ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (21)
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (11)
  • 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology
  • Mt. Etna
  • Springer  (15)
  • Springer Berlin Heidelberg  (13)
  • Geological Society of America  (6)
  • EGU
  • Essen : Verl. Glückauf
  • Institute of Physics
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2010-2014  (36)
Collection
Years
Year
  • 1
    Publication Date: 2020-11-26
    Description: We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located 〈20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabi- listic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra load- ing during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley repre- sents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods. Although this study does not intend to replace the current El Misti hazard map, the quantitative results of this probabilistic multi-hazard assessment can be incorporated into a multi-risk analysis, to support decision makers in any future improvement of the current hazard evaluation, such as further land-use planning and possible emergency management.
    Description: Published
    Description: 771
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: BET_VH ; TITAN2D ; TEPHRA2 ; Probabilistic volcanic hazard ; Multi-hazard assessment ; El Misti Arequipa ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-15
    Description: Stratigraphic and morphostructural analyses have been carried out in the Mt. Etna volcanic region (eastern Sicily) to investigate in detail the deformation events that have affected the sedimentary successions forming the substratum of the volcano. In the foredeep, Quaternary submarine sedimentation ended 600 ka ago when the whole area emerged in response to homogeneous regional uplift. The irregular distribution of a stratigraphic marker, recognized through the analysis of more than 250 borehole logs, suggests that local dynamics also affected the area. We identify both compressional tectonic dynamics and volcano-related tectonic activity, and discriminate among their associated deformations. In particular, we quantify the vertical deformation component of the compressional structures (thrusts and related folds) and recognize for the first time a vertical component of deformation whose pattern clearly indicates a doming process acting at Mt. Etna. The comparison between long-term and short-term rates suggests that the doming has acted consistently over space and time through the last 600 ka and provides clues to the source of uplift. This component, defined by a specific Quaternary sedimentary horizon, has been compared with vertical deformation obtained by analytical inversion of morphological substratum data, and localizes the source at a depth of ∼16 km, at the mantle-crust transition. This uplift may be the consequence of hydration occurring in the altered ocean-like crust.
    Description: Published
    Description: 816
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Crustal structure ; Volcanotectonics ; Doming process ; Recent deformation ; Sicily ; Mt. Etna ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: To better understand the mechanisms leading to different radon background levels in volcanic settings, we have performed two long-term deformation experiments of 16 days using a real-time setup that enables us to monitor any variation of radon activity concentration during rock compression. Our measurements demonstrate that, in the case of highly porous volcanic rocks, the emanating power of the substrate changes as a function of the volcanic stress conditions. Constant magmatic pressures, such as those observed during dike intrusions and hydrothermal fluid injections, can result in pervasive pore collapse that is mirrored by a significant radon decrease until a constant emanation is achieved. Conversely, repeated cycles of stress due to, for example, volcano inflation/deflation cycles, cause a progressive radon increase a few days (but even weeks and months) before rupture. After rock failure, however, the formation of new emanation surfaces leads to a substantial increase of the radon signal. Our results suggest that surface deformation in tectonic and volcanic settings, such as inflation/ deflation or constant magmatic pressures, have important repercussions on the emanating power of volcanic substrates.
    Description: Published
    Description: 751
    Description: 2R. Laboratori sperimentali e analitici
    Description: JCR Journal
    Description: restricted
    Keywords: Radon monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Here, we report the first continuous data of geochemical parameters acquired directly from the active summit crater of Vulcano. This approach provides a means to better investigate deep geochemical processes associated with the degassing system of Vulcano Island. In particular, we report on soil CO2 fluxes from the upper part of Vulcano, a closed-conduit volcano, from September 2007 to October 2010. Large variations in the soil CO2 and plume SO2 fluxes (order of magnitude), coinciding with other discontinuous geochemical parameters (CO2 concentrations in fumarole gas) and physical parameters (increase of shallow seismic activity and fumarole temperatures) have been recorded. The results from this work suggest new prospects for strengthening geochemical monitoring of volcanic activity and for improving the constraints in the construction of a “geochemical model”, this being a necessary condition to better understand the functioning of volcanic systems.
    Description: Published
    Description: 1859-1863
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 1R. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: Vulcano Island ; Geochemical monitoring ; CO2 flux ; CO2 fumaroles ; SO2 flux ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We report the results of 16 months of continuous measurements of soil CO2 flux at a fumarole field in the summit area of Mt. Etna. The patterns of soil CO2 emissions suggest two contrasting degassing regimes. During the period of observation, volcanic activity at the summit craters displayed striking extremes, ranging from passive to explosive degassing, which culminated in lava fountains. These changes in activity coincided with fluctuation between the two degassing patterns. Building on the findings of previous studies, we propose an interpretative framework that explains the observed correlation in terms of a modification of the dynamics of magma supply. We argue that periods of higher CO2 flux are associated with deep open system degassing conditions, whereas low-level CO2 flux signals closed system degassing and less efficient discharge of deeply exsolved gas. An important implication of our study is that, in relation to the two degassing regimes, two types of activity are expected at the summit craters. Thus, our measurements represent a valuable tool for the evaluation of the evolution of volcanic activity
    Description: Published
    Description: 846
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Magma supply dynamics ; Soil CO2 emissions ; Lava fountain ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The Apennines belt of Italy undergoes a northeast-trending extension at a rate of a few millimeters per year that generates moderate to large normal-faulting earthquakes. In this paper, we show that seismicity, large earthquakes, strong gas emission, and belt topography all correlate with a broad, low Vp anomaly in the uppermost mantle. We propose that a thermal/fl uid anomaly in the mantle, associated with sub-lithospheric mantle replacement after delamination of the Adria lithosphere, supports the topography of the belt and drives the extensional tectonics. The mantle anomaly is likely caused by deep fl uids coming from the dehydration of the material subducted during the Europe-Adria collision and the delamination of Adria. Beneath the belt, CO2-rich fl uids are accumulated and occasionally discharged during large normal faulting earthquakes. After the replacement of sub-lithospheric mantle, the temperature at the base of the crust increases causing crustal stretching, anatexis, and strong degassing.
    Description: Published
    Description: 715-718
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: mantle anomaly ; Continental delamination ; the Apennines ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-09
    Description: Abstract A geochemical survey of fumarolic and submerged gases from fluid discharges located in the Nea Kameni and Palea Kameni islets (Santorini Island, Greece) was carried out before, during, and after the unrest related to the anomalously high seismic and ground deformation activity that affected this volcanic system since January 2011. Our data show that from May 2011 to February 2012, the Nea Kameni fumaroles showed a significant increase of H2 concentrations. After this period, an abrupt decrease in the H2 contents, accompanied by decreasing seismic events, was recorded. A similar temporal pattern was shown by the F−, Cl−, SO4 2−, and NH4 + concentrations in the fumarolic condensates. During the sharp increase of H2 concentrations, when values up to 158 mmol/ mol were measured, the δ13C–CO2 values, which prior to January 2011 were consistent with a dominant CO2 thermometamorphic source, have shown a significant decrease, suggesting an increase of mantle CO2 contribution. Light hydrocarbons, including CH4, which are controlled by chemical reactions kinetically slower than H2 production from H2O dissociation, displayed a sharp increase in March 2012, under enhanced reducing conditions caused by the high H2 concentrations of May 2011–February 2012. The general increase in light hydrocarbons continued up to July 2012, notwithstanding the contemporaneous H2 decrease. The temporal patterns of CO2 concentrations and N2/Ar ratios increased similarly to that of H2, possibly due to sealing processes in the fumarolic conduits that diminished the contamination related to the entrance of atmospheric gases in the fumarolic conduits. The compositional evolution of the Nea Kameni fumaroles can be explained by a convective heat pulse from depth associated with the seismic activation of the NE–SW-oriented Kameni tectonic lineament, possibly triggered by either injection of new magma below Nea Kameni island, as apparently suggested by the evolution of the seismic and ground deformation activity, or increased permeability of the volcanic plumbing system resulting from the tectonic movements affecting the area. The results of the present study demonstrate that the geophysical and geochemical signals at Santorini are interrelated and may be precursory signals of renewed volcanic activity and encourage the development of interdisciplinary monitoring program to mitigate the volcanic risk in the most tourist-visited island of the Mediterranean Sea.
    Description: Published
    Description: 711
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Santorini Island . ; Fluid geochemistry ; Geochemical monitoring ; Seismic crisis ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-05
    Description: Eruption forecasting refers, in general, to the assessment of the occurrence probability of a given erup- tive event, whereas volcanic hazards are normally associated with the analysis of superficial and evident phenomena that usually accompany eruptions (e.g., lava, pyroclastic flows, tephra fall, lahars, etc.). Nevertheless, several hazards of volcanic origin may occur in noneruptive phases dur- ing unrest episodes. Among others, remarkable examples are gas emissions, phreatic explosions, ground deforma- tion, and seismic swarms. Many of such events may lead to significant damages, and for this reason, the “risk” associ- ated to unrest episodes could not be negligible with respect to eruption-related phenomena. Our main objective in this paper is to provide a quantitative framework to calculate probabilities of volcanic unrest. The mathematical frame- work proposed is based on the integration of stochastic mod- els based on the analysis of eruption occurrence catalogs into a Bayesian event tree scheme for eruption forecast- ing and volcanic hazard assessment. Indeed, such models are based on long-term eruption catalogs and in many cases allow a more consistent analysis of long-term tem- poral modulations of volcanic activity. The main result of this approach is twofold: first, it allows to make inferences about the probability of volcanic unrest; second, it allows to project the results of stochastic modeling of the eruptive history of a volcano toward the probabilistic assessment of volcanic hazards. To illustrate the performance of the pro- posed approach, we apply it to determine probabilities of unrest at Miyakejima volcano, Japan.
    Description: Published
    Description: 689
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: Volcanic unrest ; Eruption forecasting ; Bayesian event tree ; Stochastic models ; Miyakejima volcano ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-15
    Description: Integrating field observations and rock-magnetic measurements, we report how a turbulent pyroclastic density current interacted with and moved through an urban area. The data are from the most energetic, turbulent pyroclastic density current of the A.D. 79 eruption of Vesuvius, Italy, which partially destroyed the Roman city of Pompeii. Our results show that the urban fabric was able to divide the lower portion of the current into several streams that followed the city walls and the intracity roads. Vortices, revealed by upstream particle orientations and decreases in deposit temperature, formed downflow of obstacles or inside cavities. Although these perturbations affected only the lower part of the current and were localized, they could represent, in certain cases, cooler zones within which chances of human survival are increased. Our integrated field data for pyroclastic density current temperature and flow direction, collected for the first time across an urban environment, enable verification of coupled thermodynamic numerical models and their hazard simulation abilities.
    Description: Published
    Description: 441-444
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: Vesuvius ; pyroclastic density current ; thermal remanent magnetization ; deposits ; magnetic fabric ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Vesicle size distributions in two and three dimensions of two samples were independently measured by three different researchers to investigate whether or not such measurements are reproducible. Additionally, two different software programs were used to measure the three-dimensional vesicle size distributions: the 3D Object Counter plugin for ImageJ and Blob3D. Manual thresholding by each of the authors produced similar results for both samples using both programs; however, use of the automatic, maximum entropy technique for thresholding produced measurably different results because it did not discriminate between vesicles and plagioclase crystals in one case and between vesicles and some cracks in another. Use of asymmetric erosion and dilation processes on the images is shown to affect the vesicle size distribution, but it does not have a significant effect on the power-law exponent that describes intermediate-sized vesicles or on the vesicle number density in these samples. However, such a technique is not recommended.
    Description: Published
    Description: 70-78
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic rocks ; vesicle counting ; reproducibility ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: We produce a spatial probability map of vent opening (susceptibility map) at Etna, using a statistical analysis of structural features of flank eruptions of the last 2 ky. We exploit a detailed knowledge of the volcano structures, including the modalities of shallow magma transfer deriving from dike and dike-fed fissure eruptions analysis on historical eruptions. Assuming the location of future vents will have the same causal factors as the past eruptions, we converted the geological and structural data in distinct and weighted probability density functions, which were included in a non-homogeneous Poisson process to obtain the susceptibility map. The highest probability of new eruptive vents opening falls within a N-S aligned area passing through the Summit Craters down to about 2,000 ma.s.l. on the southern flank. Other zones of high probability follow the North-East, East-North-East, West, and South Rifts, the latter reaching low altitudes (∼400 m). Less susceptible areas are found around the faults cutting the upper portions of Etna, including the western portion of the Pernicana fault and the northern extent of the Ragalna fault. This structuralbased susceptibility map is a crucial step in forecasting lava flow hazards at Etna, providing a support tool for decision makers.
    Description: This study was performed with the financial support from the V3-LAVA project (DPC-INGV 2007–2009 contract).
    Description: Published
    Description: 2083–2094
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: Flank eruption ; Dike ; Volcano structure ; Susceptibility map ; Spatial clustering ; Back analysis ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Any effective volcanic risk mitigation strat- egy requires a scientific assessment of the future evo- lution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic pre- dictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all avail- able information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to pri- oritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time–space–magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.
    Description: Published
    Description: 1777-1805
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: restricted
    Keywords: eruption forecasting ; volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Mt. Cameroon is one of the most active effusive volcanoes in Africa. About 500,000 people living or working around its fertile flanks are subject to significant threat from lava flow inundation. Lava flow hazard and risk were assessed by simulating probable lava flow paths using the DOWNFLOW code. The vent opening probability density function and lava flow length distribution were determined on the basis of available data from past eruptions at Mt. Cameroon volcano. Code calibration was performed through comparison with real lava flow paths. The topographic basis for simulations was the 90-m resolution SRTM DEM. Simulated lava flows from about 80,000 possible vents were used to produce a detailed lava flow hazard map. The lava flow risk in the area was mapped by combining the hazard map with digitized infrastructures (i.e., human settlements and roads). Results show that the risk of lava flow inundation is greatest in the most inhabited coastal areas comprising the town of Limbe, which constitutes the center of Cameroon’s oil industry and an important commercial port. Buea, the second most important town in the area, has a much lower risk although it is significantly closer to the summit of the volcano. Non-negligible risk characterizes many villages and most roads in the area surrounding the volcano. In addition to the conventional risk mapping described above, we also present (1) two reversed risk maps (one for buildings and one for roads), where each point on the volcano is classified according to the total damage expected as a consequence of vent opening at that point; (2) maps of the lava catchments for the two main towns of Limbe and Buea, illustrating the expected damage upon venting at any point in the catchment basin. The hazard and risk maps provided here represent valuable tools for both medium/long-term land-use planning and real-time volcanic risk management and decision making.
    Description: Published
    Description: 423-439
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow simulation ; Lava flow hazard ; Lava flow risk ; Mt. Cameroon ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Using a lava flow emplacement model and a satellite-based land cover classification, we produce a map to allow assessment of the type and quantity of natural, agricultural and urban land cover at risk from lava flow invasion. The first step is to produce lava effusion rate contours, i.e., lines linking distances down a volcano’s flank that a lava flow will likely extend if fed at a given effusion rate from a predetermined vent zone. This involves first identifying a vent mask and then running a downhill flow path model from the edge of every pixel around the vent mask perimeter to the edge of the DEM. To do this, we run a stochastic model whereby the flow path is projected 1,000 times from every pixel around the vent mask perimeter with random noise being added to the DEM with each run so that a slightly different flow path is generated with each run. The FLOWGO lava flow model is then run down each path, at a series of effusion rates, to determine likely run-out distance for channel-fed flow extending down each path. These results are used to plot effusion rate contours. Finally, effusion rate contours are projected onto a land classification map (produced from an ASTER image of Etna) to assess the type and amount of each land cover class falling within each contour. The resulting maps are designed to provide a quick look-up capability to assess the type of land at risk from lava extending from any location at a range of likely effusion rates. For our first (2,000 m) vent zone case used for Etna, we find a total of area of ~680 km2 is at risk from flows fed at 40 m3 s−1, of which ~6 km2 is urban, ~150 km2 is agriculture and ~270 km2 is grass/woodland. The model can also be run for specific cases, where we find that Etna’s 1669 vent location, if active today, would likely inundate almost 11 km2 of urban land, as well as 15.6 km2 of agricultural land, including 9.5 km2 of olive groves and 5.2 km2 of vineyards and fruit/nut orchards.
    Description: Published
    Description: 1001-1027
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow ; Risk ; FLOWGO ; ASTER image ; Land classification ; Mt. Etna ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: The Campi Flegrei caldera is a restless structure affected by general subsidence and ongoing resurgence of its central part. The persistent activity of the system and the explosive character of the volcanism lead to a very high volcanic hazard that, combined with intense urbanization, corresponds to a very high volcanic risk. One of the largest sources of uncertainty in volcanic hazard/risk assessment for Campi Flegrei is the spatial location of the future volcanic activity. This paper presents and discusses a long- term probability hazard map for vent opening in case of renewal of volcanism at the Campi Flegrei caldera, which shows the spatial conditional probability for the next vent opening, given that an eruption occurs. The map has been constructed by building a Bayesian inference scheme merging prior information and past data. The method allows both aleatory and epistemic uncertainties to be evaluated. The probability map of vent opening shows that two areas of relatively high probability are present within the active portion of the caldera, with a probability approximately doubled with respect to the rest of the caldera. The map has an immediate use in evaluating the areas of the caldera prone to the highest volcanic hazard. Furthermore, it represents an important ingredient in addressing the more general problem of quantitative volcanic hazards assessment at the Campi Flegrei caldera.
    Description: Published
    Description: 497-510
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic hazards assessment . Campi Flegrei . Vent opening probability map . Bayesian inference ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-02-05
    Description: The definition of probabilistic models as mathematical structures to describe the response of a volcanic system is a plausible approach to characterize the temporal behavior of volcanic eruptions, and constitutes a tool for long-term eruption forecasting. This kind of approach is motivated by the fact that volcanoes are complex systems in which a com- pletely deterministic description of the processes preceding eruptions is practically impos- sible. To describe recurrent eruptive activity we apply a physically-motivated probabilistic model based on the characteristics of the Brownian passage-time (BPT) distribution; the physical process defining this model can be described by the steady rise of a state variable from a ground state to a failure threshold; adding Brownian perturbations to the steady load- ing produces a stochastic load-state process (a Brownian relaxation oscillator) in which an eruption relaxes the load state to begin a new eruptive cycle. The Brownian relaxation os- cillator and Brownian passage-time distribution connect together physical notions of unob- servable loading and failure processes of a point process with observable response statistics. The Brownian passage-time model is parameterized by the mean rate of event occurrence, μ , and the aperiodicity about the mean, α . We apply this model to analyze the eruptive his- tory of Miyakejima volcano, Japan, finding a value of 44.2(±6.5 years) for the μ parameter and 0.51(±0.01) for the (dimensionless) α parameter. The comparison with other models often used in volcanological literature shows that this pysically-motivated model may be a good descriptor of volcanic systems that produce eruptions with a characteristic size. BPT is clearly superior to the exponential distribution and the fit to the data is comparable to other two-parameters models. Nonetheless, being a physically-motivated model, it provides an insight into the macro-mechanical processes driving the system.
    Description: INGV - Sezione di Bologna; Universita' di Bologna - Marco Polo program
    Description: Published
    Description: 545-558
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: open
    Keywords: Probabilistic models; Brownian passage-time distribution; ; Hazard function; Miyakejima volcano ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.08. Risk::05.08.01. Environmental risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-05-09
    Description: Lake Albano (Alban Hills volcanic complex, Central Italy) is located in a densely populated area near Rome. The deep lake waters have significant dissolved CO2 concentrations, probably related to sub-lacustrine fluid discharges fed by a pressurized CO2-rich reservoir. The analytical results of geochemical surveys carried out in 1989 2010 highlight the episodes of CO2 removal from the lake. The total mass of dissolved CO2 decreased from ∼5.8× 107 kg in 1989 to ∼0.5×107 kg in 2010, following an exponential decreasing trend. Calculated values of both dissolved inorganic carbon and CO2 concentrations along the vertical profile of the lake indicate that this decrease is caused by CO2 release from the epilimnion, at depth 〈9 m, combined with (1) water circulation at depth 〈95 m and (2) CO2 diffusion from the deeper lake layers. According to this model, Lake Albano was affected by a large CO2 input that coincided with the last important seismic swarm at Alban Hills in 1989, suggesting an intimate relationship between the addition of deep-originated CO2 to the lake and seismic activity. In the case of a CO2 degassing event of an order of magnitude larger than the one that occurred in 1989, the deepest part of Lake Albano would become CO2-saturated, resulting in conditions compatible with the occurrence of a gas outburst. These results reinforce the idea that a sudden CO2 input into the lake may cause the release of a dense gas cloud, presently representing the major volcanic threat for this densely populated area
    Description: Published
    Description: 861-871
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Crater lakes ; Limnic eruption ; CO2 outburst ; Lake Albano ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-01-27
    Description: X-ray computed microtomography is an excellent tool for the three-dimensional analysis of rock microstructure. Digital images are acquired, visualized, and processed to identify and measure several discrete features and constituents of rock samples, by means of mathematical algorithms and computational methods. In this paper, we present digital images of volcanic rocks collected with X-ray computed microtomography techniques and studied by means of a software library, called Pore3D, custom-implemented at the Elettra Synchrotron Light Laboratory of Trieste (Italy). Using the Pore3D software, we analyzed the fabrics and we quantified the characteristics of the main constituents (vesicles, crystals, and glassy matrix) of four different types of pyroclasts: frothy pumice, tube pumice, scoria, and “crystalline” scoria. We identified the distinctive features of these different types of volcanic rocks. The frothy pumices show vesicles that coalesce in isotropic aggregates, especially toward the sample interior, while the scoriae have a low porosity and an abundance of isolated vesicles. In the “crystalline” scoria sample most of the vesicle separation is due to the presence of crystals of different types, while the tube pumice shows an anisotropic distribution of vesicles and crystals at the microscale, as also observed at the scale of the hand sample. Quantitative analysis and textural information may supply an additional tool to investigate the eruptive processes and the origin of volcanic rocks.
    Description: Published
    Description: 793-804
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: reserved
    Keywords: X-ray tomography ; 3D imaging ; volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-06-25
    Description: By using BET_VH, we propose a quantitative probabilistic hazard assessment for base surge impact in Auckland, New Zealand. Base surges resulting from phreatomagmatic eruptions are among the most dangerous phenomena likely to be associated with the initial phase of a future eruption in the Auckland Volcanic Field. The assessment is done both in the long-term and in a specific short-term case study, i.e. the simulated pre-eruptive unrest episode during Exercise Ruaumoko, a national civil defence exercise. The most important factors to account for are the uncertainties in the vent location (expected for a volcanic field) and in the run-out distance of base surges. Here, we propose a statistical model of base surge run-out distance based on deposits from past eruptions in Auckland and in analogous volcanoes. We then combine our hazard assessment with an analysis of the costs and benefits of evacuating people (on a 1km x 1km cell grid). In addition to stressing the practical importance of a cost-benefit analysis in creating a bridge between volcanologists and decision makers, our study highlights some important points. First, in the Exercise Ruaumoko application, the evacuation call seems to be required as soon as the unrest phase is clear; additionally, the evacuation area is much larger than what is recommended in the current Contingency Plan. Secondly, the evacuation area changes in size with time, due to a reduction in the uncertainty in the vent location and increase in the probability of eruption. It is the tradeoff between these two factors that dictates which cells must be evacuated, and when, thus determining the ultimate size and shape of the area to be evacuated.
    Description: Published
    Description: 705-723
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Auckland Volcanic Field ; Base surge ; Bayesian event tree ; Volcanic hazard ; Cost benefit analysis ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: On 27 February 2007, a new eruption occurred on Stromboli which lasted until 2 April. It was characterized by effusive activity on the Sciara del Fuoco and by a paroxysmal event (15 March). This crisis represented an opportunity for us to refine the model that had been developed previously (2002–2003 eruption) and to improve our understanding of the relationship between the magmatic dynamics of the volcano and the geochemical variations in the fluids. In particular, the evaluation of the dynamic equilibrium between the volatiles (CO2 and SO2) released from the magma and the corresponding fluids discharged from the summit area allowed us to evaluate the level of criticality of the volcanic activity. One of the major accomplishments of this study is a 4-year database of summit soil CO2 flux on the basis of which we define the thresholds (low–medium–high) for this parameter that are empirically based on the natural volcanological evolution of Stromboli. The SO2 fluxes of the degassing plume and the CO2 fluxes emitted from the soil at Pizzo Sopra la Fossa are also presented. It is noteworthy that geochemical signals of volcanic unrest have been clearly identified before, during and after the effusive activity. These signals were found almost simultaneously in the degassing plume (SO2 flux) and in soil degassing (CO2 flux) at the summit, although the two degassing processes are shown to be clearly different. The interpretation of the results will be useful for future volcanic surveillance at Stromboli.
    Description: Published
    Description: 443-456
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli volcano ; CO2 soil flux ; Geochemical monitoring ; 2007 eruption ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: The Long Valley caldera (California) formed ~760,000 yr ago following the massive eruption of the Bishop Tuff. Postcaldera volcanism in the Long Valley volcanic fi eld includes lava domes as young as 650 yr. The recent geological unrest is characterized by uplift of the resurgent dome in the central section of the caldera (75 cm in the past 33 yr) and earthquake activity followed by periods of relative quiescence. Since the spring of 1998, the caldera has been in a state of low activity. The cause of unrest is still debated, and hypotheses range from hybrid sources (e.g., magma with a high percentage of volatiles) to hydrothermal fl uid intrusion. Here, we present observations of surface deformation in the Long Valley region based on differential synthetic aperture radar interferometry (InSAR), leveling, global positioning system (GPS), two-color electronic distance meter (EDM), and microgravity data. Thanks to the joint application of InSAR and microgravity data, we are able to unambiguously determine that magma is the cause of unrest.
    Description: Published
    Description: 63-66
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: reserved
    Keywords: Insar modelling ; Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: Destructive volcaniclastic flows are among the most recurrent and dangerous natural phenomena in volcanic areas. They can originate not only during or shortly after an eruption (syn-eruptive) but also during a period of volcanic quiescence (inter-eruptive), when heavy and/or persistent rains remobilize loose pyroclastic deposits. The area in Italy most prone to such flows is that of the Apennine Mountains bordering the southern Campania Plain. These steep slopes are covered by pyroclastic material of variable thickness (a few cm to several m) derived from the explosive activity of the Somma-Vesuvius and Campi Flegrei volcanoes a few tens of kilometers to the west. The largest and most recent devastating event occurred on May 5, 1998, causing the death of more than 150 people and considerable damage to villages at the foot of the Apennine Mountains. This tragic event was only the most recent of a number of volcaniclastic flows affecting the area in both historical and prehistoric times. Historical accounts report that more than 500 events have occurred in the last five centuries and that more than half of these occurred in the last 100 years, causing hundreds of deaths. In order to improve volcaniclastic flow hazard zonation and risk mitigation in the study area, we produced a zonation map that identifies the drainage basins potentially prone to disruption. This map was obtained by combining morphological characteristics (concavity and basin shape factor) and the mean slope distribution of drainage basins derived from a digital elevation model with a 10-m resolution. These parameters allowed for the classification of 1,069 drainage basins, which have been grouped into four different classes of proneness to disruption: low, moderate, high and very high. The map compiled in a GIS environment, as well as the linked database, can be rapidly queried.
    Description: Published
    Description: 371-387
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Volcaniclastic flow hazard ; GIS ; Vesuvian area ; Southern Campania Plain ; Slope instability ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: We describe analytical details and uncertainty evaluation of a simple technique for the measurement of the carbon isotopic composition of CO2 in volcanic plumes. Data collected at Solfatara and Vulcano, where plumes are fed by fumaroles which are accessible for direct sampling, were first used to validate the technique. For both volcanoes, the plume-derived carbon isotopic compositions are in good agreement with the fumarolic compositions, thus providing confidence on the method, and allowing its application at volcanoes where the volcanic component is inaccessible to direct sampling. As a notable example, we applied the same method to Mount Etna where we derived a δ13C of volcanic CO2 between −0.9 ± 0.27‰ and −1.41 ± 0.27‰ (Bocca Nuova and Voragine craters). The comparison of our measurements to data reported in previous work highlights a temporal trend of systematic increase of δ13C values of Etna CO2 from ~ −4‰, in the 1970’s and the 1980’s, to ~ −1‰ at the present time (2009). This shift toward more positive δ13C values matches a concurrent change in magma composition and an increase in the eruption frequency and energy. We discuss such variations in terms of two possible processes: magma carbonate assimilation and carbon isotopic fractionation due to magma degassing along the Etna plumbing system. Finally, our results highlight potential of systematic measurements of the carbon isotopic composition of the CO2 emitted by volcanic plumes for a better understanding of volcanic processes and for improved surveillance of volcanic activity.
    Description: In press
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic plume ; Carbon isotope ; Etna ; Magmatic degassing ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: The Mw 5.7 earthquake that occurred on 12 May 1802 is the only one with Mw ≥ 5.5 located west of Lake Garda in the central-northern part of the Po Plain, Northern Italy, and the strongest event located in the seismic zone 907 of the ZS9 seismogenic zonation of Italy. Current parametric earthquake catalogs locate the event not far from important cities (e.g., Milan) and to sites where nuclear power plants were to be built in the 1980s or could be built in a near future. Although the earthquake parameters seemed sufficiently well constrained, a detailed investigation of documentary sources was performed, in repositories storing the documents of the Napoleonic departments to which the area affected by the earthquake belonged at that time. In the surviving archival series, we found the officers’ correspondence on all the administrative aspects raised by the earthquake. The newly collected records allowed the authors to significantly increase the number of macroseismic intensity data, including new observations in the most damaged area. The results have been then interpreted in terms of both Mercalli–Cancani–Sieberg and EMS98 macroseismic scales. The earthquake parameters were derived applying two different methods in order to get two independent estimates. Earthquake location is confirmed, although the still scarce data available in the area to the east of the epicenter do not permit to reduce the uncertainty to a minimum. According to the Boxer method, the magnitude is now slightly higher, and the source model shows a good agreement with the tectonic setting of the area.
    Description: Published
    Description: 629-651
    Description: 3.10. Storia ed archeologia applicate alle Scienze della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: 1802 earthquake ; Northern Italy ; Historical seismology ; Macroseismic intensity ; Earthquake parameters ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2017-04-04
    Description: On 30 December 2002, a 25-30 × 106 m3 landslide on the NW flank of Stromboli volcano produced a tsunami that caused relevant damage to the Stromboli village and to the neighboring islands of the Aeolian archipelago. The NW flank of Stromboli has been the site of several, cubic kilometer-scale, landslides during the past 13 ka. In this paper we present sedimentological and compositional data of deep-sea cores recovered from a site located about 24 km north of the island. Our preliminary results indicate that: (i) turbidity currents were effectively generated by the large-scale failures and (ii) volcanogenic turbidity current deposits retain clues of the landslide source and slope failure dynamics. By analogy with Hawaii and the Canary islands we confirm that deep-sea sediments can be effectively used to assess the age and scale of past landslide events giving an important contribution to the tsunami hazard assessment of this region.
    Description: Published
    Description: 719-731
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: Landslide ; turbidite ; tsunami ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: Recent stratigraphic studies at Vesuvius have revealed that, during the past 4,000 years, long lasting,moderate to low-intensity eruptions, associated with continuous or pulsating ash emission, have repeatedly occurred. The present work focuses on the AS1a eruption, the first of a series of ash-dominated explosive episodes which characterized the period between the two Subplinian eruptions of 472 AD and 1631 AD. The deposits of this eruption consist of an alternation of massive and thinly laminated ash layers and minor well sorted lapilli beds, reflecting the pulsatory injection into the atmosphere of variably concentrated ash-plumes alternating with Violent Strombolian stages. Despite its nearly constant chemical composition, the juvenile material shows variable external clast morphologies and groundmass textures, reflecting the fragmentation of a magma body with lateral and/or vertical gradients in both vesicularity and crystal content. Glass compositions and mineralogical assemblages indicate that the eruption was fed by rather homogeneous phonotephritic magma batches rising from a reservoir located at ~ 4 km (100 MPa) depth, with fluctuations between magma delivery and magma discharge. Using crystal size distribution (CSD) analyses of plagioclase and leucite microlites, we estimate that the transit time of the magma in the conduit was on the order of ~ 2 days, corresponding to an ascent rate of around 2× 10−2 ms−1. Accordingly, assuming a typical conduit diameter for this type of eruption, the minimum duration of the AS1a event is between about 1.5 and 6 years. Magma fragmentation occurred in an inertially driven regime that, in a magma with low viscosity and surface tension, can act also under conditions of slow ascent.
    Description: In press
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Ash emission activity ; Tephrite ; Vesuvius ; Stratigraphy ; Textural analyses ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: Etna’s 2001 basaltic lava flow provided a good example of the distal flow segment between the flow front and stable channel, across which the flow evolves from channel-contained to dispersed. This zone was mapped with meter precision using LIDAR data collected during 2004 and 2005. These data, supported by field mapping, show that the flow front comprised eight lobes each 10 to 20 m high. The flow front appears to have advanced not as a single unit, but as a series of lobes moving forward one lobe at a time. Primary lobes were centered on the channel axis and marginal lobes were off-axis. The lobes advanced as breakouts of low-yield-strength lava from the flow core of the stalled flow front. Marginal lobes were abandoned and contributed to marginal levees flanking the transitional channel. For Etna’s 2001 flow, the transitional channel is 140 m wide, 700 m long and fed a 240-m-long zone of dispersed flow; the change from stable to transitional channel occurred at a major reduction in slope. Above this, the stable channel is 5.2 km long, 55 to 105 m wide and bounded by 15- to 25-m-high levees, and the stable channel is located over a previous channel. In a final stage of activity, lava ponding at the break-in-slope that marks the terminus of the stable channel put pressure on the eastern levee, causing it to fail. Liberated lava then fed a final break-out to the east. Similar flow front-features occur at other volcanoes, indicating that similar processes are characteristic of dispersed flow zones.
    Description: Published
    Description: 119-127
    Description: 1.10. TTC - Telerilevamento
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Basalt lava ; Channelised lava flow ; Flow front ; Zone of dispersed flow ; Flow dynamics ; LIDAR ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Changes of the susceptibility to lava flow invasion at Mount Etna are quantified by using lava flow simulations on four Digital Elevation Models documenting the morphostructural modifications of the volcano in the time interval 1986–2007. The probabilistic code DOWNFLOW is used to derive the areas invaded by several thousands of lava flows obtaining, for each DEM, maps of the susceptibility to lava flow invasion and of the lava flow hazard. These maps show, for the first time, the evolution of these surficial properties with time, and render a quantitative image of the effects of topographic changes on the preferential lava flow drainage paths. The results illustrate how the emplacement of new lava flows and the growth of scoria cones affect the probability of inundation by lava flows. We conclude that the persistent activity of this volcano requires a frequent updating of the topography for a reliable lava flow hazard assessment.
    Description: Published
    Description: 537-546
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow simulation ; Digital Elevation Model ; Lidar ; Time series ; Lava flow hazard maps ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-11-16
    Description: Active volcanoes characterized by open conduit conditions generate sonic and infrasonic signals, whose investigation provides useful information for both monitoring purposes and studying the dynamics of explosive processes. In this work, we discuss the automatic procedures implemented for a real-time application to the data acquired by a permanent network of five infrasound stations running at Mt. Etna volcano. The infrasound signals at Mt. Etna consist in amplitude transients, called infrasound events. The adopted procedure uses a multi-algorithm approach for event detection, counting, characterization and location. It is designed for an efficient and accurate processing of infrasound records provided by single-site and array stations. Moreover, the source mechanism of these events can be investigated off-line or in near real-time by using three different models: i) Strombolian bubble; ii) resonating conduit and iii) Helmholtz resonator. The infrasound waveforms allow us to choose the most suitable model, to get quantitative information about the source and to follow the time evolution of the source parameters.
    Description: Published
    Description: 1215–1231
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Description: open
    Keywords: infrasound ; monitoring system ; Mt. Etna ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-11-16
    Description: Earthquake catalogues for Romania supply for 11th–15th century earthquakes located in the region of Vrancea records that consist of a complete set of parameters, including magnitude and depth. Scope of this paper is to verify the reliability and consistency of these parameters with the informative background as explicitly referenced by the catalogues. After retrieving the original sources they mention, the set of data appeared to be related almost exclusively to the Russian plain and too poor to be at the very origin of the parameter assessment. Data for 19th–20th century earthquakes, such as instrumental locations and CMT solutions, added to the understanding of the macroseismic response of the Russian plain to Vrancea earthquakes. On the one hand, the investigation and analysis of historical earthquake records for the fourteen events listed by the catalogues in the 11th–15th centuries has shown that for three earthquakes (1022, 1038, 1258) no primary sources could be traced, and three more earthquakes (1091, 1170 and 1328) are attested only by scarcely reliable records and had to be classified as doubtful, and one (1473) is simply a duplication of the 1471 event. On the other hand, the availability of data on recent earthquakes that may be compared to historical ones in terms of macroseismic effects allowed the authors to agree with the previous catalogue compilers’ solution with regard to both magnitude and depth of the past earthquakes for which do exist reliable primary historical records.
    Description: Published
    Description: 575–604
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: open
    Keywords: Vrancea earthquakes ; 11th-15th earthquakes ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Studies on volcanic degassing have recently shown the important role of volatile release from active volcanoes in understanding magmatic processes prior to eruptions. Here we present and discuss the evolution of magmatic degassing that preceded and accompanied the 2008 Mt. Etna eruption. We tracked the ascent of magma bodies by high-temporal resolution measurements of SO2 emission rates and discrete sampling of SO2/HCl and SO2/HF molar ratios in the crater plume, as well as by periodic measurement of soil CO2 emission rates. Our data suggest that the first signs of upward migration of gas-rich magma before the 2008 eruption were observed in June 2007, indicated by a strong increase in soil CO2 efflux followed by a slow declining trend in SO2 flux and halogens. This degassing behavior preceded the mid-August 2007 summit activity culminated with the September 4th paroxysmal event. Five months later, a new increase in both soil CO2 and SO2 emission rates occurred before the November 23rd paroxysm, to drop down in late December. In the following months, geochemical parameters showed high variability, characterized by isolated sudden increases occurred in early December 2007 and late March 2008. In early May soil CO2, SO2 emission rates and S/Cl molar ratio gradually increased. Crater degassing peaked on May 13th marking the onset of the eruption. Eruptive activity was accompanied by a general steady-state of SO2 flux characterized by two main degassing cycles. These cycles preceded explosive activity at the eruptive vents, indicating terminal new-arrival of deep gas-rich magma bodies in the shallow plumbing system of Mt Etna. Conversely, halogens described a slight increasing trend till the end of 2008. These observations suggest an impulsive syn-eruptive dynamics of magma transfer from depth to the surface. Differently from the SO2 emission rates, the S/Cl ratio and the soil CO2 efflux values showed an increasing trend from mid-April to mid-July 2008, indicating steady-increasing input of deeper, gas-rich magma. Since August, geochemical parameters decreased, suggesting that new magma has not arrived from depth. According to our interpretation, both the CO2 efflux and the S/Cl ratio increases observed in early November may indicate a new input of fresh magma form depth. Finally, the estimated volume of degassing magma showed substantial equilibrium between degassed and erupted magma suggesting an “eruptive” steady-state of the volcano.
    Description: INGV, Sezione di Catania; INGV, Sezione di Pisa; University of Cambridge, Cambridge, UK
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; plume gases ; soil CO2 ; eruption ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Concurrent measurement of soil radon, soil thoron and soil CO2 efflux is based on the method developed by Giammanco et al. (Geochem. Geophys. Geosys., 8(10), Q 10001, doi:10.1029/2007GC001644, 2007). An empirical relationship links the 222Rn/220Rn ratio to the CO2 efflux: deep sources of gas are characterized by high 222Rn activity and high CO2 efflux, whereas shallow sources are indicated by high 220Rn activity and relatively low CO2 efflux. This relationship is more constraining on the type and depth of the gas source than using the 222Rn/220Rn ratio alone.We studied the temporal variation of the ratio between CO2 efflux and (222Rn/220Rn), that we define as a Soil Gas Disequilibrium Index (SGDI). Since June 2006, periodical measurements of the SGDI were carried out in ten sites located on the flanks of Mt. Etna, with sampling frequency of about ten days. Remarkable variations in this parameter were recorded during the period 2006-2008 likely associated with changes in the activity level of Mt. Etna. In particular, one of the sites located in the area called Primoti (on the lower east flank of the volcano) has shown significant anomalous changes of the SGDI in time, possibly correlated with the eruptive/tectonic activity. For this reason, in this site we set up an automatic monitoring station made of a Radon/Thoron monitor (model RTM 2100, SARAD GmbH, Germany) coupled with a soil CO2 efflux station (model ACE, ADC BioScientific Ltd., UK). The sampling frequency was set at 30 minutes, in order to allow for a sufficient decay equilibration in the radon isotopes. Air temperature and barometric pressure were recorded as well, with the same sampling rate as for the soil gases. The site chosen for testing the monitoring station is located on the east flank of Mt. Etna at an altitude of about 520 a.s.l., in an area known for widespread diffuse emissions of CO2 and other gases of magmatic origin. The preliminary data acquired so far showed an average soil CO2 efflux of 10 g m􀀀2 d􀀀1 (std dev of about 7 g m􀀀2 d􀀀1) and average 222Rn and 220Rn activities of about 3.3 103 Bq/m3 (std dev of about 1140 Bq/m3) and about 2.0 103 Bq/m3 (std dev of about 620 Bq/m3), respectively. The corresponding values of the SGDI thus obtained varied in the range from about -1.5 to about 70.1, with an average of about 7 and standard deviation of about 6.3. The apparent baseline of the parameter is around the value of 3, and daily variations are clearly detected due to the combined influence of air temperature and barometric pressure. No clear influence from rainfall was observed. Some spikes were also detected, whose origin has to be studied by correlating the SGDI with other environmental parameters as well as with changes in the volcanic/tectonic activity of Mt. Etna.
    Description: INGV, Sezione di Catania
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: Mt. Etna ; soil radon ; CO2 ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-04
    Description: Destruction of human property by lava flow invasion is a significant volcanic hazard at Mount Etna (Italy), where reliable risk maps are important for risk mitigation. We present new high-resolution quantitative risk maps of Mount Etna that are based on lava flow simulations starting from more than 70,000 different potential vents, a probability distribution of vent location, an empirical relationship for the maximum length of lava flows, and a database of buildings. In addition to standard risk maps, which classify areas according to the expected damage at each point, we classify each point of the volcano with respect to the damage that would occur if a vent opened at that point. The resulting maps should help local authorities in making the necessary decisions to deal with ongoing eruptions and to plan long-term land use.
    Description: Published
    Description: 1111-1114
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flows ; Volcanic risk ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-04
    Description: On 30 December 2002, a 25-30 × 106 m3 landslide on the NW flank of Stromboli volcano produced a tsunami that caused relevant damage to the Stromboli village and to the neighboring islands of the Aeolian archipelago. The NW flank of Stromboli has been the site of several, cubic kilometer-scale, landslides during the past 13 ka. In this paper we present sedimentological and compositional data of deep-sea cores recovered from a site located about 24 km north of the island. Our preliminary results indicate that: (i) turbidity currents were effectively generated by the large-scale failures and (ii) volcanogenic turbidity current deposits retain clues of the landslide source and slope failure dynamics. By analogy with Hawaii and the Canary islands we confirm that deep-sea sediments can be effectively used to assess the age and scale of past landslide events giving an important contribution to the tsunami hazard assessment of this region.
    Description: Unpublished
    Description: -
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: reserved
    Keywords: Landslide ; turbidite ; tsunami ; Stromboli ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: Active volcanoes characterized by open conduit conditions generate sonic and infrasonic signals, whose investigation provides useful information for both monitoring purposes and studying the dynamics of explosive processes. In this work, we discuss the automatic procedures implemented for a real-time application to the data acquired by a permanent network of five infrasound stations running at Mt. Etna volcano. The infrasound signals at Mt. Etna consist in amplitude transients, called infrasound events. The adopted procedure uses a multi-algorithm approach for event detection, counting, characterization and location. It is designed for an efficient and accurate processing of infrasound records provided by single-site and array stations. Moreover, the source mechanism of these events can be investigated off-line or in near real-time by using three different models: (1) Strombolian bubble; (2) resonating conduit and (3) Helmholtz resonator. The infrasound waveforms allow us to choose the most suitable model, to get quantitative information about the source and to follow the time evolution of the source parameters.
    Description: Published
    Description: 1215–1231
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Infrasound ; monitoring system ; Mt. Etna volcano ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-02-24
    Description: A multidisciplinary geological and compositional investigation allowed us to reconstruct the occurrence of flank eruptions on the lower NE flank of Stromboli volcano since 15 ka. The oldest flank eruption recognised is Roisa, which occurred at ~15 ka during the Vancori period, and has transitional compositional characteristics between the Vancori and Neostromboli phases. Roisa was followed by the San Vincenzo eruption that took place at ~12 ka during the early stage of Neostromboli period. The eruptive fissure of San Vincenzo gave rise to a large scoria cone located below the village of Stromboli, and generated a lava flow, most of which lies below sea level. Most of the flank eruptions outside the barren Sciara del Fuoco occurred in a short time, between ~9 and 7 ka during the Neostromboli period, when six eruptive events produced scoria cones, spatter ramparts and lava flows. The Neostromboli products belong to a potassic series (KS), and cluster in two differently evolved groups. After an eruptive pause of ~5,000 years, the most recent flank eruption involving the NE sector of the island occurred during the Recent Stromboli period with the formation of the large, highly K calc-alkaline lava flow field, named San Bartolo. The trend of eruptive fissures since 15 ka ranges from N30°E to N55°E, and corresponds to the magma intrusions radiating from the main feeding system of the volcano.
    Description: The mapping of Stromboli was supported by a grant to S. Calvari (Project V2/01, 2005–2007, funded by the Istituto Nazionale di Geofisica e Vulcanologia and by the Italian Civil Protection). This work was partly supported by INGV through a research grant financed by MIUR-FIRB to G. Norini. We wish to thank the former Director of INGV-Sezione di Catania, A. Bonaccorso, for making additional funds available for field trip and datings.
    Description: In press
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Stromboli ; flank fissures ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...