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveal a southward motion of the upper southern part of the volcano, driven by a NNW-SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: In press
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: Stress release ; Dike ; Volcano-tectonics ; Flank instability ; Mount Etna ; Instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: On 27 February 2007, two NE–SW and NNW–SSE dike-fed effusive vents opened to the North (at 650 and 400 m above sea level, asl) of the summit craters at Stromboli, forming a fissure parallel to the inner walls of the Sciara del Fuoco (SdF) sector collapse depression. The formation of these vents was soon followed by rapid subsidence of the summit crater area. This partly obstructed the central conduit, temporarily choking the fissure and increasing the deformation of the upper part of SdF. The reactivation of the NNW–SSE vent and the opening of a new vent located at 500 m asl, fed by a second dike, released the internal pressure and surface deformation ceased. The eruption then continued again from the 400 m vent, after a summit explosion on 15 March, until ending in early April after a progressive decrease of magma output. Repeated NE–SW dike intrusions have occurred in recent years, close to the upper SE limit of the SdF. In that zone, named Bastimento, the eruptive fractures traced the discontinuities that borders the SdF, increasing the risk of triggering new sector collapse. Whereas the NE–SW trending structures lie along the regional volcanostructural trend of the Aeolian arc through Stromboli, the NNW–SSE vents are oblique to this trend and may be controlled by the anomalous stress field within the unstable flank of the SdF. Another fundamental aspect of the 2007 eruption is the collapse of the central conduit, due to the rapid and deep magma drainage linked to the opening of the 400 m vent. The intrusion of dikes and development of flank vents during the 2007 eruption could possibly have triggered catastrophic landslides and related tsunami or eruptive paroxysms, but the opening of new effusive vents released the internal pressures, diminishing the hazard.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: 2007 Stromboli eruption ; Dike-fed vent ; Volcano-Tectonics ; Conduit collapse ; Flank instability ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: Three different methodologies were used to measure Radon (222Rn) in soil, based on both passive and active detection system. The first technique consisted of Solid State Nuclear Track Detectors (SSNTD), CR-39 type, and allowed integrated measurements. The second one consisted of a portable device for short time measurements. The last consisted of a continuous measurement device for extended monitoring, placed in selected sites. Soil 222Rn activity was measured together with soil Thoron (220Rn) and soil carbon dioxide (CO2) efflux, and it was compared with the content of radionuclides in the rocks. Two different soil gas horizontal transects were investigated across the Pernicana fault system (NE flank of Mount Etna), from November 2006 to April 2007. The results obtained with the three methodologies are in a general agreement with each other and reflect the tectonic settings of the investigated study area. The lowest 222Rn values were recorded just on the fault plane, and relatively higher values were recorded a few tens of meters from the fault axis on both of its sides. This pattern could be explained as a dilution effect resulting from high rates of soil CO2 efflux. Time variations of 222Rn activity were mostly linked to atmospheric influences, whereas no significant correlation with the volcanic activity was observed. In order to further investigate regional radon distributions, spot measurements were made to identify sites having high Rn emissions that could subsequently be monitored for temporal radon variations.. SSNTD measurements allow for extended-duration monitoring of a relatively large number of sites, although with some loss of temporal resolution due to their long integration time. Continuous monitoring probes are optimal for detailed time monitoring, but because of their expense, they can best be used to complement the information acquired with SSNTD in a network of monitored sites.
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Soil Radon and Thoron activity ; soil CO2 efflux ; Pernicana fault system ; Mount Etna ; volcano-tectonic monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.02. Exploration geophysics::04.02.05. Downhole, radioactivity, remote sensing, and other methods ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2012-02-03
    Description: We analyse P-wave traveltimes for the Mediterranean area, using both teleseismic and regional arrivals for shallow earthquakes reported in the Bulletins of the International Seismological Centre. We model delays between pairs of 0.5° × 0.5° cells, obtaining a detailed representation of the P traveltime heterogeneities. Examination of these anomalies shows the clear presence of geographically coherent patterns—consistent with known geological features—due to significant structure in the upper mantle. We present a scheme, based on an empirical heterogeneity correction (EHC) to P-wave traveltimes, to improve earthquake location. This method provides similar benefits to those of a location procedure based on ray tracing in a 3-D model, but it is simpler and computationally more efficient. The definition of the traveltime heterogeneity model, being based on a statistical procedure, bypasses most of the critical points and possible instabilities involved in model inversion. EHC relocation, applied to Mediterranean earthquakes, allows one to predict about 70 per cent of the estimated signal due to heterogeneity and produces epicentral and origin time-shifts of, respectively, 4.22 km and 0.35 s (rms). From a synthetic experiment, in which we use the proposed algorithm to retrieve known source locations, we estimate that the rms improvement achieved by the EHC relocation over a simpler, standard, 1-D location is more than 20 per cent for both epicentral mislocation and origin time-shifts.
    Description: Published
    Description: 232-254
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: earthquake location ; Mediterranean ; P waves ; traveltime ; upper mantle ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: We analyze the 1997–2006 seismicity of the transition zone between Southern and Central Apennines, which is one of the most active seismic areas of Italy. Our aim is to add information on the seismotectonic picture of this area. Seismic activity is characterized by single events with Mb3.0 and low magnitude (Mb4.0) seismic sequences (1997–98 and 2005) and swarms (1999, 2000 and 2001). Hypocenters are within the upper 15 km of the crust. The epicentral distribution of the relocated seismicity shows that single events prevalently align NW–SE along the Apennine chain axis. This seismicity is related to the main, NE–SW extension affecting the chain. Single events concentrate also: at the south of the seismogenetic source responsible for the 1915 earthquake, where the 2000 swarm occurred; between the faults of the 1984 and 1805 events, where the 2001 sequence developed; between the faults of the 1805 and 1688 events, where the 1997–1998 seismic sequence concentrated. The seismic swarms occurred in 1999, 2000 and 2005 are located inside the Ortona– Roccamonfina structural line, which strikes NNE–SSW and separates the Central Apennines from the Southern ones. The epicentral distribution of these swarms and focal mechanisms suggest the presence of active NE–SW faults moving in response to a NW–SE extension. The results of the strain analysis on 52 wellconstrained focal mechanisms evidence a prevailing NE–SW extension, corresponding to the large scale stress field acting in the Apennine Chain, and a second-order NW–SE extension. This last direction of extension was already observed in the 1997–98 and 2001 seismic sequences. The location of the NE–SW striking faults responsible for the seismic swarms suggest that some segments of the Ortona–Roccamonfina line are still active and move in response to both the NE–SW regional extension of Southern Apennines, and to a NW–SE striking longitudinal extension.
    Description: Published
    Description: 102-110
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Apennines ; seismicity ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: Eruptions are often fed by dikes; therefore, better knowledge of dike propagation is necessary to improve our understanding of how magma is transferred and extruded at volcanoes. This study presents an overview of dike patterns and the factors controlling dike propagation within volcanic edifices. Largely based on published data, three main types of dikes (regional, circumferential and radial) are illustrated and discussed. Dike pattern data from 25 volcanic edifices in different settings are compared to derive semi-quantitative relationships between the topography (relief, shape, height, and presence of sector collapses) of the volcano, tectonic setting (presence of a regional stress field), and mean composition (SiO2 content). The overview demonstrates how dike propagation in a volcano is not a random process; rather, it depends from the following factors (listed in order of importance): the presence of relief, the shape of the edifice and regional tectonic control. We find that taller volcanoes develop longer radial dikes, whose (mainly lateral) propagation is independent of the composition of magma or the aspect ratio of the edifice. Future research, starting from these preliminary evaluations, should be devoted to identifying dike propagation paths and likely locations of vent formation at specific volcanoes, to better aid hazards assessment.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: dikes ; volcanoes ; topography ; tectonic setting ; eruptions ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: Recent geological studies performed at Etna allow reassessing the stratigraphic frame of the volcano where distinct evolutionary phases are defined. This stratigraphic reconstruction was chronologically constrained on the basis of a limited number of U–Th and K–Ar age determinations whose uncertainty margins are sometimes too wide. For this reason, we successfully adopted at Etna the 40Ar/39Ar technique that allowed obtaining more precise age determinations. The incremental heating technique also gives information on sample homogeneity, and potential problems of trapped argon. Five samples were collected from stratigraphically well-controlled volcanic units in order to chronologically define the transition between the fissure-type volcanism of the Timpe phase to the central volcanism of the Valle del Bove Centers. Isotopic ages with an uncertainty margin of 2–4% have been obtained emphasizing that this transition occurred (130– 126 ka) without significant temporal hiatus.
    Description: University of Catania grants (COFIN- 2002, resp. F. Lentini); CNR-IDPA and INGV-Sezione di Catania grants.
    Description: Published
    Description: 292-298
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: 40Ar/39Ar dating ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: Eruptions are fed by dikes; therefore, better knowledge of dike propagation is necessary to improve our understanding of how magma is transferred and extruded at volcanoes. This study presents an overview of dike patterns and the factors controlling dike propagation within volcanic edifices. Largely based on published data, three main types of dikes (regional, circumferential and radial) are illustrated and discussed. Dike pattern data from 25 volcanic edifices in different settings are compared to derive semi-quantitative relationships between the topography (relief, shape, height, and presence of sector collapses) of the volcano, tectonic setting (presence of a regional stress field), and mean composition (SiO2 content). The overview demonstrates how dike propagation in a volcano is not a random process; rather, it depends from the following factors (listed in order of importance): the presence of relief, the shape of the edifice and regional tectonic control. We find that taller volcanoes develop longer radial dikes, whose (mainly lateral) propagation is independent of the composition of magma or the aspect ratio of the edifice. Future research, starting from these preliminary evaluations, should be devoted to identifying dike propagation paths and likely locations of vent formation at specific volcanoes, to better aid hazards assessment.
    Description: Partly fundedwith DPC-INGVfunds (LAVAProject).
    Description: Published
    Description: 67–77
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: dikes ; volcanoes ; topography ; tectonic setting ; eruptions ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: The 2001 eruption represents one of the most studied events both from volcanological and geophysical point of view on Mt. Etna. This eruption was a crucial event in the recent dynamics of the volcano, marking the passage from a period (March 1993–June 2001) of moderate stability with slow, continuous flank sliding and contemporaneous summit eruptions, to a period (July 2001 to present) of dramatically increased flank deformations and flank eruptions. We show new GPS data and high precision relocation of seismicity in order to demonstrate the role of the 2001 intrusive phase in this change of the dynamic regime of the volcano. GPS data consist of two kinematic surveys carried out on 12 July, a few hours before the beginning of the seismic swarm, and on 17 July, just after the onset of eruptive activity. A picture of the spatial distribution of the sin-eruptive seismicity has been obtained using the HypoDD relocation algorithm based on the double-difference (DD) technique. Modeling of GPS measurements reveals a southward motion of the upper southern part of the volcano, driven by a NNW–SSE structure showing mainly left-lateral kinematics. Precise hypocenter location evidences an aseismic zone at about sea level, where the magma upraise was characterized by a much higher velocity and an abrupt westward shift, revealing the existence of a weakened or ductile zone. These results reveal how an intrusion of a dike can severely modify the shallow stress field, triggering significant flank failure. In 2001, the intrusion was driven by a weakened surface, which might correspond to a decollement plane of the portion of the volcano affected by flank instability, inducing an additional stress testified by GPS measurements and seismic data, which led to an acceleration of the sliding flanks.
    Description: This work was funded by the Istituto Nazionale di Geofisica e Vulcanologia and by the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 78–86
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: stress release ; dike ; volcano-tectonics ; flank instability ; Mt. Etna ; instrumental monitoring ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Northern Apulia is an emerged portion of the Adriatic microplate, representing the foreland–foredeep area of a stretch of the Apennine chain in southern Italy. The interaction between the relatively rigid microplate and the contiguous more deformable domains is responsible for the intense seismicity affecting the chain area. However strong, sometimes even disastrous, earthquakes have also hit northern Apulia on several occasions. The identification of the causative faults of such events is still unclear and different hypotheses have been reported in literature. In order to provide guidelines and constraints in the search for these structures, a comprehensive re-examination and reprocessing of all the available seismic data has been carried out taking into consideration 1) the characteristics of historical events, 2) the accurate relocation of events instrumentally recorded in the last 20 years, 3) the determination of focal mechanisms and of the regional stress tensor. The results obtained bring to light a distinction between the foreland and foredeep areas. In the first region there is evidence of a regional stress combining NWcompression and NE extension, thus structures responsible for major earthquakes should be searched for among strike–slip faults, possibly with a slight transpressive character. These structures could be either approximately N–S oriented sinistral or E–Wdextral faults. In the foredeep region there is a transition toward transtensive mechanisms,with strikes similar to those of the previous zone, or maybe also towardsNWoriented normal faults,more similar to those prevailing in the southern Apennine chain in relation to a dominant NE extension; this appears to be the effect of a reduction of the NW compression, probably due to a decrease in efficiency of stress transmission along the more tectonised border of the Adriatic microplate.
    Description: Published
    Description: 9 - 35
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Northern Apulia ; Historical earthquakes ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: For some time, onset of the Antarctic Circumpolar Current (ACC) was considered to have caused or stabilised full Antarctic glaciation. Recently, however, the importance of the ACC in this role has been questioned. In order to understand the relationship between the ACC and Antarctic glaciation, and thence the importance of ocean circulation to palaeoclimate, we need to determine the development history of both processes. To this end, we summarise all published estimates of ACC onset. The time of onset, of shallow circulation or deep, is uncertain, whether based on tectonic studies or the interpretation of changes in the sediment record. Two potential final barriers to circumpolar flow have been identified; south of Tasmania and south of South America. The former is well constrained by tectonics and marine geology to before 32Ma for a deep gap, with a shallow gap in place by 35.5Ma at the latest. These ages fit nicely with the onset of full Antarctic glaciation at 33–34 Ma, although some workers question the causality. Estimates of the time of opening of the latter range widely, whether based on tectonics or sedimentary geology, from as recently as 6Ma to as early as 41 Ma, with the gap depth uncertain also. Resolution of the tectonics-based uncertainties by additional survey being most probably both time-consuming and inconclusive, and the geological estimates being open to alternative interpretations, we define an optimal strategy for additional sampling and measurement, designed to resolve the time of onset more certainly, possibly also resolving between deep and shallow opening, and thereby constraining the ACC role. Sample sites would have to be close to likely final barriers, to avoid extraneous influence, and within modern zones of ACC influence, ideally would form a depth transect, and would have continuous, mixed terrigenous and biogenic sections. A wide range of carefully selected parameters would be measured at each.
    Description: Published
    Description: 2388–2398
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Antarctic Circumpolar Current ; Palaeoclimate ; Drake Passage ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: The eastern border of the Middle Valley of the Tiber River is characterized by several Plio-Pleistocene paleoshorelines, which extend for about 100 km along the western margin of the Central Apennines (Italy). We studied these paleoshorelines by the means of geological and paleontological analyses and new 87Sr/86Sr isotope analyses. The youngest and uppermost paleoshorelines have been detected and mapped through detailed geologic and stratigraphic surveys, which led to the recognition of nearshore deposits, cliff breccias, alignments of Lithophaga borings, fossil abrasion notches and wave-cut platforms. The altitude of these paleoshorelines decreases almost regularly in the NNW–SSE direction from 480 to 220 m a.s.l. Measurements of the 87Sr/86Sr isotope ratio have been conducted on corals and mollusks collected from sediments outcropping close to the paleoshorelines. The isotopic dating results indicate numerical values that range between 0.70907 and 0.70910 all over the 100-km outcrop. These results, together with biostratigraphic data, constrain the age of the youngest paleoshorelines to 1.65–1.50 Ma. These paleoshorelines are thus considered almost isochronous, giving an estimated uplift rate of 0.34–0.17±0.03 mm/a moving from NNW to SSE. Shape, length and continuity of the 100-km-long observed movements indicate that the studied paleoshorelines are an important marker of the Quaternary uplift of the Central Apennines.
    Description: Published
    Description: 487-501
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Early Pleistocene ; shoreline ; uplift ; Apennines ; Sr isotope ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Tomographical results are commonly presented in the form of color images and not much statistical quantification has been carried out on the derived models. Correlation between different depths can shed important light concerning the dynamics. We have generalized the application of multidimensional wavelets to investigate the products of two field variables, such as the cross-spectrum, which is of paramount importance for quantifying the correlation between two depth levels of seismic tomography with a multiple-scale character. For two multidimensional fields A and B, we calculate the correlation C by projecting this as an Hermitian inner product in physical space with a two-dimensional (2D), fourth derivative of the Gaussian wavelet as the weighting function. The correlation function C becomes now a multi-scaled function, a map cast in terms of both the scale and location of the wavelet transform. Having calculated C, we can delineate the locations and length-scales of the prominent features in the landscape of the correlation function. This wavelet formulation is very general and can be extended to other types of statistical analysis, for example in a Kalman filter system. We have used a high-resolution (finer than 1◦) seismic tomographical model for analyzing the extent of mantle layering under Europe by focussing on the different length-scales in the correlation function involving the 3D seismic anomalies lying between 400 and 600 km depth. Between the depths of 500 and 600 km under Europe, the wavelet correlation analysis shows that an ellipse-shaped object exists with an area of 2000 km × 4000 km having a strong correlation for length-scales of around 400 km, and weaker correlation for shorter length scales of around 150 km. On the other hand, between depths of 400 and 600 km, the correlation deteriorates on the long length scales and becomes even worse at the short length scales. From the wavelet correlation spectra, we can extract an horizontal characteristic length scale of around 100 km, which may be related to the boundary interaction between the slab and the ambient mantle. The correlation results suggest that the thickness of the recumbent fast (cold) material in the transition zone is between 100 and 150 km. This large elliptical pattern of presumably cold material would act to inhibit the vigor of mantle convection locally beneath Europe today.
    Description: Published
    Description: 125–139
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: wavelets ; correlation ; tomography ; transition zone ; Mediterranean ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Subduction zones appear primarily controlled by the polarity of their direction, i.e., W-directed or E- to NNE-directed, probably due to the westward drift of the lithosphere relative to the asthenosphere. The decollement planes behave differently in the two end-members. In the W-directed subduction zone, the decollement of the plate to the east is warped and subducted, whereas in the E- to NNE-directed, it is ramping upward at the surface. There are W-directed subduction zones that work also in absence of active convergence like the Carpathians or the Apennines. W-directed subduction zones have shorter life 30–40 Ma.than E- or NE-directed subduction zones even longer than 100 Ma.. The different decollements in the two end-members of subduction should control different PTt paths and, therefore, generate variable metamorphic assemblages in the associated accretionary wedges and orogens. These asymmetries also determine different topographic and structural evolutions that are marked by low topography and a fast ‘eastward’ migrating structural wave along W-directed subduction zones, whereas the topography and the structure are rapidly growing upward and expanding laterally along the opposite subduction zones. The magmatic pair calc-alkaline and alkaline–tholeiitic volcanic products of the island arc and the back-arc basin characterise the W-directed subduction zones. Magmatic rocks associated with E- or NE-directed subduction zones have higher abundances of incompatible elements, and mainly consist of calc-alkaline– shoshonitic suites, with large volumes of batholithic intrusions and porphyry copper ore deposits. The subduction zones surrounding the Adriatic plate in the central Mediterranean confirm the differences among subduction zones as primarily controlled by the geographic polarity of the main direction of the slab. The western margin of the Adriatic plate contemporaneously overridden and underthrust Europe toward the ‘west’ to generate, respectively, the Alps and the Apennines, while the eastern margin subducted under the Dinarides–Hellenides. These belts confirm the characters of the end-members of subduction zones as a function of their geographic polarity similarly to the Pacific subduction zones.
    Description: Published
    Description: 167–208
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: tectonics ; subduction zones ; orogens ; Mediterranean geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: We report on a high-resolution Vp, Vp/Vs and Qp model of the southern Tyrrhenian subduction zone, obtained by the inversion of P- and S wave arrival times and t* values from intraslab seismicity. The arcuate shape of the southern Apennines–Calabrian arc-Sicilian Maghrebides is perfectly mirrored by two rather continuous low and high Vp bands lying beneath the belt system at ca. 25 and 100 km, respectively. Between 100 and 300 km, two independent high Vp slabs lie beneath the Neapolitan region and the southern Tyrrhenian Sea, separated by unperturbed mantle. We suggest that the ca. 150 km-wide slab window beneath the southern Apennines opened after a tear occurring within a composite subduction system, formed by the Apulian continental lithosphere and the Ionian oceanic slab. The abrupt slab rupture induced ultrafast southeastward retreat of the Ionian slab, and the 19 cm/yr spreading of the back-arc oceanic Marsili basin between ca. 2.1 and 1.6 Ma ago. The 25 km low Vp zone beneath the arc denotes continental upper crustal rocks below the chain. Its striking continuity requires a unique orogenic wedge at 25 km depth below the southern Apennines, the Calabrian arc, and the Sicilian Maghrebides. The alternative explanation would imply the ubiquitous occurrence of autochthonous lower plate rocks at 25 km depth, i.e. a puzzling autochthonous continental Calabria. The Ionian slab beneath Calabria shows high Vp, high Qp and low Vp/Vs anomalies, typical of old oceanic lithosphere. Intermediate depth seismicity is concentrated within its thin oceanic crust, suggesting the occurrence of vigorous metamorphism. The slab dehydration promotes the melting of the overlying mantle, as testified by high Vp/Vs and low Qp anomalies between the slab and the Aeolian magmatic arc.
    Description: Published
    Description: 408-423
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: seismic tomography ; recent evolution of the Ionian slab ; deep earthquakes slab dehydration and magmatism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: In curved orogenic systems where thrusting and vertical-axis rotations have been documented, it is possible to determine whether the curvature is secondary or progressive based on the timing between the two motions. The South-Central Unit of the Southern Pyrenees provides an opportunity to investigate relationships between thrusting, folding, and vertical-axis rotation because of unusual preservation of Tertiary synorogenic sedimentary strata. Paleomagnetic samples were collected from 51 sites in the upper Eocene-lower Oligocene continental synorogenic strata of the Oliana anticline, a foreland fold along the eastern margin of the South-Central Unit. Site-mean characteristic remanent magnetization directions were determined from 17 sites through thermal demagnetization and principal component analysis. In addition, 72 samples were collected from 39 stratigraphic levels spanning the Upper Eocene marine marls and treated with thermal and alternating field demagnetization techniques. Of these, 53 samples yielded demagnetization trajectories that further constrained the rotation. Comparison of the observed mean paleomagnetic direction from the Oliana anticline with the expected direction indicates a counterclockwise rotation (R ± ΔR) of 20.3° ± 10.9°. Based on the stratigraphic horizons recording the rotation, the age of the rotation is younger than ~34 Ma (after deposition of Unit 3). Data covering the Upper Eocene-Lower Oligocene time interval indicate a similar magnitude of rotation, suggesting that late stage emplacement of thrust sheets hinterlandward of the Oliana anticline controlled the rotation, with rotation accommodated along regionally extensive evaporites. The well-constrained timing relationships between thrusting and rotation and the regional and local transport directions, suggest that the South-Central Unit is a progressive curve that formed through distributed shortening.
    Description: Published
    Description: 435-449
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Pyrenees ; Oliana anticline ; synorogenic strata ; paleomagnetism ; salients ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: The tectonic escarpments locally known as ‘Timpe’ cut a large sector of the eastern flank of Etna, and allow an ancient volcanic succession dating back to 225 ka to be exposed. Geological and volcanological investigations carried out on this succession have allowed us to recognize relevant angular unconformities and volcanic features which are the remnants of eruptive fissures, as well as important changes in the nature, composition and magmatic affinity of the exposed volcanics. In particular, the recognition in the lower part of the succession of important and unequivocal evidence of ancient eruptive fissures led us to propose a local origin for these volcanics and to revise previous interpretations which attributed their westward-dipping to the progressive tectonic tilting of strata. These elements led us to reinterpret the main features of the volcanic activity occurring since 250 ka BP and their relationship with tectonic structures active in the eastern flank of Etna. We propose a complex paleo-environmental and volcanotectonic evolution of the southeastern flank of Mt. Etna, in which the Timpe fault system played the role of the crustal structure that allowed the rise and eruption of magmas in the above considered time span.
    Description: Published
    Description: 289-306
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Mount Etna ; tectonics ; fisssure eruptions ; columnar basalt ; fault escarpment ; xenoliths ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2017-04-04
    Description: Public works in progress in the Campanian plain north of Somma- ^ Vesuvius recently encountered the remains 15 of a prehistoric settlement close to the town of Afragola. Rescue excavations brought to light a Bronze Age 16 village partially destroyed and buried by pyroclastic density currents (PDCs) of the Vesuvian Pomici di 17 Avellino eruption (3. ^ 8 14C ka BP) and subsequently sealed by alluvial deposits. Volcanological and rock- 18 ^ magnetic investigations supplemented the excavations. 19 Careful comparison between volcanological and archaeological stratigraphies led to an understanding of the 20 timing of the damage the buildings suffered when they were struck by a series of PDCs. The first engulfed the 21 village, located some 15 km to the north of the inferred vent, and penetrated into the dwellings without 22 causing major damage. The buildings were able to withstand the weak dynamic pressure of the currents and 23 deviate their path, as shown by the magnetic fabric analyses. Some later collapsed under the load of the 24 deposits piled up by successive currents. Stepwise demagnetization of the thermal remanent magnetization 25 (TRM) carried by potsherds embedded in the deposits yields deposition temperatures in the order of 260– 26 ^ 320 °C, fully consistent with those derived from pottery and lithic fragments from other distal and proximal 27 sites. The fairly uniform temperature of the deposits is here ascribed to the lack of pervasive air entrainment 28 into the currents. This, in turn, resulted from the lack of major topographical obstacles along the flat plain. 29 The coupling of structural damage and sedimentological analyses indicates that the currents were not 30 destructive in the Afragola area, but TRM data indicate they were still hot enough to cause death or severe 31 injury to humans and animals. The successful escape of the entire population is apparent from the lack of 32 human remains and from thousands of human footprints on the surface of the deposits left by the first PDCs. 33 People were thus able to walk barefoot across the already emplaced deposits and escape the subsequent 34 PDCs. The rapid cooling of the deposits was probably due to both their thinness and heat dissipation due to 35 condensation of water vapour released in the mixture by magma–water interaction
    Description: In press
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: pyroclastic density current ; Bronze Age ; magnetic fabric ; deposition temperature ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: The origin of forces driving the deformation of the continental crust near subduction zones and especially in backarc regions is debated. Thiswork is based on a compilation of SKS fast splitting directions that give an image of flowlines in themantle around theMediterranean subduction zones and a comparisonwith stretching and shear directions in metamorphic core complexes that show the pattern of deformation at the scale of the middle and lower crusts.We find that : (1) the two sets of directions are parallel in the three main backarc regions, namely the Alboran Sea, the Tyrrhenian Sea and the Aegean Sea showing that the lithosphere deformswith the samedirection of stretching in the crust and themantle, suggesting that (2) crustal deformation ismainly driven frombelowby slab retreat, and (3) the lithospheric fabric is reset within a few millions of years in backarc environments.
    Description: Published
    Description: 198–209
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: subduction ; seismic anisotropy ; backarc extension ; slab retreat ; stretching lineation ; metamorphic core complexes ; Mediterranean ; Aegean ; Tyrrhenian ; Alboran ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2017-04-04
    Description: Nitrogen isotopes , N2/36Ar and 3He/4He were measured in volcanic fluids within different geodynamic settings. Subduction zones are represented by Aeolian archipelago, Mexican volcanic belt and Hellenic arc, spreading zones – by Socorro island in Mexico and Iceland and hot spots by Iceland and Islands of Cabo Verde. The δ15N values, corrected for air contamination of volcanic fluids, discharged from Vulcano Island (Italy), highlighted the presence of heavy nitrogen (around +4.3 ±0.5‰). Similar 15N values (around +5‰), have been measured for the fluids collected in the Jalisco Block, that is a geologically and tectonically complex forearc zone of the northwestern Mexico [1]. Positive values (15N around +3‰) have been also measured in the volcanic fluids discharged from Nysiros island located in the Ellenic Arc characterized by subduction processes. All uncorrected data for the Socorro island are in the range of -1 to -2‰. The results of raw nitrogen isotope data of Iceland samples reveal more negative isotope composition (about -4.4‰). On the basis of the non-atmospheric N2 fraction (around 50%) the corrected data of 15N for Iceland are around -16‰, very close to the values proposed by [2]. In a volcanic gas sample from Fogo volcano (Cabo Verde islands) we found a very negative value: -9.9‰ and -15‰ for raw and corrected values, respectively.
    Description: Geochimica et Cosmochimica Acta
    Description: Published
    Description: Davos, Switzerland
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: open
    Keywords: Nitrogen Isotopes ; Helium Isotopes ; Volcanic fluids ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...