ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3,249)
  • Meteorology and Climatology  (1,781)
  • Geophysics  (832)
  • Air Transportation and Safety  (636)
  • SPACE RADIATION
  • 2010-2014  (3,249)
Collection
Source
Years
Year
  • 1
    Publication Date: 2018-06-12
    Description: The successful implementation of the next generation infrastructure systems requires solid understanding of their technical, social, political and economic aspects along with their interactions. The lack of historical data that relate to the long-term planning of complex systems introduces unique challenges for decision makers and involved stakeholders which in turn result in unsustainable systems. Also, the need to understand the infrastructure at the societal level and capture the interaction between multiple stakeholders becomes important. This paper proposes a methodology in order to develop a holistic approach aiming to provide an alternative subject-matter expert (SME) elicitation and data collection method for future sociotechnical systems. The methodology is adapted to Next Generation Air Transportation System (NextGen) decision making environment in order to demonstrate the benefits of this holistic approach.
    Keywords: Air Transportation and Safety
    Type: Selected Papers and Presentations Presented at MODSIM World 2010 Conference Expo; 491-508; NASA/CP-2011-217069/PT 2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-12
    Description: The movement of passengers through an airport quickly, safely, and efficiently is the main function of the various checkpoints (check-in, security. etc) found in airports. Human error combined with other breakdowns in the complex system of the airport can disrupt passenger flow through the airport leading to lengthy waiting times, missing luggage and missed flights. In this paper we present a model of passenger flow through an airport using discrete event simulation that will provide a closer look into the possible reasons for breakdowns and their implications for passenger flow. The simulation is based on data collected at Norfolk International Airport (ORF). The primary goal of this simulation is to present ways to optimize the work force to keep passenger flow smooth even during peak travel times and for emergency preparedness at ORF in case of adverse events. In this simulation we ran three different scenarios: real world, increased check-in stations, and multiple waiting lines. Increased check-in stations increased waiting time and instantaneous utilization. while the multiple waiting lines decreased both the waiting time and instantaneous utilization. This simulation was able to show how different changes affected the passenger flow through the airport.
    Keywords: Air Transportation and Safety
    Type: Selected Papers and Presentations Presented at MODSIM World 2010 Conference Expo; 471-477; NASA/CP-2011-217069/PT 2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-12
    Description: No abstract available
    Keywords: Air Transportation and Safety
    Type: Selected Papers and Presentations Presented at MODSIM World 2010 Conference Expo; 478-490; NASA/CP-2011-217069/PT 2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: This report briefly summarizes the activities of the IVS Analysis Center at the Onsala Space Observatory during 2012 and gives examples of results of ongoing work.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 298-301; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: The Shanghai Astronomical Observatory (SHAO) Analysis Center in 2012 continued routine VLBI data analysis and produced earth orientation parameter (EOP), terrestrial reference frame (TRF), and celestial reference frame (CRF) information, which was submitted to the IVS quarterly. The activities of SHAO also consisted of data reduction of the Chinese VLBI Network (CVN), spacecraft navigation using the VLBI technique, and some research activities.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 311-314; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This report presents an overview of the SAI VLBI Analysis Center activities during 2012 and the plans for 2013. The SAI AC analyzes all IVS sessions for computations of the Earth orientation parameters (EOP) and time series of the ICRF source positions and performs research and software development aimed at improving the VLBI technique.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 309-310; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: This report summarizes the activities of the Haystack Correlator during 2012. Highlights include finding a solution to the DiFX InfiniBand timeout problem and other DiFX software development, conducting a DBE comparison test following the First International VLBI Technology Workshop, conducting a Mark IV and DiFX correlator comparison, more broadband delay experiments, more u- VLBI Galactic Center observations, and conversion of RDV session processing to the Mark IV/HOPS path. Non-real-time e-VLBI transfers and engineering support of other correlators continued.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 197-200; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: The Bonn Distributed FX (DiFX) correlator is a software correlator operated jointly by the Max- Planck-Institut fur Radioastronomie (MPIfR), the Institut fur Geodasie und Geoinformation der Universitat Bonn (IGG), and the Bundesamt fur Kartographie und Geodasie (BKG) in Frankfurt.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 193-196; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: This report briefly presents the PUL IVS Analysis Center activities during 2012 and plans for the coming year. The main topics of the investigations of PUL staff in that period were ICRF related studies, computation and analysis of EOP series, celestial pole offset (CPO) modeling, and VLBI2010 related issues.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 305-308; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: We report on activities of the Paris Observatory VLBI Analysis Center (OPAR) for calendar year 2012 concerning the development of operational tasks, the development of our Web site, and various other activities: monitoring of the Earth's free core nutation, measuring of the post-seismic displacements of some stations, and the analysis of the recent IVS R&D sessions, including observations of quasars close to the Sun.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 294-297; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Kashima Space Technology Center (KSTC) is making use of two kinds of software correlators, the multi-channel K5/VSSP software correlator and the fast wide-band correlator 'GICO3,' for geodetic and R&D VLBI experiments. Overview of the activity and future plans are described in this paper.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 204-207; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: This report summarizes the activities of the Bordeaux IVS Analysis Center during the year 2011. The work focused on (i) regular analysis of the IVS-R1 and IVS-R4 sessions with the GINS software package; (ii) systematic VLBI imaging of the RDV sessions and calculation of the corresponding source structure index and compactness values; (iii) imaging of the sources observed during the 2009 International Year of Astronomy IVS observing session; and (iv) continuation of our VLBI observational program to identify optically-bright radio sources suitable for the link with the future Gaia frame. Also of importance is the enhancement of the IVS LiveWeb site which now comprises all IVS sessions back to 2003, allowing one to search past observations for session-specific information (e.g. sources or stations).
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2011 Annual Report; 197-200; NASA/TP-2012-217505
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: This report summarizes the activities of the VLBI Analysis Center at the United States Naval Observatory for the 2012 calendar year. Over the course of the year, Analysis Center personnel continued analysis and timely submission of IVS-R4 databases for distribution to the IVS. During the 2012 calendar year, the USNO VLBI Analysis Center produced two VLBI global solutions designated as usn2012a and usn2012b. Earth orientation parameters (EOP) based on this solution and updated by the latest diurnal (IVS-R1 and IVS-R4) experiments were routinely submitted to the IVS. Sinex files based upon the bi-weekly 24-hour experiments were also submitted to the IVS. During the 2012 calendar year, Analysis Center personnel continued a program to use the Very Long Baseline Array (VLBA) operated by the NRAO for the purpose of measuring UT1-UTC. Routine daily 1-hour duration Intensive observations were initiated using the VLBA antennas at Pie Town, NM and Mauna Kea, HI. High-speed network connections to these two antennas are now routinely used for electronic transfer of VLBI data over the Internet to a USNO point of presence. A total of 270 VLBA Intensive experiments were observed and electronically transferred to and processed at USNO in 2012.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 319-322; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: This report summarizes the activities of the Shanghai VLBI Correlator during 2012.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 208-211; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: The activities of the six-station IAA RAS correlator include regular processing of national geodetic VLBI programs Ru-E, Ru-U, and Ru-F. The Ru-U sessions have been transferred in e-VLBI mode and correlated in the IAA Correlator Center automatically since 2011. The DiFX software correlator is used at the IAA in some astrophysical experiments.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 201-203; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The Tsukuba Analysis Center is funded by the Geospatial Information Authority of Japan (GSI). The c5++ analysis software is regularly used for the IVS-INT2 analysis and the ultra-rapid EOP experiments.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 315-318; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The main activities carried out at the PMD (Politecnico di Milano DIIAR) IVS Analysis Center during 2012 are briefly higlighted, and future plans for 2013 are sketched out. We principally continued to process European VLBI sessions using different approaches to evaluate possible differences due to various processing choices. Then VLBI solutions were also compared to the GPS ones as well as the ones calculated at co-located sites. Concerning the observational aspect, several tests were performed to identify the most suitable method to achieve the highest possible accuracy in the determination of GNSS (GLOBAL NAVIGATION SATELLITE SYSTEM) satellite positions using the VLBI technique.
    Keywords: Geophysics
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 302-304; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-06
    Description: It is a common experience that rainfall is intermittent in space and time. This is reflected by the fact that the statistics of area- and/or time-averaged rain rate is described by a mixed distribution with a nonzero probability of having a sharp value zero. In this paper we have explored the dependence of the probability of zero rain on the averaging space and time scales in large multiyear data sets based on radar and rain gauge observations. A stretched exponential fannula fits the observed scale dependence of the zero-rain probability. The proposed formula makes it apparent that the space-time support of the rain field is not quite a set of measure zero as is sometimes supposed. We also give an ex.planation of the observed behavior in tenus of a simple probabilistic model based on the premise that rainfall process has an intrinsic memory.
    Keywords: Meteorology and Climatology
    Type: Water Resources Research; Volume 47; W08522
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-06
    Description: Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Chemistry and Physics; Volume 11; Iss. 15; 7483-7490
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-11
    Description: Climate models are deterministic, mathematical descriptions of the physics of climate. Confidence in predictions of future climate is increased if the physics are verifiably correct. A necessary, (but not sufficient) condition is that past and present climate be simulated well. Quantify the likelihood that a (summary statistic computed from a) set of observations arises from a physical system with the characteristics captured by a model generated time series. Given a prior on models, we can go further: posterior distribution of model given observations.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-11
    Description: Dust is but one of many aerosols that are analyzed at the Jet Propulsion Laboratory in Pasadena. The purpose of this paper is to describe the process in analyzing and digitizing dust within a source region to better explain the work achieved by my internship. This paper will go over how to view collected data by Multi-angle Imaging SpectroRadiometer (MISR) [1] and the procedure of downloading data to be analyzed. With this data, one can digitize dust plumes using two methods called plume lines and plume polygons with the help of the software MISR INteractive eXplorer (MINX)[3]; thus, the theory of MINX's[3] algorithm and these methods are discussed in detail. Research was gathered from these techniques and emphasis is also focused on the obtained data and results.
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-06
    Description: During the Tropical Composition, Clouds and Climate Coupling (TC4) experiment that occurred in July and August of 2007, extensive sampling of active convection in the ITCZ region near Central America was performed from multiple aircraft and satellite sensors. As part of a sampling strategy designed to study cloud processes, the NASA ER-2, WB-57 and DC-8 flew in stacked "racetrack patterns" in convective cells. On July 24, 2007, the ER-2 and DC-8 probed an actively developing storm and the DC-8 was hit by lightning. Case studies of this flight, and of convective outflow on August 5, 2007 reveal a significant anti-correlation between ozone and condensed cloud water content. With little variability in the boundary layer and a vertical gradient, low ozone in the upper troposphere indicates convective transport. Because of the large spatial and temporal variability in surface CO and other pollutants in this region, low ozone is a better convective indicator. Lower tropospheric tracers methyl hydrogen peroxide, total organic bromine and calcium substantiate the ozone results. OMI measurements of mean upper tropospheric ozone near convection show lower ozone in convective outflow. A mass balance estimation of the amount of convective turnover below the tropical tropopause transition layer (TTL) is 50%, with an altitude of maximum convective outflow located between 10 and 11 km, 4 km below the cirrus anvil tops. It appears that convective lofting in this region of the ITCZ is either a two-stage or a rapid mixing process, because undiluted boundary layer air is never sampled in the convective outflow.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research Atmospheres; Volume 115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-06
    Description: This study examines the nature of boreal summer subseasonal atmospheric variability based on the new NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) for the period 1979-2010. An analysis of the June, July and August subseasonal 250hPa v-wind anomalies shows distinct Rossby wave-like structures that appear to be guided by the mean jets. On monthly subseasonal time scales, the leading waves (the first 10 rotated empirical orthogonal functions or REOFs of the 250hPa v-wind) explain about 50% of the Northern Hemisphere vwind variability, and account for more than 30% (60%) of the precipitation (surface temperature) variability over a number of regions of the northern middle and high latitudes, including the U.S. northern Great Plains, parts of Canada, Europe, and Russia. The first REOF in particular, consists of a Rossby wave that extends across northern Eurasia where it is a dominant contributor to monthly surface temperature and precipitation variability, and played an important role in the 2003 European and 2010 Russian heat waves. While primarily subseasonal in nature, the Rossby waves can at times have a substantial seasonal mean component. This is exemplified by REOF 4 which played a major role in the development of the most intense anomalies of the U.S. 1988 drought (during June) and the 1993 flooding (during July), though differed in the latter event by also making an important contribution to the seasonal mean anomalies. A stationary wave model (SWM) is used to reproduce some of the basic features of the observed waves and provide insight into the nature of the forcing. In particular, the responses to a set of idealized forcing functions are used to map the optimal forcing patterns of the leading waves. Also, experiments to reproduce the observed waves with the SWM using MERRA-based estimates of the forcing indicate that the wave forcing is dominated by sub-monthly vorticity transients.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: Thin cirrus clouds (optical depth (OD) 〈 03) are often undetected by standard cloud masking in satellite aerosol retrieval algorithms. However, the Mu]tiangle Imaging Spectroradiometer (MISR) aerosol retrieval has the potential to discriminate between the scattering phase functions of cirrus and aerosols, thus separating these components. Theoretical tests show that MISR is sensitive to cirrus OD within Max{0.05 1 20%l, similar to MISR's sensitivity to aerosol OD, and MISR can distinguish between small and large crystals, even at low latitudes, where the range of scattering angles observed by MISR is smallest. Including just two cirrus components in the aerosol retrieval algorithm would capture typical MISR sensitivity to the natural range of cinus properties; in situations where cirrus is present but the retrieval comparison space lacks these components, the retrieval tends to underestimate OD. Generally, MISR can also distinguish between cirrus and common aerosol types when the proper cirrus and aerosol optical models are included in the retrieval comparison space and total column OD is 〉-0.2. However, in some cases, especially at low latitudes, cirrus can be mistaken for some combinations of dust and large nonabsorbing spherical aerosols, raising a caution about retrievals in dusty marine regions when cirrus is present. Comparisons of MISR with lidar and Aerosol Robotic Network show good agreement in a majority of the cases, but situations where cirrus clouds have optical depths 〉0.15 and are horizontally inhomogeneous on spatial scales shorter than 50 km pose difficulties for cirrus retrieval using the MISR standard aerosol algorithm..
    Keywords: Geophysics
    Type: Journal of Geophysical Research - Atmospheres (ISSN 0148-0227); Volume 115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-06
    Description: The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two geologic settings using methodologies and techniques being developed or considered for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return. The Sample Analysis at Mars (SAM) [1] instrument suite, which will be on MSL, consists of a quadrupole mass spectrometer (QMS), a gas chromatograph (GC), and a tunable laser mass spectrometer (TLS); all will be applied to analyze gases created by pyrolysis of samples. During AMASE, a Hiden Evolved Gas Analysis-Mass Spectrometer (EGA-MS) system represented the EGA-MS capability of SAM. Another MSL instrument, CheMin, will use x-ray diffraction (XRD) and x-ray fluorescence (XRF) to perform quantitative mineralogical characterization of samples [e.g., 2]. Field-portable versions of CheMin were used during AMASE. AMASE 2010 focused on two sites that represented biotic and abiotic analogs. The abiotic site was the basaltic Sigurdfjell vent complex, which contains Mars-analog carbonate cements including carbonate globules which are excellent analogs for the globules in the ALH84001 martian meteorite [e.g., 3, 4]. The biotic site was the Knorringfjell fossil methane seep, which featured carbonates precipitated in a methane-supported chemosynthetic community [5]. This contribution focuses on EGA-MS analyses of samples from each site, with mineralogy comparisons to CheMin team results. The results give insight into organic content and organic-mineral associations, as well as some constraints on the minerals present.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-06
    Description: A recent paper by Mishchenko et al. compares near-coincident MISR, MODIS, and AERONET aerosol optical depth (AOD) products, and reports much poorer agreement than that obtained by the instrument teams and others. We trace the reasons for the discrepancies primarily to differences in (1) the treatment of outliers, (2) the application of absolute vs. relative criteria for testing agreement, and (3) the ways in which seasonally varying spatial distributions of coincident retrievals are taken into account.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-06
    Description: CALIPSO, launched in June 2006, provides global active remote sensing measurements of clouds and aerosols that can be used for validation of a variety of passive imager retrievals derived from instruments flying on the Aqua spacecraft and other A-Train platforms. The most recent processing effort for the MODIS Atmosphere Team, referred to as the Collection 5 scream, includes a research-level multilayer cloud detection algorithm that uses both thermodynamic phase information derived from a combination of solar and thermal emission bands to discriminate layers of different phases, as well as true layer separation discrimination using a moderately absorbing water vapor band. The multilayer detection algorithm is designed to provide a means of assessing the applicability of 1D cloud models used in the MODIS cloud optical and microphysical product retrieval, which are generated at a 1 km resolution. Using pixel-level collocations of MODIS Aqua, CALIOP, we investigate the global performance of multilayer cloud detection algorithms (and thermodynamic phase).
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-06
    Description: Several recent studies have found that clouds are surrounded by a transition zone of rapidly changing aerosol optical properties and particle size. Characterizing this transition zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects, and also for improving satellite retrievals of aerosol properties. This letter presents a statistical analysis of a monthlong global data set of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations over oceans. The results show that the transition zone is ubiquitous over all oceans and extends up to 15 km away from clouds. They also show that near-cloud enhancements in backscatter and particle size are strongest at low altitudes, slightly below the top of the nearest clouds. Also, the enhancements are similar near illuminated and shadowy cloud sides, which confirms that the asymmetry of Moderate Resolution Imaging Spectroradiometer reflectances found in an earlier study comes from 3-D radiative processes and not from differences in aerosol properties. Finally, the effects of CALIPSO aerosol detection and cloud identification uncertainties are discussed. The findings underline the importance of accounting for the transition zone to avoid potential biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.
    Keywords: Meteorology and Climatology
    Type: IEEE Geoscience and Remote Sensing Letters; Volume 8; No. 1; 19-23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-06
    Description: This study examines the importance of horizontal photon transport effects, which are not considered in the 1-D calculations of solar radiative heating used by most atmospheric dynamical models. In particular, the paper analyzes the difference between 2-D and 1-D radiative calculations for 2-D vertical cross-sections of clouds that were observed at three sites over 2- to 3-year periods. The results show that 2-D effects increase multiyear 24-hour average total solar absorption by about 4.1 W/sq m, 1.2 W/sq m, and 0.3 W/sq m at a tropical, mid-latitude, and arctic site, respectively. However, 2-D effects are often much larger than these average values, especially for high sun and for convective clouds. The results also reveal a somewhat unexpected behavior, that horizontal photon transport often enhances solar heating even for oblique sun. These findings underscore the need for fast radiation calculation methods that can allow atmospheric dynamical simulations to consider the inherently multidimensional nature of shortwave radiative processes.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-06
    Description: We use five and one-half years of limb- and nadir-viewing temperature mapping observations by the Composite Infrared Radiometer-Spectrometer (CIRS) on the Cassini Saturn orbiter, taken between July 2004 and December 2009 (Ls from 293 deg. to 48 deg.; northern mid-winter to just after northern spring equinox), to monitor temperature changes in the upper stratosphere and lower mesosphere of Titan. The largest changes are in the northern (winter) polar stratopause, which has declined in temperature by over 20 K between 2005 and 2009. Throughout the rest of the mid to upper stratosphere and lower mesosphere, temperature changes are less than 5 K. In the southern hemisphere, temperatures in the middle stratosphere near 1 mbar increased by 1-2 K from 2004 through early 2007, then declined by 2-4 K throughout 2008 and 2009, with the changes being larger at more polar latitudes. Middle stratospheric temperatures at mid-northern latitudes show a small 1-2 K increase from 2005 through 2009, at north polar latitudes within the polar vortex, temperatures in the middle stratosphere show an approximately 4 K increase during 2007, followed by a comparable decrease in temperatures in 2008 and into early 2009. The observed temperature changes in the north polar region are consistent with a weakening of the subsidence within the descending branch of the middle atmosphere meridional circulation.
    Keywords: Meteorology and Climatology
    Type: Icarus (ISSN 0019-1035); Volume 211; Issue 1; 686-698
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-06
    Description: A new type of EI Nino event has been identified in the last decade. During "warm pool" EI Nino (WPEN) events, sea surface temperatures (SSTs) in the central equatorial Pacific are warmer than average. The EI Nino signal propagates poleward and upward as large-scale atmospheric waves, causing unusual weather patterns and warming the polar stratosphere. In austral summer, observations show that the Antarctic lower stratosphere is several degrees (K) warmer during WPEN events than during the neutral phase of EI Nino/Southern Oscillation (ENSO). Furthermore, the stratospheric response to WPEN events depends of the direction of tropical stratospheric winds: the Antarctic warming is largest when WPEN events are coincident with westward winds in the tropical lower and middle stratosphere i.e., the westward phase of the quasi-biennial oscillation (QBO). Westward winds are associated with enhanced convection in the subtropics, and with increased poleward wave activity. In this paper, a new formulation of the Goddard Earth Observing System Chemistry-Climate Model, Version 2 (GEOS V2 CCM) is used to substantiate the observed stratospheric response to WPEN events. One simulation is driven by SSTs typical of a WPEN event, while another simulation is driven by ENSO neutral SSTs; both represent a present-day climate. Differences between the two simulations can be directly attributed to the anomalous WPEN SSTs. During WPEN events, relative to ENSO neutral, the model simulates the observed increase in poleward planetary wave activity in the South Pacific during austral spring, as well as the relative warming of the Antarctic lower stratosphere in austral summer. However, the modeled response to WPEN does not depend on the phase of the QBO. The modeled tropical wind oscillation does not extend far enough into the lower stratosphere and upper troposphere, likely explaining the model's insensitivity to the phase of the QBO during WPEN events.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-06
    Description: In October 2003 a campaign on board the Australian icebreaker Aurora Australis had the objective to validate standard Aqua Advanced Microwave Scanning Radiometer (AMSR-E) sea-ice products. Additionally, the satellite laser altimeter on the Ice, Cloud and land Elevation Satellite (ICESat) was in operation. To capture the large-scale information on the sea-ice conditions necessary for satellite validation, the measurement strategy was to obtain large-scale sea-ice statistics using extensive sea-ice measurements in a Lagrangian approach. A drifting buoy array, spanning initially 50 km 100 km, was surveyed during the campaign. In situ measurements consisted of 12 transects, 50 500 m, with detailed snow and ice measurements as well as random snow depth sampling of floes within the buoy array using helicopters. In order to increase the amount of coincident in situ and satellite data an approach has been developed to extrapolate measurements in time and in space. Assuming no change in snow depth and freeboard occurred during the period of the campaign on the floes surveyed, we use buoy ice-drift information as well as daily estimates of thin-ice fraction and rough-ice vs smooth-ice fractions from AMSR-E and QuikSCAT, respectively, to estimate kilometer-scale snow depth and freeboard for other days. The results show that ICESat freeboard estimates have a mean difference of 1.8 cm when compared with the in situ data and a correlation coefficient of 0.6. Furthermore, incorporating ICESat roughness information into the AMSR-E snow depth algorithm significantly improves snow depth retrievals. Snow depth retrievals using a combination of AMSR-E and ICESat data agree with in situ data with a mean difference of 2.3 cm and a correlation coefficient of 0.84 with a negligible bias.
    Keywords: Meteorology and Climatology
    Type: Annals of Glaciology; Volume 52; Iss. 57; 242-248
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-06
    Description: Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research (ISSN 0148!0227); Volume 115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-06
    Description: This paper compares recent spatial and temporal anomaly time series of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the 7 year time period September 2002 through February 2010. This time period is marked by a substantial decrease of OLR, on the order of +/-0.1 W/sq m/yr, averaged over the globe, and very large spatial variations of changes in OLR in the tropics, with local values ranging from -2.8 W/sq m/yr to +3.1 W/sq m/yr. Global and Tropical OLR both began to decrease significantly at the onset of a strong La Ni a in mid-2007. Late 2009 is characterized by a strong El Ni o, with a corresponding change in sign of both Tropical and Global OLR anomalies. The spatial patterns of the 7 year short term changes in AIRS and CERES OLR have a spatial correlation of 0.97 and slopes of the linear least squares fits of anomaly time series averaged over different spatial regions agree on the order of +/-0.01 W/sq m/yr. This essentially perfect agreement of OLR anomaly time series derived from observations by two different instruments, determined in totally independent and different manners, implies that both sets of results must be highly stable. This agreement also validates the anomaly time series of the AIRS derived products used to compute OLR and furthermore indicates that anomaly time series of AIRS derived products can be used to explain the factors contributing to anomaly time series of OLR.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-06
    Description: The Modern-Era Retrospective analysis for Research and Applications (MERRA) is a state-of-the-art reanalysis that provides. in addition to atmospheric fields. global estimates of soil moisture, latent heat flux. snow. and runoff for J 979-present. This study introduces a supplemental and improved set of land surface hydrological fields ('MERRA-Land') generated by replaying a revised version of the land component of the MERRA system. Specifically. the MERRA-Land estimates benefit from corrections to the precipitation forcing with the Global Precipitation Climatology Project pentad product (version 2.1) and from revised parameters in the rainfall interception model, changes that effectively correct for known limitations in the MERRA land surface meteorological forcings. The skill (defined as the correlation coefficient of the anomaly time series) in land surface hydrological fields from MERRA and MERRA-Land is assessed here against observations and compared to the skill of the state-of-the-art ERA-Interim reanalysis. MERRA-Land and ERA-Interim root zone soil moisture skills (against in situ observations at 85 US stations) are comparable and significantly greater than that of MERRA. Throughout the northern hemisphere, MERRA and MERRA-Land agree reasonably well with in situ snow depth measurements (from 583 stations) and with snow water equivalent from an independent analysis. Runoff skill (against naturalized stream flow observations from 15 basins in the western US) of MERRA and MERRA-Land is typically higher than that of ERA-Interim. With a few exceptions. the MERRA-Land data appear more accurate than the original MERRA estimates and are thus recommended for those interested in using '\-tERRA output for land surface hydrological studies.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-06
    Description: Saharan dust was observed over the Caribbean basin during the summer 2007 NASA Tropical Composition, Cloud, and Climate Coupling (TC4) field experiment. Airborne Cloud Physics Lidar (CPL) and satellite observations from MODIS suggest a barrier to dust transport across Central America into the eastern Pacific. We use the NASA GEOS-5 atmospheric transport model with online aerosol tracers to perform simulations of the TC4 time period in order to understand the nature of this barrier. Our simulations are driven by the Modem Era Retrospective-Analysis for Research and Applications (MERRA) meteorological analyses. We evaluate our baseline simulated dust distributions using MODIS and CALIOP satellite and ground-based AERONET sun photometer observations. GEOS-5 reproduces the observed location, magnitude, and timing of major dust events, but our baseline simulation does not develop as strong a barrier to dust transport across Central America as observations suggest. Analysis of the dust transport dynamics and lost processes suggest that while both mechanisms play a role in defining the dust transport barrier, loss processes by wet removal of dust are about twice as important as transport. Sensitivity analyses with our model showed that the dust barrier would not exist without convective scavenging over the Caribbean. The best agreement between our model and the observations was obtained when dust wet removal was parameterized to be more aggressive, treating the dust as we do hydrophilic aerosols.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-06
    Description: Considerable attention has been given to the potential negative impacts of the Saharan air layer (SAL) in recent years. Researchers recently raised questions about the negative impacts of Dunion and Velden and other studies in terms of storms that reached at least tropical storm strength and suggested that the SAL was an intrinsic part of the tropical cyclone environment for both storms that weaken after formation and those that intensify. Braun also suggested that several incorrect assumptions underlie many of the studies on the negative impacts of the SAL, including assumptions that most low-to-midlevel dry tropical air is SAL air, that the SAL is dry throughout its depth, and that the proximity of the SAL to storms struggling to intensify implies some role in that struggle. The recent paper by Reale et al.(RL1) is an example of the problems inherent in some of these assumptions. In their paper, RL1 analyze a simulation from the Global Earth Observing System (GEOS-5) global model and describe an extensive tongue of warm, dry air that stretches southward from at least 30 deg N (the northern limit of their plots) and wraps into a low pressure system during the period 26-29 August 2006, suppressing convection and possibly development of the African easterly wave associated with that low pressure system. They attributed the warm, dry tongue to the SAL (i.e., heating of the air mass during passage over the Sahara and radiative warming of the dust layer). Whether it was their intention, the implication is that this entire feature is due solely to the SAL and not to other possible sources of dry air or warmth. In addition, they suggested that a cool tongue of air in the boundary layer located directly beneath the elevated warm, dry tongue (forming a thermal dipole) was possibly the result of reduced solar radiation caused by an overlying dust layer. They stated that "the cool anomaly in the lower levels does not have any plausible explanation relying only on transport." In this comment, evidence from satellite and global meteorological analyses is presented that casts considerable doubt upon RL1 s interpretation of the GEOS-5 forecasts and their conclusion that the results implied a negative role of the SAL. We show that the major portion of the warm, dry air aloft was located in a nearly dust-free slot between two Saharan dust outbreaks, had a significant source from the midlatitudes (〉30 N), and was likely driven by strong subsidence warming and drying. In addition, when wind fields are examined in a reference frame moving with the wave, National Centers for Environmental Prediction (NCEP) global meteorological analyses suggest that the cool tongue in the boundary layer can be readily explained by transport of cooler air from higher latitudes. At the very least, it offers a plausible alternative explanation for the cool tongue that does not rely on radiative impacts of the dust.
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences; Volume 67; No. 7; 2402-2410
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-06
    Description: The evolution of stratospheric ozone from 1960 to 2100 is examined in simulations from fourteen chemistry-climate models. There is general agreement among the models at the broadest levels, showing column ozone decreasing at all latitudes from 1960 to around 2000, then increasing at all latitudes over the first half of the 21st century, and latitudinal variations in the rate of increase and date of return to historical values. In the second half of the century, ozone is projected to continue increasing, level off or even decrease depending on the latitude, resulting in variable dates of return to historical values at latitudes where column ozone has declined below those levels. Separation into partial column above and below 20 hPa reveals that these latitudinal differences are almost completely due to differences in the lower stratosphere. At all latitudes, upper stratospheric ozone increases throughout the 21st century and returns to 1960 levels before the end of the century, although there is a spread among the models in dates that ozone returns to historical values. Using multiple linear regression, we find decreasing halogens and increasing greenhouse gases contribute almost equally to increases in the upper stratospheric ozone. In the tropical lower stratosphere an increase in tropical upwelling causes a steady decrease in ozone through the 21st century, and total column ozone does not return to 1960 levels in all models. In contrast, lower stratospheric and total column ozone in middle and high latitudes increases during the 21st century and returns to 1960 levels.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-06
    Description: This article is a Reply to a Comment by Scott Braun on a previously published article by O. Reale, K.-M. Lau, and E. Brin: "Atlantic tropical cyclogenetic processes during SOP-3 NAMMA in the GEOS-5 global data assimilation and forecast system", by Reale, Lau and Brin, hereafter referred to as RA09. RA09 investigated the role of the Saharan Air Layer (SAL) in tropical cyclogenetic processes associated with a non-developing easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African Monsoon Multidisciplinary Analyses (MAMMA). The wave was chosen because both interact heavily with Saharan air. Results showed: a) very steep moisture gradients are associated with the SAL in forecasts and analyses even at great distance from the Sahara; b) a thermal dipole (warm above, cool below) in the non-developing case. RA09A suggested that radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis, and also indicated that only global horizontal resolutions on the order of 20-30 kilometers can capture the large-scale transport and the fine thermal structure of the SAL Braun (2010) questions those results attributing the wave dissipation to midlatitude air. The core discussion is on a dry filament preceding the wave, on the presence of dust, and on the origin of the air contained in this dry filament. In the 'Reply', higher resolution analyses than the ones used by Braun, taken at almost coincident times with Aqua and Terra passes, are shown, to emphasize how the channel of dry air associated with W1 is indeed rich in dust. Backtrajectories on a higher resolution grid are also performed, leading to results drastically different from Braun (2010), and in particularly showing that there is a clear contribution of Saharan air. Finally, the 'Reply' presents evidence on that analyses at a horizontal resolution of one degree are inadequate to investigate such feature.
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences; Volume 67; Issue 7; 2411-2415
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-06
    Description: Earlier onset of springtime weather including earlier snowmelt has been documented in the western United States over at least the last 50 years. Because the majority (〉70%) of the water supply in the western U.S. comes from snowmelt, analysis of the declining spring snowpack (and shrinking glaciers) has important implications for streamflow management. The amount of water in a snowpack influences stream discharge which can also influence erosion and sediment transport by changing stream power, or the rate at which a stream can do work such as move sediment and erode the stream bed. The focus of this work is the Wind River Range (WRR) in west-central Wyoming. Ten years of Moderate-Resolution Imaging Spectroradiometer (MODIS) snow-cover, cloud- gap-filled (CGF) map products and 30 years of discharge and meteorological station a are studied. Streamflow data from six streams in the WRR drainage basins show lower annual discharge and earlier snowmelt in the decade of the 2000s than in the previous three decades, though no trend of either lower streamflow or earlier snowmelt was observed using MODIS snow-cover maps within the decade of the 2000s. Results show a statistically-significant trend at the 95% confidence level (or higher) of increasing weekly maximum air temperature (for three out of the five meteorological stations studied) in the decade of the 1970s, and also for the 40-year study period. MODIS- derived snow cover (percent of basin covered) measured on 30 April explains over 89% of the variance in discharge for maximum monthly streamflow in the decade of the 2000s using Spearman rank correlation analysis. We also investigated stream power for Bull Lake Creek Above Bull Lake from 1970 to 2009; a statistically-significant trend toward reduced stream power was found (significant at the 90% confidence level). Observed changes in streamflow and stream power may be related to increasing weekly maximum air temperature measured during the 40-year study period. The strong relationship between percent of basin covered and streamflow indicates that MODIS data is useful for predicting streamflow, leading to improved reservoir management.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-06
    Description: This study is the first to identify a robust El Nino/Southern Oscillation (ENSO) signal in the Antarctic stratosphere. El Nino events are classified as either conventional "cold tongue" events (positive SST anomalies in the Nino 3 region) or "warm pool" events (positive SST anomalies in the Nino 4 region). The ERA-40, NCEP and MERRA meteorological reanalyses are used to show that the Southern Hemisphere stratosphere responds differently to these two types of El Nino events. Consistent with previous studies, "cold tongue" events do not impact temperatures in the Antarctic stratosphere. During "warm pool" El Nino events, the poleward extension and increased strength of the South Pacific Convergence Zone (SPCZ) favor an enhancement of planetary wave activity during the SON season. On average, these conditions lead to higher polar stratospheric temperatures and a weakening of the Antarctic polar jet in November and December, as compared with neutral ENSO years. The phase of the quasi-biennial oscillation (QBO) modulates the stratospheric response to "warm pool" El Nino events: the strongest planetary wave driving events are coincident with the easterly phase of the QBO.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-06
    Description: Diurnal cycles of summertime rainfall rates are examined over the conterminous United States, using radar-gauge assimilated hourly rainfall data. As in earlier studies, rainfall diurnal composites show a well-defined region of rainfall propagation over the Great Plains and an afternoon maximum area over the south and eastern portion of the United States. Zonal phase speeds of rainfall in three different small domains are estimated, and rainfall propagation speeds are compared with background zonal wind speeds. Unique rainfall propagation speeds in three different regions can be explained by the evolution of latent-heat theory linked to the convective available potential energy, than by gust-front induced or gravity wave propagation mechanisms.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-06
    Description: The Global Modeling and Assimilation Office (GMAO) is a core NASA resource for the development and use of satellite observations through the integrating tools of models and assimilation systems. Global ocean, atmosphere and land surface models are developed as components of assimilation and forecast systems that are used for addressing the weather and climate research questions identified in NASA's science mission. In fact, the GMAO is actively engaged in addressing one of NASA's science mission s key questions concerning how well transient climate variations can be understood and predicted. At weather time scales the GMAO is developing ultra-high resolution global climate models capable of resolving high impact weather systems such as hurricanes. The ability to resolve the detailed characteristics of weather systems within a global framework greatly facilitates addressing fundamental questions concerning the link between weather and climate variability. At sub-seasonal time scales, the GMAO is engaged in research and development to improve the use of land information (especially soil moisture), and in the improved representation and initialization of various sub-seasonal atmospheric variability (such as the MJO) that evolves on time scales longer than weather and involves exchanges with both the land and ocean The GMAO has a long history of development for advancing the seasonal-to-interannual (S-I) prediction problem using an older version of the coupled atmosphere-ocean general circulation model (AOGCM). This includes the development of an Ensemble Kalman Filter (EnKF) to facilitate the multivariate assimilation of ocean surface altimetry, and an EnKF developed for the highly inhomogeneous nature of the errors in land surface models, as well as the multivariate assimilation needed to take advantage of surface soil moisture and snow observations. The importance of decadal variability, especially that associated with long-term droughts is well recognized by the climate community. An improved understanding of the nature of decadal variability and its predictability has important implications for efforts to assess the impacts of global change in the coming decades. In fact, the GMAO has taken on the challenge of carrying out experimental decadal predictions in support of the IPCC AR5 effort.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-06
    Description: The possible minimal range of reduction in snow surface albedo due to dry deposition of black carbon (BC) in the pre-monsoon period (March-May) was estimated as a lower bound together with the estimation of its accuracy, based on atmospheric observations at the Nepal Climate Observatory-Pyramid (NCO-P) sited at 5079 m a.s.l. in the Himalayan region. We estimated a total BC deposition rate of 2.89 g m-2 day-1 providing a total deposition of 266 micrograms/ square m for March-May at the site, based on a calculation with a minimal deposition velocity of 1.0 10(exp -4) m/s with atmospheric data of equivalent BC concentration. Main BC size at NCO-P site was determined as 103.1-669.8 nm by correlation analysis between equivalent BC concentration and particulate size distribution in the atmosphere. We also estimated BC deposition from the size distribution data and found that 8.7% of the estimated dry deposition corresponds to the estimated BC deposition from equivalent BC concentration data. If all the BC is deposited uniformly on the top 2-cm pure snow, the corresponding BC concentration is 26.0-68.2 microgram/kg assuming snow density variations of 195-512 kg/ cubic m of Yala Glacier close to NCO-P site. Such a concentration of BC in snow could result in 2.0-5.2% albedo reductions. From a simple numerical calculations and if assuming these albedo reductions continue throughout the year, this would lead to a runoff increases of 70-204 mm of water drainage equivalent of 11.6-33.9% of the annual discharge of a typical Tibetan glacier. Our estimates of BC concentration in snow surface for pre-monsoon season can be considered comparable to those at similar altitude in the Himalayan region, where glaciers and perpetual snow region starts in the vicinity of NCO-P. Our estimates from only BC are likely to represent a lower bound for snow albedo reductions, since a fixed slower deposition velocity was used and atmospheric wind and turbulence effects, snow aging, dust deposition, and snow albedo feedbacks were not considered. This study represents the first investigation about BC deposition on snow from atmospheric aerosol data in Himalayas and related albedo effect is especially the first track at the southern slope of Himalayas.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Chemistry and Physics Discussions; Volume 10; 9291-9328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-06
    Description: The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Chemistry and Physics; Volume 10; 5001-5010
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-06
    Description: The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000-2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-kin gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above 5700m and CAPE values are near the maximum observed level, underscoring the importance of low-level instability to boreal fire weather forecasts-
    Keywords: Meteorology and Climatology
    Type: Atmospheric Chemistry and Physics; Volume 10; 6873-6888
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-06
    Description: Changes in the width of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in the 21st Century are investigated using simulations from a coupled chemistry-climate model. In these model simulations the tropical upwelling region narrows in the troposphere and lower stratosphere. The narrowing of the Brewer-Dobson circulation is caused by an equatorward shift of Rossby wave critical latitudes and Eliassen-Palm flux convergence in the subtropical lower stratosphere. In the troposphere, the model projects an expansion of the Hadley cell's poleward boundary, but a narrowing of the Hadley cell's rising branch. Model results suggest that eddy forcing may also play a part in the narrowing of the rising branch of the Hadley cell.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 37; L13702
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-06
    Description: Due to gravitation the main reflector of the Effelsberg 100-m telescope of the Max Planck Institute for Radio Astronomy is deformed whenever it is tilted from zenith to arbitrary elevation angles. However, the resulting shape always is a paraboloid again, though with different parameters, a phenomenon which is called homologous deformation. In summer 2008, we have carried out measurements with a total station to determine the magnitude of these deformations in order to evaluate existing assumptions provided by the manufacturer from the telescope's design phase. The measurements are based on a newly developed approach with a Leica TCRP 1201 total station mounted head down near the subreflector. Mini-retro-reflectors are placed at various locations on the paraboloid itself and on the subreflector support structure. The results indicate that the measurement setup is suitable for the purpose and provides the information needed for a determination of elevation dependent delay corrections. The focal length changes only by about 8 mm when the telescope is tilted from 90. to 7.5. elevation angle.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 123-127; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-06
    Description: We describe the experience gained in a project to continuously monitor the local tie at the Geodetic Observatory Ny-Alesund. A PC-controlled robotic total station was used to monitor survey prisms that were attached to survey pillars of the local network and the monuments used for geodetic VLBI and GNSS measurements. The monitoring lasted for seven days and had a temporal resolution of six minutes. The raw angle and distance measurements show clear sinusoidal signatures with a daily period, most strongly for a four-day period with 24 hours of sunshine. The derived topocentric coordinates of the survey prisms attached to the GNSS monument and the VLBI radio telescope act as approximation for the local tie. We detect clear signatures at the mm-level. With the current approach we cannot distinguish between real motion of the prisms and potential thermal influences on the instrument used for the observations. However, the project shows that continuous local tie monitoring is feasible today and in the future can and should be used for all geodetic co-location stations.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 118-122; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-06
    Description: Temporal statistical position stability is required for VLBI sources to define a stable Celestial Reference Frame (CRF) and has been studied in many recent papers. This study analyzes the sources from the latest realization of the International Celestial Reference Frame (ICRF2) with the Allan variance, in addition to taking into account the apparent linear motions of the sources. Focusing on the 295 defining sources shows how they are a good compromise of different criteria, such as statistical stability and sky distribution, as well as having a sufficient number of sources, despite the fact that the most stable sources of the entire ICRF2 are mostly in the Northern Hemisphere. Nevertheless, the selection of a stable set is not unique: studying different solutions (GSF005a and AUG24 from GSFC and OPA from the Paris Observatory) over different time periods (1989.5 to 2009.5 and 1999.5 to 2009.5) leads to selections that can differ in up to 20% of the sources. Observing, recording, and network improvement are some of the causes, showing better stability for the CRF over the last decade than the last twenty years. But this may also be explained by the assumption of stationarity that is not necessarily right for some sources.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 280-284; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-06
    Description: A high-performance Raman lidar operating in the UV portion of the spectrum has been used to acquire, for the first time using a single lidar, simultaneous airborne profiles of the water vapor mixing ratio, aerosol backscatter, aerosol extinction, aerosol depolarization and research mode measurements of cloud liquid water, cloud droplet radius, and number density. The Raman Airborne Spectroscopic Lidar (RASL) system was installed in a Beechcraft King Air B200 aircraft and was flown over the mid-Atlantic United States during July August 2007 at altitudes ranging between 5 and 8 km. During these flights, despite suboptimal laser performance and subaperture use of the telescope, all RASL measurement expectations were met, except that of aerosol extinction. Following the Water Vapor Validation Experiment Satellite/Sondes (WAVES_2007) field campaign in the summer of 2007, RASL was installed in a mobile trailer for groundbased use during the Measurements of Humidity and Validation Experiment (MOHAVE-II) field campaign held during October 2007 at the Jet Propulsion Laboratory s Table Mountain Facility in southern California. This ground-based configuration of the lidar hardware is called Atmospheric Lidar for Validation, Interagency Collaboration and Education (ALVICE). During theMOHAVE-II field campaign, during which only nighttime measurements were made, ALVICE demonstrated significant sensitivity to lower-stratospheric water vapor. Numerical simulation and comparisons with a cryogenic frost-point hygrometer are used to demonstrate that a system with the performance characteristics of RASL ALVICE should indeed be able to quantify water vapor well into the lower stratosphere with extended averaging from an elevated location like Table Mountain. The same design considerations that optimize Raman lidar for airborne use on a small research aircraft are, therefore, shown to yield significant dividends in the quantification of lower-stratospheric water vapor. The MOHAVE-II measurements, along with numerical simulation, were used to determine that the likely reason for the suboptimal airborne aerosol extinction performance during theWAVES_2007 campaign was amisaligned interference filter. With full laser power and a properly tuned interference filter,RASL is shown to be capable ofmeasuring themain water vapor and aerosol parameters with temporal resolutions of between 2 and 45 s and spatial resolutions ranging from 30 to 330 m from a flight altitude of 8 km with precision of generally less than 10%, providing performance that is competitive with some airborne Differential Absorption Lidar (DIAL) water vapor and High Spectral Resolution Lidar (HSRL) aerosol instruments. The use of diode-pumped laser technology would improve the performance of an airborne Raman lidar and permit additional instrumentation to be carried on board a small research aircraft. The combined airborne and ground-based measurements presented here demonstrate a level of versatility in Raman lidar that may be impossible to duplicate with any other single lidar technique.
    Keywords: Meteorology and Climatology
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); Volume 27; Issue 11; 1781?1801
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-06
    Description: GEOSAT is a multi-technique geodetic analysis software developed at Forsvarets Forsknings Institutt (Norwegian defense research establishment). The Norwegian Mapping Authority has now installed the software and has, together with Forsvarets Forsknings Institutt, adapted the software to deliver datum-free normal equation systems in SINEX format. The goal is to be accepted as an IVS Associate Analysis Center and to provide contributions to the IVS EOP combination on a routine basis. GEOSAT is based on an upper diagonal factorized Kalman filter which allows estimation of time variable parameters like the troposphere and clocks as stochastic parameters. The tropospheric delays in various directions are mapped to tropospheric zenith delay using ray-tracing. Meteorological data from ECMWF with a resolution of six hours is used to perform the ray-tracing which depends both on elevation and azimuth. Other models are following the IERS and IVS conventions. The Norwegian Mapping Authority has submitted test SINEX files produced with GEOSAT to IVS. The results have been compared with the existing IVS combined products. In this paper the outcome of these comparisons is presented.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 207-211; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-06
    Description: To achieve the goals of the VLBI2010 project and the Global Geodetic Observing System (GGOS), an automated monitoring of the reference points of the various geodetic space techniques, including Very Long Baseline Interferometry (VLBI), is desirable. The resulting permanent monitoring of the local-tie vectors at co-location stations is essential to obtain the sub-millimeter level in the combinations. For this reason a monitoring system was installed at the Geodetic Observatory Wettzell by the Geodetic Institute of the University of Karlsruhe (GIK) to observe the 20m VLBI radio telescope from May to August 2009. A specially developed software from GIK collected data from automated total station measurements, meteorological sensors, and sensors in the telescope monument (e.g., Invar cable data). A real-time visualization directly offered a live view of the measurements during the regular observation operations. Additional scintillometer measurements allowed refraction corrections during the post-processing. This project is one of the first feasibility studies aimed at determining significant deformations of the VLBI antenna due to, for instance, changes in temperature.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 133-137; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-06
    Description: Since 2008 the VLBI group at the Institute of Geodesy and Geophysics at TU Vienna has focused on the development of a new VLBI data analysis software called VieVS (Vienna VLBI Software). One part of the program, currently under development, is a unit for parameter estimation in so-called global solutions, where the connection of the single sessions is done by stacking at the normal equation level. We can determine time independent geodynamical parameters such as Love and Shida numbers of the solid Earth tides. Apart from the estimation of the constant nominal values of Love and Shida numbers for the second degree of the tidal potential, it is possible to determine frequency dependent values in the diurnal band together with the resonance frequency of Free Core Nutation. In this paper we show first results obtained from the 24-hour IVS R1 and R4 sessions.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 202-206; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-06
    Description: The ICRF2 catalog was constructed by the IERS/IVS Working Group with oversight by the IAU Working Group. Derived using data from August 1979 through March 2009, it is a great improvement over the original ICRF with 3414 extragalactic radio source positions, a noise floor of 40 microarcsec, and axis stability of 10 microarcsec. Significant refinements were made in the selection of defining sources, modeling, and the integration of CRF, TRF, and EOP. The adoption of the ICRF2 was approved by the IAU in Resolution B3 at the XXVII IAU General Assembly and became effective 1 January 2010.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 273-279; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-06
    Description: Three 12-meter radio telescopes are being built in Australia (the AuScope project) and one in New Zealand. These facilities will be fully-equipped for undertaking S and X-band geodetic VLBI observations and correlation will take place on a software correlator (part of the AuScope project). All sites are equipped with permanent GPS receivers to provide co-location of several space geodetic techniques. The following scientific tasks of geodesy and astrometry are considered. 1. Improvement and densification of the International Celestial Reference Frame in the southern hemisphere; 2. Improvement of the International Terrestrial Reference Frame in the region; 3. Measurement of intraplate deformation of the Australian tectonic plate.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 50-54; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: VLBI2010 holds out promise for greatly increased precision in measuring geodetic and Earth rotation parameters. As a by-product there will be a wealth of interesting new astronomical data. At the same time, astronomical knowledge may be needed to disentangle the astronomical and geodetic contributions to the measured delays and phases. This presentation explores this astro-geo link.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 8-17; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-06
    Description: Within almost all space-geodetic techniques, contributions of different analysis centers (ACs) are combined in order to improve the robustness of the final product. So far, the contributing series are assumed to be independent as each AC processes the observations in different ways. However, the series cannot be completely independent as each analyst uses the same set of original observations and many applied models are subject to conventions used by each AC. In this paper, it is shown that neglecting correlations between the contributing series yields too optimistic formal errors and small, but insignificant, errors in the estimated parameters derived from the adjustment of the combined solution.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 222-226; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-06
    Description: We present preliminary results of proof-of-concept studies for an automatic monitoring system of local site ties. The system is based on the usage of robotic total stations. A set of tests were performed with a Leica TCA2003 total station on the local network of Goddard s Geophysical and Astronomical Observatory (GGAO) and the 5-m VLBI antenna at this site. Both the TCA2003 and the VLBI antenna are controlled from a Matlab-coded control program. Running specific observational programs, data were collected that indicate that the reference point of the VLBI antenna can be automatically determined with an accuracy of 1 mm or better.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 138-142; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: In order to establish the position of the center of mass of the Earth in the International Celestial Reference Frame, observations of the Global Positioning Satellite (GPS) constellation using the IVS network are important. With a good frame-tie between the coordinates of the IVS telescopes and nearby GPS receivers, plus a common local oscillator reference signal, it should be possible to observe and record simultaneously signals from the astrometric calibration sources and the GPS satellites. The standard IVS solution would give the atmospheric delay and clock offsets to use in analysis of the GPS data. Correlation of the GPS signals would then give accurate orbital parameters of the satellites in the ICRF reference frame, i.e., relative to the positions of the astrometric sources. This is particularly needed to determine motion of the center of mass of the earth along the rotation axis.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 65-69; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-06
    Description: We have been developing a state-of-the-art tool to estimate the atmospheric path delays by raytracing through mesoscale analysis (MANAL) data, which is operationally used for numerical weather prediction by the Japan Meteorological Agency (JMA). The tools, which we have named KAshima RAytracing Tools (KARAT)', are capable of calculating total slant delays and ray-bending angles considering real atmospheric phenomena. The KARAT can estimate atmospheric slant delays by an analytical 2-D ray-propagation model by Thayer and a 3-D Eikonal solver. We compared PPP solutions using KARAT with that using the Global Mapping Function (GMF) and Vienna Mapping Function 1 (VMF1) for GPS sites of the GEONET (GPS Earth Observation Network System) operated by Geographical Survey Institute (GSI). In our comparison 57 stations of GEONET during the year of 2008 were processed. The KARAT solutions are slightly better than the solutions using VMF1 and GMF with linear gradient model for horizontal and height positions. Our results imply that KARAT is a useful tool for an efficient reduction of atmospheric path delays in radio-based space geodetic techniques such as GNSS and VLBI.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 237-241; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-06
    Description: The IVS scheduled a special astrometric VLBI session for the International Year of Astronomy 2009 (IYA09) commemorating 400 years of optical astronomy and 40 years of VLBI. The IYA09 session is the most ambitious geodetic session to date in terms of network size, number of sources, and number of observations. We describe the process of designing, coordinating, scheduling, pre-session station checkout, correlating, and analyzing this session.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 90-94; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-06
    Description: Recent investigations have shown significant shortcomings in the model which is proposed by the IERS to account for the variations in the Earth s rotation with periods around one day and less. To overcome this, an empirical model can be estimated more or less directly from the observations of space geodetic techniques. The aim of this paper is to evaluate the quality and reliability of such a model based on VLBI observations. Therefore, the impact of the estimation method and the analysis options as well as the temporal stability are investigated. It turned out that, in order to provide a realistic accuracy measure of the model coefficients, the formal errors should be inflated by a factor of three. This coincides with the noise floor and the repeatability of the model coefficients and it captures almost all of the differences that are caused by different estimation techniques. The impact of analysis options is small but significant when changing troposphere parameterization or including harmonic station position variations.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 355-359; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-06-06
    Description: The IVS runs two tropospheric products: The IVS tropospheric parameter rapid combination monitors the zenith wet delay (ZWD) and zenith total delay (ZTD) of the rapid turnaround sessions R1 and R4. Goal of the combination is the identification and the exclusion of outliers by comparison and the assessment of the precision of current VLBI solutions in terms of tropospheric parameters. The rapid combination is done on a weekly basis four weeks after the observation files are released on IVS Data Centers. Since tropospheric and geodetic parameters, such as vertical station components, can significantly correlate, the consistency of the ZTD can be a measure of the consistency of the corresponding TRF as well. The ZWD mainly rely on accurate atmospheric pressure data. Thus, besides estimation techniques, modeling and analyst s noise, ZWD reflects differences in the atmospheric pressure data applied to the VLBI analysis. The second product, called tropospheric parameter long-term combination, aims for an accurate determination of climatological signals, such as trends of the atmospheric water vapor observed by VLBI. Therefore, the long-term homogeneity of atmospheric pressure data plays a crucial role for this product. The paper reviews the methods applied and results achieved so far and describes the new maintenance through DGFI.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 340-344; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2018-06-06
    Description: The processing of the GPS observations of the site survey at Sheshan 25-m radio telescope in August 2008 is reported. Because each session in this survey is only about six hours, not allowing the subdaily high frequency variations in the station coordinates to be reasonably smoothed, and because there are serious cycle slips in the observations and a large volume of data would be rejected during the software automatic adjustment of slips, the ordinary solution settings of GAMIT needed to be adjusted by loosening the constraints in the a priori coordinates to 10 m, adopting the "quick" mode in the solution iteration, and combining Cview manual operation with GAMIT automatic fixing of cycle slips. The resulting coordinates of the local control polygon in ITRF2005 are then compared with conventional geodetic results. Due to large rotations and translations in the two sets of coordinates (geocentric versus quasi-topocentric), the seven transformation parameters cannot be solved for directly. With various trial solutions it is shown that with a partial pre-removal of the large parameters, high precision transformation parameters can be obtained with post-fit residuals at the millimeter level. This analysis is necessary to prepare the follow-on site and transformation survey of the VLBI and SLR telescopes at Sheshan
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 128-132; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-06
    Description: In support of the Ice, Cloud, and land Elevation Satellite (ICESat)-II mission, this paper studies the bias in surface-elevation measurements caused by undetected thin clouds. The ICESat-II satellite may only have a 1064-nm single-channel lidar onboard. Less sensitive to clouds than the 532-nm channel, the 1064-nm channel tends to miss thin clouds. Previous studies have demonstrated that scattering by cloud particles increases the photon-path length, thus resulting in biases in ice-sheet-elevation measurements from spaceborne lidars. This effect is referred to as atmospheric path delay. This paper complements previous studies in the following ways: First, atmospheric path delay is estimated over the ice sheets based on cloud statistics from the Geoscience Laser Altimeter System onboard ICESat and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua. Second, the effect of cloud particle size and shape is studied with the state-of-the-art phase functions developed for MODIS cirrus- cloud microphysical model. Third, the contribution of various orders of scattering events to the path delay is studied, and an analytical model of the first-order scattering contribution is developed. This paper focuses on the path delay as a function of telescope field of view (FOV). The results show that reducing telescope FOV can significantly reduce the expected path delay. As an example, the average path delays for FOV = 167 microrad (a 100-m-diameter circle on the surface) caused by thin undetected clouds by the 1064-nm channel over Greenland and East Antarctica are illustrated.
    Keywords: Meteorology and Climatology
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); Volume 48; Iss. 1; 250 - 259
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-06
    Description: In September 2006, NASA Goddard s mobile ground-based laboratories were deployed to Sal Island in Cape Verde (16.73degN, 22.93degW) to support the NASA African Monsoon Multidisciplinary Analysis (NAMMA) field study. The Atmospheric Emitted Radiance Interferometer (AERI), a key instrument for spectrally characterizing the thermal IR, was used to retrieve the dust IR aerosol optical depths (AOTs) in order to examine the diurnal variability of airborne dust with emphasis on three separate dust events. AERI retrievals of dust AOT are compared with those from the coincident/collocated multifilter rotating shadow-band radiometer (MFRSR), micropulse lidar (MPL), and NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) sensors. The retrieved AOTs are then inputted into the Fu-Liou 1D radiative transfer model to evaluate local instantaneous direct longwave radiative effects (DRE(sub LW)) of dust at the surface in cloud-free atmospheres and its sensitivity to dust microphysical parameters. The top-of-atmosphere DRE(sub LW) and longwave heating rate profiles are also evaluated. Instantaneous surface DRE(sub LW) ranges from 2 to 10 W/sq m and exhibits a strong linear dependence with dust AOT yielding a DRE(sub LW) of 16 W/sq m per unit dust AOT. The DRE(sub LW) is estimated to be approx.42% of the diurnally averaged direct shortwave radiative effect at the surface but of opposite sign, partly compensating for the shortwave losses. Certainly nonnegligible, the authors conclude that DRE(sub LW) can significantly impact the atmospheric energetics, representing an important component in the study of regional climate variation.
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); Volume 67; No. 4; 1048?1065
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-06
    Description: The relationship among surface rainfall, its intensity, and its associated stratiform amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate-high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.58 horizontal resolution, the occurrence of conditional rain rates over 100 mm/day is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations. An improved convective-stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in the new CSH algorithm.
    Keywords: Meteorology and Climatology
    Type: Journal of Climate (ISSN 0894-8755); Volume 23; Issue 7; 1874?1893
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-06
    Description: We use the high-resolution dynamic limb sounder (HIRDLS) high-vertical resolution ozone profiles in the northern hemisphere lower stratosphere to examine the meridional transport out of the tropics. We focus on February 2005.2007 when there are differences in the dynamical background in the lower stratosphere due to the states of the quasibiennial oscillation and polar vortex. HIRDLS data reveal a large number of low ozone laminae that have the characteristics of tropical air at midlatitudes. More laminae are observed in February in 2006 than in 2005 or 2007. Because laminae can form, move out of the tropics, and return to the tropics without mixing into the midlatitude ozone field, the number of laminae is not directly related to the net transport. We use equivalent latitude coordinates to discriminate between reversible and irreversible laminar transport. The equivalent latitude analysis shows greater irreversible transport between the tropics and lower midlatitudes in both 2005 and 2007 compared to 2006 despite the higher number of laminae observed in 2006. Our conclusion that there was more irreversible transport of tropical air into the lower midlatitudes in 2005 and 2007 is supported by equivalent length analysis of mixing using microwave limb sounder N2O measurements. This study shows that reversibility must be considered in order to infer the importance of lamination to net transport.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research (ISSN 0148-0227); Volume 115; D15305
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2018-06-06
    Description: An analysis of two days of in situ observations of ice particle size spectra, in convectively generated cirrus, obtained during NASA s Tropical Composition, Cloud, and Climate Coupling (TC4) mission is presented. The observed spectra are examined for their fit to the exponential, gamma, and lognormal function distributions. Characteristic particle size and concentration density scales are determined using two (for the exponential) or three (for the gamma and lognormal functions) moments of the spectra. It is shown that transformed exponential, gamma, and lognormal distributions should collapse onto standard curves. An examination of the transformed spectra, and of deviations of the transformed spectra from the standard curves, shows that the lognormal function provides a better fit to the observed spectra.
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); Volume 67; Issue 1; 195-216
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: While the overall architecture is similar for the station hardware in current S/X systems and in the VLBI2010 systems under development, various functions are implemented differently. Some of these differences, and the reasons behind them, are described here.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 18-22; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2018-06-06
    Description: A permanent geodetic VLBI station with a 22-m diameter antenna will be newly constructed in Korea by the National Geographic Information Institute (NGII) under the project Korea VLBI system for Geodesy (KVG) that aims at maintaining the Korean geodetic datum accurately on the International Terrestrial Reference Frame (ITRF). KVG can receive 2, 8, 22, and 43 GHz bands simultaneously in order to conduct geodetic and astronomical VLBI observations with Korea astronomical VLBI stations along with geodetic observations with IVS stations. This simultaneous four-band receiving capability is a unique feature of the KVG system. The KVG has started officially in October 2008. A new geodetic VLBI station will be constructed at Sejong city (about 120 km south of Seoul and about 20 km north-northwest of Daejeon) and construction of all systems will be completed in 2011.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 95-100; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-06
    Description: Automated monitoring of operational system parameters for the geodetic space techniques is becoming more important in order to improve the geodetic data and to ensure the safety and stability of automatic and remote-controlled observations. Therefore, the Wettzell group has developed the system monitoring software, SysMon, which is based on a reliable, remotely-controllable hardware/software realization. A multi-layered data logging system based on a fanless, robust industrial PC with an internal database system is used to collect data from several external, serial, bus, or PCI-based sensors. The internal communication is realized with Remote Procedure Calls (RPC) and uses generative programming with the interface software generator idl2rpc.pl developed at Wettzell. Each data monitoring stream can be configured individually via configuration files to define the logging rates or analog-digital-conversion parameters. First realizations are currently installed at the new laser ranging system at Wettzell to address safety issues and at the VLBI station O Higgins as a meteorological data logger. The system monitoring concept should be realized for the Wettzell radio telescope in the near future.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 444-448; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-06
    Description: Automating and remotely controlling observations are important for future operations in a Global Geodetic Observing System (GGOS). At the Geodetic Observatory Wettzell, in cooperation with the Max-Planck-Institute for Radio Astronomy in Bonn, a software extension to the existing NASA Field System has been developed for remote control. It uses the principle of a remotely accessible, autonomous process cell as a server extension for the Field System. The communication is realized for low transfer rates using Remote Procedure Calls (RPC). It uses generative programming with the interface software generator idl2rpc.pl developed at Wettzell. The user interacts with this system over a modern graphical user interface created with wxWidgets. For security reasons the communication is automatically tunneled through a Secure Shell (SSH) session to the telescope. There are already successful test observations with the telescopes at O Higgins, Concepcion, and Wettzell. At Wettzell the software is already used routinely for weekend observations. Therefore the first public release of the software is now available, which will also be useful for other telescopes.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 439-443; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2018-06-06
    Description: The next generation geodetic VLBI instrument is being developed with a goal of 1 mm position uncertainty in twenty-four hours. We have implemented a proof-of-concept system for a possible VLBI2010 signal chain, from feed through recorder, on the Westford (Massachusetts, USA) 18-m and MV-3 (Maryland, USA) 5-m antennas. Data have been obtained in four 512 MHz bands spanning the range 3.5 to 11 GHz to investigate the sensitivity and phase delay capability of the system. Using a new phase cal design, the phases have been aligned across four bands spanning 2 GHz with an RMS deviation of approximately eight degrees. Several components of the system will be improved for the prototype version of VLBI2010, including the feed, digital backend, and recorder, and these will be installed on a 12-m antenna that has been purchased and is ready for installation at the Goddard Space Flight Center outside of Washington, D.C., USA, site of the MV-3 antenna.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 23-27; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2018-06-06
    Description: Astrometric observations of radio source occultations by solar system bodies may be of large interest for testing gravity theories, dynamical astronomy, and planetary physics. In this paper, we present an updated list of the occultations of astrometric radio sources by planets expected in the coming years. Such events, like solar eclipses, generally speaking can only be observed in a limited region. A map of the shadow path is provided for the events that will occurr in regions with several VLBI stations and hence will be the most interesting for radio astronomy experiments.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 320-324; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2018-06-06
    Description: The purpose of the Russian VLBI "Quasar" Network is to carry out astrometrical and geodynamical investigations. Since 2006 purely domestic observational programs with data processing at the IAA correlator have been carried out. To maintain these geodynamical programs e-VLBI technology is being developed and tested. This paper describes the IAA activity of developing a real-time VLBI system using high-speed digital communication links.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 148-152; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-06-06
    Description: The construction project of Korea Geodetic VLBI officially started in October 2008. The construction of all systems will be completed by the end of 2011. The project was named Korea VLBI system for Geodesy (KVG), and its main purpose is to maintain the Korea Geodetic Datum. In case of the KVG system, an observation room with an H-maser frequency standard is located in a building separated from the antenna by several tens of meters. Therefore KVG system will adopt a so-called round-trip system to transmit reference signals to the antenna with reduction of the effect of path length variations. KVG s round-trip system is designed not only to use either metal or optical fiber cables, but also to measure path length variations directly. We present this unique round trip system for KVG.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 449-453; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2018-06-06
    Description: Zenith Tropospheric Delay (ZTD) due to water vapor derived from space geodetic techniques and numerical weather prediction simulated-reanalysis data exhibits non-linear and non-stationary properties akin to those in the crucial geophysical signals of interest to the research community. These time series, once decomposed into additive (and stochastic) components, have information about the long term global change (the trend) and other interpretable (quasi-) periodic components such as seasonal cycles and noise. Such stochastic component(s) could be a function that exhibits at most one extremum within a data span or a monotonic function within a certain temporal span. In this contribution, we examine the use of the combined Ensemble Empirical Mode Decomposition (EEMD) and Independent Component Analysis (ICA): the EEMD-ICA algorithm to extract the independent local oscillatory stochastic components in the tropospheric delay derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) over six geodetic sites (HartRAO, Hobart26, Wettzell, Gilcreek, Westford, and Tsukub32). The proposed methodology allows independent geophysical processes to be extracted and assessed. Analysis of the quality index of the Independent Components (ICs) derived for each cluster of local oscillatory components (also called the Intrinsic Mode Functions (IMFs)) for all the geodetic stations considered in the study demonstrate that they are strongly site dependent. Such strong dependency seems to suggest that the localized geophysical signals embedded in the ZTD over the geodetic sites are not correlated. Further, from the viewpoint of non-linear dynamical systems, four geophysical signals the Quasi-Biennial Oscillation (QBO) index derived from the NCEP/NCAR reanalysis, the Southern Oscillation Index (SOI) anomaly from NCEP, the SIDC monthly Sun Spot Number (SSN), and the Length of Day (LoD) are linked to the extracted signal components from ZTD. Results from the synchronization analysis show that ZTD and the geophysical signals exhibit (albeit subtle) site dependent phase synchronization index.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 345-354; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-06-06
    Description: Four compact radio sources in the International Celestial Reference Frame (ICRF2) catalog were observed using phase referencing with the VLBA at 43, 23, and 8.6-GHz, and with VERA at 23-GHz over a one-year period. The goal was to determine the stability of the radio cores and to assess structure effects associated with positions in the ICRF2. Conclusions are: (1) 43-GHz VLBI high-resolution observations are often needed to determine the location of the radio core. (2) Over the observing period, the relative positions among the four radio cores were constant to 0.02 mas, suggesting that once the true radio core is identified, it remains stationary in the sky to this accuracy. (3) The emission in 0556+238, one of the four sources investigated and one of the 295 ICRF2 defining sources, was dominated by a strong component near the core and moved 0.1 mas during the year. (4) Comparison of the VLBA images at 43, 23, and 8.6-GHz with the ICRF2 positions suggests that the 8-GHz structure is often dominated by a bright non-core component. The measured ICRF2 position can be displaced more than 0.5 mas from the radio core and partake in the motion of the bright jet component.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 300-304; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2018-06-06
    Description: In 2009 the national Russian VLBI observations were processed by the new correlator ARC (Astrometric Radiointerferometric Correlator). The ARC is a VSI-H correlator and equipped with Mark 5B playback terminals. During 2009 ARC was used to process a series of VLBI sessions, observed on stations Svetloe, Zelenchukskaya, and Badary. NGS files were formed, and EOP parameters were obtained by IAA RAS Analysis Center. The accuracies of the pole coordinates and UT1-UTC were 1-2 mas and 0.07-0.1 ms, respectively.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 167-170; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2018-06-06
    Description: An important limitation for the precision in the results obtained by space geodetic techniques like VLBI and GPS are tropospheric delays caused by the neutral atmosphere, see e.g. [1]. In recent years numerical weather models (NWM) have been applied to improve mapping functions which are used for tropospheric delay modeling in VLBI and GPS data analyses. In this manuscript we use raytracing to calculate slant delays and apply these to the analysis of Europe VLBI data. The raytracing is performed through the limited area numerical weather prediction (NWP) model HIRLAM. The advantages of this model are high spatial (0.2 deg. x 0.2 deg.) and high temporal resolution (in prediction mode three hours).
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 232-236; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2018-06-06
    Description: In order to extend the International Celestial Reference Frame from its S/X-band (2.3/8.4 GHz) basis to a complementary frame at X/Ka-band (8.4/32 GHz), we began in mid-2005 an ongoing series of X/Ka observations using NASA s Deep Space Network (DSN) radio telescopes. Over the course of 47 sessions, we have detected 351 extra-galactic radio sources covering the full 24 hours of right ascension and declinations down to -45 degrees. Angular source position accuracy is at the part-per-billion level. We developed an error budget which shows that the main errors arise from limited sensitivity, mismodeling of the troposphere, uncalibrated instrumental effects, and the lack of a southern baseline. Recent work has improved sensitivity by improving pointing calibrations and by increasing the data rate four-fold. Troposphere calibration has been demonstrated at the mm-level. Construction of instrumental phase calibrators and new digital baseband filtering electronics began in recent months. We will discuss the expected effect of these improvements on the X/Ka frame.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 285-289; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: The individual apparent motions of distant radio sources are believed to be caused by the effect of intrinsic structure variations of the active galactic nuclei (AGN). However, some cosmological models of the expanded Universe predict that systematic astrometric proper motions of distant quasars do not vanish as the radial distance from the observer to the quasar grows. These systematic effects can even increase with the distance, making it possible to measure them with high-precision astrometric techniques like VLBI. The Galactocentric acceleration of the Solar System barycenter may cause a secular aberration drift with a magnitude of 4 uas/yr. The Solar System motion relative to the cosmic microwave background produces an additional dipole effect, proportional to red shift. We analyzed geodetic VLBI data spanning from 1979 until 2009 to estimate the vector spherical harmonics in the expansion of the vector field of the proper motion of 687 radio sources. The dipole and quadrupole vector spherical harmonics were estimated with an accuracy of 1-5 as/yr. We have shown that over the next decade the geodetic VLBI may approach the level of accuracy on which the cosmological models of the Universe could be tested. Hence, it is important to organize a dedicated observational program to increase the number of measured proper motions to 3000.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 60-64; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2018-06-05
    Description: Physically based passive microwave precipitation retrieval algorithms require a set of relationships between satellite -observed brightness temperatures (TBs) and the physical state of the underlying atmosphere and surface. These relationships are nonlinear, such that inversions are ill ]posed especially over variable land surfaces. In order to elucidate these relationships, this work presents a theoretical analysis using TB weighting functions to quantify the percentage influence of the TB resulting from absorption, emission, and/or reflection from the surface, as well as from frozen hydrometeors in clouds, from atmospheric water vapor, and from other contributors. The percentage analysis was also compared to Jacobians. The results are presented for frequencies from 10 to 874 GHz, for individual snow profiles, and for averages over three cloud-resolving model simulations of falling snow. The bulk structure (e.g., ice water path and cloud depth) of the underlying cloud scene was found to affect the resultant TB and percentages, producing different values for blizzard, lake effect, and synoptic snow events. The slant path at a 53 viewing angle increases the hydrometeor contributions relative to nadir viewing channels. Jacobians provide the magnitude and direction of change in the TB values due to a change in the underlying scene; however, the percentage analysis provides detailed information on how that change affected contributions to the TB from the surface, hydrometeors, and water vapor. The TB percentage information presented in this paper provides information about the relative contributions to the TB and supplies key pieces of information required to develop and improve precipitation retrievals over land surfaces.
    Keywords: Geophysics
    Type: Journal of Geophysical Research - Atmospheres; Volume 116; D02213
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2018-06-11
    Description: Sea surface temperature (SST) studies are often focused on improving accuracy, or understanding and quantifying uncertainties in the measurement, as SST is a leading indicator of climate change and represents the longest time series of any ocean variable observed from space. Over the past several decades SST has been studied with the use of satellite data. This allows a larger area to be studied with much more frequent measurements being taken than direct measurements collected aboard ship or buoys. The Group for High Resolution Sea Surface Temperature (GHRSST) is an international project that distributes satellite derived sea surface temperatures (SST) data from multiple platforms and sensors. The goal of the project is to distribute these SSTs for operational uses such as ocean model assimilation and decision support applications, as well as support fundamental SST research and climate studies. Examples of near real time applications include hurricane and fisheries studies and numerical weather forecasting. The JPL group has produced a new 1 km daily global Level 4 SST product, the Multiscale Ultrahigh Resolution (MUR), that blends SST data from 3 distinct NASA radiometers: the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR), and the Advanced Microwave Scanning Radiometer ? Earth Observing System(AMSRE). This new product requires further validation and accuracy assessment, especially in coastal regions.We examined the accuracy of the new MUR SST product by comparing the high resolution version and a lower resolution version that has been smoothed to 19 km (but still gridded to 1 km). Both versions were compared to the same data set of in situ buoy temperature measurements with a focus on study regions of the oceans surrounding North and Central America as well as two smaller regions around the Gulf Stream and California coast. Ocean fronts exhibit high temperature gradients (Roden, 1976), and thus satellite data of SST can be used in the detection of these fronts. In this case, accuracy is less of a concern because the primary focus is on the spatial derivative of SST. We calculated the gradients for both versions of the MUR data set and did statistical comparisons focusing on the same regions.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Geophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2018-06-11
    Description: The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.
    Keywords: Geophysics
    Type: ARES Biennial Report 2012 Final; 24-25; JSC-CN-30442
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2018-06-11
    Description: A key mission of the ARES Directorate at JSC is to constrain models of the formation and geological history of terrestrial planets. Water is a crucial parameter to be measured with the aim to determine its amount and distribution in the interior of Earth, Mars, and the Moon. Most of that "water" is not liquid water per se, but rather hydrogen dissolved as a trace element in the minerals of the rocks at depth. Even so, the middle layer of differentiated planets, the mantle, occupies such a large volume and mass of each planet that when it is added at the planetary scale, oceans worth of water could be stored in its interior. The mantle is where magmas originate. Moreover, on Earth, the mantle is where the boundary between tectonic plates and the underlying asthenosphere is located. Even if mantle rocks in Earth typically contain less than 200 ppm H2O, such small quantities have tremendous influence on how easily they melt (i.e., the more water there is, the more magma is produced) and deform (the more water there is, the less viscous they are). These two properties alone emphasize that to understand the distribution of volcanism and the mechanism of plate tectonics, the water content of the mantle must be determined - Earth being a template to which all other terrestrial planets can be compared.
    Keywords: Geophysics
    Type: ARES Biennial Report 2012 Final; 17-19; JSC-CN-30442
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2018-06-06
    Description: In this paper, we introduce our GPS-VLBI hybrid system and show the results of the first experiment which is now under way. In this hybrid system, GPS signals are captured by a normal GPS antenna, down-converted to IF signals, and then sampled by the VLBI sampler VSSP32 developed by NICT. The sampled GPS data are recorded and correlated in the same way as VLBI observation data. The correlator outputs are the group delay and the delay rate. Since the whole system uses the same frequency standard, many sources of systematic errors are common between the VLBI system and the GPS system. In this hybrid system, the GPS antenna can be regarded as an additional VLBI antenna having multiple beams towards GPS satellites. Therefore, we expect that this approach will provide enough data to improve zenith delay estimates and geodetic results.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 330-334; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-06
    Description: We introduce a new mathematical model to compute the centering parameters of a VLBI antenna. These include the coordinates of the reference point, axis offset, orientation, and non-perpendicularity of the axes. Using the model we simulated how precisely parameters can be computed in different cases. Based on the simulation we can give some recommendations and practices to control the accuracy and reliability of the local ties at the VLBI sites.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 360-364; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2018-06-06
    Description: The ESA Venus Express spacecraft was observed at X-band with the Wettzell radio telescope in October-December 2009 in the framework of an assessment study of the possible contribution of the European VLBI Network to the upcoming ESA deep space missions. A major goal of these observations was to develop and test the scheduling, data capture, transfer, processing, and analysis pipeline. Recorded data were transferred from Wettzell to Metsahovi for processing, and the processed data were sent from Mets ahovi to JIVE for analysis. A turnover time of 24 hours from observations to analysis results was achieved. The high dynamic range of the detections allowed us to achieve a milliHz level of spectral resolution accuracy and to extract the phase of the spacecraft signal carrier line. Several physical parameters can be determined from these observational results with more observational data collected. Among other important results, the measured phase fluctuations of the carrier line at different time scales can be used to determine the influence of the solar wind plasma density fluctuations on the accuracy of the astrometric VLBI observations.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 171-175; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-06
    Description: In order to monitor and improve the CRF in both the Southern Hemisphere and along the ecliptic, we perform various simulations using station networks based mostly on the Australian AuScope network, New Zealand s Warkworth antenna, and several Chinese antennas. The effect of other stations such as HartRAO and Kokee Park to enhance the East-West baseline coverage is also considered. It is anticipated that the simulation results will help IVS to decide on the composition of the CRF sessions of the IVS to be run from 2011 onward.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 176-179; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Results of a hardware vs. software correlation of the RDV77 session are presented. Group delays are found to agree (WRMS differences) at an average level of 4.2 psec and with a noise floor of 2.5 psec. These RDV77 comparisons agree well with several previous correlator comparison studies.
    Keywords: Geophysics
    Type: Proceedings of the Sixth General Meeting of the International VLBI Service for Geodesy and Astrometry; 162-166; NASA/CP-2010-215864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-05-30
    Description: This document summarizes transfer of NASA's terminal sequencing and spacing (TSS) and interval management (IM) technologies to the FAA (Federal Aviation Administration), as part of its Air Traffic Management Technology (ATM) Demonstration 1 activity. This activity, referred to as ATD-1, is part of NASA's Airspace Systems Program (ASP) specifically, its System Analysis, Integration, and Evaluation (SAIE) Project. ATD-1 is a multi-year research and development effort aimed at accelerating implementation and deployment of NASA-developed ATM technologies by the FAA. These technologies are designed to improve the utilization of Performance-Based Navigation (PBN) procedures inside congested terminal airspace. In terms of NASA's Technology Readiness Levels (TRLs), ATD-1 is focused on maturing its associated technologies from the Technology Development stage (TRL 4) to the Technology Demonstration stage (TRL 6). In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2014-220214 , ARC-E-DAA-TN16421
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2018-08-10
    Description: Cloud optical properties, such as extinction-to-backscatter ratio and depolarization ratio, have a significant impact on the accuracy of cloud extinction retrievals from lidar systems because parameterizations of these variables are often used in non-ideal conditions to determine cloud type and optical depth. Statistics and trends of these optical parameters were analyzed for four years, 2003-2007, of Cloud Physics Lidar data during five projects of varying geographic locations. Extinction-to-backscatter ratio (at 532 nm) was derived by calculating the transmission loss through the cloud layer, while depolarization ratio was computed using the parallel and perpendicular polarized 1064 nm channels. The majority of the cloud layers yielded an S-ratio between 10 and 40 sr with the S-ratio frequency distribution centered at 25 sr for ice clouds, 21 sr for mixed phase clouds, and 11 sr for water clouds. On average for ice clouds, S ratio slightly decreased with decreasing temperature, while depolarization ratio increased significantly as temperatures decreased. Trends for water and mixed phase clouds were also observed. Ultimately, these observed trends in optical properties as a function of temperature and geographic location will improve current parameterizations of extinction-to-backscatter ratio, which consequently increases accuracy in cloud optical depth and radiative forcing estimates.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2018-08-10
    Description: Current trends show rise in Arctic surface and air temperatures, including over the Greenland ice sheet where rising temperatures will contribute to increased sea-level rise through increased melt. We aim to establish the uncertainties in using satellite-derived surface temperature for measuring Arctic surface temperature, as satellite data are increasingly being used to assess temperature trends. To accomplish this, satellite-derived surface temperature, or land-surface temperature (LST), must be validated and limitations of the satellite data must he assessed quantitatively. During the 2008/09 boreal winter at Summit, Greenland, we employed data from standard US National Oceanic and Atmospheric Administration (NOAA) air-temperature instruments, button-sized temperature sensors called thermochrons and the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument to (1) assess the accuracy and utility of thermochrons in an ice-sheet environment and (2) compare MODIS-derived LSTs with thermochron-derived surface and air temperatures. The thermochron-derived air temperatures were very accurate, within 0.1+/-0.3 C of the NOAA-derived air temperature, but thermochron-derived surface temperatures were approx. 3 C higher than MODIS-derived LSTs. Though the surface temperature is largely determined by air temperature, these variables can differ significantly. Furthermore, we show that the winter-time mean air temperature, adjusted to surface temperature was approx. 11 C higher than the winter-time mean MODIS-derived LST. This marked difference occurs largely because of satellite-derived LSTs cannot be measured through cloud cover, so caution must be exercised in using time series of satellite LST data to study seasonal temperature trends.
    Keywords: Meteorology and Climatology
    Type: Journal of Glaciology; Volume 56; No. 198; 735-741
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...