ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (1,781)
  • Cell & Developmental Biology
  • Seismology
  • 2010-2014  (1,945)
  • 1940-1944  (628)
Collection
Years
Year
  • 1
    Publication Date: 2022-06-09
    Description: In the frame of the Italian research project INGV-DPC S2 (http://nuovoprogettoesse2.stru.polimi.it/), funded by the Dipartimento della Protezione Civile (DPC; National Civil Protection Department) within the agreement 2007-2009, a tool for probabilistic seismic hazard assessment (PSHA) was developed. The main goal of the project was to provide a flexible computational tool for PSHA; the requirements considered essential for the success of the project included: •ability to handle both stationary and non-stationary earthquake time-occurrence models; •ability to use ground-motion prediction models that are not parametric equations but probabilistic "footprints" of the intensities generated by earthquakes of known magnitude and focal characteristics. Usually, these footprints are results of ground motion simulations. Some commonly used programs (e.g., FRISK, by McGuire, 1978; SEISRISK III, by Bender and Perkins, 1987) and more recent and state-of-the-art tools (e.g. OpenSHA, by Field et al., 2003, http://www.opensha.org; OpenQuake, http://openquake.org) for PSHA were analyzed. It was decided to focus on CRISIS2007, which was already a mature and well known application (e.g., Kalyan Kumar and Dodagoudar, 2011; Teraphan et al., 2011; D’Amico et al., 2012; see also http://ecapra.org/CRISIS-2007), but also suitable for additional development and evolution since its source code is freely available on request. The computational tool resulted in an extensive redesign and renovation of the previous CRISIS2007 version. CRISIS is a computer program for PSHA, originally developed in the late 1980's using Fortran as programming language (Ordaz, 1991). In this format, still without a graphical user interface (GUI), it was distributed as part of SEISAN tools (Ottemöller et al., 2011). Ten years later, a GUI was constructed, generating what was called CRISIS99 (Ordaz, 1999). In this version, all the graphic features were written in Visual Basic, but the computation engine remained a Fortran dynamic link library. The reason for the use of mixed-language programming was that computations in Visual Basic were extremely slow. Around 2007 the program was upgraded, in view of the advantages offered by the object-oriented technologies. An object-oriented programming language was required and the natural choice was Visual Basic.Net. In the new version (called CRISIS2007), both the GUI and the computation engine were written in the same language. Finally, in the frame of the mentioned S2 project, starting from 2008, the program was split into two logical layers: core (CRISIS Core Library) and presentation (CRISIS2008). In addition, a new presentation layer was developed for accessing the same functionalities via Web (CRISISWeb). It is worth noting that CRISIS has been mainly written by people that are, at the same time, PSHA practitioners. Therefore, the development loop has been relatively short, and most of the modifications and improvements have been made to satisfy the needs of the developers themselves.
    Description: Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 495-504
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic Hazard ; Seismology ; Probabilistic Seismic Hazard Assesment ; PSHA ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1999
    Description: In this thesis the analysis of natural ice events is carried out based on direct measurements of ice-borne seismo-acoustic waves generated by ice fracturing processes. A major reason for studying this phenomenon is that this acoustic emission is a significant contributor to Arctic ocean ambient noise. Also the Arctic contains rich mineral and oil resources and in order to design mining facilities able to withstand the harsh environmental conditions, we need to have a better understanding of the processes of sea ice mechanics. The data analyzed in this thesis were collected during the Sea Ice Mechanics Initiative SIMI’94 experiment which was carried out in the spring of 1994 in the Central Arctic. One of the contributions of this thesis was the determination of the polarization characteristics of elastic waves using multicomponent geophone data. Polarization methods are well known in seismology, but they have never been used for ice event data processing. In this work one of the polarization methods so called Motion Product Detector method has been successfully applied for localization of ice events and determination of polarization characteristics of elastic waves generated by fracturing events. This application demonstrates the feasibility of the polarization method for ice event data processing because it allows one to identify areas of high stress concentration and "hot spots" in ridge building process. The identification of source mechanisms is based on the radiation patterns of the events. This identification was carried out through the analysis of the seismo-acoustic emission of natural ice events in the ice sheet. Previous work on natural ice event identification was done indirectly by analyzing the acoustic energy radiated into the water through coupling from elastic energy in the ice sheet. After identification of the events, the estimation of the parameters of fault processes in Arctic ice is carried out. Stress drop, seismic moment and the type of ice fracture are determined using direct near-field measurements of seismo-acoustic signals generated by ice events. Estimated values of fracture parameters were in good agreement with previous work for marginal ice zone. During data processing the new phenomenon was discovered: "edge waves", which are waves propagating back and forth along a newly opened ice lead. These waves exhibit a quasi-periodic behavior suggesting some kind of stick-slip generation mechanism somewhere along the length of the lead. The propagation characteristics of these waves were determined using seismic wavenumber estimation techniques. In the low frequency limit the dispersion can be modeled approximately by an interaction at the lead edges of the lowest order, antisymmetric modes of the infinite plate.
    Description: Support for this thesis was provided by Office of Naval Research.
    Keywords: Microseisms ; Seismology ; Underwater acoustics ; Remote sensing ; Sea ice ; Ice
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013
    Description: In this thesis we present results from inversion of data using dense arrays of collocated seismic and magnetotelluric stations located in the Cascadia subduction zone region of central Washington. In the migrated seismic section, we clearly image the top of the slab and oceanic Moho, as well as a velocity increase corresponding to the eclogitization of the hydrated upper crust. A deeper velocity increase is interpreted as the eclogitization of metastable gabbros, assisted by fluids released from the dehydration of upper mantle chlorite. A low velocity feature interpreted as a fluid/melt phase is present above this transition. The serpentinized wedge and continental Moho are also imaged. The magnetotelluric image further constrains the fluid/melt features, showing a rising conductive feature that forms a column up to a conductor indicative of a magma chamber feeding Mt. Rainier. This feature also explains the disruption of the continental Moho found in the migrated image. Exploration of the assumption of smoothness implicit in the standard MT inversion provides tools that enable us to generate a more accurate MT model. This final MT model clearly demonstrates the link between slab derived fluids/melting and the Mt. Rainier magma chamber.
    Description: Funding for this work was made possible by the American Society for Engineering education through a National Defense Science and Engineering Fellowship, and by the National Science Foundation through two grants for the CAFE and CAFE MT projects.
    Keywords: Seismic networks ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution February 1994
    Description: Ambient noise in the sea has been observed for over 100 years. Previous studies conclude that the primary source of microseisms is nonlinear interaction of surface gravity waves at the sea surface. Though this source relationship is generally accepted, the actual processes by which the wave generated acoustic noise in the water column couples and propagates to and along the sea floor are not well understood. In this thesis, the sources and propagation of sea floor and sub-sea floor microseismic noise between 0.2 and 10 Hz are investigated. This thesis involves a combination of theoretical, observational and numerical analysis to probe the nature of the microseismic field in the Blake Bahama Basin. Surface waves are the primary mechanism for noise propagation in the crust and fall into two separate groups depending on the relative wavelength/water depth ratio. Asymptotic analysis of the Sommerfeld integral in the complex ray parameter plane shows results that agree with previous findings by Strick (1959) and reveal two fundamental interface wave modes for short wavelength noise propagation in the crust: the Stoneley and pseudo-Rayleigh wave. For ocean sediments, where the shear wave velocity is less than the acoustic wave velocity of water, only the Stoneley interface wave can exist. For well consolidated sediments and basalt, the shear velocity exceeds the acoustic wave velocity of water and the pseudo-Rayleigh wave can also exist. Both interface waves propagate with retrograde elliptic motion at the sea floor and attenuate with depth into the crust, however the pseudo-Rayleigh wave travels along the interface with dispersion and attenuation and "leaks" energy into the water column for a half-space ocean over elastic crust model. For finite depth ocean models, the pseudo-Rayleigh wave is no longer leaky and approaches the Rayleigh wave velocity of the crust. The analysis shows that longer wavelength noise propagates as Rayleigh and Stoneley modes of the ocean+crust waveguide. These long wavelength modes are the fundamental mechanism for long range noise propagation. During the Low Frequency Acoustic Seismic Experiment (LFASE) a four-node, 12- channel borehole array (SEABASS) was deployed in the Blake Bahama Basin off the coast of eastern Florida (DSDP Hole 534B). This experiment is unique and is the first use of a borehole array to measure microseismic noise below the sea floor. Ambient background noise from a one week period is compared between an Ocean Bottom Seismometer (OBS) and SEABASS at sub-bottom depths of 10, 40, 70 and 100 meters below the sea floor. The 0.3 H z microseism peak is found to be nearly invariant with depth and has a power level of 65 and 75 dB rel 1 (nm/ s2)2)/ H z for the vertical and horizontal components respectively. At 100 m depth, the mean microseismic noise levels above 0.7 Hz are 10 dB and 15-20 dB quieter for the vertical and horizontal components respectively. Most of this attenuation occurs in the upper 10 m above 1.0 Hz, however higher modes in the spectra show narrow bandwidth variability in the noise field that is not monotonic with depth. Dispersion calculations show normal mode Stoneley waves below 0.7 Hz and evidence of higher modes above 0.8 Hz. A strong correlation between noise levels in the borehole and local sea state conditions is observed along with clear observation of the nonlinear frequency doubling effect between ocean surface waves and microseisms. Particle motion analysis further verifies that noise propagates through the array as Rayleigh/Stoneley waves. Polarization direction indicates at least two sources; distant westerly swell during quiescent times and local surface waves due to a passing storm. Above 1.0 Hz the LFASE data shows little coherence and displays random polarization. Because of this, we believe scattered energy is a significant component of the noise field in the Blake Bahama Basin. A fully 3-D finite difference algorithm is used to model both surface and volume heterogeneities in the ocean crust. Numerical modeling of wave propagation for hard and soft bottom environments shows that heterogeneities on the order of a seismic wavelength radiate energy into the water column and convert acoustic waves in the water into small wavelength Stoneley waves observed at the borehole. Sea floor roughness is the most important elastic scattering feature of the ocean crust. Comparisons of 2D and 3D rough sea floor models show that out-of-plane effects necessitate the use of 3D methods. The out-of-plane energy that is present in the LFASE data comes from either heterogeneities in the source field (i.e. mixed gravity wave directions) or, equally likely, scattering of the source field from surface or volume heterogeneities in the sea floor.
    Description: This research was supported by Office of Naval Research grants N00014-89-C-0018, N00014-89-J-1012, N00014-90-C-0098, N00014-90-J-1493 and N00014-93-1-1352.
    Keywords: Microseisms ; Ocean bottom ; Seismology ; Boundary layer noise ; Underwater acoustics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-24
    Description: Middle atmospheric water vapor plays an important role in climate and atmospheric chemistry. In the middle atmosphere, water vapor, after ozone and carbon dioxide, is an important radiatively active gas that impacts climate forcing and the energy balance. It is also the source of the hydroxyl radical (OH) whose abundances affect ozone and other constituents. The abundance of water vapor in the middle atmosphere is determined by upward transport of dehydrated air through the tropical tropopause layer, by the middle atmospheric circulation, production by the photolysis of methane (CH4), and other physical and chemical processes in the stratosphere and mesosphere. The Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalysis with GEOS-5 did not assimilate any moisture observations in the middle atmosphere. The plan is to use such observations, available sporadically from research satellites, in future GEOS-5 reanalyses. An overview will be provided of the progress to date with assimilating the EOS-Aura Microwave Limb Sounder (MLS) moisture retrievals, alongside ozone and temperature, into GEOS-5. Initial results demonstrate that the MLS observations can significantly improve the middle atmospheric moisture field in GEOS-5, although this result depends on introducing a physically meaningful representation of background error covariances for middle atmospheric moisture into the system. High-resolution features in the new moisture field will be examined, and their relationships with ozone, in a two-year assimilation experiment with GEOS-5. Discussion will focus on how Aura MLS moisture observations benefit the analyses.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6940.2012 , American Geophysical Union conference; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-29
    Description: Welcome to the Atmospheric Research 2013 Atmospheric Research Highlights report. This report, as before, is intended for a broad audience. Our readers include colleagues within NASA, scientists outside the Agency, science graduate students, and members of the general public. Inside are descriptions of atmospheric research science highlights and summaries of our education and outreach accomplishments for calendar year 2013.This report covers research activities from the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office under the Office of Deputy Director for Atmospheres (610AT), Earth Sciences Division in the Sciences and Exploration Directorate of NASAs Goddard Space Flight Center.
    Keywords: Meteorology and Climatology
    Type: NASA/TM-2014-217517 , GSFC-E-DAA-TN14927
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-27
    Description: The present invention is directed to an apparatus and method for remotely measuring surface air pressure. In one embodiment, the method of the present invention utilizes the steps of transmitting a signal having multiple frequencies into the atmosphere, measuring the transmitted/reflected signal to determine the relative received power level of each frequency and then determining the surface air pressure based upon the attenuation of the transmitted frequencies.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-27
    Description: During boreal summer, convective activity over the eastern Pacific (EPAC) inter-tropical convergence zone (ITCZ) exhibits vigorous intraseasonal variability (ISV). Previous observational studies identified two dominant ISV modes over the EPAC, i.e., a 40-day mode and a quasi-biweekly mode (QBM). The 40-day ISV mode is generally considered a local expression of the Madden-Julian Oscillation. However, in addition to the eastward propagation, northward propagation of the 40-day mode is also evident. The QBM mode bears a smaller spatial scale than the 40-day mode, and is largely characterized by northward propagation. While the ISV over the EPAC exerts significant influences on regional climate/weather systems, investigation of contemporary model capabilities in representing these ISV modes over the EPAC is limited. In this study, the model fidelity in representing these two dominant ISV modes over the EPAC is assessed by analyzing six atmospheric and three coupled general circulation models (GCMs), including one super-parameterized GCM (SPCAM) and one recently developed high-resolution GCM (GFDL HIRAM) with horizontal resolution of about 50 km. While it remains challenging for GCMs to faithfully represent these two ISV modes including their amplitude, evolution patterns, and periodicities, encouraging simulations are also noted. In general, SPCAM and HIRAM exhibit relatively superior skill in representing the two ISV modes over the EPAC. While the advantage of SPCAM is achieved through explicit representation of the cumulus process by the embedded 2-D cloud resolving models, the improved representation in HIRAM could be ascribed to the employment of a strongly entraining plume cumulus scheme, which inhibits the deep convection, and thus effectively enhances the stratiform rainfall. The sensitivity tests based on HIRAM also suggest that fine horizontal resolution could also be conducive to realistically capture the ISV over the EPAC, particularly for the QBM mode. Further analysis illustrates that the observed 40-day ISV mode over the EPAC is closely linked to the eastward propagating ISV signals from the Indian Ocean/Western Pacific, which is in agreement with the general impression that the 40-day ISV mode over the EPAC could be a local expression of the global Madden-Julian Oscillation (MJO). In contrast, the convective signals associated with the 40-day mode over the EPAC in most of the GCM simulations tend to originate between 150degE and 150degW, suggesting the 40-day ISV mode over the EPAC might be sustained without the forcing by the eastward propagating MJO. Further investigation is warranted towards improved understanding of the origin of the ISV over the EPAC.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN8801 , Climate Dynamics; 39; 4-Mar; 617-636
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-27
    Description: An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid- 2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Angstrom exponent. At the same time, it shows an increasing trend in the single scattering albedo, by ~0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.5779.2011 , Geophysical Research Letters (ISSN 0094-8276); 38; L1080
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-27
    Description: Since cirrus clouds have a substantial influence on the global energy balance that depends on their microphysical properties, climate models should strive to realistically characterize the cirrus ice particle size distribution (PSD), at least in a climatological sense. To date, the airborne in situ measurements of the cirrus PSD have contained large uncertainties due to errors in measuring small ice crystals (D〈60 m). This paper presents a method to remotely estimate the concentration of the small ice crystals relative to the larger ones using the 11- and 12- m channels aboard several satellites. By understanding the underlying physics producing the emissivity difference between these channels, this emissivity difference can be used to infer the relative concentration of small ice crystals. This is facilitated by enlisting temperature-dependent characterizations of the PSD (i.e., PSD schemes) based on in situ measurements. An average cirrus emissivity relationship between 12 and 11 m is developed here using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument and is used to retrieve the PSD based on six different PSD schemes. The PSDs from the measurement-based PSD schemes are compared with corresponding retrieved PSDs to evaluate differences in small ice crystal concentrations. The retrieved PSDs generally had lower concentrations of small ice particles, with total number concentration independent of temperature. In addition, the temperature dependence of the PSD effective diameter De and fall speed Vf for these retrieved PSD schemes exhibited less variability relative to the unmodified PSD schemes. The reduced variability in the retrieved De and Vf was attributed to the lower concentrations of small ice crystals in the retrieved PSD.
    Keywords: Meteorology and Climatology
    Type: Journal of Atmospheric Science; 67; 1106-1125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...