ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2,286)
  • AIRCRAFT PROPULSION AND POWER  (2,284)
  • Physics
  • 2005-2009  (2)
  • 1980-1984  (1,052)
  • 1975-1979  (1,211)
  • 1950-1954  (8)
  • 1945-1949  (13)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  Geophys. Res. Lett., Amsterdam, Schweizerbart'sche Verlagsbuchhandlung, vol. 32, no. 20, pp. 693-711, pp. L20304, (ISSN 0016-8548, ISBN 3-510-50045-8)
    Publication Date: 2005
    Keywords: Volcanology ; Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Geodesy ; GRL ; 1036 ; Geochemistry: ; Magma ; chamber ; processes ; (3618) ; 8419 ; Volcanology: ; Volcano ; monitoring ; (7280) ; 8439 ; Physics ; and ; chemistry ; of ; magma ; bodies ; 8434 ; Magma ; migration ; and ; fragmentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  J. Geophys. Res., Washington, D.C., AGU, vol. 111, no. B5, pp. 1669-1675, pp. B05204, (ISSN: 1340-4202)
    Publication Date: 2006
    Keywords: Volcanology ; Seismicity ; USA ; static ; elastic ; Stress ; JGR ; volcano ; spreading ; dike ; intrusion ; 8414 ; Volcanology: ; Eruption ; mechanisms ; and ; flow ; emplacement ; 8415 ; Intra-plate ; processes ; (1033, ; 3615) ; 8425 ; Effusive ; volcanism ; 8439 ; Physics ; and ; chemistry ; of ; magma ; bodies ; 8488 ; Volcanic ; hazards ; and ; risks ; TWALTER
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-11-17
    Description: Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 1-58
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-07-16
    Description: Propulsion needs of high performance military aircraft are discussed. Inlet performance, nozzle performance and cooling, and afterburner performance are covered. It is concluded that nonaxisymmetric nozzles provide cleaner external lines and enhanced maneuverability, but the internal flows are more complex. Swirl afterburners show promise for enhanced performance in the high altitude, low Mach number region.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 445-462
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-07-16
    Description: Propulsion problems and advanced technology requirements of VTOL aircraft are discussed. Specific topics covered include inlets with high angle of attack capability, rapid thrust modulation fans, and propulsion-system/aircraft-control integration.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 409-444
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-07-16
    Description: Research on hydrogen fueled scramjet engines for hypersonic flight is reviewed. Component developments, computational methods, and preliminary ground tests of subscale scramjet engine modules at Mach 4 and 7 are emphasized. Airframe integration, structures, and flow diagnostics are also discussed. It is shown that mixed-mode perpendicular and parallel fuel injection controls heat release over a wide Mach range and the fixed geometry inlet gives good performance over a wide range of Mach numbers.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 387-408
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-07-16
    Description: An overview of engine control technology is presented with emphasis on gas turbine engine controls. The role of the government, and NASA in particular, in advancing this technology is discussed.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 329-344
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-07-16
    Description: Propulsion concepts for commercial supersonic transports are discussed. It is concluded that variable cycle engines, together with advanced supersonic inlets and low noise coannular nozzles, provide good operating performance for both supersonic and subsonic flight. In addition, they are reasonably quiet during takeoff and landing and have acceptable exhaust emissions.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 345-386
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-07-16
    Description: Research on bearings, gears, seals, and rotor dynamics (specifically high speed balancing and dampers) is presented. The research pertains to problems in both aircraft turbine engines and helicopter transmissions.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 273-308
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-07-16
    Description: Some of the efforts made in applying technologically new tools to today's propulsion measurement problems are described. They include: (1) a blade-tip clearance system; (2) a pulsed thermocouple system used to measure gas temperature with a thermocouple at temperatures above the melting point of the thermocouple; (3) an optical technique for measuring blade flutter; (4) a probe for dynamic flow and flow angle measurement; and (5) a laser anemometer system for rapidly mapping the flow profiles between the blades of a rotating compressor.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 309-328
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2006-07-16
    Description: A technology assessment of turbomachinery is presented. The design of the fan, compressor, and turbine components for future advanced aircraft engines is discussed. Basic flow characteristics in compressors and turbines and the heat transfer phenomena in cooled turbines are also discussed.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 231-272
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2006-07-16
    Description: Major solution techniques for internal computational fluid mechanics are discussed and some examples are presented. The major steps involved in developing a large computer code are then discussed.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 187-230
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-07-16
    Description: Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 129-148
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2006-07-16
    Description: Materials and structures performance limitations, particularly for the hot section of the engine in which these limitations limit the life of components, are considered. Failure modes for components such as blades, vanes, and combustors and how they are affected by the environment for such components are discussed. Methods used to improve the materials used for such components are: (1) application of directional structures to turbine components for high strength at high temperatures; (2) improved coatings to increase oxidation and corrosion resistance; (3) increase strength and stiffness with reduced weight by applying higher specific properties of composite materials; and (4) cost effective processing such as near net shape powder methods applied to disks. Life prediction techniques developed to predict component life accurately in advance of service and progress in improving the intermediate and cold section components of turbine engines are covered.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 149-186
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2006-07-16
    Description: The turbofan engine's noise-producing components are discussed in terms of efficient and economical noise reduction techniques that do not penalize the engine performance or weight significantly. Specific topics covered include fan noise, acoustic suppression, jet noise technology, combustor noise, and aircraft noise prediction.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 85-128
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2006-07-16
    Description: Control of the gaseous pollutant emissions of aircraft engines is considered in terms of the emission standards for six classes of aircraft engines. Emphasis is placed on combustor design concepts to significantly reduce emissions levels and lean-burning techniques to lower flame temperature, to reduce the oxides of nitrogen in the gaseous emissions.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion 1979; p 59-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2006-04-09
    Description: For several years the Department of Defense has been sponsoring fuel accommodation investigations with gas turbine engine manufacturers and supporting organizations to quantify the effect of changes in fuel properties and characteristics on the operation and performance of military engine components and systems. Inasmuch as there are many differences in hardware between the operational engines in the military inventories, due to differences in design philosophy and requirements, efforts were initially expended to acquire fuel effects data from rigs simulating the hot sections of these different engines. Correlations were then sought using the data acquired to produce more general, generic relationships that could be applied to all military gas turbine engines regardless of their origin. Finally, models could be developed from these correlations that could predict the effect of fuel property changes on current and future engines. This presentation describes some of the work performed by Pratt and Whitney Aircraft, under Naval Air Propulsion Center sponsorship, to determine the effect of fuel properties on the hot section and fuel system of the Navy's TF30-P-414 gas turbine engine.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Assessment of Alternative Aircraft Fuels; p 63-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2006-04-09
    Description: In an attempt to rigorously study the fuel chemical property influence, UTRC (United Technologies Research Center) (under contract to NASA Lewis Research Center) has conducted an experimental program using 25 test fuels. The burner was a 12.7 cm dia cylindrical device consisting of six sheet metal louvers. A single pressure atomizing injector and air swirler were centrally mounted with the conical dome. Fuel physical properties were de-emphasized by using fuel injectors which produced highly atomized, and hence rapidly vaporizing sprays. A substantial fuel spray characterization effort was conducted to allow selection of nozzles which assured that such sprays were achieved for all fuels. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15 (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuel (e.g., Jet A, JP4), specialty products (e.g., decalin, xylene tower bottoms) and special fuel blends. Included in this latter group were six, 4-component blends prepared to achieve parametric variations in fuel hydrogen, total aromatics and naphthalene contents.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Assessment of Alternative Aircraft Fuels; p 31-46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2006-02-14
    Description: Starting with the NASA-sponsored STAEBL program, optimization methods based primarily upon the versatile program COPES/CONMIN were introduced over the past few years to a broad spectrum of engineering problems in structural optimization, engine design, engine test, and more recently, manufacturing processes. By automating design and testing processes, many repetitive and costly trade-off studies have been replaced by optimization procedures. Rather than taking engineers and designers out of the loop, optimization has, in fact, put them more in control by providing sophisticated search techniques. The ultimate decision whether to accept or reject an optimal feasible design still rests with the analyst. Feedback obtained from this decision process has been invaluable since it can be incorporated into the optimization procedure to make it more intelligent. On several occasions, optimization procedures have produced novel designs, such as the nonsymmetric placement of rotor case stiffener rings, not anticipated by engineering designers. In another case, a particularly difficult resonance contraint could not be satisfied using hand iterations for a compressor blade, when the STAEBL program was applied to the problem, a feasible solution was obtained in just two iterations.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 2; 18 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2006-04-12
    Description: High temperature environmental attack of dollar intensive turbine components reduces turbine efficiency and can limit life. The mechanisms of alloy and coating attack and the effects of interaction with the environment on mechanical behavior. This base of understanding provides the foundation for developing life prediction methods and identifying strategies for controlling attack. Subjects discussed in detail include oxidation and new developments in thermal barrier coating research.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Langley Research Center Advan. Mater. Technol.; p 313-334
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-04-09
    Description: The study performed in Phase 1 of this program applies only to a T700/CT7 engine family type combustor functioning in the engine as defined and does not necessarily apply to other cycles or combustors of differing stoichiometry. The study was not extended to any of the fuel delivery accessories such as pumps or control systems, nor was there any investigation of potential systems problems which might arise as a consequence of abnormal properties such as density which might affect delivery schedules or aromatics content which might affect fuel system seals. The T700/CT7 engine is a front drive turboshaft or turboprop engine in the 1500-1800 shp (1120-1340 kW) class as currently configured with highpower core flows of about 10 lb/sec (4.5 kg/sec). It employs a straight-through annular combustion system less than 5 in. (12.5 cm) in length utilizing a machined ring film cooled construction and twelve low-pressure air blast fuel injectors. Commercial and Naval versions employ two 0.5 Joule capacitive discharge surface gap ignitors.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Assessment of Alternative Aircraft Fuels; p 89-98
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2006-04-09
    Description: Since the early 1970s, the cost and availability of aircraft fuel have changed drastically. These problems prompted a program to evaluate the effects of broadened specification fuels on current and future aircraft engine combustors employed by the USAF. Phase 1 of this program was to test a set of fuels having a broad range of chemical and physical properties in a select group of gas turbine engine combustors currently in use by the USAF. The fuels ranged from JP4 to Diesel Fuel number two (DF2) with hydrogen content ranging from 14.5 percent down to 12 percent by weight, density ranging from 752 kg/sq m to 837 kg/sq m, and viscosity ranging from 0.830 sq mm/s to 3.245 sq mm/s. In addition, there was a broad range of aromatic content and physical properties attained by using Gulf Mineral Seal Oil, Xylene Bottoms, and 2040 Solvent as blending agents in JP4, JP5, JP8, and DF2. The objective of Phase 2 was to develop simple correlations and models of fuel effects on combustor performance and durability. The major variables of concern were fuel chemical and physical properties, combustor design factors, and combustor operating conditions.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Assessment of Alternative Aircraft Fuels; p 47-62
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2006-03-02
    Description: A preliminary investigation into the use of modern control theory for the design of controls for a supersonic inlet is described. In particular, the task of controlling a mixed-compression supersonic inlet is formulated as a linear optimal stochastic control and estimation problem. An inlet can exhibit an undesirable instability due to excessive inlet normal shock motion. For the optimal control formulation of the inlet problem, a non quadratic performance index, which is equal to the expected frequency of inlet unstarts, is used. This physically meaningful performance index is minimized for a range of inlet disturbance and measurement noise covariances.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA, Washington Fourth Inter-Center Control Systems Conf.; p 323-335
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-01-16
    Description: Thrust and weight requirements of aircraft engines in general are discussed. The characteristics and operating principles of various types of air breathing and rocket engines are described.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Soviet Aircraft and Rockets (NASA-TT-F-770); p 81-139
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-01-11
    Description: Flight vehicles are characterized according to their manner of operation and type of propulsion system; and their associated sources of noise are identified. Available noise reduction technology as it relates to engine cycle design and to powerplant component design is summarized. Such components as exhaust jets, fans, propellers, rotors, blown flaps, and reciprocating-engine exhausts are discussed, along with their noise reduction potentials. Significant aircraft noise reductions are noted to have been accomplished by the application of available technology in support of noise certification rules. Further noise reductions to meet more stringent future noise regulations will require substantial additional technology developments. Improved analytical prediction methods, and well-controlled validation experiments supported by advanced-design aeroacoustic facilities, are required as a basis for an effective integrated systems approach to aircraft noise control.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA/Univ. Conf. on Aeron.; p 103-130
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2006-02-28
    Description: Results of experimental investigations to control a supersonic mixed-compression inlet coupled to a turbojet engine are presented. Special instrumentation and servoactuators were developed to have sufficiently fast dynamic response so that basic propulsion system dynamics were the main limitation to controllability. In some cases servoactuator input signals were electronically limited to simulate moderate performance flight hardware.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA, Washington Fourth Inter-Center Control Systems Conf.; p 299-321
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Previously cited in issue 05, p. 656, Accession no. A82-16909
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Journal of Guidance, Control, and Dynamics (ISSN 0731-5090); 7; 183-189
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-18
    Description: The multivariable instrumental variable/approximate maximum likelihood (IV/AML) method of recursive time-series analysis is used to identify the multivariable (four inputs-three outputs) dynamics of the Pratt and Whitney F100 engine. A detailed nonlinear engine simulation is used to determine linear engine model structures and parameters at an operating point using open loop data. Also, the IV/AML method is used in a direct identification made to identify models from actual closed loop engine test data. Models identified from simulated and test data are compared to determine a final model structure and parameterization that can predict engine response for a wide class of inputs. The ability of the IV/AML algorithm to identify useful dynamic models from engine test data is assessed. Previously announced in STAR as N82-20339
    Keywords: AIRCRAFT PROPULSION AND POWER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-19
    Description: Experimental results are presented for the case of titanium blade tip specimens of various geometrical configurations rubbing at 100 m/s against specimens of nickel-chromium sintered powder metal seal material, the latter being fed toward the rotating blades at an incursion rate of 0.0254 mm/s. Blade tips in the form of orthogonal cutting tools with about 85 deg negative rake angles exhibited desirable abrading capabilities, as measured by the tear-free appearance of the grooves they generated in the seal material, little wear of blade tips, low forces of interaction and low seal densification. Similar results have been obtained for blade specimens with tips of small radius of curvature, as well as for square-ended and slanted blade tips that are plasma-sprayed with abrasive particles. The relationship between the size of these particles and their abrading effectiveness is considered.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: ASME, Transactions, Journal of Tribology (ISSN 0742-4787); 106; 527-533
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-16
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Acoustical Society of America; vol. 57
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-18
    Description: A computer program has been developed to analyze supersonic combustion ramjet (scramjet) inlet flow fields. The program solves the three-dimensional Euler or Navier-Stokes equations in full conservation form by a well-known explicit, predictor-corrector technique. Turbulence is modeled by an algebraic eddy-viscosity model. Detailed laminar and turbulent flow results are presented for a symmetric wedge corner and a comparison is made with the available experimental results to allow assessment of the program. Results are then presented for an actual scramjet inlet configuration.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: APL Computational Methods for Ramjets; p 25-40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Two computer programs have been developed to numerically calculate complex, two-dimensional flow fields in scramjets. The first program is written for inlet analysis whereas the second program is written primarily for combustor analysis. Both programs solve the full two-dimensional Navier-Stokes equations by a well-known explicit, predictor-corrector technique. Turbulence is modeled by an algebraic eddy-viscosity model. The combustor program also includes one or more species conservation equations to calculate mixing and reacting flows. The hydrogen/air chemistry in this program is modeled by a complete reaction model. The combustor program has been recently modified to analyze axisymmetric ramjet dump combustor flow field. Results from these computer programs are presented that predict the flow in several scramjet inlet configurations, two model scramjet engine configurations, and in a dump combustor simulator. Computed results are also compared with available experimental data to allow assessment of the programs.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: APL Computational Methods for Ramjets; p 9-24
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-18
    Description: The Quiet Short-Haul Research Aircraft (QSRA) was designed as research aircraft for investigating terminal-area operations with an advanced propulsive-lift aircraft. The QSRA is a modified De Havilland C-8 Buffalo. The modification to the C-8 consisted of adding a new swept wing with four top-mounted Lycoming YF-102 turbofan engines to provide high levels of propulsive-lift through upper-surface blowing. The state of the art has reached the point where consideration can be given to various applications, including military transport aircraft, civil transports, and business jets. Attention is also given to a ground attack plane with QSRA, the payload advantage resulting from applying propulsive-life technology, and aspects of takeoff performance
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Astronautics and Aeronautics; 19; Apr. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-18
    Description: Materials illustrating a presentation on the all-electric aircraft power system are presented. The advantages of the system and the planning time table are outlined.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Langley Research Center Elec. Flight Systems; p 113-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-18
    Description: Materials illustrating a presentation on all-electric aircraft propulsion systems are presented. Propulsion system impacts on aircraft design and areas requiring further study are outlined.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Langley Research Center Elec. Flight Systems; p 103-112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Materials illustrating a presentation on electric propulsion systems are presented. The electric engine and engine/generator configurations are described and NASA's role outlined.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Langley Research Center Elec. Flight Systems; p 95-102
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-17
    Description: A scramjet/airframe integration program and a technique for simulating thermally perfect scramjet exhaust flows (freon/argon gas blends) is studied to extend the technique to more complicated flows approaching the actual exhaust flow in complexity. The state of the flow and the accuracy of the substitute gas simulation are analyzed in the case of a shock discontinuity present. Findings are: scramjet exhaust flow is essentially frozen throughout the expansion at Mach 6 and Mach 8; flow behind moderate shocks remains frozen; the technique can accurately track static distributions in scramjet exhaust flows (shocked or unshocked).
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Journal of Aircraft; 14; Sept
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-18
    Description: Previously cited in issue 10, p. 1378, Accession no. A83-25957
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Journal of Aircraft (ISSN 0021-8669); 21; 135-142
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-18
    Description: (Previously cited in issue 01, p. 13, Accession no. A82-10456)
    Keywords: AIRCRAFT PROPULSION AND POWER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-18
    Description: Previously cited in issue 19, p. 3268, Accession no. A81-40963
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: (ISSN 0021-8669)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-06-07
    Description: The trajectory, penetration and mixing efficiency of lateral air jet injection into typical combustor flowfields in the absence of combustion were investigated so as to characterize the time-mean and turbulence flowfield for a variety of configurations and input parameters, recommend appropriate turbulence model advances, and implement and exhibit results of flowfield predictions. A combined experimental and theoretical approach was followed, in a modified version of the test facility, equipped initially with one and two lateral jets, located one test-section downstream of the inlet.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Turbine Engine Hot Section Technology, 1984; 11 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The accuracy and utility of current aerothermal models for gas turbine combustors must be improved. Three areas of concern are identified: improved numerical methods for turbulent viscous recirculating flows; flow interaction; and fuel injector-air swirl characterization. Progress in each area is summarized.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Engine Hot Section Technology, 1984; 4 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The overall objective of the Turbine Engine Hot Section Technology Combustion Project is to develop and verify improved and more accurate analysis methods for increasing the ability to design with confidence the combustion system for advanced aircraft turbine engines. The analysis methods developed will be generically applicable to combustion systems and not restricted to one specific engine or manufacturer. This project's approach was to first assess and evaluate existing combustor aerothermal analysis models by means of a contracted effort initiated during FY 1982. This evaluation effort has assessed and quantified known models' strengths and deficiencies. During FY 1984 the Aerothermal Modeling Program, Phase 2 will be initiated, which is expected to have contracted model development efforts in the areas of improved numerical methods for turbulent viscous flows, flow interactions, and fuel spray flow foekd interactions. A Phase 3 effort is planned to address remaining model deficiencies. The primary inhouse effort in this area will be the determination of high pressure flame radiation characteristics in a full annular combustor. This experiment will be conducted in the NASA LeRC High Pressure Facility with the results compiled into a comprehensive flame radiation and liner heat flux model.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 129-133
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-06-07
    Description: Test conditions and variables to be considered in each of the test rigs and test configurations, and also used in the validation of the structural predictive theories and tools, include: thermal and mechanical load histories (simulating an engine mission cycle; different boundary conditions; specimens and components of different dimensions and geometries; different materials; various cooling schemes and cooling hole configurations; several advanced burner liner structural design concepts; and the simulation of hot streaks. Based on these test conditions and test variables, the test matrices for each rig and configurations can be established to verify the predictive tools over as wide a range of test conditions as possible using the simplest possible tests. A flow chart for the thermal/structural analysis of a burner liner and how the analysis relates to the tests is shown schematically. The chart shows that several nonlinear constitutive theories are to be evaluated.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 335-344
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The methodology to predict deposit evolution (deposition rate and subsequent flow of liquid deposits) as a function of fuel and air impurity content and relevant aerodynamic parameters for turbine airfoils is developed in this research. The spectrum of deposition conditions encountered in gas turbine operations includes the mechanisms of vapor deposition, small particle deposition with thermophoresis, and larger particle deposition with inertial effects. The focus is on using a simplified version of the comprehensive multicomponent vapor diffusion formalism to make deposition predictions for: (1) simple geometry collectors; and (2) gas turbine blade shapes, including both developing laminar and turbulent boundary layers. For the gas turbine blade the insights developed in previous programs are being combined with heat and mass transfer coefficient calculations using the STAN 5 boundary layer code to predict vapor deposition rates and corresponding liquid layer thicknesses on turbine blades. A computer program is being written which utilizes the local values of the calculated deposition rate and skin friction to calculate the increment in liquid condensate layer growth along a collector surface.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 241-257
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Objectives and approaches to research in turbine heat transfer are discussed. Generally, improvements in the method of determining the hot gas flow through the turbine passage is one area of concern, as is the cooling air flow inside the airfoil, and the methods of predicting the heat transfer rates on the hot gas side and on the coolant side of the airfoil. More specific areas of research are: (1) local hot gas recovery temperatures along the airfoil surfaces; (2) local airfoil wall temperature; (3) local hot gas side heat transfer coefficients on the airfoil surfaces; (4) local coolant side heat transfer coefficients inside the airfoils; (5) local hot gas flow velocities and secondary flows at real engine conditions; and (6) local delta strain range of the airfoil walls.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 119-136
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The design, construction, and testing of laser anemometer configurations for hot section velocity measurements is discussed. The optimization of the laser anemometer systems include the data processing algorithms used. Some relevant hot section properties considered are high temperature with a large background radiation, difficulty of optical access, large flow velocity variations, the presence of solid surfaces that generate reflections and low seed particle density.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Turbine Eng. Hot Sect. Technol. (HOST); p 113-118
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The development of an advanced measuring system which measures the rapidly varying gas temperature at the exit of an aircraft jet engine combustor during ground based testing of hot section components was identified. Sensor guidelines, technical approach/program schedule, and the accomplishments are reviewed. The environment of a present generation combustor is shown. The method uses two beadless junctions type-B thermocouples to measure heat transfer coefficient in situ. Heat conduction effects are shown by a finite element model of the thermocouple.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Turbine Eng. Hot Sect. Technol. (HOST); p 75-82
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The highlights of NASA contract CR-167896, Fracture Mechanics Criteria for Turbine Engine Hot Section Components, are presented. The five technical tasks of the program are reviewed. Results of several tasks are presented.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 55-63
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The turbine hot-section technology (HOST) Instrumentation R&D program focuses on two main classes of instrumentation: (1) those that characterizes the environment around the turbine engine components, which include gas flows measurement, gas temperatures, and heat fluxes; (2) to characterize the effect of the environment on the turbine engine components, which include strain measurements and an optical system to structural responses such as cracking, buckling, spalling, carbon buildup. The HOST Instrumentation R&D program concentrates on the critical measurements that can not be made by commercially available instruments or with instruments that are already in development. The measurements of strain and gas flow are emphasized, these measurements are extremely critical to the success of the HOST program and the HOST requirements differ from the current state of the art by a considerable margin.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 65-68
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-06-07
    Description: Three-dimensional, nonlinear, finite element structural analyses were performed for a simulated aircraft combustor liner specimen in order to assess the capability of nonlinear analyses using classical inelastic material models to represent the thermoplastic-creep response of the component. In addition, the computed stress-strain history at the critical location was input into life prediction methods in order to evaluate the ability of these procedures to predict crack initiation life. It is concluded that: (1) elastic analysis is adequate for obtaining strain range and critical location; (2) inelastic analyses did not accurately represent cyclic behavior of materials; and (3) none of the crack initiation life prediction methods were satisfactory.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 45-53
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2016-06-07
    Description: The most critical structural requirements that aircraft gas turbine engines must meet result from the diversity of extreme environmental conditions in the turbine section components. Accurate life assessment of the components under these conditions requires sound analytical tools and techniques. The utility of advanced structural analysis techniques and advanced life prediction techniques in the life assessment of hot-section components was evaluated. The extend to which a three-dimensional cyclic isoparametric finite element analysis of a hot-section component would improve the accuracy of component life predictions was assessed. At the same time, high temperature life prediction theories such as strainrange partitioning and the frequency modified approaches were applied and their efficiency judged. A stress analysis was performed on a commercial air-cooled turbine blade. The evaluation of the life prediction methods indicated that none of those studied were satisfactory.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 39-44
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2016-06-07
    Description: The Structural Tailoring of Engine Blades (STAEBL) program was initiated at NASA Lewis Research Center in 1980 to introduce optimal structural tailoring into the design process for aircraft gas turbine engine blades. The standard procedure for blade design is highly iterative with the engineer directly providing most of the decisions that control the design process. The goal of the STAEBL program has been to develop an automated approach to generate structurally optimal blade designs. The program has evolved as a three-phase effort with the developmental work being performed contractually by Pratt & Whitney Aircraft. Phase 1 was intended as a proof of concept in which two fan blades were structurally tailored to meet a full set of structural design constraints while minimizing DOC+I (direct operating cost plus interest) for a representative aircraft. This phase was successfully completed and was reported in reference 1 and 2. Phase 2 has recently been completed and is the basis for this discussion. During this phase, three tasks were accomplished: (1) a nonproprietary structural tailoring computer code was developed; (2) a dedicated approximate finite-element analysis was developed; and (3) an approximate large-deflection analysis was developed to assess local foreign object damage. Phase 3 is just beginning and is designed to incorporated aerodynamic analyses directly into the structural tailoring system in order to relax current geometric constraints.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Optimization, Part 1; 13 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Hot section components of aircraft gas turbine engines are subjected to severe thermal structural loading conditions, especially during the start up and take off portions of the engine cycle. The most severe and damaging stresses and strains are those induced by the steep thermal gradients induced during the start up transient. These transient stresses and strains are also the most difficult to predict, in part because of the temperature gradients and distributions are not well known or readily predictable, and also because the cyclic elastic viscoplastic behavior of the materials at these extremes of temperature and strain are not well known or readily predictable. A broad spectrum of structures related technology programs is underway to address these deficiencies. One element of the structures program is developing improved time varying thermal mechanical load models for the entire engine mission cycle from start up to shutdown. Another major part of the program is the development of new and improved nonlinear 3-D finite elements and associated structural analysis programs, including the development of temporal elements with time dependent properties to account for creep effects in the materials and components.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 153-158
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: An inlet interface flange, inlet diffuser, fuel struts and nozzles, combustor liner, liner housing and exhaust flange comprise a system to be installed in an existing test facility. The system was designed for operation at 40 atmospheres inlet pressure, 900 K inlet temperature, and air flow to 80 kg/sec. Six penetrations are provided in the outer pressure housing. Adapters at the penetrations, permit use of various types of radiation instrumentation. Five total radiation radiometers and two heat flux gases were installed. Rotating exhaust instrumentation can also be used to determine combustor performance. Data are presented showing total radiation at three axial positions of the combustor, and comparison of total radiation with data from a heat flux gage.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 331-334
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Some significant features of the approach adopted for the combustor aerothermal modeling program are described. The individual computerized models utilized in the aero design approach are characterized. The preliminary design module provides the overall envelope definition of the burner. The diffuser module provides the detailed contours of the diffuser and combustor cowl region, as well as the pressure loss characteristics into each of the individual flow passages into the dome and around the combustor. The flow distribution module provides the air entry quantities through each of the aperatures and the overall pressure drop. The heat transfer module provides detailed metal temperature distribution throughout the metal structure as input to stress and life analysis that are not part of the aerothermo design effort. Finally, the internal flow module, INTFLOW, is described and the approach for model evaluation using laboratory data is discussed.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Turbine Eng. Hot Sect. Technol. (HOST); p 301-306
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-06-07
    Description: This program concentrates on analyzing a limited number of hot corroded components from the field and the carrying out of a series of controlled laboratory experiments to establish the effects of oxide scale and coating chemistry on hot corrosion life. This is to be determined principally from the length of the incubation period, the investigation of the mechanisms of hot corrosion attack, and the fitting of the data generated from the test exposure experiments to an empirical life prediction model.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 263-267
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The Turbine Engine Hot Section Technology Combustion Program is briefly described. The overall objective of the project is to develop and verify improved and more accurate analysis methods for increasing the ability to design with confidence the combustion system for advanced aircraft turbine engines. The approach is to first assess and evaluate existing combustor aerothermal analysis models by means of a contracted effort initiated during FY-82. The program also includes both analytical and experimental research efforts in the areas of aerothermal modeling and liner cyclic life. It is expected that the combustor model development effort will generate improved understanding in the areas of high pressure flame radiation characteristics, model numerical methods and solution schemes, complex geometrical boundary conditions, fuel spray - flow field interactions, combustion kinetics, flow and mixing of dilution jets, turbulence and heat transfer, and soot and carbon formation.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Turbine Eng. Hot Sect. Technol. (HOST); p 269-281
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The objectives, approach, and status of a program to develop the computational fluid dynamics tools needed to improve combustor design and analysis are outlined. The calculation procedure selected consists of a finite difference solution of the time averaged, steady state, primitive variable, elliptic form of the Reynolds equations. Standard TEACH type numerics are used to solve the resulting equations. These include hybrid differencing, SIMPLE algorithm for the pressure field, line by line iterative solution using the ADI method and the tridiagonal matrix algorithm (TDMA). Convergence is facilitated by using under relaxation. The physical processes are modeled by a two equation eddy viscosity model for turbulence; combustion is represented by a simple, irreversible, one step chemical reaction whose rate is influenced only by the time scale of the turbulence. The model evaluation procedure is also described.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Turbine Eng. Hot Sect. Technol. (HOST); p 283-299
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The objective of this program is to develop a thermal data transfer computer program module for the Burner Liner Thermal-Structural Load Modelling Program. This will be accomplished by reviewing existing methodologies for thermal data transfer and selecting three heat transfer codes for application in this program, evaluating the selected codes to establish criteria for developing a computer program module to transfer thermal data from the heat transfer codes to selected stress analysis codes, developing the automated thermal load transfer module, and verifying and documenting the module. The overall objectives of this thermal transfer module are that it handle independent mesh configurations, perform the transfer in an accurate and efficient fashion and that the total system be flexible for future improvements.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Turbine Eng. Hot Sect. Technol. (HOST); p 185-196
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Hot section components of aircraft gas turbine engines are subjected to severe thermal-structural loading conditions, especially during the start-up and take-off portions of the engine cycle. The most severe and damaging stresses and strains are those induced by the steep thermal gradients induced during the start-up transient. These transient stresses and strains are also the most difficult to predict, in part because the temperature gradients and distributions are not well known or predictable, and also because the cyclic elasto-viscoplastic behavior of the materials at these extremes of temperature and strain are not well known or predictable. One element of the structures program will develop improved time-varying thermal-mechanical load models for the entire engine mission cycle from start-up to shutdown. The thermal model refinements will be consistent with those required by the structural code including considerations of mesh-point density, strain concentrations, and thermal gradients. Models will be developed for the burner liner, turbine vane and turbine blade.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 181-184
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Although the effects of the coriolis and buoyancy forces due to rotation on coolant-side heat transfer are generally not included in the design methods for blades, the influence of these forces could be large. Comparisons of nonrotating heat transfer data and extrapolations of available correlation for the average heat transfer coefficients with radial outflow of cooling air showed that neglecting rotation at gas turbine engine conditions result in variations in the heat transfer coefficient by as much as 45 percent. This, in effect, results in blade metal temperatures running as much as 100 F different from predicted values. This also may explain why rotating blade metal temperatures in engine tests are often higher than expected from results obtained in nonrotating cascade tests.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 175-179
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-06-07
    Description: Flow distributions and heat transfer characteristics for two-dimensional arrays of circular air jets impinging on a surface parallel to the jet orifice plate were determined. The configurations considered were intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The geometry of the airfoil applications considered dictates that all of the jet flow, after impingement, exit in the chordwise (i.e., streamwise) direction toward the trailing edge. Experimental results for the effect of an initial crossflow on both flow distributions and heat transfer characteristics for a number of the prior uniform array geometries. The effects of nonuniform array geometries on flow distributions and heat transfer characteristics for noninitial crossflow configurations are discussed.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Turbine Eng. Hot Sect. Technol. (HOST); p 161-173
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Significant progress was made in advancing the idea of establishing a unified approach for predicting airfoil heat transfer for a wide range of operating conditions and geometries. Preliminary results are encouraging and further mixing length (ml) turbulence modeling ideas will be explored, concentrating on transition behavior. The capability of available modeling techniques to predict airfoil surface heat transfer distributions in a two-dimensional flow field was assessed, experimental data as required for model verification were acquired, and improvements in the analytic models was made and verified.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Turbine Eng. Hot Sect. Technol. (HOST); p 137-147
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-06-07
    Description: A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is provided. These data are to be used to evaluate, and verify, three-dimensional internal viscous flow models and computational codes. The analytical contract objective is to select a computational code and define the capabilities of this code to predict the experimental results obtained. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated. Internal flow in a large rectangular cross-sectioned 90 deg. bend turning duct was studied. The duct construction was designed to allow detailed measurements to be made for the following three duct wall conditions: (1) an isothermal wall with isothermal flow; (2) an adiabatic wall with convective heat transfer by mixing between an unheated surrounding flow; and (3) an isothermal wall with heat transfer from a uniformly hot inlet flow.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Turbine Eng. Hot Sect. Technol. (HOST); p 149-159
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The objectives and problems faced in the development of a laser anemometry system for hot section applications was discussed. The goal was to map the flow profiles through and between the vanes and between the rotating blades of a turbine. A laser anemometer system was developed which measures the Doppler shift directly along the optical axis. Some testing is being conducted in a small bench top combustor facility. The cost involved in this testing was also discussed.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Turbine Eng. Hot Sect. Technol. (HOST); p 109-112
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-06-07
    Description: The technology of heat flux measurement is addressed. The development of total heat flux sensors for burner liners and also the demonstration of total and radiant heat flux sensors in a combustor test is covered. A thorough review of potential approaches is conducted including both transient and steady state measurements. Measurement of total heat flux was emphasized, consequently configurations are sought which produce minimum disturbance to the heat flux which would be present without the sensor in place. Approaches to the turbine blade and vane heat flux sensor program are discussed.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Turbine Eng. Hot Sect. Technol. (HOST); p 101-108
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-06-07
    Description: The Liner Environment Effects Study Program is aimed at establishing a broad heat transfer data base under controlled experimental conditions by quantifying the effects of the combustion system conditions on the combustor liner thermal loading and on the flame radiation characteristics. Five liner concepts spanning the spectrum of liner design technology from the very simple to the most advanced concepts are investigated. These concepts comprise an uncooled liner, a conventional film cooled liner, an impingement/film cooled liner, a laser drilled liner approaching the concept of a porous wall, and a siliconized silicon carbide ceramic liner. Effect of fuel type is covered by using fuels containing 11.8, 12.8, and 14% hydrogen. Tests at 100, 200, and 300 psia provide a basis for evaluating the effect of pressure on the heat transfer. The effects of the atomization quality and spray characteristics are examined by varying the fuel spray Sauter mean diameter and the spray angle. Additional varied parameters include reference velocity, a wide range of equivalence ratio, cooling flow rate, coolant temperature and the velocity of the coolant stream on the backside of the liner.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Research Center Combust. Fundamentals Res.; p 275-284
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2012-05-22
    Description: The problems created by fretting in turbine engines are discussed. The areas of greatest wear identified with the fan, compressor, and turbine blade mountings being the most critical items. Various methods for reducing or eliminating fretting in a turbine engine are described. Vacuum deposition of coatings by sputtering and ion plating are recommended as an economic method of applying thin films to inhibit fretting.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AGARD Specialists Meeting on Fretting in Aircraft Systems; 17 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-16
    Description: The papers in this volume deal essentially with the question whether the amplification of noise is due to the jet noise phenomenon or perhaps an interaction of airframe and core engine noise. In the area of jet noise suppression, various promising suppressor concepts are examined. The swirling flow jet noise suppressor is shown to provide significant noise reduction with minimal thrust losses. Progress in the aircraft engine core noise problem is reflected by seven research-type papers. Two possible mechanisms are seen to be responsible for core noise. One is the direct noise radiated from the turbulent combustion in the primary combuster and transmitted through the turbine, passing out the nozzle into the far field. The other mechanism is the noise that is emitted from hot spots being convected through the turbine. Which of these mechanisms (or perhaps both mechanisms) is responsible for core noise, and what are the coupling mechanisms of core engine noise and jet noise are the questions confronting researchers.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Description: The status of technologies for jet-lift V/STOL aircraft is examined, and a critical review of the performance of jet-lift VTOL aircraft built to date is made. Most jet-lift aircraft have suffered from adverse propulsion-induced effects during takeoff and landing. Flight dynamics of jet-lift aircraft have suffered from shortcomings in static and dynamic stability, control characteristics, and flight path control. Some of the main problems to be considered during the selection of a propulsion system arrangement for a V/STOL fighter are discussed. At present, experimental and analytical data on supersonic V/STOL configurations are insufficient to permit evaluating propulsion system arrangements.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Astronautics and Aeronautics; 15; Dec. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2012-05-22
    Description: Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar digital programs on future engine simulation philosophy is also discussed.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AGARD Power Plant Controls for Aero-Gas Turbine Eng.; 23 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2012-05-19
    Description: An experimental investigation was performed to determine the effect of endwall cooling on the secondary flow behavior and the aerodynamic performance of a coreturbine stator vane. The investigation was conducted in a cold-air, full-annular cascade, where three-dimensional effects could be obtained. Two endwall cooling configurations were tested. In the first configuration, the cooling holes were oriented so that the coolant was injected in line with the inviscid streamline direction. In the second configuration, the coolant was injected at an angle of 15 deg to the inviscid streamline direction and oriented toward the vane pressure surface. In both cases the stator vanes were solid and uncooled so that the effect of endwall cooling could be obtained directly. Total-pressure surveys were taken downstream of the stator vanes over a range of cooling flows at the design, mean-radius, critical velocity ratio of 0.778. Changes in the total-pressure contours downstream of the vanes were used to obtain the effect of endwall cooling on the secondary flows in the stator. Comparisons were made between the two cooled-endwall configurations and with the results obtained previously for solid endwalls.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AGARD Secondary Flows in Turbomachines; 29 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2011-08-17
    Description: Improving fuel efficiency, new sources of jet fuel, and noise and emission control are subjects of NASA's aeronautics program. Projects aimed at attaining a 5% fuel savings for existing engines and a 13-22% savings for the next generation of turbofan engines using advanced components, and establishing a basis for turboprop-powered commercial air transports with 30-40% savings over conventional turbofan aircraft at comparable speeds and altitudes, are discussed. Fuel sources are considered in terms of reduced hydrogen and higher aromatic contents and resultant higher liner temperatures, and attention is given to lean burning, improved fuel atomization, higher freezing-point fuel, and deriving jet fuel from shale oil or coal. Noise sources including the fan, turbine, combustion process, and flow over internal struts, and attenuation using acoustic treatment, are discussed, while near-term reduction of polluting gaseous emissions at both low and high power, and far-term defining of the minimum gaseous-pollutant levels possible from turbine engines are also under study.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Astronautics and Aeronautics; 18; Jan. 198
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2011-08-17
    Description: The paper describes the design and test procedure for the QCSEE (quiet, clean, short-haul experimental engine). The engines designed for the YC-14 and YC-15 STOL aircraft, both use a very low fan pressure ratio to keep jet-flap noise about 3 dB below total system noise. Other noise reducing features discussed are the low tip speed fans and a carefully selected number of fan blades and vanes with adequate spacing between them. Attention is also given to the development of a low emissions combustor, and reduction of fan frame weight, through the use of graphite/epoxy material. The YC-15 engine also employs variable pitch fans to provide thrust reversal, thus saving weight. Finally, it is noted that the tests have proven that the engines could be configurated to meet the needs of a powered lift system without excessively compromising performance or weight.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: ICAO Bulletin; 34; Apr. 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Description: The current status of the problem of gas turbine engine emissions is reviewed. Presently promulgated EPA standards and their implications for aircraft gas turbines are discussed. The progress and status of emissions reduction technology programs and other efforts which have emphasized advanced combustor technology are reviewed in detail. Also examined are those efforts underway to determine the emissions floor and incorporate those techniques into practical combustors of the future.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Progress in Energy and Combustion Science; 4; 2, 19; 1978
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-08-17
    Description: The noise-generating region of a suppressed turbojet exhaust is studied by cross-correlating static pressure fluctuations within the exhaust with far-field sound for Mach numbers up to 0.99, using a 31-tube nozzle having an area ratio of 3.1. Measurements made with an unsuppressed turbojet exhaust having an equivalent area ratio and operating under effectively equal thrust loads serve as the experimental control. Static pressure-level measurements, made with a calibrated high-temperature acoustically damped probe tube, show that noise suppression by multitube nozzles results from reduced turbulence levels. The maximum fluctuating static-pressure level in the unsuppressed turbojet exhaust is typically 5-6 dB higher than static-pressure levels in the suppressed exhaust under conditions of effectively equal static thrust. This suggests that the turbulence intensity in the multitube suppressor flow is reduced in excess of 20% compared with the unsuppressed jet exhaust.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Acoustical Society of America; vol. 63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Description: NASA aims at developing propulsion technology to reduce the fuel consumption of present engines by 5%, that of new engines of the late 1980s by at least 12%, and that of an advanced early 1990s turboprop by an additional 15%. This paper reviews three separate NASA programs which take up these aims. They are, respectively, Engine Component Improvement, Energy Efficient Engine, and Advanced Turboprops.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Astronautics and Aeronautics; 16; July-Aug
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Description: The market place is examined for general aviation aircraft into the 1980's. The visible constraints that engine manufacturers must face regardless of the type of cycle are indicated.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Res. Center The Rotary Combust. Engine; p 175-186
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-08-17
    Description: The development of light aircraft with special emphasis on modern propulsion systems and production is discussed in terms of the application of rotary engines to aircraft. Emphasis is placed on the integrated ducted-fan propulsion system using rotary engines.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Res. Center The Rotary Combust. Engine; p 109-122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-08-17
    Description: Rotary engines with a chamber volume of 750 cc as a two rotor automotive powerplant, called KKM 871 are described. This engine is compared to a 3 liter or 183 cubic inch, six-cylinder reciprocating engine. Emphasis is placed on exhaust emission control and fuel economy.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Res. Center The Rotary Combust. Engine 85-107 (SEE N79-15961 07-07)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-08-17
    Description: The development of the rotary engine as a viable power plant capable of wide application is reviewed. Research results on the stratified charge engine with direct chamber injection are included. Emission control, reduced fuel consumption, and low noise level are among the factors discussed in terms of using the rotary engine in general aviation aircraft.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Res. Center The Rotary Combust. Engine; p 123-174
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Description: Progress in the development of rotary engines which use a thermal reactor as the primary part of the exhaust emission control system is reviewed. Possibilities of further improvements in fuel economy of future rotary engines are indicated.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Lewis Res. Center The Rotary Combust. Engine; p 37-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Description: A review is presented of nonturbine general aviation engine programs underway at the NASA-Lewis Research Center. The program encompasses conventional, lightweight diesel, and rotary engines. Its three major thrusts are: (1) reduced SFC's; (2) improved fuels tolerance; and (3) reducing emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques, and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to latter 1980's, for engines whose total fuel costs are as much as 30% lower than today's conventional engines.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: The Rotary Combust. Engine; p 13-35
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Materials used in a presentation on development of engine technology for electric flight systems are presented. Component and system technology issues, NASA's role, and flight test requirements are outlined.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: NASA. Langley Research Center Elec. Flight Systems; p 235-240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Keywords: AIRCRAFT PROPULSION AND POWER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-08-18
    Description: (Previously cited in issue 19, p. 3268, Accession no. A81-40912)
    Keywords: AIRCRAFT PROPULSION AND POWER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-08-18
    Description: Previously cited in issue 19, p. 3266, Accession no. A81-40878
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: (ISSN 0021-8669)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-08-18
    Description: The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764
    Keywords: AIRCRAFT PROPULSION AND POWER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-08-18
    Description: Previously cited in issue 07, p. 982, Accession no. A82-19221
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Journal of Guidance, Control, and Dynamics (ISSN 0731-5090); 7; 77-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-08-18
    Description: Previously cited in issue 06, p. 813, Accession no. A82-17833
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: (ISSN 0146-0412)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-08-18
    Description: Previously cited in issue 17, p. 2687, Accession no. A82-34981
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: (ISSN 0021-8669)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-08-18
    Description: (Previously cited in issue 22, p. 3815, Accession no. A81-45893)
    Keywords: AIRCRAFT PROPULSION AND POWER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-08-18
    Description: (Previously cited in issue 19, p. 3265, Accession no. A81-40842)
    Keywords: AIRCRAFT PROPULSION AND POWER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-08-18
    Description: (Previously cited in issue 07, p. 1010, Accession no. A81-20598)
    Keywords: AIRCRAFT PROPULSION AND POWER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-08-18
    Description: Previously cited in issue 10, p. 1378, Accession no. A83-25963
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Journal of Aircraft (ISSN 0021-8669); 21; 491-497
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-08-18
    Description: Previously cited in issue 10, p. 1377, Accession no. A83-25910
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Journal of Aircraft (ISSN 0021-8669); 21; 453-461
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-08-18
    Description: It is expected that all-electric aircraft, whether military or commercial, will exhibit reduced weight, acquisition cost and fuel consumption, an expanded flight envelope and improved survivability and reliability, simpler maintenance, and reduced support equipment. Also noteworthy are dramatic improvements in mission adaptability, based on the degree to which control system performance relies on easily exchanged software. Flight-critical secondary power and control systems whose malfunction would mean loss of an aircraft pose failure detection and design methodology problems, however, that have only begun to be addressed. NASA-sponsored research activities concerned with these problems and prospective benefits are presently discussed.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: IEEE Transactions on Aerospace and Electronic Systems (ISSN 0018-9251); AES-20; 261-266
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-08-18
    Description: Previously cited in issue 17, p. 2687, Accession no. A82-35000
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Journal of Energy (ISSN 0146-0412); 7; 508-517
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-08-19
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Journal of Guidance, Control, and Dynamics (ISSN 0731-5090); 7; 677-683
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...