ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI A3-20-93592
    Type of Medium: Monograph available for loan
    Pages: xxxiii, 613 Seiten , Illustrationen , 42 mm x 170 mm
    Edition: Second edition
    ISBN: 978-3-642-13918-0
    Series Statement: Springer praxis books environmental sciences
    Language: English
    Note: Contents Preface Preface to the First Edition List of figures Abbreviations 1 Historical perspective (Roland A. Madden and Paul R. Julian) 1.1 Introduction 1.2 The intraseasonal, tropospheric oscillation 1.3 The elementary 4-D structure 1.4 Other early studies of the oscillation 1.5 The oscillation in 1979 1.6 Complexity of cloud movement and structure 1.7 Seasonal variations in the oscillation 1.8 The oscillation in the zonal average 1.9 Other effects of the oscillation 1.10 Summary 1.11 References 2 South Asian monsoon (B. N. Goswami) 2.1 Introduction 2.1.1 South Asian summer monsoon and active/break cycles 2.1.2 Amplitude and temporal and spatial scales 2.1.3 Regional propagation characteristics 2.1.4 Relationship between poleward-propagating ISOs and monsoon onset 2.1.5 Relationship with the MJO 2.2 Mechanism for temporal-scale selection and propagation 2.2.1 30 to 60-day mode 2.2.2 10 to 20-day mode 2.3 Air-sea interactions 2.4 Clustering of synoptic events by ISOs 2.5 Monsoon ISOs and predictability of the seasonal mean 2.6 Aerosols and monsoon ISOs 2.7 Predictability and prediction of monsoon ISOs 2.8 Summary and discussion 2.9 Acknowledgments 2.10 Appendix 2.11 References 3 Intraseasonal variability of the atmosphere-ocean-climate system: East Asian monsoon (Huang-Hsiung Hsu) 3.1 Introduction 3.2 General characteristics of EA/WNP monsoon flow 3.3 Periodicity, seasonality, and regionality 3.4 Intraseasonal oscillation propagation tendency 3.5 Relationship with monsoon onsets and breaks 3.6 The 10 to 30-day and 30 to 60-day boreal summer ISO 3.6.1 The 30 to 60-day northward/northwestward-propagating pattern 3.6.2 The 10 to 30-day westward-propagating pattern 3.7 Relationship with tropical cyclone activity 3.8 Upscale effect of TC and synoptic systems 3.9 Final remarks 3.9.1 Close association with the EA/WNP monsoon 3.9.2 The CISO vs. interannual variability 3.9.3 Multiperiodicities and multiscale interaction 3.9.4 Others 3.10 References 4 Pan America (Kingtse C. Mo, Charles Jones, and Julia Nogues Paegle) 4.1 Introduction 4.2 Variations in the IS band 4.3 IS variability in December-March 4.3.1 EOF modes 4.3.2 The Madden Julian Oscillation 4.3.3 The submonthly oscillation 4.4 IS variability in June-September 4.4.1 EOF modes 4.4.2 Madden-Julian Oscillation 4.4.3 Submonthly oscillation 4.5 Intraseasonal modulation of hurricanes 4.6 Summary 4.7 References 5 Australasian monsoon (M. C. Wheeler and J. L. McBride) 5.1 Introduction 5.2 Seasonal cycle of background flow 5.3 Broadband intraseasonal behavior: Bursts and breaks 5.4 Broadband intraseasonal behavior: Spectral analysis 5.5 Meteorology of the bursts and breaks 5.6 Characteristics and influence of the MJO 5.7 1983/1984 and 1987/1988 case studies 5.8 MJO influence on monsoon onset 5.9 Other modes and sources of ISV 5.10 Modulation of tropical cyclones 5.11 Extratropical-tropical interaction 5.12 Prediction 5.13 Conclusions 5.14 References 6 The oceans (William S. Kessler) 6.1 Introduction 6.2 Heat fluxes 6.2.1 Salinity and the barrier layer 6.2.2 A 1-D heat balance? 6.2.3 The role of advection 6.3 Vertical structure under westerly winds 6.4 Remote signatures of wind-forced Kelvin waves 6.5 El Nino and rectification of ISV 6.6 ISV in the Indian Ocean 6.6.1 Differences between the Indian and Pacific Ocean warm pools and their consequences 6.6.2 Oscillations lasting about 60 days in the western equatorial Indian Ocean 6.6.3 Recent models of wind-forced ISV in the Indian Ocean 6.7 Other intrinsic oceanic ISV 6.7.1 Global ISV 6.7.2 Non-TISO-forced ISV in the tropical Indo-Pacific 6.7.3 ISV outside the equatorial Indo-Pacific 6.8 Conclusion 6.9 References 7 Air-sea interaction (Harry Hendori) 7.1 Introduction 7.2 Air-sea fluxes for the eastward MJO 7.3 Air-sea fluxes associated with northward propagation in the Indian summer monsoon 7.4 SST variability 7.5 Mechanisms of SST variability 7.6 SST-atmosphere feedback 7.7 Impact of slow SST variations on MJO activity 7.8 Concluding remarks 7.9 Acknowledgments 7.10 References 8 Mass, momentum, and geodynamics (Benjamin F. Chao and David A. Salstein) 8.1 Introduction 8.2 Angular momentum variations and Earth rotation 8.2.1 Length-of-day variation and axial angular momentum 8.2.2 Polar motion excitation and equatorial angular momentum 8.2.3 Angular momentum and torques 8.3 Time-variable gravity 8.4 Geocenter motion 8.5 Conclusions 8.6 Acknowledgments 8.7 References 9 El Nino Southern Oscillation connection (William K. M. Lau) 9.1 Introduction 9.2 A historical perspective 9.3 Phase 1: The embryonic stage 9.3.1 OLR time-longitude sections 9.3.2 Seasonality 9.3.3 Supercloud clusters 9.3.4 Early modeling framework 9.4 Phase 2: The exploratory stage 9.4.1 MJO and ENSO interactions 9.4.2 WWEs 9.5 Phase 3: ENSO case studies 9.5.1 El Nino of 1997/1998 9.5.2 Stochastic forcings 9.6 Phase-4: Recent development 9.6.1 A new ISO index 9.6.2 Composite events 9.6.3 The ISV-ENSO biennial rhythm 9.7 TISV and predictability 9.8 Acknowledgments 9.9 References 10 Theories (Bin Wang) 10.1 Introduction 10.2 Review of ISO theories 10.2.1 Wave CISK 10.2.2 Wind-evaporation feedback or WISHE 10.2.3 Frictional convergence instability (FCI) 10.2.4 Cloud-radiation feedback 10.2.5 Convection-water vapor feedback and the moisture mode 10.2.6 Multiscale interaction theory 10.2.7 Mechanisms of the boreal summer intraseasonal oscillation 10.2.8 Atmosphere-ocean interaction 10.3 A general theoretical framework 10.3.1 Fundamental physical processes 10.3.2 Governing equations 10.3.3 Boundary layer dynamics near the equator 10.3.4 The 1.5-layer model for the MJO 10.3.5 The 2.5-layer model including the effects of basic flows 10.4 Dynamics of the MJO 10.4.1 Low-frequency equatorial waves and the associated Ekman pumping 10.4.2 Frictional convergence instability (FCI) 10.4.3 FCI mode under nonlinear heating 10.4.4 The role of multiscale interaction (MSI) in MJO dynamics 10.5 Dynamics of boreal summer ISO 10.5.1 Effects of mean flows on the ISO 10.5.2 Mechanism of northward propagation 10.6 Role played by atmospheric-ocean interaction 10.7 Summary and discussion 10.7.1 Understanding gained from the FCI theory 10.7.2 Model limitations 10.7.3 Outstanding issues 10.8 Acknowledgments 10.9 References 11 Modeling intraseasonal variability (K. R. Sperber, J. M. Slingo, and P. M. Inness) 11.1 Introduction 11.2 Modeling the MJO in boreal winter 11.2.1 Interannual and decadal variability of the MJO 11.2.2 Sensitivity to formulation of the atmospheric model 11.2.3 Modeling the MJO as a coupled ocean-atmosphere phenomenon 11.3 Boreal summer intraseasonal variability 11.3.1 GCM simulations 11.3.2 Air-sea interaction and boreal summer intraseasonal variability 11.3.3 Modeling studies of the links between boreal summer intraseasonal and interannual variability 11.4 The impact of vertical resolution in the upper ocean 11.5 Concluding remarks 11.6 Acknowledgments 11.7 References 12 Predictability and forecasting (Duane Waliser) 12.1 Introduction 12.2 Empirical models 12.3 Dynamical forecast models 12.4 Predictability 12.5 Real time forecasts 12.6 Discussion 12.7 Appendix 12.8 Acknowledgments 12.9 References 13 Africa and West Asia (Mathew Barlow) 13.1 Overview 13.2 Summary of Africa research 13.2.1 West Africa 13.2.2 Eastern Africa 13.2.3 Southern Africa 13.3 Summary of West Asia research 13.4 Station data analysis 13.4.1 Methodology and data 13.4.2 Nairobi 13.4.3 Riyadh 13.5 Relevance of Gill-Matsuno dynamics and the role of mean wind 13.6 Summary and discussion 13.7 References 14 Tropical-extratropical interactions (Paul E. Roundy) 14.1 Introduction 14.2 A boreal winter composite of the global flow associated with the MJO 14.3 Response of the global atmosphere to heating in tropical convection 14.4 Influence of extratropical waves on tropical convection 14.5 Two-way interactions between the tropics and extratropics 14.6 MJO inf
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Department of Mathematical Sciences, University of Alberta, Edmonton, Canada This paper describes the fundamental theory of the ensemble canonical correlation (ECC) algorithm for the seasonal climate forecasting. The algorithm is a statistical regression sch eme based on maximal correlation between the predictor and predictand. The prediction error is estimated by a spectral method using the basis of empirical orthogonal functions. The ECC algorithm treats the predictors and predictands as continuous fields and is an improvement from the traditional canonical correlation prediction. The improvements include the use of area-factor, estimation of prediction error, and the optimal ensemble of multiple forecasts. The ECC is applied to the seasonal forecasting over various parts of the world. The example presented here is for the North America precipitation. The predictor is the sea surface temperature (SST) from different ocean basins. The Climate Prediction Center's reconstructed SST (1951-1999) is used as the predictor's historical data. The optimally interpolated global monthly precipitation is used as the predictand?s historical data. Our forecast experiments show that the ECC algorithm renders very high skill and the optimal ensemble is very important to the high value.
    Keywords: Meteorology and Climatology
    Type: 26th Climate Diagnostics and Prediction Workshop; Oct 22, 2001 - Oct 26, 2001; La Jolla, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-03
    Description: A coupled aerosol‐atmosphere‐ocean‐sea ice climate model is used to explore the interaction between aerosols and the Indian summer monsoon precipitation on seasonal‐to‐interannual time scales. Results show that when increased aerosol loading is found on the Himalayas slopes in the premonsoon period (April–May), intensification of early monsoon rainfall over India and increased low‐level westerly flow follow, in agreement with the elevated‐heat‐pump mechanism. The increase in rainfall during the early monsoon season has a cooling effect on the land surface. In the same period, enhanced surface cooling may also be amplified through solar dimming by more cloudiness and aerosol loading, via increased dust transported by low‐level westerly flow. The surface cooling causes subsequent reduction in monsoon rainfall in July–August over India. The time‐lagged nature of the reasonably realistic response of the model to aerosol forcing suggests that absorbing aerosols, besides their potential key roles in impacting monsoon water cycle and climate, may influence the seasonal variability of the Indian summer monsoon.
    Description: Published
    Description: 8712-8723
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-23
    Description: In this paper, we investigate changes in the Hadley Circulation (HC) and their connections to increased global dryness (suppressed rainfall and reduced tropospheric relative humidity) under CO2 warming from Coupled Model Intercomparison Project Phase 5 (CMIP5) model projections. We find a strengthening of the HC manifested in a “deep-tropics squeeze” (DTS), i.e., a deepening and narrowing of the convective zone, enhanced ascent, increased high clouds, suppressed low clouds, and a rise of the level of maximum meridional mass outflow in the upper troposphere (200−100 hPa) of the deep tropics. The DTS induces atmospheric moisture divergence and reduces tropospheric relative humidity in the tropics and subtropics, in conjunction with a widening of the subsiding branches of the HC, resulting in increased frequency of dry events in preferred geographic locations worldwide. Among various water-cycle parameters examined, global dryness is found to have the highest signal-to-noise ratio. Our results provide a physical basis for inferring that greenhouse warming is likely to contribute to the observed prolonged droughts worldwide in recent decades.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-22
    Description: Light-absorbing aerosols not only contribute to Earth's radiative balance but also influence regional climate by cooling the surface and warming the atmosphere. Following recent suggestions that organic aerosols (OAs) absorb substantial amount of solar radiation, we examine the role of light-absorbing properties of OA on Asian summer monsoon rainfall redistribution using observational data and an atmospheric general circulation model experiment. Results suggest that the enhanced light absorption by OA in Southeast Asia and Northeast Asia is associated with the advance of the Indian summer monsoon in May and the southward shift of East Asian summer monsoon rainband in June. The rainfall redistribution in May is induced by elevated orographic effect with a warm-core upper-level anticyclone and surface warming of 1–2 °C over the Tibetan Plateau, whereas that of the East Asian summer monsoon in June is formed by stable conditions associated with surface cooling and atmospheric warming around 30°N. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2016-02-01
    Print ISSN: 2095-6037
    Electronic ISSN: 2198-0934
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-05-01
    Print ISSN: 0256-1530
    Electronic ISSN: 1861-9533
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...