ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (695)
  • Elsevier  (693)
  • Annual Reviews
  • Copernicus
  • 2005-2009  (654)
  • 1980-1984  (33)
  • 1960-1964  (8)
Collection
Years
Year
  • 101
    facet.materialart.
    Unknown
    Elsevier
    In:  Progress in Oceanography, 83 . pp. 143-150.
    Publication Date: 2016-10-04
    Description: The coastal upwelling off Mauritania and its connection with the oxygen minimum zone (OMZ) in the tropical Atlantic is investigated in an eddy-resolving general circulation model. Two main supply routes for the upwelling are identified. First a southern eastward pathway crossing 23 degrees W between 3 degrees N and 10 degrees N related to the equatorial zonal current system supplies up to 50% of the water upwelled in winter, and about 30% in summer. Second, another eastward pathway crossing 23 degrees W further north between 28 degrees N and 38 degrees N supplies 35% of the upwelled water in spring compared to 25% during the rest of the year. Most of the water of the northern pathway is entrained into the mixed layer already before reaching the upwelling region. Only the southern pathway contributes not recently ventilated waters to the upwelling. The connection with the OMZ is very weak, only about 1% of the upwelling waters originate here. On the other hand, if water from the OMZ reaches the surface mixed layer within 6 years, this mostly (71%) happens in the upwelling region
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2017-08-04
    Description: Mineralogical and geochemical investigation of altered host rock samples from the Logatchev hydrothermal field reveal a large variety of alteration styles at this site. Serpentinization is most intense in former harzburgites and dunites varying between 90-95%, whereas gabbros are mostly rather fresh. A combination of serpentinization, interaction with hot hydrothermal fluids, melt/rock interaction, and low-temperature seafloor weathering lead to significant gains and losses of major and trace elements. Serpentinization within the Logatchev hydrothermal field proceeds mainly isochemical for the major elements, except for a loss of TiO2 and CaO. However, the concentration of the trace elements Cu, Nb, Ba, La, Sm, Eu, Th or U increases significantly in the serpentinites. Gabbroic intrusions act as a sink for MgO during alteration due to the formation of chlorite and serpentine after clinopyroxene. Interaction between gabbros and hydrothermal fluids leads to significant redistribution of SiO2, TiO2, CaO, and Na2O as well as numerous trace elements. The different styles of alteration and their associated element changes reveal that samples from the entire Logatchev field have been influenced by hydrothermal fluids to some degree. Therefore, the hydrothermal fluid-dominated alteration of the ultramafic oceanic crust is a sink for many trace elements which were provided by mafic intrusions and mobilized by hydrothermal fluids and melt-rock interaction, whereas the gabbros accumulate high amounts of Mg from the seawater. Summarized the alteration processes at Logatchev are a combination of serpentinization, melt/rock interaction of serpentinites and mafic intrusions, and low-temperature seafloor weathering. (C) 2008 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2017-01-26
    Description: A recurrent interpretation of ancient climate based on the oxygen isotopic composition of marine carbonates and cherts suggests that Earth's climate was substantially warmer in the distant past and remained so until as recently as 400 Myr ago. This interpretation is difficult to reconcile with the long-term glacial record, with evidence for modest weathering rates during most of Earth's history, with biomarker and fossil evidence for eukaryotes and even vertebrates at times of anomalously low δ18O values, and with the predicted faintness of the young Sun. We argue here, following earlier suggestions, that the low δ18O values in ancient rocks are a consequence of the low δ18O of ancient seawater. A modest increase in ocean depth with time, together with progressive increases in pelagic sedimentation on midocean ridge flanks since about 550 Ma, could account for the variation in seawater isotopic composition. The required change in ocean depth, coupled with thinning of the oceanic crust, is a natural consequence of the decline in heat flow over time. Contrary to previous assertions, such a model is not inconsistent with data from ophiolites. It seems likely that Earth's climate remained largely within Phanerozoic norms throughout the past 3.5 Ga
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2017-08-22
    Description: We have compared 14 different sediment incubation chambers, most of them were used on bottom landers. Measurements of mixing time, pressure gradients at the bottom and Diffusive Boundary Layer thickness (DBL) were used to describe the hydrodynamic properties of the chambers and sediment–water solute fluxes of silicate (34 replicates) and oxygen (23 replicates) during three subsequently repeated incubation experiments on a homogenized, macrofauna-free sediment. The silicate fluxes ranged from 0.24 to 1.01 mmol m−2 day−1 and the oxygen fluxes from 9.3 to 22.6 mmol m−2 day−1. There was no statistically significant correlation between measured fluxes and the chamber design or between measured fluxes and hydrodynamic settings suggesting that type of chamber was not important in these flux measurements. For verification of sediment homogeneity, 61 samples of meiofauna were taken and identified to major taxa. In addition, 13 sediment cores were collected, sectioned into 5–10-mm slices and separated into pore water and solid phase. The pore water profiles of dissolved silicate were used to calculate diffusive fluxes of silicate. These fluxes ranged from 0.63 to 0.87 mmol m−2 day−1. All of the collected sediment parameters indicated that the sediment homogenization process had been satisfactorily accomplished. Hydrodynamic variations inside and between chambers are a reflection of the chamber design and the stirring device. In general, pump stirrers with diffusers give a more even distribution of bottom currents and DBL thicknesses than paddle wheel-type stirrers. Most chambers display no or low static differential pressures when the water is mixed at rates of normal use. Consequently, there is a low risk of creating stirrer induced pressure effects on the measured fluxes. Centrally placed stirrers are preferable to off-center placed stirrers which are more difficult to map and do not seem to give any hydrodynamic advantages. A vertically rotating stirrer gives about five times lower static differential pressures at the same stirring speed as the same stirrer mounted horizontally. If the aim is to simulate or mimic resuspension at high flow velocities, it cannot be satisfactorily done in a chamber using a horizontal (standing) rotating impeller (as is the case for most chambers in use) due to the creation of unnatural conditions, i.e. large static differential pressures and pre-mature resuspension at certain locations in the chamber.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2016-12-21
    Description: New 238U–230Th–226Ra and 231Pa–235U disequilibria data measured by TIMS are presented for ridge-centered MORB glasses dredged during the R/V Sonne 158 cruise at the Galápagos or Cocos-Nazca Spreading Center (GSC) between 86.0°W and 92.3°W. The application of U-series isotopes to the GSC region, situated a few hundred kilometres to the north of the Galápagos hotspot, allows assessment of fundamental questions related to the dynamics of plume–ridge interaction. These include (1) the relationship between long-lived source variations, U-series disequilibria and extent of differentiation, (2) partial melting during solid upwelling, and (3) the nature and rates of plume–ridge mass transfer. The along axis U-series disequilibria variation show gradational patterns that locally are correlated with geochemical and isotopic parameters such as La/Sm, Tb/Yb, 206Pb/204Pb and 143Nd/144Nd as well as major element compositions. The correlation of (230Th)/(238U) with radiogenic isotopes and Tb/Yb provides constraints on the plume source influence on the melting process, reflecting an increase in the amount of melting at depth in the presence of garnet or aluminous clinopyroxene. Moreover, the correlation between U-series signatures, radiogenic isotopes, incompatible element abundance and MgO content indicates a causative relationship between the melting of plume source materials and how these lavas differentiate at shallow depths. We speculate that this involves loss of alkalis from ascending melts to shallow peridotite and crustal gabbro, resulting in increased olivine fractionation from the magmas. The U-series data place stringent constraints on the timing of plume–ridge mass transfer and thus distinguish whether mass transfer occurs by movement of melts or solid mantle. Within the likely conditions proposed by the model of (Braun and Sohn [EPSL 213 (2003): 417–430] and with knowledge of (231Pa)/(235U) and (230Th)/(238U) observed in Galápagos Islands lavas [A. Saal, personal communication], we show that all 226Ra excess will be lost and the initial 231Pa and 230Th excesses will be largely decayed. Therefore, we conclude that the plume influence on the GSC lavas results from a solid mantle flow process instead of through migration of plume-derived melts to the ridge.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 56 . pp. 2216-2234.
    Publication Date: 2016-11-01
    Description: Cold-water coral ecosystems building cold-water carbonate mounds occur worldwide and are especially developed along the European margin, from northern Norway to the Gulf of Cadiz. A remarkable mound province is documented southwest of Ireland along the Porcupine and Rockall Banks. In this area carbonate mounds are formed in water depths between 500 and 1200 m and are often densely settled by cold-water coral ecosystems offering many ecological niches for benthic foraminifera. We investigated total (unstained) benthic foraminiferal assemblages from surface sediments (0–1 cm, 〉63 μm size fraction) of this region with the aim to trace their distribution patterns and to test if they can be used as bioindicators for facies characterization in different parts of carbonate mound systems. Our quantitative data were further statistically treated with non-metric multidimensional scaling (nMDS) based on Bray–Curtis similarity matrix to highlight community patterns that were not readily apparent. Our results indicate that different benthic foraminiferal assemblages characterize different facies along cold-water carbonate mounds and are related to the environmental conditions and available substrates. The following facies can be described: (1) the Off-Mound Facies is dominated by uvigerinids and other infaunal species; (2) the Dropstone Facies is characterized by infaunal Globocassidulina subglobosa and attached-epifaunal Cibicidoides sp.; (3) the Dead Coral Facies is characterised by epifaunal species (e.g., Planulina ariminensis, Hanzawaia boueana) and infaunal species (Spiroplectinella wrightii, Angulogerina angulosa, Epistominella vitrea); (4) the Living Coral Facies includes both infaunal and epifaunal species, but is dominated by the epifaunal Discanomalina coronata; and (5) the Sandwave Facies contains high abundances of epifaunal species including D. coronata. Based on this distribution, we propose D. coronata, as an indicator species to identify active mounds and/or living cold-water coral ecosystems. Our results also emphasise the importance of studying the small size fractions that yield many infaunal species. A causal link exists between distribution patterns of benthic foraminifera and cold-water coral facies, thus providing an independent tool to identify and describe the different facies in this setting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Marine Systems, 60 (3/4). pp. 285-301.
    Publication Date: 2017-07-12
    Description: In late summer 2002 and 2003, exceptionally warm inflow events of saline water were observed in the Baltic. These warm saline waters were embedded in the halocline of the Bornholm Basin and caused a strong anomaly of the seasonal temperature cycle. The temperature in October 2002 was the highest ever observed in the halocline of the Bornholm Basin. Although the oxygen content of the inflowing water was only about 1.5 ml l− 1 at the Darss Sill, it caused a moderate ventilation of the halocline in the Bornholm Basin. On the way through the Arkona Basin, the entrainment of ambient water increased the oxygen content of the inflowing saline water masses. Warm summer inflows were rare events in the last 50 years, but their frequency has increased since 1990. This is likely caused by climate change. The analysis of a 50-year time series of hydrographic parameters reveals significant changes of the thermal regime around the year 1988. The winter surface and intermediate water temperatures of the Bornholm Basin increased by about 1 °C. Also, the duration of warm water in the surface layer was prolonged after 1988. A high correlation between the minimum intermediate winter water temperatures and the NAO winter index was found. Since temperature is a key parameter for many biological processes various responses of the ecosystem to the change in hydrographic conditions could be expected. Possible biological implications of the warm inflow events for the ecosystem are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    facet.materialart.
    Unknown
    Elsevier
    In:  Quaternary Science Reviews, 24 (16-17). pp. 1809-1820.
    Publication Date: 2016-09-16
    Description: A mechanism is advanced for explaining the Antarctic warm events from 90 to 30ka BP which involves meltwater-induced changes in the salinity gradient across the Antarctic Circumpolar Current (ACC) and consequent changes in the poleward heat transport by ocean eddies. Based on simple linear scale analysis, the mechanism is shown to yield warming in the Antarctic interior of roughly the magnitude seen in Antarctic ice-core records (∼2 °C) in response to ice discharges into the North Atlantic. Consistent with observations, the mechanism produces gradual Antarctic warming and cooling, as dictated by the time required for salinity anomalies to build up and dissipate across the ACC. The mechanism also allows the onset of warming or cooling to be tied to changes in Atlantic overturning, which is relevant here, not for influencing ocean heat transport directly, but for influencing the routing of meltwater from the North Atlantic into the Southern Ocean. The ideas presented here highlight the possibility that eddy processes in the ocean may play a first-order role in aspects of climate variability on millennial time scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    facet.materialart.
    Unknown
    Elsevier
    In:  Chemical Geology, 239 . pp. 199-216.
    Publication Date: 2017-12-06
    Description: Permeabilities in the subducting slab appear to be too low and dihedral angles between fluid and relevant minerals too high to allow for porous flow, hence fluid channelization is critical for the understanding of subduction zone fluid fluxes. In this review we will outline how fluid channelization controls reaction rates and element redistributions during metamorphism of the subducting plate as well as trace element compositions of subduction-related fluids during flow. Channelized fluid flow predicts that from a rock point of view, most formerly subducted material will show only very limited evidence for fluid flow, consistent with the rarity of observed high fluid fluxes in subduction-related rocks. Aqueous fluid produced by dehydration reactions will not percolate through large rock volumes, but rather will be carried away from the dehydration sites by a veining network. Indeed evidence for significant aqueous-fluid fluxes have been found in high-pressure veins with adjacent selvages. In such selvages, large lithophile elements (LILE's) generally show the highest mobilities, followed by light (L) rare earth elements (REE) and then heavy (H) REE. Compared to high field strength elements (HFSE), even Th shows higher mobilities. From a fluid point of view, equilibrium between aqueous fluid and surrounding rock will only be approached at sites of fluid production and mineral reaction. However, this fluid can be significantly modified while moving upwards through a veining network where the wallrocks are out of equilibrium with the fluid. In a subducting slab, such reactive fluid flow can preferentially dissolve minerals and release their trace elements (e.g. Ba in phengite, Th and La in monazite). The degree of change in aqueous-fluid composition will depend on the amount of fluid–mineral surface interaction. The chemical exchange reactions will not be possible to model by trace element partition coefficients alone, instead future models need to incorporate kinetic parameters such as surface reaction rates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2019-09-23
    Description: Controversy over the oxygen isotope composition of seawater began in the 1950's, since which time there has been no agreement over whether the oxygen isotope composition of the oceans has changed over time. Resolving this uncertainty would allow the δ18O values of demonstrably well preserved marine authigenic precipitates to be used to reconstruct surface climate trends back to early Archean times and would help towards a more quantitative description of Earth's global water cycle on geological time scales. Isotopic studies of marine carbonate and silica reveal a trend of increasing δ18O values with decreasing age since the Archean. This trend has been interpreted by some to reflect a progressive increase in seawater δ18O through time; however, it is generally accepted on the basis of ophiolite studies and theoretical considerations that seawater δ18O cannot change significantly because of the buffering effects of ocean crust alteration at mid-ocean ridges. As a result many alternative interpretations have been proposed, including meteoric alteration; warmer paleoclimates; higher seawater pH; salinity stratification and biased sampling. Here we review these interpretations in the light of an updated compilation of marine carbonate δ18O from around the world, covering the Phanerozoic and Precambrian rock records. Recent models of the geological water cycle demonstrate how long-term trends in chemical weathering and hydrothermal circulation can indeed influence the O-isotope composition of the global ocean to the extent necessary to explain the carbonate δ18O trend, with residual variation attributed to climatic fluctuations and post-depositional alteration. We present the further development of an existing model of the geological water cycle. In the model, seawater δ18O increased from about − 13.3‰ to − 0.3‰ over a period of 3.4 Ga, with average surface temperatures fluctuating between 10 °C to 33 °C, which is consistent with known biological constraints. Similar temperature variations are also obtained, although with higher starting seawater δ18O composition, when more conservative approaches are used that take into account the systematic effects of diagenetic alteration on mean calcite δ18O values. In contrast to much published opinion, the average δ18O value of ocean crust in the model remained relatively unchanged throughout all model runs. Invariable ophiolite δ18O values can, therefore, not be used as a definitive argument against changing seawater δ18O. The most likely explanation for the long-term trend in seawater δ18O invokes two stepwise increases in the ratio of high- to low-temperature fluid/rock interactions. An initial increase may have occurred close to the Archean–Proterozoic boundary, but a possibly more significant increase took place near the Proterozoic–Phanerozoic boundary. Possible explanations for extremely low seawater δ18O during the Archean include higher continental weathering rates caused by a combination of higher atmospheric pCO2 (necessarily combined with high CO2 outgassing rates), a greater abundance of relatively easily weathered volcanic rocks in greenstone belts and partial emergence of spreading ridges. The second increase may have been caused by the suppression of low-temperature overprinting of ocean crust alteration by the formation of a thick sediment cover on ridge flanks due to the emergence of shelly plankton at the beginning of the Phanerozoic. Postulated increases in spreading ridge depths since the Archean would also have enhanced the efficiency of vertical heat flux and changed the depth at which hydrothermal fluids boil, both of which would favour high- over low-temperature interactions with time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2016-09-22
    Description: New discoveries of articulated partial skeletons of teleosts from Upper Turonian strata in the Bohemian Cretaceous Basin (BCB) are described. The infrequent occurrence of articulated skeletons is discussed and compared with comparable taxa from the same time-equivalent successions in southern England. The similarity suggests links between both regions during the Late Turonian. Some palaeoecological interpretations of the fishes are provided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2017-08-04
    Description: Studying the morphology and subsurface geometry of mud volcanoes provides insights into their activity. This paper describes the internal structure of the Håkon Mosby mud volcano (HMMV) in the southwestern Barents Sea and presents a conceptual model of its evolution. The lack of a mud edifice and the profuse gas flares suggest that in the recent past the mud volcano evolution was predominantly controlled by venting of gas-rich fluids and free gas. However, the analysis of high-resolution single-channel seismic (SCS) data reveals for the first time the existence of a pseudo-mud chamber at the top of the 3 km deep central conduit. It was once created at the seabed and is now a buried expression that acts as mud chamber. The pseudo-mud chamber is situated approximately 300 m below the seafloor, directly above the 330 ka Bear Island Slide (BIS) scar reflection and below glacigenic debris flow deposits that constitute the sediment on top. The sediment profiler data indicates a younger mud deposit above the debris flows, which points to a reactivation of the mud volcano. The reactivation was most likely triggered by the contrast in density between the gas-rich mud chamber and the high-density debris flow deposits. Three stages, i.e. initiation, sealing and reactivation, and a second active period define the evolution of this young mud volcano. Both, the morphology and size of the conduit as well as in-situ temperature gradients point towards a focused and rapid fluid flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2016-10-05
    Description: Plankton ecosystems in the North Atlantic display strong regional and interannual variability in productivity and trophic structure, which cannot be captured by simple plankton models. Additional compartments subdividing functional groups can increase predictive power, but the high number of parameters tends to compromise portability and robustness of model predictions. An alternative strategy is to use property state variables, such as cell size, normally considered constant parameters in ecosystem models, to define the structure of functional groups in terms of both behaviour and response to physical forcing. This strategy may allow us to simulate realistically regional and temporal differences among plankton communities while keeping model complexity at a minimum. We fit a model of plankton and DOM dynamics globally and individually to observed climatologies at three diverse locations in the North Atlantic. Introducing additional property state variables is shown to improve the model fit both locally and globally, make the model more portable, and help identify model deficiencies. The zooplankton formulation exerts strong control on model performance. Our results suggest that the current paradigm on zooplankton allometric functional relationships might be at odds with observed plankton dynamics. Our parameter estimation resulted in more realistic estimates of parameters important for primary production than previous data assimilation studies. Property state variables generate complex emergent functional relationships, and might be used like tracers to differentiate between locally produced and advected biomass. The model results suggest that the observed temperature dependence of heterotrophic growth efficiency [Rivkin, R.B., Legendre, L., 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291 (5512) 2398–2400] could be an emergent relation due to intercorrelations among temperature, nutrient concentration and growth efficiency. A major advantage of using property state variables is that no additional parameters are required, such that differences in model performance can be directly related to model structure rather than parameter tuning.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 367 . pp. 61-64.
    Publication Date: 2017-07-11
    Description: Sponges are the most basal metazoan organisms. As sessile filter feeders in marine or freshwater habitats, they often live in close association with phototrophic microorganisms. Active photosynthesis by the associated microorganisms has been believed to be restricted to the outer tissue portion of the sponge hosts. However, phototrophic microorganisms have also been detected in deeper tissue regions. In many cases they are found around spicules, siliceous skelettal elements of demosponges and hexactinellids. The finding of phototrophic organisms seemingly assembled around spicules led to the hypothesis of a siliceous light transmission system in sponges. The principle ability to conduct light was already shown for sponge derived, explanted spicules. However it was not shown until now, that in deed sponges have a light transmission system, and can harbour photosynthetically active microorganisms in deeper tissue regions. Here we show for the first time, that, as hypothesized 13 year ago, sponge spicules in living specimens transmit light into deeper tissue regions. Our results demonstrate that in opposite to the actual opinion, photosynthetically active microorganisms can also live in deeper tissue regions, and not only directly beneath the surface, when a light transmission system (spicules) is present. Our results show the possibility of massive or globular sponges being supplied with photosynthetic products or pathways throughout their whole body, implying not only a more important role of these endobioses. Our findings also elucidate the in-situ function of a recently more and more interesting biomaterial, which is unique not only for its mechanical, electrical and optical properties. Biosilica is of special interest for the possibility to produce it enzymatically under environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2016-12-21
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2017-09-28
    Description: During mass developments of Planktothrix rubescens, the biomass of this cyanobacterium was collected over a period of four consecutive years (2002–2005) from Lake Hallwilersee, Switzerland. To avoid any shifts in analytical separation and sensitivity, the biomasses were extracted with 60% aqueous methanol at the end of the investigation period and were analysed within 1 week by LC-ESMS. A new mass spectrometric method to quantify oligopeptides was introduced. The sum of all major molecular species (quasi-molecular ion, double charged ion, adducts, dimers and molecular ions that had lost a water molecule) rather than just the signal of the quasi-molecular ion was used to determine the total abundance of oligopeptides. This procedure has become necessary because the variable presence of inorganic ions and the varying conditions of the mass spectrometric source strongly affect the formation of the different molecular species. Several anabaenopeptins, oscillapeptins and planktocyclins were found. [Asp3, Dhb7]microcystin-RR was the major microcystin. The oligopeptide patterns were relatively stable over the investigation period of 4 years. In June 2005, a mass mortality of Daphnia was observed. The dead Daphnia, which floated on the surface of the lake, were collected and analysed for oligopeptides. Planktocyclin and planktocyclin sulfoxide, which belong to the major cyclic peptides in P. rubescens, were found in the carcasses of Daphnia, but microcystins were missing. Live zooplankton of the epilimnion was represented by both Daphnia and copepods, while the patches of dead zooplankter on the lake surface were free of copepods and contained only Daphnia. Protease inhibitors rather than microcystins are discussed as the major bioactive compounds for grazer defence of P. rubescens.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2017-08-04
    Description: A detailed, high-resolution stratigraphic analysis of the Mediterranean Outflow contourite system at the continental slope of the Gulf of Cadiz has been carried out through the correlation between a dense network of seismic reflection profiles (sparker, airgun, 3.75 kHz and parametric echosounder — TOPAS), Calypso giant piston and standard gravity cores. From such correlation we determine a stacking pattern constituted by four main seismic units (a–d) that are internally structured into ten subunits. Each subunit shows a single sequence formed by transparent seismic facies at the base to smooth, parallel reflectors of moderate to high amplitude facies at the top, being well correlated in the cores with a coarsening-upward sequence. The latest Pleistocene–Holocene deposits form glacial/interglacial depositional sequences related to cycles with a frequency range below the Milankovitch band that corresponds to millennial timescale climatic changes such as Dansgaard–Oeschger (1.5 ka) and Bond Cycles (10–15 ka). Oxygen isotope records of planktonic foraminifera and the occurrence of ice-rafted debris (IRD) in the most recent contourite subunits show clear evidence of the influence of the North Atlantic climatic conditions, especially the climatic Heinrich events (H) in the slope sedimentation of the Gulf of Cadiz and then in the circulation of the Mediterranean Outflow Water (MOW). The coarser contourite deposits are mostly associated with the Last Glacial Maximum, Younger Dryas and Heinrich events on the central area of the middle slope. During globally cooler conditions, the MOW was denser so that it was more active in deeper areas than today. On the other hand, during warm periods the MOW became less dense favoring an increased intensity of the MOWon the distal area of the upper slope. Therefore, spatial and vertical fluctuations of the MOW contourite system are strongly affected by global climate and oceanographic changes, being clearly influenced by iceberg discharges and probably also, by the resumption of thermohaline circulation in the North Atlantic Ocean during ice melting periods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    facet.materialart.
    Unknown
    Elsevier
    In:  Global and Planetary Change, 45 (1-3). pp. 23-33.
    Publication Date: 2017-07-24
    Description: Today, the ocean is characterized by pools of warm tropical–subtropical water bounded poleward and at depth by cold water. In the tropics and subtropics, the warm waters are floored at depth by the thermocline–pycnocline, which crops out on the ocean surface between the subtropical and polar frontal systems that form the poleward boundary. It is along and between the frontal systems that the thermocline waters enter the ocean interior. These frontal systems form beneath the maxima of the zonal component of the westerly winds. Today, the location of the westerly winds is stabilized by the persistent high-pressure systems at the polar regions produced by the ice cover of the Antarctic and sea-ice cover of the Arctic. The paleobiogeographic distribution of plankton fossils indicates that, prior to the Oligocene, the subtropical and polar frontal systems were not persistent features. Recent climate model experiments show that without perennial ice cover in the polar regions a seasonal alternation between high and low atmospheric pressure systems can occur. These seasonal alternations would force major changes in the location and strength of the westerly winds, preventing the development of the well-defined frontal systems that characterize the Earth today. Without the subtropical and polar frontal systems, the thermocline would be less well developed and the pycnocline could be dominated by salinity differences. Evidence from ocean drilling suggests that the glaciation of East Antarctica began at the Eocene–Oligocene boundary, but took time to spread over the entire continent. The presence of calcareous nannoplankton in the Arctic basin prior to the Oligocene and their absence thereafter suggests that the ice cover of the Arctic Ocean also developed at the Eocene–Oligocene boundary. Both events appear to be related to the development of the modern oceanic structure, but it remains uncertain whether the ocean changed in response to the development of ice covered polar regions or vice versa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2018-06-29
    Description: Macroalgae possess different defense mechanisms in response to herbivory. Some species produce anti-herbivore secondary metabolites, but production of these substances can be costly. Therefore, algae may produce defensive metabolites only in response to herbivory (inducible defense) or defend particular parts of the alga differentially (within-alga variation). In the present study, we examined whether two species of brown algae from the SE-Pacific show evidence of inducible chemical defense (non-polar compounds) or within-alga variation of defense, which we estimated in form of palatability of differently treated algae to amphipod grazers (with live algae and agar-based food containing non-polar algal extracts). In Glossophora kunthii (C. Agardh) J. Agardh, we observed an increase in palatability after algae were acclimated for 12 days without grazers. Subsequent addition of grazers for 12 days then resulted in a reduction of palatability indicating the existence of inducible defense. After removal of grazers for 12 days, these induced effects again disappeared. The reaction of G. kunthii was triggered even by the mere presence of grazers, which suggests that this alga can respond to waterborne cues by reducing palatability. Effects were only found for agar-based food containing non-polar extracts, but not for live algae, suggesting that some parts of the algae are undefended. Our second experiment on within-alga variation confirmed that only apical (growth region) and basal parts (near the holdfast region) of G. kunthii are defended against herbivores. For the second species, Macrocystis integrifolia Bory, the first experiment revealed no induction of defense, while the second experiment on within-alga variation showed that amphipods avoided basal parts and in particular stipes of M. integrifolia but only in live algae. Although both studied algal species differed substantially in their defensive strategies, their reaction was independent of the presence or absence of UV radiation. Thus, it appears that UV effects play only a minor role in anti-herbivore defense, which is in accordance with most previous studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2017-08-03
    Description: Offshore Ecuador, the Carnegie Ridge is a volcanic ridge with a carbonate sediment drape. During the SALIERI Cruise, multibeam bathymetry was collected across Carnegie Ridge with the Simrad EM120 of the R/V SONNE. The most conspicuous features discovered on the Carnegie Ridge are fields of circular closed depressions widely distributed along the mid-slope of the northern and southern flanks of the ridge between 1500 and 2600 m water depth. These circular depressions are 1–4 km wide and typically 100–400 m deep. Most are flat floored and some are so densely packed that they form a honeycomb pattern. The depressions were carved into the ridge sedimentary blanket, which consists of carbonate sediment and has been dated from upper Miocene to upper Pleistocene. Several hypotheses including pockmark origin, sediment creeping, paleo-topography of the volcanic basement, effects of subbottom currents, and both marine and subaerial karstic origins are discussed. We believe that underwater dissolution process merits the most serious consideration regarding the origin of the closed depression.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2019-09-23
    Description: The active continental margin off south-central Chile (36° to 40°S) is transitional between the tectonically erosive, empty-trench margin north of Juan Fernandez Ridge and the accretionary, trench-filled margin south of the Chile Triple Junction. The small width of the presently active accretionary wedge (maximum width of 25 to 50 km) argues for past phases of tectonic erosion. At present, this sector shows indications of contemporaneous accretion, subduction, and underplating of sediment, as well as readjustment of the slope by various mass-wasting processes. In this context, this study aims to examine the Neogene sedimentary processes on the continental margin from dredge samples recovered during R/V SONNE cruise SO161-5 within this transitional domain using lithology, sandstone petrology, shale mineralogy, and analysis of sedimentary structures. Our results yield that the principal transport of material occurs in high-energy turbidity currents and debris flows via submarine canyons deeply cutting the continental slope, whereas sediment on the shelf is transported by strong coast-parallel bottom currents and trapped by submarine canyons cutting into the shelf. A wide range of mass-wasting processes including slumping, debris flows, evolving to low-density turbidity currents and mud flows, rework the slope sediments. In contrast, thick undisturbed sequences of mostly hemipelagic sediments accumulate in active slope basins, which are largely protected from mass movements. XRD analyses revealed early diagenetic lithification and overall burial depths of up to ∼ 230 mbsf, suggesting a shallow-subsurface cycle of sedimentation, subsidence, diagenesis, uplift, erosion, and resedimentation. The composition of sandstones is dominated by volcanic rock fragments of Andean provenance. Along-strike modal changes reflect a southward increase in glacially denudation and rainfall, the combination of which caused more intense erosion of volcanic rocks and exposure, weathering and, as a result, increased fluvial transport of metamorphic and plutonic rocks to the sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2017-07-28
    Description: New time series of Nd and Pb isotopes were generated from two hydrogenous ferromanganese crusts from the eastern Indian Ocean, which were dated by 10Be / 9Be profiles and Co chronometry. The goal was to gain information on the nature and timing of variations of the deep water radiogenic isotope composition as a function of the evolution of the Indonesian Island Arcs since the Early Miocene, changes in ocean circulation related to the different stages of the closing of the Indonesian seaway for deep and intermediate water mass exchange since the Mid-Miocene, and enhanced Himalayan weathering since the Late Oligocene. A crust from 4119 m water depth in the Wharton Basin adjacent to Sumatra and the Java Trench (DODO 232D) has recorded a small variability in Nd isotope, but pronounced variations in Pb isotope composition over the past 17 Myr. Patterns and absolute values of the Nd and Pb isotope time series closely resemble the record of previously published crust SS663 from the central Indian Ocean, located some 2500 km SW of crust DODO 232D in the northern central Indian Ocean. In accordance with the interpretation derived from crust SS663, the Pb isotope composition of deep water in the Wharton Basin has apparently been mainly controlled by products of Himalayan erosion and weathering and to a lesser extent by the evolution of the Indonesian Island Arcs. The location of a second crust (VA16 13KD-1) from 2100 m water depth on the Scott Plateau off NW Australia is beneath the present day outflow of Pacific-derived surface and thermocline water masses into the eastern Indian Ocean. The pattern of the Pb isotope time series of this crust and the observed changes in Pb isotope mixing relationships, which occurred at ∼ 11.5 and ∼ 3.5 Ma, reflect the combined influence of advection and mixing of water masses through the Indonesian Seaway and weathering of volcanic source rocks within the emerging Indonesian Island Arcs over the past 33 Myr. The Nd isotope time series shows a pattern similar to central and southwest Pacific crusts and is best explained by a mixture between Nd from water masses advected from the Indian and Southern Ocean and Nd released by weathering from the emerging Indonesian Island Arcs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2017-11-01
    Description: The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of ΔG∘ = −33 kJ mol−1, but the in situ energy yield strongly depends on the concentrations of substrates and products in the pore water of the sediment. In this work ΔG for the AOM–SRR process was calculated from the pore water concentrations of methane, sulfate, sulfide, and dissolved inorganic carbon (DIC) in sediment cores from different sites of the European continental margin in order to determine the influence of thermodynamic regulation on the activity and distribution of microorganisms mediating AOM–SRR. In the zone of methane and sulfate coexistence, the methane-sulfate transition zone (SMTZ), the energy yield was rarely less than −20 kJ mol−1 and was mostly rather constant throughout this zone. The kinetic drive was highest at the lower part of the SMTZ, matching the occurrence of maximum AOM rates. The results show that the location of maximum AOM rates is determined by a combination of thermodynamic and kinetic drive, whereas the rate activity mainly depends on kinetic regulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2019-09-23
    Description: Four mud extrusions were investigated along the erosive subduction zone off Costa Rica. Active fluid seepage from these structures is indicated by chemosynthetic communities, authigenic carbonates and methane plumes in the water column. We estimate the methane output from the individual mud extrusions using two independent approaches. The first is based on the amount of CH4 that becomes anaerobically oxidized in the sediment beneath areas covered by chemosynthetic communities, which ranges from 104 to 105 mol yr− 1. The remaining portion of CH4, which is released into the ocean, has been estimated to be 102–104 mol yr− 1 per mud extrusion. The second approach estimates the amount of CH4 discharging into the water column based on measurements of the near-bottom methane distribution and current velocities. This approach yields estimates between 104–105 mol yr−1. The discrepancy of the amount of CH4 emitted into the bottom water derived from the two approaches hints to methane seepage that cannot be accounted for by faunal growth, e.g. focused fluid emission through channels in sediments and fractures in carbonates. Extrapolated over the 48 mud extrusions discovered off Costa Rica, we estimate a CH4 output of 20·106 mol yr− 1 from mud extrusions along this 350 km long section of the continental margin. These estimates of methane emissions at an erosional continental margin are considerably lower than those reported from mud extrusion at accretionary and passive margins. Almost half of the continental margins are described as non-accretionary. Assuming that the moderate emission of methane at the mud extrusions off Costa Rica are typical for this kind of setting, then global estimates of methane emissions from submarine mud extrusions, which are based on data of mud extrusions located at accretionary and passive continental margins, appear to be significantly too high.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 272 . pp. 422-428.
    Publication Date: 2019-09-23
    Description: The Cape Verde Islands are located on a mid-plate topographic swell and are thought to have formed above a deep mantle plume. Wide-angle seismic data have been used to determine the crustal and uppermost mantle structure along a ~ 440 km long transect of the archipelago. Modelling shows that ‘normal’ oceanic crust, ~ 7 km in thickness, exists between the islands and is gently flexed due to volcano loading. There is no direct evidence for high density bodies in the lower crust or for an anomalously low density upper mantle. The observed flexure and free-air gravity anomaly can be explained by volcano loading of a plate with an effective elastic thickness of 30 km and a load and infill density of 2600 kg m− 3. The origin of the Cape Verde swell is poorly understood. An elastic thickness of 30 km is expected for the ~ 125 Ma old oceanic lithosphere beneath the islands, suggesting that the observed height of the swell and the elevated heat flow cannot be attributed to thermal reheating of the lithosphere. The lack of evidence for high densities and velocities in the lower crust and low densities and velocities in the upper mantle, suggests that neither a crustal underplate or a depleted swell root are the cause of the shallower than expected bathymetry and that, instead, the swell is supported by dynamic uplift associated with the underlying plume.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    facet.materialart.
    Unknown
    Elsevier
    In:  Global and Planetary Change, 48 (1-3). pp. 84-95.
    Publication Date: 2020-12-01
    Description: Historical data analyses show that the Lena River and its major tributaries experienced an extended low water period over 1936–1957 and high water periods over 1974–1983 and 1988–2001. Higher than normal river discharge and annual precipitation is particularly pronounced since the late 1960s due to large-scale changes in atmospheric circulation patterns. The trend in runoff observed in the Lena River basin increased by 10% from 1936 to 2001 due to extended wet periods during the second part of last century. The trend is weakened for the Vilui River basin since it experiences reservoir regulation, which causes additional water losses through reservoir filling and increased evaporation. Runoff regulation strongly affects the winter runoff regime of both the Vilui River and the lower reaches of the Lena River causing an increased winter discharge at the Lena river outlet station of approximately 33%.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2015-01-30
    Description: A general overview of the processes taking place in the summer mixing zone of the fresh Yenisei River water with the marine waters of the Kara Sea is given in this study, with special emphasis on the interaction between bulk (total suspended matter), inorganic (Fe, Mn) and organic (suspended organic carbon, suspended nitrogen) proxies. Within the mixing zone, a zone of enhanced turbidity (maximum turbidity zone) was observed comparable to studies in other rivers. Flocculation of particles due to changes in salinity and hydrography cause this maximum turbidity zone, and resuspension additionally enhances the turbidity in the near-bottom layers. Organic matter behaves conservatively in the mixing zone in terms of its percentage of suspended matter. It, however, undergoes degradation as revealed by amino acid data. Inorganic, redox- and salinity-sensitive, proxies (Mn, Fe) behave non-conservatively. Dissolved iron is removed at low salinities (〈2) due to precipitation of iron oxyhydroxides and adsorption of manganese on suspended particles, enhancing the Mn/Al ratio of the suspended matter in the same zone. At higher salinities within the mixing zone, Fe/Al and Mn/Al ratios of the suspended particles are depleted due to resuspension of sediment with lower Fe/Al and Mn/Al ratios. Dissolved manganese concentrations are significantly higher in the near-bottom layers of the mixing zone due to release from the anoxic sediment. All things considered, the Yenisei River mixing zone shows patterns similar to other world's rivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2015-01-27
    Description: Measurements of bromoform (CHBr3), diiodomethane (CH2I2), chloroiodomethane (CH2ICl) and bromoiodomethane (CH2IBr) were made in the water column (5–100 m depth) of the Southern Ocean within 0–40 km of the Antarctic sea ice during the ANTXX1/2 transect of the German R/V Polarstern, at five locations between 70–72°S and 9–11°W in the Antarctic spring/summer of 2003–2004. Some of the profiles exhibited a very pronounced layer of surface sea-ice meltwater, as evidenced by salinity minima and temperature maxima, along with surface maxima in concentrations of CHBr3, CH2I2, CH2ICl and CH2IBr. These results are consistent with in situ surface halocarbon production by ice algae liberated from the sea ice, although production within the sea ice followed by transport cannot be entirely ruled out. Additional sub-surface maxima in halocarbons occurred between 20 and 80 m. At a station further from shore and not affected by surface sea-ice meltwater, surface concentrations of CH2I2 were decreased whereas CH2ICl concentrations were increased compared to the stations influenced by meltwater, consistent with photochemical conversion of CH2I2 to CH2ICl, perhaps during upward mixing from a layer at ∼ 70 m enhanced in iodocarbons. Mean surface (5–10 m) water concentrations of halocarbons in these coastal Antarctic waters were 57 pmol l− 1 CHBr3 (range 44–78 pmol l− 1), 4.2 pmol l− 1 CH2I2 (range 1.7–8.2 pmol l− 1), 0.8 pmol l− 1 CH2IBr (range 0.2–1.4 pmol l− 1), and 0.7 pmol l− 1 CH2ICl (range 0.2–2.4 pmol l− 1). Concurrent measurements in air suggested a sea-air flux of bromoform near the Antarctic coast of between 1 and 100 (mean 32.3, median 10.4) nmol m− 2 day− 1 and saturation anomalies of 557–1082% (mean 783%, median 733%), similar in magnitude to global shelf values. In surface samples affected by meltwater, CH2I2 fluxes ranged from 0.02 to 6.1 nmol m− 2 day− 1, with mean and median values of 1.9 and 1.1 nmol m− 2 day− 1, respectively.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2020-01-01
    Description: The accumulation and transformation of organic matter during soil development is rarely investigated although such processes are relevant when discussing about carbon sequestration in soil. Here, we investigated soils under grassland and forest close to the North Sea that began its genesis under terrestrial conditions 30 years ago after dikes were closed. Organic C contents of up to 99 mg g−1 soil were found until 6 cm soil depth. The humus consisted mainly of the fraction lighter than 1.6 g cm−3 which refers to poorly degraded organic carbon. High microbial respiratory activity was determined with values between 1.57 and 1.17 μg CO2–C g−1 soil h−1 at 22 °C and 40 to 70% water-holding capacity for the grassland and forest topsoils, respectively. The microbial C to organic C ratio showed values up to 20 mg Cmic g−1 Corg. Although up to 2.69 kg C m−2 were estimated to be sequestered during 30 years, the microbial indicators showed intensive colonisation and high transformation rates under both forest and grassland which were higher than those determined in agricultural and forest topsoils in Northern Germany.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    facet.materialart.
    Unknown
    Elsevier
    In:  Quaternary Science Reviews, 25 (15-16). pp. 1790-1820.
    Publication Date: 2020-12-31
    Description: The composition of fossil insect faunas from northeastern Siberia changed significantly during the Pleistocene–Holocene transition. The Late Pleistocene insect fauna reflects tundra-steppe environments, and was dominated by xerophilic species. This fauna persisted regionally until ca 12,000 yr BP. A radical transformation of the environment occurred between 12,000 and 10,000 yr BP, marked by the permafrost degradation and invasion of tall shrubs and later trees into the higher latitudes. The early Holocene insect assemblages are dominated by mesophilic tundra species, but also include small number of more thermophilic species, which are currently restricted to the taiga zone. Tree-dependent species, however, were virtually absent. This early Holocene fauna has no modern analogue. The faunal assemblages indicate that the early Holocene climate was more humid than that of the Late Pleistocene, and warmer than today. Post-glacial sea level rise was in progress at that time, but the shoreline was still much further north, and the New Siberian Islands were still a part of the mainland. During the second-half of the Holocene, sea level continued to rise, and trees and tall shrubs retreated to the south. Regional ecosystems, including insect faunas, approached their modern compositions and boundaries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    facet.materialart.
    Unknown
    Elsevier
    In:  Continental Shelf Research, 27 (12). pp. 1692-1701.
    Publication Date: 2017-12-31
    Description: Latent heat polynyas are regions generating strong ice formation, convection and extensive water mass formation. Here we report on the effects of these processes on resuspension of sediments and subsequent methane release from the seafloor and on the resulting excess methane concentration in surface water on a polar shelf during winter. The study is based on measurements of concentration and δ13C values of methane, water temperature, salinity, light transmission and sea ice data collected in March 2003 in Storfjorden, southern Svalbard. In winter, strong and persistent northeasterly winds create polynyas in eastern Storfjorden and cause ice formation. The resulting brine-enriched water cascades from the Storfjordbanken into the central depression thereby enhancing the turbulence near the seafloor. A distinct benthic nepheloid layer was observed reflecting the resuspension of sediments by the cascading dense bottom water. High concentrations of 13C-depleted methane suggest submarine discharge of methane with the resuspended sediments. As the source of the submarine methane, we propose recent bacterial methanogenesis near the sediment surface because of extremely high accumulation rates of organic carbon in Storfjorden. Convective mixing transports newly released methane from the bottom to the sea surface. This eventually results in an excess concentration in surface water with respect to the atmospheric equilibrium, and a sea-air flux of methane during periods of open water. When a new ice cover is formed, methane becomes trapped in the water column and subsequently oxidized. Thus, the residual methane is strongly enriched in 13C in relation to the δ13CCH4δ13CCH4 signature of atmospheric methane. Our results show that latent heat polynyas may induce a direct pathway for biogases like methane from sediments to the atmosphere through coupling of biogeochemical and oceanographic processes. Extrapolating these processes to all Arctic ocean polynyas, we estimate a transfer of CH4 between 0.005 and 0.02 Tg yr−1. This is not a large contribution but the fluxes from the polynyas are 20–200 times larger than the ocean average and the methane evasion process in polynyas is certainly one that can be altered under climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2015-09-22
    Description: Residual flow, barotropic tides and internal (baroclinic) tides interact in a number of ways with kilometer-scale seafloor topography such as abyssal hills and seamounts. Because of their likely impact on vertical mixing such interactions are potentially important for ocean circulation and the mechanisms and the geometry of these interactions are a matter of ongoing studies. In addition, very little is known about how these interactions are reflected in the sedimentary record. This multi-year study investigates if flow/topography interactions are reflected in distributional patterns of the natural short-lived (half-life: 24.1 d) particulate-matter tracer 234Th relative to its conservative (non-particle-reactive) and very long-lived parent nuclide 238U. The sampling sites were downstream of, or surrounded by, fields of short seamounts and, therefore, very likely to be influenced by nearby flow/topography interactions. At the sampling sites between about 200 and 1000 m above the seafloor recurrent ‘fossil’ disequilibria were detected. ‘Fossil’ disequilibria are defined by clearly detectable 234Th/238U disequilibria (total 234Th radioactivity 〈238U radioactivity, indicating a history of intense particulate 234Th scavenging and particulate-matter settling from the sampled parcel of water) and conspicuously low particle-associated 234Th activities. ‘Fossil’ disequilibria were centered at levels in the water column that correspond to the average height of the short seamounts near the sampling sites. This suggests the ‘fossil’ disequilibria are formed on the seamount slopes. Moreover, the magnitude of the ‘fossil’ disequilibria suggests that the slopes of the short seamounts in the study region are characterized by particularly vigorous fluid dynamics. Since ‘fossil’ disequilibria already occurred at ∼O(1–10 km) away from the seamount slopes it is likely that these vigorous fluid dynamics rapidly decay away from the slopes on scales of O(1–10 km). These conclusions are supported by the horizontal distribution and magnitude of the modeled total (barotropic+baroclinic) tidal current velocities of the predominating tidal M2 constituent: on (near-)critical seamount slopes baroclinic tides lead to localized [∼O(1 km)] increases of the overall tidal current velocity by a factor of ∼ 2, thereby pushing the total current velocity well above the threshold for sediment erosion. The results of this and a previous study [Turnewitsch, R., Reyss, J.-L., Chapman, D.C., Thomson, J., Lampitt, R.S., 2004. Evidence for a sedimentary fingerprint of an asymmetric flow field surrounding a short seamount. Earth and Planetary Science Letters 222(3–4), 1023–1036] show that kilometer-scale flow/topography interactions leave a marine geochemical imprint. This imprint may help develop new sediment proxies for the reconstruction of past changes of fluid dynamics in the deep sea, including residual and tidal flow. Sedimentary records controlled by kilometer-scale seafloor elevations are promising systems for the reconstruction of paleo-changes of deep-ocean fluid dynamics. For the sediment-based reconstruction of paleo-parameters other than physical oceanographic ones it may be advisable to avoid kilometer-scale topography altogether.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2015-09-25
    Description: In July 2007, phosphorus input by an upwelling event along the east coast of Gotland Island and the response of filamentous cyanobacteria were studied to determine whether introduced phosphorus can intensify cyanobacterial bloom formation in the eastern Gotland Basin. Surface temperature, nutrient concentrations, phytoplankton biomass and its stoichiometry, as well as phosphate uptake rates were determined in two transects between the coasts of Gotland and Latvia and in a short grid offshore of Gotland. In the upwelling area, surface temperatures of 11–12 °C and average dissolved inorganic phosphorus (DIP) concentrations of 0.26 μM were measured. Outside the upwelling, surface temperatures were higher (15.5–16.6 °C) and DIP supplies in the upper 10 m layer were exhausted. Nitrite and nitrate concentrations (0.01–0.22 μM) were very low within and outside the upwelling region. Abundances of filamentous cyanobacteria were highly reduced in the upwelling area, accounting for only 1.4–6.0% of the total phytoplankton biomass, in contrast to 18–20% outside the upwelling. The C:P ratio of filamentous cyanobacteria varied between 32.8 and 310 in the upwelling region, most likely due to the introduction of phosphorus-depleted organisms into the upwelling water. These organisms accumulate DIP in upwelling water and have lower C:P ratios as long as they remain in DIP-rich water. Thus, diazotrophic cyanobacteria benefit from phosphorus input directly in the upwelling region. Outside the upwelling region, the C:P ratios of filamentous cyanobacteria varied widely, between 240 and 463, whereas those of particulate material in the water ranged only between 96 and 224. To reduce their C:P ratio from 300 to 35, cyanobacteria in the upwelling region had to take up 0.05 mmol m−3 DIP, which is about 20% of the available DIP. Thus, a larger biomass of filamentous cyanobacteria may be able to benefit from a given DIP input. As determined from the DIP uptake rates measured in upwelling cells, the time needed to reduce the C:P ratio from 300 to 35 was too long to explain the huge bloom formations that typically occur in summer. However, phosphorus uptake rates increased significantly with increasing C:P ratios, allowing phosphorus accumulation within 4–5 days, a span of time suitable for bloom formation in July and August.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2015-11-18
    Description: Expedition 311 of the Integrated Ocean Drilling Program (IODP) to northern Cascadia recovered gas-hydrate bearing sediments along a SW–NE transect from the first ridge of the accretionary margin to the eastward limit of gas-hydrate stability. In this study we contrast the gas gas-hydrate distribution from two sites drilled ~ 8 km apart in different tectonic settings. At Site U1325, drilled on a depositional basin with nearly horizontal sedimentary sequences, the gas-hydrate distribution shows a trend of increasing saturation toward the base of gas-hydrate stability, consistent with several model simulations in the literature. Site U1326 was drilled on an uplifted ridge characterized by faulting, which has likely experienced some mass wasting events. Here the gas hydrate does not show a clear depth-distribution trend, the highest gas-hydrate saturation occurs well within the gas-hydrate stability zone at the shallow depth of ~ 49 mbsf. Sediments at both sites are characterized by abundant coarse-grained (sand) layers up to 23 cm in thickness, and are interspaced within fine-grained (clay and silty clay) detrital sediments. The gas-hydrate distribution is punctuated by localized depth intervals of high gas-hydrate saturation, which preferentially occur in the coarse-grained horizons and occupy up to 60% of the pore space at Site U1325 and 〉 80% at Site U1326. Detailed analyses of contiguous samples of different lithologies show that when enough methane is present, about 90% of the variance in gas-hydrate saturation can be explained by the sand (〉 63 μm) content of the sediments. The variability in gas-hydrate occupancy of sandy horizons at Site U1326 reflects an insufficient methane supply to the sediment section between 190 and 245 mbsf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2015-11-24
    Description: The Sibao Orogen in South China is one of the poorest known Grenville-aged orogenic belts through which the Neoproterozoic supercontinent Rodinia assembled. We report here the first UV laser spot 40Ar/39Ar mica and SHRIMP U–Pb zircon ages from a rare Grenville-aged metamorphic complex, the Tianli Schists, in the eastern Sibao Orogen. Our U–Pb zircon provenance ages indicate that the protolith of the Tianli Schists was a clastic sedimentary succession most likely derived from the Yangtze Block. The depositional age of the protolith is younger than 1530 Ma, as constrained by the youngest detrital zircon grains, but is older than 1040 Ma as constrained by the oldest 40Ar/39Ar muscovite ages. The Yangtze Block provenance for the Tianli Schists suggests that the Sibaoan ophiolitic complexes in northeastern Jiangxi, the ca. 970 Ma Xiwan adakitic granite intrusions, and the ca. 900 Ma(?) Xiwan blueschists, all to the northwest of the study region, were likely formed during the closure of a back-arc basin along the margin of the Yangtze Block. Our in situ UV laser 40Ar/39Ar results from S1 and S2 muscovites suggest that the Tianli Schists underwent metamorphism and deformation at 1042 ± 7 Ma to 1015 ± 4 Ma, the oldest known metamorphic event in the eastern Sibao Orogen. Muscovite/biotite cooling ages of ca. 968 ± 4 and 942 ± 8 Ma are recorded by deformed and recrystallised muscovite and biotite, respectively, indicating tectonic reactivation before 900 Ma, during the later stages of the Sibao Orogeny. Together with previous results from the western Sibao Orogen, our work suggests that the closure of the ocean between the Yangtze and Cathaysia Blocks during the assembly of Rodinia was diachronous: ≥1000 Ma at the western Sibao Orogen and ca. 900 Ma at the eastern Sibao Orogen.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2016-01-11
    Description: Annonaceous acetogenins are a large class of naturally occurring polyketides exhibiting potent anticancer activities. Based on our previous discovery of AA005, a multi-ether mimic of natural acetogenins having potent antitumor activities and significant selectivity between normal cells and cancer cells, a new series of mimics containing a terminal lactam were designed, synthesized and evaluated. Bioactivity study against cancer cells shows that the N-methylated lactam-containing compounds 3, 4, and 5 exhibit comparable potencies to that of AA005, as well as the similar selectivity to cancer cells. Hydrocarbon-length effects of N-alkyl were further explored through synthesizing derivatives 24–26, and application of this derivation protocol to the fluorescent labeling was also investigated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2016-02-12
    Description: Over a 12-year period (1989–2000) the spatial and temporal distribution of zooplankton in the Laptev Sea (Arctic Siberia) has been investigated. A total number of 111 taxa from 10 phyla were found. Sixteen species are reported from this region for the first time. The distribution and abundance of zooplankton on the Laptev Sea shelf is dependent on the main direction of river water spread, which varies between years. While the western and northeastern Laptev Sea shelf is dominated by a marine–neritic fauna, the central part is inhabited by a transitional brackish–marine assemblage. A brackish–neritic community characterizes the eastern and southeastern regions, where lowest salinities usually prevail. Closer to estuaries the summer zooplankton consists of both freshwater and brackish-water species, whereas in winter brackish-water species are dominant. Average zooplankton abundance varies seasonally and interannually, particularly in the southeastern Laptev Sea. The amplitude of these variations mainly depends on the state of the populations of the most common Copepoda species, the intensity of their reproduction, and their success in overwintering. Two seasonal abundance maxima were found, at the end of winter and at the end of summer. During the period of highest reproduction in summer the abundance may be 50 times greater than during overwintering. The average population abundance can vary by the factor of 2 in summer and in winter from year to year.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2015-02-12
    Description: Plant macrofossils from the “Mamontovy Khayata” permafrost sequence (71°60′N, 129°25′E) on the Bykovsky Peninsula reflect climate and plant biodiversity in west Beringia during the last cold stage. 70 AMS and 20 conventional 14C dates suggest sediment accumulation between about 60,000 and 7500 14C yr B.P. The plant remains prove that during the last cold-stage arctic species (Minuartia arctica, Draba spp., Kobresia myosuroides) coexisted with aquatic (Potamogeton vaginatus, Callitriche hermaphroditica), littoral (Ranunculus reptans, Rumex maritimus), meadow (Hordeum brevisubulatum, Puccinellia tenuiflora) and steppe taxa (Alyssum obovatum, Silene repens, Koeleria cristata, Linum perenne). The reconstructed vegetation composition is similar to modern vegetation mosaics in central and northeast Yakutian relict steppe areas. Thus, productive meadow and steppe communities played an important role in the Siberian Arctic vegetation during the late Pleistocene and could have served as food resource for large populations of herbivores. The floristic composition reflects an extremely continental, arid climate with winters colder and summers distinctly warmer than at present. Holocene macrofossil assemblages indicate a successive paludification possibly connected with marine transgression, increased oceanic influence and atmospheric humidity. Although some steppe taxa were still present in the early Holocene, they disappeared completely before ∼2900 14C yr B.P.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2020-12-31
    Description: The abundance, activity, and temperature response of aerobic methane-oxidizing bacteria were studied in permafrost-affected tundra soils of northeast Siberia. The soils were characterized by both a high accumulation of organic matter at the surface and high methane concentrations in the water-saturated soils. The methane oxidation rates of up to 835 nmol CH4 h−1 g−1 in the surface soils were similar to the highest values reported so far for natural wetland soils worldwide. The temperature response of methane oxidation was measured during short incubations and revealed maximum rates between 22 °C and 28 °C. The active methanotrophic community was characterized by its phospholipid fatty acid (PLFA) concentrations and with stable isotope probing (SIP). Concentrations of 16:1ω8 and 18:1ω8 PLFAs, specific to methanotrophic bacteria, correlated significantly with the potential methane oxidation rates. In all soils, distinct 16:1 PLFAs were dominant, indicating a predominance of type I methanotrophs. However, long-term incubation of soil samples at 0 °C and 22 °C demonstrated a shift in the composition of the active community with rising temperatures. At 0 °C, only the concentrations of 16:1 PLFAs increased and those of 18:1 PLFAs decreased, whereas the opposite was true at 22 °C. Similarly, SIP with 13CH4 showed a temperature-dependent pattern. When the soils were incubated at 0 °C, most of the incorporated label (83%) was found in 16:1 PLFAs and only 2% in 18:1 PLFAs. In soils incubated at 22 °C, almost equal amounts of 13C label were incorporated into 16:1 PLFAs and 18:1 PLFAs (33% and 36%, respectively). We concluded that the highly active methane-oxidizing community in cold permafrost-affected soils was dominated by type I methanotrophs under in situ conditions. However, rising temperatures, as predicted for the future, seem to increase the importance of type II methanotrophs, which may affect methane cycling in northern wetlands.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2016-12-31
    Description: An accumulation terrace close to the El'gygytgyn Impact Crater in northeastern Siberia contains stratigraphic and periglacial evidence of the paleoenvironmental and paleoclimatic history and permafrost dynamics during late Quaternary time. A succession of paleo active-layer deposits that mirror environmental changes records periods favorable for the establishment and growth of ice-wedge polygonal networks and sediment variations. These two elements of the periglacial landscape serve as complementary paleoenvironmental archives that can be traced back to ∼ 14,000 cal yr BP. The slope sediments and the ground ice contained therein have prominent relative maxima and minima in properties (grain size, total organic content, oxygen isotopes). They document a regional early Holocene thermal maximum at about 9000 cal yr BP, followed by a transition to slightly cooler conditions, and a subsequent transition to slightly warmer conditions after about 4000 cal yr BP. Results from sedimentary analysis resemble morphological and geochemical (oxygen and hydrogen isotopes) results from ice wedge studies, in which successive generations of ice-wedge polygonal networks record warmer winters in late Holocene time. Moreover, peaks of light soluble cation contents and quartz-grain surface textures reveal distinct traces of cryogenic weathering. We propose a conclusive sedimentation model illustrating terrace formation in a permafrost terrain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2019-12-31
    Description: The Quaternary history of Beringia and of the Arctic–Pacific marine connection via the Bering Strait is poorly understood because of the fragmentary stratigraphic record from this region. We report new borehole and seismic-reflection data collected in 2006 in the southwestern Chukchi Sea. Sediment samples were analyzed for magnetic properties, grain size, heavy minerals, and biostratigraphic proxies (spores and pollen, foraminifers, ostracodes, diatoms, and aquatic palynomorphs). Two shallow boreholes drilled between the Chukotka Peninsula and the Wrangel Island recovered sediments of two principal stratigraphic units with a distinct unconformity between them. Based on predominantly reverse paleomagnetic polarity of the lower unit and pollen spectra indicative of forested coasts and climate warmer than present, the age of this unit is estimated as Pliocene to early Pleistocene (broadly between ca. 5 and 2 Ma). Attendant sedimentary environments were likely alluvial to nearshore marine. These deposits can be correlated to the seismic unit infilling valleys incised into sedimentary bedrock across much of the study area, and possibly deposited during a transgression following the opening of the Bering Strait. The upper unit from both boreholes contains Holocene 14C ages and is clearly related to the last, postglacial transgression. Holocene sediments in Borehole 2 indicate fast deposition at the early stages of flooding (between ca. 11 and 9 ka) to very low deposition, possibly related to expansive sea ice. Closer to shore, deposition at Borehole 1 resumed much later (ca. 2 ka), likely due to a change in the pattern of coastal erosional processes and/or the demise of a landbridge between the Chukotka Peninsula and the Wrangel Island inferred from studies on mammoth distribution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2015-09-18
    Description: Particles sinking out of the euphotic zone are important vehicles of carbon export from the surface ocean. Most of the particles produce heavier aggregates by coagulating with each other before they sink. We implemented an aggregation model into the biogeochemical model of Regional Oceanic Modelling System (ROMS) to simulate the distribution of particles in the water column and their downward transport in the Northwest African upwelling region. Accompanying settling chamber, sediment trap and particle camera measurements provide data for model validation. In situ aggregate settling velocities measured by the settling chamber were around 55 m d(-1). Aggregate sizes recorded by the particle camera hardly exceeded I mm. The model is based on a continuous size spectrum of aggregates, characterised by the prognostic aggregate mass and aggregate number concentration. Phytoplankton and detritus make up the aggregation pool, which has an averaged, prognostic and size dependent sinking. Model experiments were performed with dense and porous approximations of aggregates with varying maximum aggregate size and stickiness as well as with the inclusion of a disaggregation term. Similar surface productivity in all experiments has been generated in order to find the best combination of parameters that produce measured deep water fluxes. Although the experiments failed to represent surface particle number spectra, in the deep water some of them gave very similar slope and spectrum range as the particle camera observations. Particle fluxes at the mesotrophic sediment trap site off Cape Blanc (CB) have been successfully reproduced by the porous experiment with disaggregation term when particle remineralisation rate was 0.2 d(-1). The aggregation-disaggregation model improves the prediction capability of the original biogeochemical model significantly by giving much better estimates of fluxes for both upper and lower trap. The results also point to the need for more studies to enhance our knowledge on particle decay and its variation and to the role that stickiness play in the distribution of vertical fluxes
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2015-09-29
    Description: This article will review major features of the 'giant' Cape Blanc filament off Mauritania with regard to the transport of chlorophyll and organic carbon from the shelf to the open ocean. Within the filament, chlorophyll is transported about 400 km offshore. Modelled particle distributions along a zonal transect at 21 degrees N showed that particles with a sinking velocity of 5 m d(-1) are advected offshore by up to 600 km in subsurface particle clouds generally located between 400 m and 800 m water depth, forming an Intermediate Nepheloid Layer (INL). It corresponds to the depth of the oxygen minimum zone. Heavier particles with a sinking velocity of 30 m d(-1) are transported from the shelf within the Bottom Layer (BL) of more than 1000 m thickness, largely following the topography of the bottom slope. The particles advected within the BL contribute to the enhanced winter-spring mass fluxes collected at the open-ocean mesotrophic sediment trap site CB-13 (similar to 200 nm offshore), due to a long distance advection in deeper waters. The lateral contribution to the deep sediment trap in winter-spring is estimated to be 63% and 72% for organic carbon and total mass, respectively, whereas the lateral input for both components on an annual basis is estimated to be in the order of 15%. Biogenic opal increases almost fivefold from the upper to the lower mesotrophic CB-13 trap, also pointing to an additional source for biogenic silica from eutrophic coastal waters. Blooms obviously sink in smaller, probably mesoscale-sized patches with variable settling rates, depending on the type of aggregated particles and their ballast content. Generally, particle sinking rates are exceptionally high off NW Africa. Very high chlorophyll values and a large size of the Cape Blanc filament in 1998-1999 are also documented in enhanced total mass and organic carbon fluxes. An increasing trend in satellite chlorophyll concentrations and the size of the Cape Blanc filament between 1997 and 2008 as observed for other coastal upwelling areas is not documented
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    facet.materialart.
    Unknown
    Elsevier
    In:  Quaternary International, 126-128 . pp. 49-64.
    Publication Date: 2015-11-04
    Description: Mammoth evolution in Eurasia represents one of the best-studied examples of evolutionary pattern and process in the terrestrial fossil record. A pervasive belief in the gradual transformation of chronospecies in Europe is giving way to a more complex model incorporating geographical variation across the whole of northern Eurasia. This in turn casts doubt on biostratigraphic deductions which assume gradual transformation of molar morphology, simultaneous across the species’ range. The earliest European elephantids, Mammuthus rumanus, occur in the interval 3.5–2.5 Ma, and are distinctly more primitive than the better-known M. meridionalis. The species ‘M. gromovi’, identified in the interval c. 2.6–2.2 Ma, appears to be a junior synonym of M. meridionalis. M. meridionalis dispersed widely and, in the interval 2.0–1.5 Ma, gave rise to M. trogontherii in eastern Asia, probably in China, spreading to NE Siberia by 1.2 Ma. Between that date and c. 600 ka, flow of genes and/or individuals westwards produced an interaction with European M. meridionalis which led to a network of populations in time and space and the eventual supplanting of that species by M. trogontherii. This conclusion is based principally on the earlier appearance of M. trogontherii morphology in eastern Asia, supplemented by complex morphological patterns in Europe during the time of transition. Subsequently, M. trogontherii did not undergo a gradual transformation into M. primigenius (woolly mammoth) in Europe, but remained in stasis (apart from size reduction) until 200 ka. In NE Siberia, however, M. trogontherii began a transformation into primitive M. primigenius morphology as early as 700 ka, and that species continued its evolution in the same region through the Middle and Late Pleistocene. The incursion of M. primigenius into Europe appears to have occurred soon after 200 ka, and its ‘replacement’ of M. trogontherii there probably included some introgression from the latter species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    facet.materialart.
    Unknown
    Elsevier
    In:  Global and Planetary Change - Special Issue, 48 (1-3). Elsevier, Amsterdam, pp. 1-8, 252 pp.
    Publication Date: 2015-03-31
    Type: Report , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2015-01-27
    Description: New high-resolution multi-beam bathymetry data allowed the recognition of several bathymetric lineaments (ca. 100 km long, trending WNW–ESE) in seafloor sediments of the Gulf of Cadiz, offshore SW Iberia. The interpretation of multi-channel (MCS) profiles crosscutting these lineaments showed that they are controlled by underlying deep seated faults, which have endured a polyphase reactivation history. To get insights on the Recent tectonic evolution of these structures, we performed two sets of analogue modelling experiments, assuming: 1) right-lateral strike-slip basement faulting and coupled passive shearing affecting an overlying soft cover; and 2) low-angle transpressive deformation along a narrow shear band overlying the fault. Our results show a good correlation between the experimentally obtained structural patterns and the natural morphotectonic lineaments, allowing the use of some of the observed natural features as strain gauges. Based on this, we conclude that the study lineaments correspond to the bathymetric expression of ongoing dextral wrenching reactivation of WNW–ESE pre-existing faults, and we estimate the age of this tectonic reactivation as being ca. 1.8 Ma (i.e. form late Pliocene to Present day). These characteristics agree with the most recent kinematic models derived from geodetic observations, indicating that Present day convergence between Nubia and Iberia is subparallel to the newly identified lineaments and occurs at a 4 mm/yr rate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2015-01-27
    Description: The mesozooplankton community, with special emphasis on calanoid copepods, was studied with respect to its species composition, abundance, vertical distribution and developmental structure during the “Ice Station POLarstern” (ISPOL) expedition to the ice-covered western Weddell Sea. Stratified zooplankton tows were carried out nine times between 1 December 2004 and 2 January 2005 with a multiple opening–closing net between 0 and 1000 m depth. Copepods were by far the most abundant taxon, contributing more than 94% of the total mesozooplankton. Numerical dominants were cyclopoid copepods, mostly Oncaea spp. A total of 66 calanoid copepod species were identified, but the calanoid copepod community was characterised by the dominance of only a few species. The most numerous species was Microcalanus pygmaeus, which comprised on average 70% of all calanoids. Calanoides acutus and Metridia gerlachei represented other abundant calanoid species contributing an average of 8% and 7%, respectively. All other species comprised less than 3%. The temporal changes in the abundance and population structure of M. pygmaeus and M. gerlachei were small while a shift in the stage frequency distribution of C. acutus was observed during the study: copepodite stage IV (C IV) dominated the C. acutus population with 48–50% during the first week of December, while C V comprised 48% in late December. C I and C II of C. acutus were absent in the samples, and males occurred only in very low numbers in greater depths. In M. gerlachei, C I was not found, whereas all developmental stages of M. pygmaeus occurred throughout the study. All three species showed migratory behaviour, and they occurred in upper water layers towards the end of the investigation. This vertical ascent was most pronounced in C. acutus and relatively weak in the other two species. In M. pygmaeus and M. gerlachei, copepodids were responsible for the upward migration in late December, while the vertical distribution of adults did not change. In C. acutus, all abundant developmental stages (C IV, C V and females) ascended to upper water layers. Almost exclusively (93%) medium- and semi-ripe females of C. acutus and M. gerlachei were found, and only 3–4% of the ovaries were ripe. The absence of C I and the low number of ripe females indicate that the main reproductive period had not started in C. acutus and M. gerlachei until the end of our study in early January. In contrast, the high portion of C I and C II of M. pygmaeus suggests that reproduction of this species had started in October–November and hence before the onset of the phytoplankton bloom in the water. The community structure did not differ between stations with one exception on 26 December, when the station was strongly influenced by the continental shelf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2015-01-27
    Description: The Gulf of Cadiz, off SW Iberia and the NW Moroccan margin, straddles the cryptic plate boundary between Africa and Eurasia, a region where the orogenic Alpine compressive deformation in the continental collision zone passes laterally to the west to strike-slip deformation. A set of new multibeam bathymetry, multi-channel and single-channel seismic data presented here image the main morphological features of tectonic origin of a significant part of the Gulf of Cadiz from the continental shelf to the abyssal plain. These morphotectonic features are shown to result from the reactivation of deeply rooted faults that changed their kinematics from the early Mesozoic rifting, through the Late Cretaceous–Paleogene collision, to the Pliocene–Quaternary thrusting and wrenching. The old faults control deep incised, more than 100 km long canyons and valleys. Several effects of neotectonics on deep water seabed are shown. These include: i) the complex morphology caused by wrenching on the 230 km long WNW–ESE faults that produced en echelon folds on the sediments; ii) the formation of up to 5 km wide crescent shaped scours at roughly 4 km water depth by reactivation of thrusts; iii) 10 km long creep folds on the continental slope; and iv) the formation of landslides on active fault escarpments. The present day deformation is partitioned on NE–SW thrusts and WNW–ESE to W–E strike-slip faults and is propagating northwards on N–S trending thrusts along the West Iberia Margin from 35.5°N to 38°N, which should be considered for seismic hazard.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2016-12-31
    Description: A wide variety of environmental records is necessary for analysing and understanding the complex Late Quaternary dynamics of permafrost-dominated Arctic landscapes. A NE Siberian periglacial key region was studied in detail using sediment records, remote sensing data, and terrain modelling, all incorporated in a geographical information system (GIS). The study area consists of the Bykovsky Peninsula and the adjacent Khorogor Valley in the Kharaulakh Ridge situated a few kilometres southeast of the Lena Delta. In this study a comprehensive cryolithological database containing information from 176 sites was compiled. The information from these sites is based on the review of previously published borehole data, outcrop profiles, surface samples, and our own field data. These archives cover depositional records of three periods: from Pliocene to Early Pleistocene, the Late Pleistocene and the Holocene. The main sediment sequences on the Bykovsky Peninsula consist of up to 50 m thick ice-rich permafrost deposits (Ice Complex) that were accumulated during the Late Pleistocene. They were formed as a result of nival processes around extensive snowfields in the Kharaulakh Ridge, slope processes in these mountains (such as in the Khorogor Valley), and alluvial/proluvial sedimentation in a flat accumulation plain dominated by polygonal tundra in the mountain foreland (Bykovsky Peninsula). During the early to middle Holocene warming, a general landscape transformation occurred from an extensive Late Pleistocene accumulation plain to a strongly thermokarst-dominated relief dissected by numerous depressions. Thermokarst subsidence had an enormous influence on the periglacial hydrological patterns, the sediment deposition, and on the composition and distribution of habitats. Climate deterioration, lake drainage, and talik refreezing occurred during the middle to late Holocene. The investigated region was reached by the post-glacial sea level rise during the middle Holocene, triggering thermo-abrasion of ice-rich coasts and the marine inundation of thermokarst depressions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2015-03-03
    Description: This study systematically analyzes long-term (1950-1992) stream temperature records for the major sub-basins within the Lena River watershed in order to describe water temperature regimes over the various parts of the Lena watershed and document significant stream temperature changes induced by reservoir regulation, and by natural variations/changes. The results show that the open water season can be divided into three consecutive stages---"increasing temperature stage" in the early open water season, "stable temperature stage" in the mid-warm season, and "decreasing temperature stage" in the late open water season. Temperature conditions are similar over the Aldan and Upper Lena regions. However, stream temperatures at the Lena basin outlet are up to 8 °C lower than those over the southern sub-basins. This suggests that the latitudinal difference in climatic variables, such as air temperature, might be the major control on stream temperature regime. Results also demonstrate that the reservoir regulation has a strong influence on the regional water temperature regime and change in the regulated sub-basin. Reservoir regulation has increased (decreased) the downstream water temperatures in the Vilui valley during the early (mid) open water season. Trend analyses show consistent warming trends across the entire Lena River basin in the early open water season. This may indicate a response to earlier snowmelt over the Lena River watershed. Trend results also demonstrate that the Aldan tributary, without much human impact, experiences warming (cooling) trends in the first (second) half of the open water season, leading to a stream temperature regime shift toward early open water season. The upper Lena River has warming (cooling) trends in the early (mid-late) open water season. Over the regulated Vilui tributary, however, stream temperatures have significantly increased in the early and late parts of the warm season due to combined effects of natural changes and reservoir regulation. Over the Lena basin as a whole, strong positive correlations have been found between the basin mean monthly air and water temperatures during the warm season. Increasing water temperatures were observed during the early and mid-June. Because of stream temperature increase in this peak flow period, the Lena River heat flux has gone up by 23% in June. This may have considerable impact on the thermal conditions of the Laptev Sea in the early summer season.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2019-12-31
    Description: Sea ice is an important climate variable and is also an obstacle for marine operations in polar regions. We have developed a small and lightweight, digitally operated frequency-domain electromagnetic-induction (EM) system, a so-called EM bird, dedicated for measurements of sea ice thickness. It is 3.5 m long and weighs only 105 kg, and can therefore easily be shipped to remote places and operated from icebreakers and small helicopters. Here, we describe the technical design of the bird operating at two frequencies of f1 = 3.68 kHz and f2 = 112 kHz, and study its technical performance. On average, noise amounts to ± 8.5 ppm and ± 17.5 ppm for f1 and f2, respectively. Electrical drift amounts to 200 ppm/h and 2000 ppm/h for f1 and f2, during the first 0.5 h of operation. It is reduced by 75% after 2 h. Calibration of the Inphase and Quadrature ppm signals varies by 2 to 3%. A sensitivity study shows that all these signal variations do affect the accuracy of the ice thickness retrieval, but that it remains better than ± 0.1 m over level ice in most cases. This accuracy is also confirmed by means of comparisons of the helicopter EM data with other thickness measurements. The paper also presents the ice thickness retrieval from single-component Inphase data of f1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Hydrology, 352 (3-4). pp. 296-308.
    Publication Date: 2018-12-31
    Description: Precipitation measurement by radar allows for areal rainfall determination with a high spatial and temporal resolution. However, hydrological applications require an accuracy of the precipitation quantification which cannot be obtained by today’s weather radar devices. The quality of the radar-derived precipitation can be significantly improved with the aid of ground measurements. In this paper, a complete processing pipeline for real-time radar precipitation determination using a modified statistical objective analysis method is presented. Thereby, several additional algorithms, such as a dynamical use of Z–R relationships, a bias correction and an advection correction scheme are employed. The performance of the algorithms is tested for several case studies. For an error analysis, an eight months data set of X-band radar scans and rain gauge precipitation measurements is used. We show a reduction in the radar–rain gauge RMS difference of up to 59% for the optimal combination of the different algorithms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    facet.materialart.
    Unknown
    Elsevier
    In:  Continental Shelf Research, 27 (10-11). pp. 1584-1599.
    Publication Date: 2017-12-31
    Description: Historic data from the Russian-American Hydrochemical Atlas of Arctic Ocean together with data from the TRANSDRIFT II 1994 and TUNDRA 1994 cruises have been used to assess the spatial and inter-annual variability of carbon and nutrient fluxes, as well as air–sea CO2 exchange in the Laptev and western East Siberian Seas during the summer season. Budget computations using summer data of dissolved inorganic phosphate (DIP), dissolved inorganic nitrogen (DIN) and dissolved inorganic carbon (DIC) gives that the Laptev Sea shelf is a net sink of DIP and DIN of 2.5×106, 23.2×106 mol d−1, respectively, while it is a net source of DIC (excluding air–sea exchange) of 1249×106 mol d−1. In the East Siberian Seas the budget computations give 0.5×106, −11.4×106 and −173×106 mol d−1 (minus being a sink) for DIP, DIN, and DIC, respectively. In summers, the Laptev Sea Shelf is net autotrophic while the East-Siberian Sea Shelf is net heterotrophic, and both systems are weak net denitrifying. The Laptev Sea Shelf takes up 2.1 mmol CO2 m−2 d−1 from atmosphere, whereas the western part of the East-Siberian Sea Shelf loose 0.3 mmol CO2 m−2 d−1 to the atmosphere. The variability of DIP, DIN and DIC fluxes during summer in the different regions of the Laptev and East Siberian Seas depends on bottom topography, river runoff, exchange with surrounding seas and wind field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2015-08-06
    Description: The Middle Cambrian (~ 540 Ma) Gahcho Kué Kimberlite Field is situated about 275 km ENE of Yellowknife, NWT, Canada. The kimberlites were emplaced into 2.6 Ga Archean granitic rocks of the Yellowknife Supergroup. Four larger kimberlite bodies (5034, Tesla, Tuzo, and Hearne) as well as a number of smaller pipes and associated sheets occur in the field. In plan view, the Tuzo pipe has a circular outline at the surface, and it widens towards deeper levels. The pipe infill consists of several types of coherent and fragmental kimberlite facies. Coherent or apparent coherent (possibly welded) kimberlite facies dominate at depth, but also occur at shallow levels, as dikes intruded late in the eruptive sequence or individual coherent kimberlite clasts. The central and shallower portions of the pipe consist of several fragmental kimberlite varieties that are texturally classified as Tuffisitic Kimberlites. The definition, geometry and extent of the geological units are complex and zones controlled by vertical elements are most significant. The fluidal outlines of some of the coherent kimberlite clasts suggest that at least some are the product of disruption of magma that was in a semi-plastic state or even of welded material. Ragged clasts at low levels are inferred to form part of a complex peperite-like system that intrudes the base of the root zone. A variable, often high abundance of local wall-rock xenoliths between and within the kimberlite phases is observed, varying in size from sub-millimeter to several tens of meters. Wall-rock fragments are common at all locations within the pipe but are especially frequent in a domain with a belt-like geometry between 120 and 200 m depth in the pipe. Steeply outward-dipping bedded deposits made up of wall-rock fragments occur in deep levels of the pipe and are especially common under the downward-widening roof segments. The gradational contact relationships of these deposits with the surrounding kimberlite-bearing rocks as well as their location suggest that they formed more-or-less in situ. Different breccia facies inside the pipe suggest an origin by slumping, grain flows, rock fall or pyroclastic deposition. The shape and facies architecture of the Tuzo pipe suggests that the studied section of the pipe lies at a root zone–diatreme transitional structural level. Composite coherent kimberlite clasts imply that recycling processes were active over time, while reworked wall-rock rich deposits and ductily-deformed clasts of welded kimberlite point to the presence of temporary cavities in the root zone. The emplacement of the Tuzo pipe did not occur in a single, violent explosion, but involved repetitive volcanic explosions alternating with periods of relative quiescence. The observed features are typical of phreatomagmatic processes, which may include phases of less-explosive magmatic activity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2015-09-22
    Description: Long-term observations of the deep ocean particle flux from three sites in the northeast Atlantic (33 degrees N, 22 degrees W; 47 degrees N, 20 degrees W; 54 degrees N, 20 degrees W) provide the basis for comparison and characterization of the biogeochemical provinces in terms of sedimentation pattern. Deep ocean particle flux data (2000 in) for fluxes of total mass and the flux composition are presented and compared to published sediment trap data from this area to consider regional-scale variations in the quantity and composition of settling material. The observations show that in the northeast Atlantic gradient of decreasing mass flux from North to South, exists consistent with known changes of biological productivity in surface waters. This gradient is associated with similar trends in opal and particulate organic carbon, whereas calcium carbonate shows trend in the opposite direction. The changes in the composition of the settling material found along the transect are indicating that the calcium carbonate flux is critical in removing organic matter from the upper ocean to the deeper sink. Its role declines from the subtropical ocean (60-80% of the particle flux) towards North (〈 40%) reflecting the decreasing importance of coccolithophorid/foraminiferal blooms for particle flux from the subtropical to the subpolar North Atlantic. In contrast, the role of biogenic silica (opal) in regard to the ballasting effect increases towards North. The northern sites have much higher percentage of biogenic silica than the sites in the South, because of the deep winter mixing and the seasonality of phytoplankton dominated by diatom blooms during spring and summer. The comparison of the seasonal pattern of particle flux with the seasonal pattern of surface chlorophyll a concentrations from SeaWiFS together with the similarity of the pattern observed in calcium carbonate and opal leads to the conclusion that the particle flux at two positions (33 degrees N, 22 degrees W; 47 degrees N, 20 degrees W) is fast and directly coupled to the phytoplankton dynamics in the overlying euphotic zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2020-10-21
    Description: Planktic foraminiferal (PF) flux and faunal composition from three sediment trap time series of 2002–2004 in the northeastern Atlantic show pronounced year-to-year variations despite similar sea surface temperature (SST). The averaged fauna of the in 2002/2003 is dominated by the species Globigerinita glutinata, whereas in 2003/2004 the averaged fauna is dominated by Globigerinoides ruber. We show that PF species respond primarily to productivity, triggered by the seasonal dynamics of vertical stratification of the upper water column. Multivariate statistical analysis reveals three distinct species groups, linked to bulk particle flux, to chlorophyll concentrations and to summer/fall oligotrophy with high SST and stratification. We speculate that the distinct nutrition strategies of strictly asymbiontic, facultatively symbiontic, and symbiontic species may play a key role in explaining their abundances and temporal succession. Advection of water masses within the Azores Current and species expatriation result in a highly diverse PF assemblage. The Azores Frontal Zone may have influenced the trap site in 2002, indicated by subsurface water cooling, by highest PF flux and high flux of the deep-dwelling species Globorotalia scitula. Similarity analyses with core top samples from the global ocean including 746 sites from the Atlantic suggest that the trap faunas have only poor analogs in the surface sediments. These differences have to be taken into account when estimating past oceanic properties from sediment PF data in the eastern subtropical North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2015-09-22
    Description: Particulate matter in aquatic systems is an important vehicle for the transport of particulate organic carbon (POC). Its accurate measurement is of central importance for the understanding of marine carbon cycling. Previous work has shown that GF/F-filter-based bottle-sample-derived concentration estimates of POC are generally close to or higher than large-volume in-situ-pump-derived values (and in some rare cases in subzero waters are up to two orders of magnitude higher). To further investigate this phenomenon, water samples from the surface and mid-water Northeast Atlantic and the Baltic Sea were analyzed. Our data support a bias of POC concentration estimates caused by adsorption of nitrogen-rich dissolved organic material onto GF/F filters. For surface-ocean samples the mass per unit area of exposed filter and composition of adsorbed material depended on the filtered volume. Amounts of adsorbed OC were enhanced in the surface ocean (typically 0.5 μmol cm− 2 of exposed filter) as compared to the deep ocean (typically 0.2 μmol cm− 2 of exposed filter). These dependencies should be taken into account for future POC methodologies. Bottle/pump differences of samples that were not corrected for adsorption were higher in the deep ocean than in the surface ocean. This discrepancy increased in summer. It is shown that POC concentration estimates that were not corrected for adsorption depend not only on the filtered volume, true POC concentration and mass of adsorbed OC, but also on the filter area. However, in all cases we studied, correction for adsorption was important, but not sufficient, to explain bottle/pump differences. Artificial formation of filterable particles and/or processes leading to filterable material being lost from and/or missed by sample-processing procedures must be considered. It can be deduced that the maximum amounts of POC and particulate organic nitrogen (PON) that can be artificially formed per liter of filtered ocean water are ∼ 3–4 μM OC (5–10% of dissolved OC) and ∼ 0.2–0.5 μM ON (2–10% of dissolved ON), respectively. The relative sensitivities of bottle and pump procedures, and of surface- and deep-ocean material, to artificial particle formation and the missing/losing of material are evaluated. As present procedures do not exist to correct for all possible biasing effects due to artificial particle formation and/or miss/loss of filterable material, uncertainties of filtration-based estimates of POC concentrations need further testing. The challenge now is to further constrain the magnitude of the biasing effects that add to the adsorption effect to reduce the uncertainties of estimates of POC concentrations, inventories and fluxes in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2015-09-22
    Description: Continuous Plankton Recorder data suggest that the Irminger Sea supports a major proportion of the surface-living population of the copepod Calanus finmarchicus in the northern North Atlantic, but there have been few studies of its population dynamics in the region. In this paper, we document the seasonal changes in the demographic structure of C. finmarchicus in the Irminger Sea from a field programme during 2001/2002, and the associations between its developmental stages and various apparent bio-physical zones. Overwintering stages were found widely at depth (〉500 m) across the Irminger Sea, and surviving females were widely distributed in the surface waters the following spring. However, recruitment of the subsequent generation was concentrated around the fringes of the Irminger Sea basin, along the edges of the Irminger and East Greenland Currents, and not in the central basin. In late summer animals were found descending back to overwintering depths in the Central Irminger Sea. The key factors dictating this pattern of recruitment appear to be (a) the general circulation regime, (b) predation on eggs in the spring, possibly by the surviving G0 stock, and (c) mortality of first feeding naupliar stages in the central basin where food concentrations appear to be low throughout the year. We compared the demographic patterns in 2001/2002 with observations from the only previous major survey in 1963 and with data from the Continuous Plankton Recorder (CPR) surveys. In both previous data sets, the basic structure of G0 ascent from the central basin and G1 recruitment around the fringes was a robust feature, suggesting that it is a recurrent phenomenon. The Irminger Sea is a complex mixing zone between polar and Atlantic water masses, and it has also been identified as a site of sporadic deep convection. The physical oceanographic characteristics of the region are therefore potentially sensitive to climate fluctuations. Despite this, the abundance of C. finmarchicus in the region, as measured by the CPR surveys, appears not to have responded to climate factors linked to the North Atlantic Oscillation Index, in contrast with the stocks in eastern Atlantic areas. We speculate that this may because biological factors (production and mortality), rather than transport processes are the key factors affecting the population dynamics in the Irminger Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2015-11-18
    Description: A 1.5 km long, 1 km wide and 70–80 m high carbonate mound was identified on the mid-slope region of the subduction accretionary sedimentary prism offshore Vancouver Island ∼ 3.5 km west of Ocean Drilling Program (ODP) Site 889 and Integrated Ocean Drilling Program (IODP) Site U1327. Seabed-video images show the presence of seafloor carbonate as well as chemosynthetic communities. A high-resolution single channel seismic survey with close line spacing, recording coherent reflectivity down to about 400 m beneath the seafloor, provided acoustic images of this mound and of the gas hydrate bottom-simulating reflector (BSR) beneath it. The mound is interpreted to have developed as a structural topographic high in the hanging wall of a large reverse fault formed at the base of the current seaward slope. The fault zone provides pathways for fluids including gas to migrate to the seafloor where diagenetic carbonate forms and cements the near-surface sediments. To examine the thermal effect of possible upward fluid flow beneath the mound, heat flow at the mound and in the neighbouring region was calculated from the depth of the BSR below the seafloor. These data were combined with heat flow calculated over a broader region from previous multi-channel seismic data. Heat flow within the flattest portion of the surrounding 4 km by 8 km region averages ∼ 74 mW/m2. Taking this value to represent the regional or background heat flow, a simple 2D analytical method was used to calculate theoretical heat flow variations due to topography. Across the mound, most of the variability is explained by topographic effects, including a local 6 mW/m2 negative anomaly over the central mound and a large 20 mW/m2 positive anomaly over the mound steep side slope. However, just south of the mound, there is a 6–7 mW/m2 positive anomaly in a 2-km-long band that has predominantly flat seafloor. Most of this anomaly is probably unrelated to topographic effects, but rather likely due to warm upward fluid flow along faults or fracture zones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2015-11-25
    Description: As part of Ocean Drilling Program Leg 204 at southern Hydrate Ridge off Oregon we have monitored changes in sediment electrical resistivity during controlled gas hydrate dissociation experiments. Two cores were used, each filled with gas hydrate bearing sediments (predominantly mud/silty mud). One core was from Site 1249 (1249F-9H3), 42.1 m below seafloor (mbsf) and the other from Site 1248 (1248C-4X1), 28.8 mbsf. At Site 1247, a third experiment was conducted on a core without gas hydrate (1247B-2H1, 3.6 mbsf). First, the cores were imaged using an infra-red (IR) camera upon recovery to map the gas hydrate occurrence through dissociation cooling. Over a period of several hours, successive runs on the multi-sensor track (includes sensors for P-wave velocity, resistivity, magnetic susceptibility and gamma-ray density) were carried out complemented by X-ray imaging on core 1249F-9H3. After complete equilibration to room temperature (17–18 °C) and complete gas hydrate dissociation, the final measurement of electrical resistivity was used to calculate pore-water resistivity and salinities. The calculated pore-water freshening after dissociation is equivalent to a gas hydrate concentration in situ of 35–70% along core 1249F-9H3 and 20–35% for core 1248C-4X1 assuming seawater salinity of in situ pore fluid. Detailed analysis of the IR scan, X-ray images and split-core photographs showed the hydrate mainly occurred disseminated throughout the core. Additionally, in core 1249F-9H3, a single hydrate filled vein, approximately 10 cm long and dipping at about 65°, was identified. Analyses of the logging-while-drilling (LWD) resistivity data revealed a structural dip of 40–80° in the interval between 40 and 44 mbsf. We further analyzed all resistivity data measured on the recovered core during Leg 204. Generally poor data quality due to gas cracks allowed analyses to be carried out only at selected intervals at Sites 1244, 1245, 1246, 1247, 1248, 1249, and 1252. With a few exceptions, data from these intervals yield low to no gas hydrate concentration, which corresponds to estimates from downhole resistivity logs. However, since the gas cracking may be the result of gas hydrate dissociation, this is a biased sampling. Cores that had contained some gas hydrate may have been excluded.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    facet.materialart.
    Unknown
    Elsevier
    In:  Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 146 (4). S219.
    Publication Date: 2020-08-04
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    facet.materialart.
    Unknown
    Elsevier
    In:  Cryobiology, 53 (1). pp. 143-147.
    Publication Date: 2020-07-29
    Description: Two pennate microphytobenthic diatoms, Amphora coffeaeformis (Agardh) Kutzing and Navicula transitans var. derasa f. delicatula Heimdal, were cryopreserved and monitored on thawing to track the mechanical injuries and their post-preservation recovery. Cells were subjected to (1) direct freezing in liquid nitrogen and (2) two-step cooling with and without the cryoprotectant, dimethyl sulfoxide (Me(2)SO). Mechanical injury due to exposure to low temperature differed between the two species. While A. coffeaeformis cells were intact and could survive even direct freezing without a cryoprotectant, N. delicatula cell chloroplasts were damaged. However, the two-step cooling along with a cryoprotectant minimized the mechanical injury to cells of both species thereby enhancing the post-thaw viability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2020-07-29
    Description: he ability to routinely cryopreserve micro-algal species reduces costs associated with maintaining large culture collections and reduces the risks of losing particular strains or species through contamination and genetic drift. Cryopreservation is also a useful adjunct in aquaculture hatcheries for strains of micro-algae where the nutritional status may change as a result of continuous sub-culture. In this study, cryopreservation of isolates from seven micro-algal classes was investigated. Successful candidates included the marine dinoflagellates Amphidinium carterae, Amphidinium trulla, and Gymnodinium simplex, and the haptophytes Chrysochromulina simplex, Prymnesium parvum, Prymnesium parvum f. patelliferum, Isochrysis galbana, and Pavlova lutheri. Also successfully cryopreserved were the planktonic diatoms Chaetoceros calcitrans, Chaetoceros muelleri, Chaetoceros sp., and the benthic Nitzschia ovalis, the chlorophyte Chlamydomonas coccoides, the rhodophyte Porphyridium purpureum, the prasinophytes Tetraselmis chuii, and Tetraselmis suecica, and the cyanophytes Raphidiopsis sp., and Aphanizomenon flos-aquae. All species were successfully cryopreserved using 15% Me2SO.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2015-01-29
    Description: In the framework of the “Ice Station POLarstern” (ISPOL) expedition in the western Weddell Sea, two sediment traps were deployed at 10 and 70 m water depth under a drifting ice floe in December 2004. The amount and composition of the vertical particle flux under sea ice were determined during a period of 30 days in order to investigate the influence of biological processes in sea ice and on its underside on the flux. The total mass flux was dominated by diatoms, faecal material, and aggregates, and ranged from 95.28 to 197.67 mg m−2 d−1 at 10 m depth and from 51.54 to 55.34 mg m−2 d−1 at 70 m depth. A strong increase with time of the flux of chlorophyll equivalents, biogenic silica, and faecal material was recorded during the observation period, coincident with the increase in the concentration of chlorophyll a in the bottom ice layer above the trap array. The latter suggests a concomitant increase in the amount of food available for grazers, such as krill, in the bottom ice layer and on the underside of the ice floe, resulting in an increased downward transport of ice-algal material into the water column. The sinking faecal material was dominated by krill faecal strings and contained large amounts of diatom frustule debris, as well as intact diatom frustules, mainly of the species Fragilariopsis curta and F. cylindrus. Single pronounced flux events of Phaeocystis antarctica and aggregates were also observed early in the study period. Low POC/PON and biogenic silica/POC ratios of the sinking particulate matter suggest that the material collected in the traps was relatively fresh.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2015-02-04
    Description: In the framework of the R.V. Polarstern expedition “Ice station POLarstern” (ISPOL) spatial and temporal trends in composition, abundance and age structure of sea ice inhabiting copepods were investigated in the western Weddell Sea during the transition from the spring to the summer state. For the spatial scale, sea-ice coring was performed at six locations on a transect from the ice edge to the ice-drift station between 14 and 24 November 2004. The temporal changes were investigated in a time series study on a drifting sea-ice floe from 29 November to 30 December 2004. A relatively large number of copepod species (15) were found in the ice with a higher number at the time station (13) than at the transect (9). Drescheriella spp. was by far the most abundant taxon encountered in the sea ice throughout the present study (72–87%). On the transect, Idomene antarctica ranked second in abundance (7%) followed by Stephos longipes (2%) and Ectinosoma sp. (2%). In contrast, Diarthrode cf. lilacinus, which was not found on the transect, was the second most abundant species (11%) at the time station, followed by I. antarctica (9%), Ectinosoma sp. (6%) and S. longipes (1%). Naupliar stages dominated the populations of Drescheriella spp. and S. longipes both on the transect and during the time series. The Ectinosoma sp. population was dominated by nauplii only at the stations of the transect, while copepodite stages made up the largest fraction during the time series. Copepodids always predominated the I. antarctica populations, and it was the only species in which adults occurred in high densities contributing significantly to the abundance. Only Drescheriella spp. and S. longipes occurred throughout the sea-ice cores, while the occurrence of all other species was restricted to the bottom layer of the ice. The distribution of all species was very patchy and varied greatly between the sampling sites.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2015-03-24
    Description: Multidisciplinary study of a key section on the Laptev Sea Coast (Bykovsky Peninsula, east Lena Delta) in 1998–2001 provides the most complete record of Middle and Late Weichselian environments in the East Siberian Arctic. The 40-m high Mamontovy Khayata cliff is a typical Ice Complex section built of icy silts with a network of large syngenetic polygonal ice wedges, and is richly fossiliferous. In combination with pollen, plant macrofossil and mammal fossils, a sequence of ca 70 insect samples provides a new interpretation of the environment and climate of the area between ca 50 and 12 ka. The large number of radiocarbon dates from the section, together with an extensive 14C database on mammal bones, allows chronological correlation of the various proxies. The Bykovsky record shows how climate change, and the Last Glacial Maximum in particular, affected terrestrial organisms such as insects and large grazing mammals. Both during the presumed “Karginsky Interstadial” (MIS 3) and the Sartanian Glacial (MIS 2), the vegetation remained a mosaic arctic grassland with relatively high diversity of grasses and herbs and dominance of xeric habitats: the tundra-steppe type. This biome was supported by a constantly very continental climate, caused by low sea level and enormous extension of shelf land. Variations within the broad pattern were caused mainly by fluctuations in summer temperature, related to global trends but overprinted by the effect of continentality. No major changes in humidity were observed nor were advances of modern-type forest or forest-tundra recorded, suggesting a major revision of the “Karginsky Interstadial” paradigm. The changing subtypes of the tundra-steppe environment were persistently favourable for mammalian grazers, which inhabited the shelf lowlands throughout the studied period. Mammal population numbers were lowered during the LGM, especially toward its end, and then flourished in a short, but impressive peak in the latest Weichselian, just before the collapse of the tundra-steppe biome. Throughout MIS 3 and MIS 2, the climate remained very favourable for the aggradation of permafrost. No events of regional permafrost degradation were observed in the continuous Bykovsky sequence until the very end of the Pleistocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2018-12-31
    Description: Helicopter-borne and ground-based electromagnetic (EM) ice thickness and ruler-stick snow thickness measurements as well as ice-core analyses of ice temperature, salinity and texture were performed over a 5-week observation period between November 27, 2004, and January 2, 2005, on an ice floe in the western Weddell Sea at approximately 67°S, 55°W. The study was part of the Ice Station Polarstern (ISPOL) expedition of German research icebreaker R.V. Polarstern, investigating changes of physical, biological, and biogeochemical properties during the spring warming as a function of atmospheric and oceanic boundary conditions. The ice floe was composed of fragments of thin and thick first-year ice and thick second-year ice, with modal total thicknesses of 1.2–1.3, 2.1, and 2.4–2.9 m, respectively. This included modal snow thicknesses of 0.2–0.5 m on first-year ice and 0.75 m on second-year ice. During the observation period, snow thickness decreased by less than 0.2 m. There was hardly any ice thinning. Warming of snow and ice between 0.1 and 1.9 °C resulted in decreased ice salinity and increased brine volume. Direct current (DC) geoelectric and electromagnetic (EM) induction depth sounding were performed to study changes of electrical ice conductivity as a result of the observed ice warming. Bulk ice conductivity increased from to 37 to 97 mS/m. Analysis of conductivity anisotropy showed that the horizontal ice conductivity changed from 9 to 70 mS/m. These conductivity changes have only negligible effects on the thickness retrieval from EM measurements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2015-07-03
    Description: The new macrolactams cebulactams A1 and A2 were isolated from an extract of the first obligate marine strain of the genus Saccharopolyspora. Their constitutionally identical structures, each bearing a six-membered cyclic ether as part of the macrocycle, and their relative configurations were elucidated by MS methods and by 1D and 2D NMR techniques.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2015-07-03
    Description: Extracts of cultures grown in liquid or on solid rice media of the fungal endophyte Ampelomyces sp. isolated from the medicinal plant Urospermum picroides exhibited considerable cytotoxic activity when tested in vitro against L5178Y cells. Chromatographic separation yielded 14 natural products that were unequivocally identified based on their 1H and 13C NMR as well as mass spectra and comparison with previously published data. Six compounds (2, 4, 5, 7, 9 and 11) were natural products. Both fungal extracts differed considerably in their secondary metabolites. The extract obtained from liquid cultures afforded a pyrone (2) and sulfated anthraquinones (7 and 9) along with the known compounds 1, 3, 6 and 8. When grown on solid rice medium the fungus yielded three compounds 4, 5 and 11 in addition to several known metabolites including 6, 8, 10, 12, 13 and 14. Compounds 4, 8 and 10 showed the strongest cytotoxic activity against L5178Y cells with EC50 values ranging from 0.2-7.3microg/ml. Furthermore, 8 and 10 displayed antimicrobial activity against the Gram-positive pathogens, Staphylococcus aureus, S. epidermidis and Enterococcus faecalis at minimal inhibitory concentrations (MIC) of 12.5microg/ml and 12.5-25microg/ml, respectively. Interestingly, 6 and 8 were also identified as constituents of an extract derived from a healthy plant sample of the host plant U. picroides thereby indicating that the production of bioactive natural products by the endophyte proceeds also under in situ conditions within the host plant.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    facet.materialart.
    Unknown
    Elsevier
    In:  Current Opinion in Microbiology, 10 (3). pp. 215-220.
    Publication Date: 2015-08-06
    Description: Numerous marine demosponges serve as habitats to phylogenetically complex microbial communities, with population densities exceeding those of seawater by several orders of magnitude. 16S rRNA gene-based studies have enabled a detailed phylogenetic description of the microorganisms associated with sponges, whereas environmental genomics analyses are beginning to reveal insights into their metabolic and physiological properties. Additionally, metagenomic approaches provide access to functional genes and gene clusters, thereby paving the way for the heterologous expression of novel bioactive substances from microbial symbionts of marine invertebrates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine Chemistry, 103 (3-4). pp. 393-403.
    Publication Date: 2017-10-24
    Description: A method for the quantification of heme b in marine phyto- and bacterioplankton is described. Heme b was extracted from filtered cells using a solution of 2.5% octyl (3-glucopyranoside in 0.02 M ammonium hydroxide. The extract was analysed by high performance liquid chromatography diode array spectrophotometry. Maximum absorbance for heme b was at 400 nm. Heme b was separated from other pigments using a polystyrene divinyl benzene stationary phase and a gradient elution programme with 0.1% (v:v) nonafluoropentanoic acid in water and 50:50 (v:v) isopropanol:acetonitrile as the mobile phases. Heme b was quantified using Fe (III) protoporphyrin IX chloride (hemin) standards. The detection limit, calculated from 3 X s.d. of the lowest standard was 0.08 pmol or 1.57 nM with a 50 mu L injection volume. The first data for heme b in marine phyto- and bacterioplankton are reported. Heme b contents are reported for the eukaryotes Thalassiosira weissflogii, Thalassiosira oceanica, Dunaliella tertiolecta and Emiliania huxleyi, and the prokaryotes Synechococcus WH8102, WH7803, RCC307, Erythrobacter litoralis, Roseobacter denitrificans and Vibrio natriegens. For T. weissflogii, T. oceanica, D. tertiolecta and E. huxleyi cellular heme b concentrations varied between 12 and 60 mu mol L-1 and chlorophyll a to heme b ratios varied between 216 and 309
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2020-07-30
    Description: Interannual variability in the spring bloom in the Irminger Basin, northern North Atlantic, is investigated using SeaWiFS-derived chlorophyll-a (chl-a) concentration and satellite or model-derived meteorological data. Variability in the timing and magnitude of the spring bloom in the basin is evaluated. A method for estimating a time series of Sverdrup's critical depth from satellite-derived data is introduced. Comparison with modelled mixed layer depth and chlorophyll concentration demonstrates that Sverdrup's critical depth model is valid for the Irminger Basin spring bloom. The dependence of the timing and magnitude of the spring bloom on winter pre-conditioning is investigated. We find that in the Irminger Basin the start of the spring bloom can be estimated from the preceding winter's mean wind speed and net heat flux. We also find that the maximum chl-a concentration during the bloom can be estimated from the frequency of winter storms. Increased storm activity results in a reduced bloom chlorophyll maximum by delaying the development of spring stratification, resulting in the bloom missing the ‘window of opportunity’ for optimum phytoplankton growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Seismology and the structure of the Earth. , ed. by Romanowicz, B. and Dziewonski, A. Treatise on Geophysics, 1 . Elsevier, Amsterdam, pp. 361-417.
    Publication Date: 2015-09-10
    Description: The Earth’s crust has played an important role in all aspects of this planet’s evolution. This chapter presents a review of our current understanding of the physical properties of the crust on a global basis. This understanding comes from extensive seismic measurements using many techniques, as well as nonseismic geophysics, including gravity, magnetic, geoelectric, and heat flow measurements. Seismic measurements include those that employ active (man-made) sources and those that use passive (naturally occurring) sources. Deep seismic reflection profiles provide a seismic image of the crust in twodimensions with a high (50–100 m) resolution. Local earthquake tomography can provide three-dimensional (3-D) seismic images at moderate (500–1000 m) resolution and higher, depending on the number and spacing of seismographs. Nonseismic methods provide estimates of crustal density, magnetic properties, conductivity and geotherms (temperature vs depth). The crust in deep ocean basins is 6–7 km thick and has a relatively uniform seismic velocity structure, but there are numerous oceanic regions with anomalous crustal structure, including mid-ocean ridges, trenches, volcanic islands, and oceanic plateaux. Ocean–continent passive margins are also highly variable in structure, and may be classified as volcanic versus nonvolcanic margins. Continental crust ranges in thickness from 16 to 80 km, and has a highly variable seismic velocity and density structure. The proportions of continental crust, by area, are 69% shield and platform (cratons), 15% old and young orogens, 9% extended (stretched) crust, 6 % magmatic arc, and 1% rifts. The weighted mean continental crustal thickness and average crustal velocity are 41 km (SD 6.2 km) and 6.45 km s−1 (SD 0.21 km s−1), respectively. A global geographic distribution of seismic data has made it possible to create global crustal models with cell sizes as small as 2 ° × 2 °. These models provide a complete description of seismic velocities and density within the crust and uppermost mantle, including, where present, ice, water, and sedimentary layers and the crystalline crust (parameterized in three layers, upper, middle and lower crust), and sub-Moho properties. The crust is the most intensely studied region of the Earth’s interior and consequently is the best understood in terms of its structure, composition, and evolution.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2015-09-22
    Description: Hydrographic surveys in three consecutive seasons in the Irminger Sea in 2001/2002 have revealed six physical regimes (zones) in which different surface mixing and spring re-stratification processes dominate. They are the South Irminger Current, the North Irminger Current, the Central Irminger Sea, the Polar-origin East Greenland Current, the Atlantic-origin East Greenland Current and the Reykjanes Ridge. The variations in restratification processes in particular have significant implications for the timing of shallow spring mixed layer development and therefore the timing and strength of the spring bloom. The relative roles of heat and freshwater in controlling re-stratification are examined for each hydrographic zone, and it is shown that the simplest concept of solar warming generating spring stratification is appropriate for the Irminger Current and the central Irminger Sea. However in the East Greenland Current and the Reykjanes Ridge zones, the springtime arrival of fresh or saline water at the surface dominates re-stratification and generates the earliest and strongest spring blooms of the region. In the cool fresh centre of the Irminger Sea the relatively low chlorophyll-a throughout the year cannot be wholly explained by stratification or nutrient concentrations. Details of the annual cycle in temperature, salinity, chlorophyll-a and nutrients are presented for each hydrographic zone
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2015-09-22
    Description: The upper water column in the Irminger Sea is characterized by cold fresh arctic and subarctic waters and warm saline North Atlantic waters. In this study the local physical and meteorological preconditioning of the phytoplankton development over an annual cycle in the upper water column in four physical zones of the Irminger Sea is investigated. Data from four cruises of the UK's Marine Productivity programme are combined with results from a coupled biological–physical nitrogen–phytoplankton–zooplankton–detritus model run using realistic forcing. The observations and model predictions are compared and analyzed to identify the key parameters and processes which determine the observed heterogeneity in biological production in the Irminger Sea. The simulations show differences in the onset of the bloom, in the time of the occurrence of the maximum phytoplankton biomass and in the length of the bloom between the zones. The longest phytoplankton bloom of 90 days duration was predicted for the East Greenland Current of Atlantic origin zone. In contrast, for the Central Irminger Sea zone a phytoplankton bloom with a start at the beginning of May and the shortest duration of only 70 days was simulated. The latest onset of the phytoplankton bloom in mid May and the latest occurrence of the maximum biomass (end of July) were predicted for the Northern Irminger Current zone. Here the bloom lasted for 80 days. In contrast the phytoplankton bloom in the Southern Irminger Current zone started at the same time as in Central Irminger Sea, but peaked end of June and lasted for 80 days. For all four zones relatively low daily (0.3–0.5 g C m− 2d− 1) and annual primary production was simulated, ranging between 35.6 g C m− 2y− 1 in the East Greenland Current of Atlantic origin zone and 45.6 g C m− 2y− 1 in the Northern Irminger Current zone. The model successfully simulated the observed regional and spatial differences in terms of the maximum depth of winter mixing, the onset of stratification and the development of the seasonal thermocline, and the differences in biological characteristics between the zones. The initial properties of the water column and the seasonal cycle of physical and meteorological forcing in each of the zones are responsible for the observed differences during the Marine Productivity cruises. The timing of the transition from mixing to stratification regime, and the different prevailing light levels in each zone are identified as the crucial processes/parameters for the understanding of the dynamics of the pelagic ecosystem in the Irminger Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2015-11-18
    Description: Geophysical surveys and geological studies of gas hydrates in the western deep-water Ulleung Basin of the East Sea off the east coast of Korea have been carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) since 2000. The work included a grid of 4782 km of 2D multi-channel seismic reflection lines and 11 piston cores 5–8 m long. In the piston cores, cracks generally parallel to bedding suggest significant in-situ gas. The cores showed high amounts of total organic carbon (TOC), and from the southern study area showed high residual hydrocarbon gas concentrations. The lack of higher hydrocarbons and the carbon isotope ratios indicate that the methane is primarily biogenic. The seismic data show areas of bottom-simulating reflectors (BSRs) that are associated with gas hydrates and underlying free gas. An important observation is the numerous seismic blanking zones up to 2 km across that probably reflect widespread fluid and gas venting and that are inferred to contain substantial gas hydrate. Some of the important results are: (1) BSRs are widespread, although most have low amplitudes; (2) increased P-wave velocities above some BSRs suggest distributed low to moderate concentration gas hydrate whereas a velocity decrease below the BSR suggests free gas; (3) the blanking zones are often associated with upbowing of sedimentary bedding reflectors in time sections that has been interpreted at least in part due to velocity pull-up produced by high-velocity gas hydrate. High gas hydrate concentrations are also inferred in several examples where high interval velocities are resolved within the blanking zones. Recently, gas hydrate recoveries by the piston coring and deep-drilling in 2007 support the interpretation of substantial gas hydrate in many of these structures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    facet.materialart.
    Unknown
    Elsevier
    In:  Precambrian Research, 162 . pp. 354-384.
    Publication Date: 2015-11-24
    Description: The Narryer Terrane within the northwestern Yilgarn Craton contains the oldest crust in Australia. The Jack Hills greenstone belt is located within the southern part of the Narryer Terrane, and structures cutting it and surrounding rocks have been dated using the 40Ar/39Ar technique. The results show that east-trending, dextral, transpressive shearing was related to the 1830–1780 Ma Capricorn Orogeny, followed by further deformation and/or cooling between c. 1760 and 1740 Ma. These results confirm that major deformation has affected the northwestern part of the Yilgarn Craton in an intracratonic setting during the Proterozoic. Proterozoic structures have been interpreted to extend south beyond the Narryer Terrane into the northern part of the Youanmi Terrane (Murchison Domain), and include the Yalgar Fault, previously interpreted as the boundary between the Narryer and Youanmi Terranes. Terrane amalgamation pre-dated the emplacement of c. 2660 Ma granites in both terranes, and the current expression of the Yalgar Fault must represent a younger, reworked, post-amalgamation structure, possibly controlled by the tectonic boundary. However, new aeromagnetic and gravity imagery does not show the eastern part of the Yalgar Fault as a major structure. Its signature is more akin to a series of east- to east-northeast trending faults that are interpreted to be Proterozoic in age. This suggests that this part of the Yalgar Fault may not be a terrane boundary, and is possibly no older than Proterozoic. The 40Ar/39Ar dating also shows a younger, less intense deformation and/or cooling event at c. 1172 Ma.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Benguela - Predicting a Large Marine Ecosystem. , ed. by Shannon, V., Hempel, G., Malanotte-Rizzoli, P., Moloney, C. and Woods, J. Large Marine Ecosystems, 14 . Elsevier, Amsterdam, pp. 3-10.
    Publication Date: 2016-01-25
    Description: The Benguela Current Large Marine Ecosystem (BCLME) is situated along the coast of south-westem Africa, stretching from east of the Cape of Good Hope in the south equatorwards to the Angola (Cabinda) Front, near the northern border of Angola. It encompasses one of the four major coastal upwelling ecosystems of the world, which lie at the eastern boundaries of the oceans. The BCLME's distinctive bathymetry, hydrography, chemistry and trophodynamics combine to make it one of the most productive ocean areas in the world. This high level of primary productivity of the BCLME supports an important global reservoir of biodiversity and biomass of zooplankton, fish, sea birds and marine mammals. Near-shore and off-shore sediments hold rich deposits of precious minerals (particularly diamonds), as well as oil and gas reserves. The natural beauties of the coastal regions, many of which are still pristine by global standards, have also enabled the development of significant tourism along parts of the coast. Pollution, poorly planned coastal developments, population pressure and near-shore activities such as mining are, however, resulting in rapid degradation of some vulnerable coastal habitats. International thinking is very much in keeping with the strategy and workplan of the BCLME Program, where a key policy action is the assessment of environmental variability, ecosystem impacts and the improvement of predictability.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    facet.materialart.
    Unknown
    Elsevier
    In:  Palaeogeography, Palaeoclimatology, Palaeoecology, 220 (3-4). pp. 227-241.
    Publication Date: 2020-08-07
    Description: Organic microfossils of a well-dated sediment core from Gotland Basin were analysed and used for the ecological interpretation of the Holocene history of this area. To avoid confusion with corrected and uncorrected 14C ages, only calendar years BP are used. In the lowermost part organic microfossils are rare, but few marine dinoflagellate cysts between 11 300 and 11 000 years BP indicate the marine Yoldia Phase. At 9800 years BP a significant environmental change is indicated by the rapid increase of freshwater dinoflagellates and pine pollen. At the end of the freshwater stage an enormous abundance increase of cladoceran remains indicates an eutrophication event between 7600 and 7400 years BP. First permanent brackish water conditions of the surface water were established at 7400 years BP and the increasing salinity reached its maximum between 6700 and 6400 years BP. Further changes in the brackish surface water ecosystem of the Gotland Basin can be found at 5500, 4400, 3000, 1000, and 800 years BP, which are thought to be mainly climatically induced.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 55 (12). pp. 1601-1623.
    Publication Date: 2019-09-23
    Description: A 5-year-long time series of meridional transport below 1180 dbar—zonally integrated across a section spanning, the western basin of the tropical North Atlantic—is analyzed. It has been inferred from (i) zonally integrated meridional geostrophic transports derived from density and bottom pressure measurements at the end points of a 1000 km wide section bounded by the base of the western continental rise and the Mid-Atlantic Ridge and (ii) mooring-based direct current meter measurements over the steep Lesser Antilles continental rise. The southward time mean transport of North Atlantic Deep Water (NADW) transport is 15.9 Sv. The vertical shear of the geostrophic transport profiles in the western and eastern part of the section each show two layers of maximum southward transport within the NADW. The transport time series reveals changes of 7.7 Sv rms at periods of 1 month and longer, at times showing changes of up to 40 Sv within a month's time. The baroclinic (internal) contribution of the geostrophic flow (relative to 4950 dbar), yields fluctuations of 6.6 Sv rms. Adding transports over the steep continental rise reduces the overall transport variability to 5.2 Sv rms. As a result of this reduction in shorter-period variability, the lower-frequency variability becomes more pronounced, part of which is expected to be linked to the meridional overturning circulation (MOC). The transport variability is consistent with baroclinic Rossby waves (at periods between 3 and 9 months), dominating in the eastern and central part of the section, and with changes in deep western boundary current (DWBC) strength, DWBC re-circulation patterns and eddies that become important in the western part of the section. The reference-level (external) geostrophic transport variability displays long-wavelength (〉2000 km) fluctuations of 7.5 Sv rms on periods less than 2 weeks that are consistent with barotropic Rossby waves. Numerical model simulations imply that the observed zonally integrated deep transport changes in the western basin have moderate skill in sensing changes in the MOC and in meridional heat transport, and that a now implemented extension of the array's integration scale into the eastern basin of the Atlantic would substantially improve the performance of the array as an MOC observing system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 53 (3). pp. 528-546.
    Publication Date: 2017-06-08
    Description: As a component of the meridional overturning variability experiment in the tropical North Atlantic, a four-year-long time series of meridional transport of North Atlantic deep water has been obtained from moored end point measurements of density and bottom pressure. This study presents a quality assessment of the measurement elements. Rigorous pre- and post- deployment in situ calibration of the density sensors and subsequent data processing establish an accuracy of O(1.5 Sv) in internal transport in the 1200–5000 dbar range at subinertial time scales. A similar accuracy is reached in the bottom pressure-derived external transport fluctuations. However, for pressure, variability with periods longer than a deployment's duration (presently about one year) is not measurable. This effect is demonstrated using numerical simulations and a possible solution for detecting long-term external transport changes is presented.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    facet.materialart.
    Unknown
    Elsevier
    In:  In: The climate of past interglacials. , ed. by Sirocko, F., Sanchez-Goni, M. F., Litt, T. and Claussen, M. Elsevier, Amsterdam, 305-322 . ISBN 978-0-444-52955-8
    Publication Date: 2012-02-23
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2020-08-07
    Description: The Mediterranean outflow water (MOW) paleocirculation during the last 50,000 years has been inferred from the grain-size distribution of contourite beds in core MD99-2341 from the Gulf of Cadiz (Southern Iberian Margin–Atlantic Ocean). Three main contourite facies are described. Their vertical succession defines two contourite sequences that reveal past variations of the MOW bottom-current velocity. A comparison of contourite sequences and the planktonic δ18O record of core MD99-2341 with the δ18O record from Greenland Ice Core GISP2 show a close correlation of sea-surface water conditions and deep-sea contouritic sedimentation in the Gulf of Cadiz with Northern Hemisphere climate variability on millennial timescales. A high MOW velocity prevailed during Dansgaard-Oeschger stadials, Heinrich events and the Younger Dryas cold climatic interval. The MOW velocity was comparatively low during the warm Dansgaard-Oeschger interstadials, Bølling-Allerød and the Early Holocene. Rapid sea-level fluctuations on the order of 35 m during Marine Oxygen Isotope Stage 3 are considered to have exerted limiting controls on the MOW volume transport and thus positively modulated the MOW behaviour during the last 50 kyr.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2020-08-05
    Description: Determining the movement of marine animals is logistically difficult and is currently primarily based on VHF and satellite-tracking telemetry, GPS, acoustic telemetry, and geolocation, all of which have substantial limitations in accurately locating the fine-scale movements of these animals. A recent development—that of dead-reckoning—is being increasingly used to examine the fine-scale movement of animals underwater. The advantages and drawbacks of this approach are quite different to those incurred by the other methods. This paper considers the advances that deadreckoning can bring to the study of the often cryptic movement and behaviour of marine animals at sea. Methods used in determining position via dead-reckoning are presented and consideration is given to results derived from the use of deadreckoning on cetaceans, pinnipeds, penguins and sea turtles; these are complemented by data on cormorants and albatrosses acquired using GPS systems. Suggestions are made as to how movement data derived from these devices can be analysed using indices that allow interpretation over a large variety of temporal and spatial scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2017-08-22
    Description: Total alkalinity (TA) is one of the few measurable quantities that can be used together with other quantities to calculate concentrations of species of the carbonate system (CO2, HCO3 −, CO32−, H+, OH−). TA and dissolved inorganic carbon (DIC) are conservative quantities with respect to mixing and changes in temperature and pressure and are, therefore, used in oceanic carbon cycle models. Thus it is important to understand the changes of TA due to various biogeochemical processes such as formation and remineralization of organic matter by microalgae, precipitation and dissolution of calcium carbonate. Unfortunately deriving such changes from the common expression for TA in terms of concentrations of on-conservative chemical species (HCO3 −, CO3 2 −, B(OH)4 −, H+, OH−, etc.) is rarely obvious. Here an expression for TA (TAec) in terms of the total concentrations of certain major ions (Na+, Cl−, Ca2+ etc.) and the total concentrations of various acid-base species (total phosphate etc.) is derived from Dickson's original definition of TA under the constraint of electroneutrality. Changes of TA by various biogeochemical processes are easy to derive from this so-called explicit conservative expression for TA because each term in this expression is independent of changes of temperature or pressure within the ranges normally encountered in the ocean and obeys a linear mixing relation. Further, the constrains of electroneutrality for nutrient uptake by microalgae and photoautotrophs are discussed. A so-called nutrient-H+-compensation principle is proposed. This principle in combination with TAec allows one to make predictions for changes in TA due to uptake of nutrients that are consistent with observations. A new prediction based on this principle is the change in TA due to nitrogen fixation followed by remineralization of organic matter and subsequent nitrification of ammonia which implies a significant sink of TA in tropical and subtropical regions where most of the nitrogen fixation takes place.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2020-03-19
    Description: Extreme hydrological events are often triggered by exceptional co-variations of the relevant hydrometeorological processes and in particular by exceptional co-oscillations at various temporal scales. Wavelet and cross wavelet spectral analysis offers promising time-scale resolved analysis methods to detect and analyze such exceptional co-oscillations. This paper presents the state-of-the-art methods of wavelet spectral analysis, discusses related subtleties, potential pitfalls and recently developed solutions to overcome them and shows how wavelet spectral analysis, if combined to a rigorous significance test, can lead to reliable new insights into hydrometeorological processes for real-world applications. The presented methods are applied to detect potentially flood triggering situations in a high Alpine catchment for which a recent re-estimation of design floods encountered significant problems simulating the observed high flows. For this case study, wavelet spectral analysis of precipitation, temperature and discharge offers a powerful tool to help detecting potentially flood producing meteorological situations and to distinguish between different types of floods with respect to the prevailing critical hydrometeorological conditions. This opens very new perspectives for the analysis of model performances focusing on the occurrence and non-occurrence of different types of high flow events. Based on the obtained results, the paper summarizes important recommendations for future applications of wavelet spectral analysis in hydrology.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2017-08-09
    Description: The element compositions Si, Ca and Al of up to 2 1.1 ka old sediments in about 10 in long cores from the southern basin of the Shaban and Kebrit deeps in the northern Red Sea allowed a classification of major sediment types in carbonate sands and -muds and siliceous oozes. A FeOOH-enriched sediment horizon and a few samples with high Zn values in the Kebrit core indicate a hydrothermal origin probably near the brine-sea water interface with subsequent transport of hydrothermal compounds into the deep sediments. High organic carbon contents up to 8.4% are positively correlated with the Ba concentrations, which suggests that high bioproductivity, and rapid deposition (C-14 dating suggests a sedimentation rate near 70 cm/ka) led to the formation of sapropelic sediments between 11.8 and 13.6 ka (Younger Dryas). Organic petrological observations showed that the sediment organic material largely consists of 〈20 gm-sized roundish fecal pellets (intimate mixtures of organic matter and inorganic constituents) and bituminite. Terrestrial organic matter (pollens of land plants, fusinite etc.) is very rare in the sediment cores from both deeps. Organic-geochemical investigations of kerogens and organic extracts show that a significant (hydrothermal) hydrocarbon production did not occur in near-surface sediments of the Shaban and Kebrit deeps. Rock Eval pyrolysis of kerogens characterised the organic matter to be of type II quality. The delta C-13 values of the kerogens from the most prominent sapropel in the Shaban deep indicate an enrichment of(C-12-rich) nutrients in the water column during postglacial sapropel formation in the Younger Dryas. The n-alkane spectra are dominated by short chain lengths between n-C-15 and n-C-25 Prevailing n-C-15 to n-C-25 alkanes in low mature sediments are indicative of algal and microbial source. Pristane/phytane ratios are generally low (〈 I to similar to 1) which suggests that anoxic conditions prevailed within the anaerobic brine-filled deeps for the whole time covered by the sediments. This again indicates that sapropel formation was caused by high bioproductivity in the northern Red Sea rather than episodic stagnation with better preservation of the organic matter. Long-chain alkenones and sterols are the dominating compounds of the lipid fraction. Cholesterol contents in the sediment cores reflect phases of eukaryotes production in the water column, whereas the positive correlations of dinosterol with TOC and the amounts of total extract suggests that the major organic carbon source in the northern Red Sea during postglacial high-productivity stages were dinoflagellates. Another important carbon source, however, is indicated by the occurrence of 22,29,30-trisnorhopan-21 -one (TNH). Although the formation of TNH from its precursors is not fully understood, this compound probably results from microbial. degradation of intact bacteriohopanepolyols (BHP), which can be used as indicators for bacterial abundances and phyla. TNH is most likely produced at the brine-sea water interface where sedimenting organic matter accumulates and, if the redoxcline corresponds to the density gradient, the organic matter is subjected to efficient aerobic bacterial degradation processes. However, during high bioproductivity stage (Younger Dryas) the redoxcline was probably higher in the water column and thus, a significant TNH production at the brine-sea water interface did not occur at times of sapropel formation in the northern Red Sea deeps. (C) 2007 Elsevier B.V All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2017-08-04
    Description: Newly acquired bathymetric and seismic reflection data have revealed mass-transport deposits (MTDs) on the northeastern Cretan margin in the active Hellenic subduction zone. These include a stack of two submarine landslides within the Malia Basin with a total volume of approximately 4.6 km(3) covering an area of about 135 km(2). These two MTDs have different geometry, internal deformations and transport structures. The older and stratigraphic lower MTD is interpreted as a debrite that fills a large part of the Malia Basin, while the second, younger MTD, with an age of at least 12.6 cal. ka B.P., indicate a thick, lens-shaped, partially translational landslide. This MTD comprises multiple slide masses with internal structure varying from highly deformed to nearly undeformed. The reconstructed source area of the older MTD is located in the westernmost Malia Basin. The source area of the younger MTD is identified in multiple headwalls at the slope-basin-transition in 450 m water depth. Numerous faults with an orientation almost parallel to the southwest-northeast-trending basin axis occur along the northern and southern boundaries of the Malia Basin and have caused a partial steepening of the slope-basin-transition. The possible triggers for slope failure and mass-wasting include (i) seismicity and (ii) movement of the uplifting island of Crete from neotectonics of the Hellenic subduction zone, and (iii) slip of clay-mineral-rich or ash-bearing layers during fluid involvement. (c) 2009 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    facet.materialart.
    Unknown
    Elsevier
    In:  Geochimica et Cosmochimica Acta, 72 . pp. 6037-6060.
    Publication Date: 2017-11-01
    Description: Through early lithification, cyanobacterial mats produced vast amounts of CaCO3 on Precambrian carbonate platforms (before 540 Myr ago). The superposition of lithified cyanobacterial mats forms internally laminated, macroscopic structures known as stromatolites. Similar structures can be important constituents of Phanerozoic carbonate platforms (540 Myr to present). Early lithification in modern marine cyanobacterial mats is thought to be driven by a metabolically-induced increase of the CaCO3 saturation state (XCaCO3 ) in the mat. However, it is uncertain which microbial processes produce the XCaCO3 increase and to which extent similar XCaCO3 shifts were possible in Precambrian oceans whose chemistry differed from that of the modern ocean. I developed a numerical model that calculates XCaCO3 in cyanobacterial mats and used it to tackle these questions. The model is first applied to simulate XCaCO3 in modern calcifying cyanobacterial mats forming at Highborne Cay (Bahamas); it shows that while cyanobacterial photosynthesis increases XCaCO3 considerably, sulphate reduction has a small and opposite effect on mat XCaCO3 because it is coupled to H2S oxidation with O2 which produces acidity. Numerical experiments show that the magnitude of the XCaCO3 increase is proportional to DIC in DIC-limited waters (DIC 〈 3–10 mM), is proportional to pH when ambient water DIC is not limiting and always proportional to the concentration of Ca2+ in ambient waters. With oceanic Ca2+ concentrations greater than a few millimolar, an appreciable increase in XCaCO3 occurs in mats under a wide range of environmental conditions, including those supposed to exist in the oceans of the past 2.8 Gyr. The likely lithological expression is the formation of the microsparitic stromatolite microtexture—indicative of CaCO3 precipitation within the mats under the control of microbial activity—which is found in carbonate rocks spanning from the Precambrian to recent. The model highlights the potential for an increase in the magnitude of the XCaCO3 shift in cyanobacterial mats throughout Earth’s history produced by a decrease in salinity and temperature of the ocean, a decrease in atmospheric pCO2 and an increase in solar irradiance. Such a trend would explain how the formation of the microsparitic stromatolite microtexture was possible as the XCaCO3 of the ocean decreased from the Paleoproterozoic to the Phanerozoic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2017-10-05
    Description: Two biotic indices, ATZI Marine Biotic Index (AMBI) and Benthic Quality Index (BQI) have been recently introduced within the EC Water Framework Directive to assess the quality of marine habitats: both are based on sensitivity/tolerance classification and quantitative information on the composition of soft-bottom macrofauna. Their performance, especially with regard to sampling effort was assessed based on two data sets collected in Southern Baltic and one from the Gulf of Lions Mediterranean. AMBI was not affected by sampling effort but BQI was. Two modifications were proposed for BQI (i.e., BQI) (1) the removal of the scaling term (i.e., BQIW), and (2) the replacement of the scaling term by different scaling term (i.e., BQIES). Both modified BQIs were largely independent of sampling effort. Variability was slightly lower for BQIW than for BQIES. BQI was highly correlated with BQIW and with BQIES both in the Southern Baltic and in the Gulf of Lions. However, the proportions of stations, which were not attributed the same ecological quality status (EcoQ) when using BQI and its two modified forms were always high. Differences in ecological classification were mostly due to the scales used to infer EcoQ. Based on this study we recommend to use BQIES in future studies because it apparently constitutes the best compromise in (1) being independent of sampling effort, (2) limiting the variability in computation in relation with sampling effort, (3) being correlated with BQI and corresponding EcoQ.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    facet.materialart.
    Unknown
    Elsevier
    In:  Organisms Diversity & Evolution, 5 (1). pp. 227-230.
    Publication Date: 2017-01-31
    Description: Five cephalopods, all belonging to different species, were identified from deep-sea trawl samples conducted during the DIVA 1-expedition of RV “Meteor” in the Angola Basin in July 2000. These were the teuthoid squids Bathyteuthis abyssicola, Brachioteuthis riisei, Mastigoteuthis atlantica, Galiteuthis armata, and the finned deep-sea octopus Grimpoteuthis wuelkeri. The present study contributes information on size, morphometry, biology and distribution of the species form this unique cephalopod collection.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2017-07-28
    Description: Temporal variations in Fe isotope compositions at three locations in the Pacific Ocean over the last 10 Ma are inferred from high-resolution analyses of three hydrogenetic ferromanganese crusts. Iron pathways to the central deep Pacific Ocean appear to have remained constant over the past 10 Ma, reflected by a remarkably constant Fe isotope composition, despite large changes in the Fe delivery rates to the surface ocean via dust. These results suggest that the Fe cycle in the deep ocean is decoupled from that in surface waters. By contrast, one ferromanganese crust from the Izu-Bonin (IB) back-arc/marginal basin of the W. Pacific exhibits large δ56Fe variations. In that crust, decreases in δ56Fe values correlate with increases in Mn, Mg, Ni, Cu, Zn, Mo, and V contents, and consistent with periods of intense hydrothermal input and increased growth rates. A second crust located within 100 km of the first IB sample does not record any of these periods of enhanced hydrothermal input. This probably reflects the isolated pathways by which hydrothermally sourced Fe may have migrated in the back arc, highlighting the high degree of provinciality that Fe isotopes may have in the modern (oxic) oceans. Our results demonstrate that despite efficient removal at the source, hydrothermal Fe injected into the deep ocean could account for a significant fraction of the dissolved Fe pool in the deep ocean, and that hydrothermally sourced Fe fluxes to the open ocean may have lower δ56Fe values than those measured so far in situ at hydrothermal vents. Correlation between δ56Fe values and elements enriched in hydrothermal fluids may provide a means for distinguishing hydrothermal Fe from other low-δ56Fe sources to the oceans such as dissolved riverine Fe or porewaters in continental shelf sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2017-09-13
    Description: On the basis of diatom and aquatic palynomorph assemblages in sediment cores obtained from the eastern Laptev Sea shelf, major phases of environmental change associated with the last postglacial global sea-level rise can be recognized for the time since 11.3 calendar years BP (cal. ka). Until 11 cal. ka, the outer Laptev Sea shelf (≥ 51 m paleodepth) was inundated and paleoenvironmental conditions were characterized by increased precipitation of river-loaded matter, primarily diatom plankton, in a river-proximal environment where reconstructed surface water salinities, using freshwater diatoms as proxy, remained below 9. The time interval 10.7–9.2 cal. ka was marked by a predominance of the dinoflagellate cyst Operculodinium centrocarpum as well as by the appearance of relatively warm-water indicative species in the outer Laptev Sea, probably due to enhanced influence of Atlantic Water at the continental margin. Because a continuously rising sea level resulted in an increasing distance between the investigated site and the southward retreating coastline, surface-water salinities on the outer shelf approached modern values of about 15–16 around 8.6 cal. ka. On the inner Laptev Sea shelf, modern-like environmental conditions were reached about 1 to 1.5 ky later, around 7.4 cal. ka, emphasizing the overwhelming influence of the global transgression on the Holocene evolution of Arctic shelf water masses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2017-09-12
    Description: Precise U–Pb geochronology and Hf isotope tracing of zircon is combined with whole-rock geochemical and Sr and Nd isotope data in order to unravel processes affecting mafic to felsic calcalkaline magmas prior to and during their crystallization in crustal magma chambers along the southern border of Central Srednogorie tectonic zone in Bulgaria (SE Europe). ID-TIMS U–Pb dating of single zircons from felsic and mixed/mingled dioritic to gabbroic horizons of single plutons define crystallization ages of around 86.5–86.0, 85.0–84.5 and 82 Ma. Concordia age uncertainties are generally less than 0.3 Ma (0.35%–2σ), and as good as 0.08 Ma (0.1%), when the weighted mean 206Pb/238U value is used. Such precision allows the distinction of magma replenishment processes if separated by more than 0.6–1.0 Ma and when they are marked by newly saturated zircons. We interpret zircon dates from a single sample that do not overlap to reflect new zircon growth during magma recharge in a long-lived crustal chamber. Mingling/mixing of the basaltic magma with colder granitoid mush at mid- to upper-crustal levels is proposed to explain zircon saturation and fast crystallization of U- and REE-rich zircons in the hybrid gabbro. Major and trace-element distribution and Sr and Nd whole-rock isotope chemistry define island arc affinities for the studied plutons. Slab derived fluids and a sediment component are constrained as enrichment sources for the mantle wedge-derived magma, though Hf isotopes in zircon suggest crustal assimilation was also important. Inherited zircons, and their corresponding ε-Hf, from the hybrid gabbroic rocks trace the lower crust as possible source for enrichment of the mantle magma. These inherited zircons are about 440 Ma old with ε-Hf of − 7 at 82 Ma, whereas newly saturated concordant Upper Cretaceous zircons reveal mantle ε-Hf values of + 7.2 to + 10.1. The upper and middle crusts contribute in the generation of the granitoid rocks. Their zircon inheritance is Lower Palaeozoic or significantly older and crustal dominated with 82–85 Ma corrected ε-Hf values of − 28. The Cretaceous concordant zircons in the granitoids are mantle dominated with a ε-Hf values spreading from + 3.9 to + 7.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2017-12-07
    Description: The Atlantis Massif (Mid-Atlantic Ridge, 30°N) is an oceanic core complex marked by distinct variations in crustal architecture, deformation and metamorphism over distances of at least 5 km. We report Sr and Nd isotope data and Rare Earth Element (REE) concentrations of gabbroic and ultramafic rocks drilled at the central dome (IODP Hole 1309D) and recovered by submersible from the southern ridge of the massif that underlie the peridotite-hosted Lost City Hydrothermal Field. Systematic variations between the two areas document variations in seawater penetration and degree of fluid–rock interaction during uplift and emplacement of the massif and hydrothermal activity associated with the formation of Lost City. Homogeneous Sr and Nd isotope compositions of the gabbroic rocks from the two areas (87Sr/86Sr: 0.70261–0.70429 and εNd: + 9.1 to + 12.1) indicate an origin from a depleted mantle. At the central dome, serpentinized peridotites are rare and show elevated seawater-like Sr isotope compositions related to serpentinization at shallow crustal levels, whereas unaltered mantle isotopic compositions preserved in the gabbroic rocks attest to limited seawater interaction at depth. This portion of the massif remained relatively unaffected by Lost City hydrothermal activity. In contrast, pervasive alteration and seawater-like Sr and Nd isotope compositions of serpentinites at the southern wall (87Sr/86Sr: 0.70885–0.70918; εNd: − 4.7 to + 11.3) indicate very high fluid–rock ratios (~ 20 and up to 106) and enhanced fluid fluxes during hydrothermal circulation. Our studies show that Nd isotopes are most sensitive to high fluid fluxes and are thus an important geochemical tracer for quantification of water–rock ratios in hydrothermal systems. Our results suggest that high fluxes and long-lived serpentinization processes may be critical to the formation of Lost City-type systems and that normal faulting and mass wasting in the south facilitate seawater penetration necessary to sustain hydrothermal activity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2019-12-03
    Description: The relation between acoustic sea-floor backscatter and seep distribution is examined by integrating multibeam backscatter data and seep locations detected by single-beam echosounder. This study is further supported by side-scan sonar recordings, high-resolution 5 kHz seismic data, pore-water analysis, grain-size analysis and visual sea-floor observations. The datasets were acquired during the 2003 and 2004 expeditions of the EC-funded CRIMEA project in the Dnepr paleo-delta area, northwestern Black Sea. More than 600 active methane seeps were hydroacoustically detected within a small (3.96 km by 3.72 km) area on the continental shelf of the Dnepr paleo-delta in water depths ranging from − 72 m to − 156 m. Multibeam and side-scan sonar recordings show backscatter patterns that are clearly associated with seepage or with a present dune area. Seeps generally occur within medium- to high-backscatter areas which often coincide with pockmarks. High-resolution seismic data reveals the presence of an undulating gas front, i.e. the top of the free gas in the subsurface, which domes up towards and intersects the sea floor at locations where gas seeps and medium- to high-backscatter values are detected. Pore-water analysis of 4 multi-cores, taken at different backscatter intensity sites, shows a clear correlation between backscatter intensity and dissolved methane fluxes. All analyzed chemical species indicate increasing anaerobic oxidation of methane (AOM) from medium- to high-backscatter locations. This is confirmed by visual sea-floor observations, showing bacterial mats and authigenic carbonates formed by AOM. Grain-size analysis of the 4 multi-cores only reveals negligible variations between the different backscatter sites. Integration of all datasets leads to the conclusion that the observed backscatter patterns are the result of ongoing methane seepage and the precipitation of methane-derived authigenic carbonates (MDACs) caused by AOM. The carbonate formation also appears to lead to a gradual (self)-sealing of the seeps by cementing fluid pathways/horizons followed by a relocation of the bubble-releasing locations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2017-12-07
    Description: Analyses of the chemical and isotopic composition of carbonates rocks recovered from methane seepage areas of the Kodiak Trench, Hydrate Ridge, Monterey Bay Clam Flats, and the Eel River Basin, coupled with the studies of the chemistry of the pore fluids, have shown that these carbonates have grown within the sediment column. Geochemical profiles of pore fluids show that, in deep water seeps (Kodiak Trench—4450 m; Monterey Bay—1000 m; Hydrate Ridge—650 m), δ13C (DIC) values are low (isotopically light), whereas in the Eel River area (∼ 350–500 m), δ13C (DIC) values are much higher (isotopically heavier). In all cases, the δ13C values indicate that processes of methane oxidation, associated with sulfate reduction, are dominant in the shallow sediments. Data on the isotopic composition of authigenic carbonates found at sites in Kodiak Trench, Eel River Basin South, and Eel River Basin North indicate a variable composition and origin in different geochemical environments. Some of the authigenic carbonates from the study sites show a trend in their δ13C values similar to those of the pore fluids obtained in their vicinity, suggesting formation at relatively shallow depths, but others indicate formation at greater sediment depths. The latter usually consist of high magnesium calcite or dolomite, which, from their high values of δ13C (up to 23‰;) and δ18O (up to 7.5‰), suggest formation in the deeper horizons of the sediments, in the zone of methanogenesis. These observations are in agreement with observations by other workers at Hydrate Ridge, in Monterey Bay, and in the Eel River Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2013-06-28
    Description: Extensive ROV-based sampling and exploration of the seafloor was conducted along an eroded transform-parallel fault scarp on the northeastern side of the Guaymas Basin in the Gulf of California to observe the nature of fluids venting from the seafloor, measure the record left by methane-venting on the carbonates from this area, and determine the association with gas hydrate. One gas vent vigorous enough to generate a water-column gas plume traceable for over 800 m above the seafloor was found to emanate from a ∼10-cm-wide orifice on the eroded scarp face. Sediment temperature measurements and topography on a sub-bottom reflector recorded in a transform-parallel seismic reflection profile identified a subsurface thermal anomaly beneath the gas vent. Active chemosynthetic biological communities (CBCs) and extensive authigenic carbonates that coalesce into distinct chemoherm structures were encountered elsewhere along the eroded transform-parallel scarp. The carbon isotopic composition of methane bubbles flowing vigorously from the gas vent (−53.6±0.8‰ PDB) is comparable to methane found in sediment cores taken within the CBCs distributed along the scarp (−51.9±8.1‰ PDB). However, the δ13C value of the CO2 in the vent gas (+12.4±1.1‰ PDB) is very distinct from those for dissolved inorganic carbon (DIC) (−35.8‰ to −2.9‰ PDB) found elsewhere along the scarp, including underneath CBCs. The δ13C values of the carbonate-rich sediments and rocks exposed on the seafloor today also span an unusually large range (−40.9‰ to +12.9‰ PDB) and suggest two distinct populations of authigenic carbonate materials were sampled. Unconsolidated sediments and some carbonate rocks, which have lithologic evidence for near-seafloor formation, have negative δ13C values, while carbonate rocks that clearly formed in the subsurface have positive δ13C values (up to +23.0‰) close to that measured for CO2 in the vent gas. There appears to be two carbon sources for the authigenic carbonates: (1) deeply-sourced, isotopically heavy CO2 (∼+12‰); and (2) isotopically light DIC derived from local anaerobic oxidation of methane at the sulfate–methane interface in the shallow subsurface. Addition of isotopically light methane-derived carbon at the seafloor may completely mask the isotopically heavy CO2 signature (+12.4‰) in the underlying sediments. Thus, the authigenic carbonates may have formed from the same methane- and carbon dioxide-bearing fluid, but under different migration and alteration conditions, depending on how it migrated through the sediment column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2017-01-26
    Description: “Non-volcanic” rifted margins exhibit very little evidence of synrift magmatism, even where the continental crust has been thinned to such an extent that the mantle has been exhumed across a transitional zone (up to ∼100 km wide), called the continent–ocean transition (COT). Using dynamical models of rifting, we explore how extension velocity, mantle composition and potential temperature influence the nature and extent of the COT and compare our results to observations at the West Iberia margin (WIM) and the ancient margins of the Liguria-Piemonte Ocean (LP) now exposed in the Alps. We find a first order relationship between extension velocity and the amagmatic exposure of mantle at the COT. For very slow half extension velocities, (〈 6 mm/yr), mantle exhumation begins before melting. At these velocities, by the time melting starts at the rift centre, the area of exhumed mantle has moved sideways creating a COT, the width of which increases with decreasing velocities. However, at 10 mm/yr, a velocity probably appropriate for the exhumation of mantle at the WIM and LP, melting starts prior to mantle exhumation. In this case, our models show that by the time mantle exhumation starts, a ∼4.5 km column of melt has been produced, much more than the ∼2 km maximum mean melt thickness inferred at the COT of these margins. Even considering that 25% of the produced melt may be trapped in the mantle, as in slow-spreading mid-ocean ridges, still more melt is produced in the models than inferred from observations. Thus, extension velocity alone cannot explain the practical absence of synrift magmatism at the COT of the WIM and LP. We find that the formation of a wide, amagmatic COT requires that either the mantle was depleted in basaltic constituents by 〉 10% prior to rifting or that its potential temperature was ∼50 °C lower than normal (≤ 1250 °C).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine and Petroleum Geology, 26 . pp. 795-804.
    Publication Date: 2017-09-13
    Description: Heat flow anomalies provide critical information in active tectonic environments. The Gulf of Cadiz and adjacent areas are affected by the plate convergence between Africa and Europe, causing widespread deformation and faulting. Active thrust faults cause lateral movement and advection of heat that produces systematic variations in surface heat flow. In December 2003 new heat flow data were collected during the research vessel Sonne cruise SO175 in the Gulf of Cadiz over two sites of recent focused research activity: (i) the Gulf of Cadiz sedimentary prism and (ii) the Marques de Pombal escarpment. Both features have also been discussed as potential source areas of the Great Lisbon earthquake and tsunami of 1755. Background heat flow at the eastern terminus of the Horseshoe abyssal plain is about 52–59 mW/m2. Over the Gulf of Cadiz prism, heat flow decreases from ∼57 mW/m2 to unusually low values of 45 mW/m2 roughly 120 km eastward. Such low values and the heat flow trend are typical for active thrusting, supporting the idea of an east-dipping thrust fault. Slip rates are 10 ± 5 mm per year, assuming that the fault dips at 2°. A fault dipping at 5°, however, would result into slip rates of 1.5–5 mm per year, suggesting that subduction has largely ceased. Based on seismic data, the Marques de Pombal fault is interpreted as part of an active fault system located ∼100 km westward of Cape San Vincente. Heat flow over the fault is affected by refraction of heat caused by the 1 km high escarpment. Thermal models suggest that the slip rate along the fault must either be small or shear stresses acting on the fault are rather high. With respect to other fault zones, however, it is reasonable to assume that the fault's slip rate is small.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...