ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (665)
  • AGU (American Geophysical Union)  (395)
  • Copernicus Publications (EGU)  (270)
  • 2010-2014  (664)
  • 1965-1969  (1)
Collection
  • Other Sources  (665)
Source
Years
Year
  • 1
    Publication Date: 2017-07-17
    Description: In order to test the influences of ocean acidification on the ocean pelagic ecosystem, so far the largest CO2 manipulation mesocosm study (European Project on Ocean Acidification, EPOCA) was performed in Kings Bay (Kongsfjorden), Spitsbergen. During a 30 day incubation, bacterial diversity was investigated using DNA fingerprinting and clone library analysis of bacterioplankton samples. Terminal restriction fragment length polymorphism (T-RFLP) analysis of the PCR amplicons of the 16S rRNA genes revealed that general bacterial diversity, taxonomic richness and community structure were influenced by the variation of productivity during the time of incubation, but not the degree of ocean acidification. A BIOENV analysis suggested a complex control of bacterial community structure by various biological and chemical environmental parameters. The maximum apparent diversity of bacterioplankton (i.e., the number of T-RFs) in high and low pCO2 treatments differed significantly. A negative relationship between the relative abundance of Bacteroidetes and pCO2 levels was observed for samples at the end of the experiment by the combination of T-RFLP and clone library analysis. Our study suggests that ocean acidification affects the development of bacterial assemblages and potentially impacts the ecological function of the bacterioplankton in the marine ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 96 (C1). pp. 821-827.
    Publication Date: 2017-07-20
    Description: The seasonal variation of the intrusion of the Philippine Sea Water into the South China Sea was studied by analyzing the historical hydrographic station data in the northern South China Sea and the Philippine Sea. Water masses at 150, 200, and 250 m were classified by discriminant analysis according to their temperature-salinity characteristics. At each depth, most water in the study region was classified into two groups representing the Philippine Sea Water and the South China Sea Water, respectively. The geographic distribution of water masses in the South China Sea shows that the Philippine Sea Water was present along the continental margin south of China between October and January. A westward current in the northern South China Sea in winter was inferred from the distribution of the intrusion water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Dynamics, 5 (2). pp. 383-397.
    Publication Date: 2018-03-15
    Description: The Atlantic meridional overturning circulation (AMOC) carries large amounts of heat into the North Atlantic influencing climate regionally as well as globally. Palaeo-records and simulations with comprehensive climate models suggest that the positive salt-advection feedback may yield a threshold behaviour of the system. That is to say that beyond a certain amount of freshwater flux into the North Atlantic, no meridional overturning circulation can be sustained. Concepts of monitoring the AMOC and identifying its vicinity to the threshold rely on the fact that the volume flux defining the AMOC will be reduced when approaching the threshold. Here we advance conceptual models that have been used in a paradigmatic way to understand the AMOC, by introducing a density-dependent parameterization for the Southern Ocean eddies. This additional degree of freedom uncovers a mechanism by which the AMOC can increase with additional freshwater flux into the North Atlantic, before it reaches the threshold and collapses: an AMOC that is mainly wind-driven will have a constant upwelling as long as the Southern Ocean winds do not change significantly. The downward transport of tracers occurs either in the northern sinking regions or through Southern Ocean eddies. If freshwater is transported, either atmospherically or via horizontal gyres, from the low to high latitudes, this would reduce the eddy transport and by continuity increase the northern sinking which defines the AMOC until a threshold is reached at which the AMOC cannot be sustained. If dominant in the real ocean this mechanism would have significant consequences for monitoring the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Tectonics, 8 (3). pp. 497-516.
    Publication Date: 2017-11-01
    Description: Multichannel seismic reflection data were used to determine the evolutionary history of the forearc region of the central Aleutian Ridge. Since at least late Miocene time this sector of the ridge has been obliquely underthrust 30° west of orthogonal convergence by the northwestward converging Pacific plate at a rate of 80–90 km/m.y. Our data indicate that prior to late Eocene time the forearc region was composed of rocks of the arc massif thinly mantled by slope deposits; the forearc region probably lacked both major depositional basins and a tectonically attached accretionary prism of offscraped oceanic deposits. Beginning in latest Miocene or earliest Pliocene time, a zone of outer-arc structural highs and a forearc basin began to form. Formation of these companion intraarc structures may be linked to the late Neogene growth of an accretionary wedge that formed as the result of the deposition of a thick turbidite wedge in the Aleutian Trench. Initial structures of the zone of outer-arc highs formed as the thickening wedge underran, compressively deformed, and uplifted the seaward edge of the arc massif above a landward dipping backstop thrust. Forearc basin strata ponded arcward of the elevating zone of outer-arc highs. However, most younger structures of the zone of outer-arc highs cannot be ascribed simply to the orthogonal effects of an underrunning wedge. Oblique convergence created a major right-lateral shear zone (the Hawley Ridge shear zone) that longitudinally disrupted the zone of outer-arc highs, truncating the seaward flank of the forearc basin and shearing the southern limb of Hawley Ridge, an exceptionally large antiformal outer-arc high structure. Slivers of forearc basement rocks and overlying strata have been transported along the shear zone that is flanked by differentially elevated structures attributed to localized transpressive and transtensional processes. Uplift of Hawley Ridge may be related to the thickening of the arc massif by westward directed basement duplexes. In addition, the forearc is disrupted by structures transverse to the margin that occur where unusually high-stress accumulations have resulted in the rupture of repeated great earthquakes. It is likely that many ancient active margins evolved in tectonic and depositional settings similar to those of the central Aleutian Ridge. Great structural complexity, including the close juxtaposition of coeval structures recording compression, extension, differential vertical movements, and strike-slip displacement, should be expected, even within areas of generally kindred tectonostratigraphic terranes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 8 (5). pp. 469-472.
    Publication Date: 2017-11-20
    Description: Several geochemical anomalies were observed before the Haichen, Longling, Tangshan, and Songpan earthquakes and their strong aftershocks. They included changes in groundwater radon levels; chemical composition of the groundwater (concentration of Ca++, Mg++, Cl−, SO4= and HCO3− ions); conductivity; and dissolved gases such as H2, CO2, etc. In addition, anomalous changes in water color and quality were observed before these large earthquakes. Before some events gases escaped from the surface, and there were reports of "ground odors" being smelled by local residents. The large amount of radon data can be grouped into long-term and short-term anomalies. The long-term anomalies have a radon emission build up time of from a few months to more than a year. The short-term anomalies have durations from a few hours or less to a few months.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research, 70 (14). pp. 3457-3474.
    Publication Date: 2017-12-21
    Description: The possibility of using the 15% excess U234 activity in oceanic uranium for dating pelagic sediments in the age range 100,000 years to more than 1 m.y. has been explored. Results from a series of analyses of bulk samples, mechanical separates, and acid leach fractions indicate that separation of authigenic uranium from detrital uranium by either mechanical or chemical means is impractical. Measurements on totally dissolved samples reveal that the sediments do not form a closed system; post-depositional migration of U234 in the sedimentary column takes place. Based on the experimental data obtained from three red-clay cores with sedimentation rates ranging from 2 to 6 mm/1000 yr, a model depicting diffusion of the U234 generated within the sediments is proposed. The diffusion equation includes three parameters: sedimentation rate, diffusion coefficient for U234, and fraction of the internally produced U234 subject to mobility. If the amount of U234 lost from these cores is typical, a sizeable part of the U234 excess in the sea must be from this source.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 1 (2). pp. 155-161.
    Publication Date: 2018-04-19
    Description: Until reliable procedures have been developed to preserve the phosphorus contained in particulate matter captured by in situ pumps and sediment traps and until these procedures are applied over a wide range of locations and depths in the sea, indirect methods will have to be used to determine the C/P ratio in marine detritus. We have taken two such approaches: (1) the use of C/N ratios for particulates captured in the upper thermocline in conjunction with 02/P and N/P ratios obtained from deconvolutions of ocean chemical data and (2) regression along isopycnals in the deep‐sea waters free of fossil fuel CO2. While neither approach yields a definitive answer, both suggest that a value of 127 carbon atoms per phosphorus atom would be a more appropriate interim value than that of 106 adopted long ago by A. C. Redfield and his associates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 14 (6). pp. 1693-1702.
    Publication Date: 2017-01-09
    Description: Axial volcanic ridges (AVRs) are found on most slow-spreading mid-ocean ridges and are thought to be the main locus of volcanism there. In this study we present high-resolution mapping of a typical, well-defined AVR on the Mid-Atlantic Ridge at 45°N. The AVR is characterized by “hummocky terrain,” composed typically of hummocks with pillowed or elongate pillowed flanks with pillowed or lobate lava flow summits, often with small haystacks sitting on their highest points. The AVR is surrounded by several areas of “flat seafloor,” composed of lobate and sheet lava flows. The spatial and morphological differences between these areas indicate different eruption processes operating on and off the AVR. Volcanic fissures are found all around and on the AVR, although those with the greatest horizontal displacement are found on the ridge crest and flat seafloor. Clusters of fissures may represent volcanic vents. Extremely detailed comparisons of sediment coverage and examination of contact relations around the AVR suggest that many of the areas of flat seafloor are of a similar age or younger than the hummocky terrain of the AVR. Additionally, all the lavas surveyed have similar degrees of sediment cover, suggesting that the AVR was either built or resurfaced in the same 50 ka time frame as the flat seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 116 (C8). C08032.
    Publication Date: 2017-10-24
    Description: The Norwegian Atlantic Current (NwAC) and its eddy field are examined using data from surface drifters. The data set used spans nearly 20 years, from June 1991 to December 2009. The results are largely consistent with previous estimates, which were based on data from the first decade only. With our new data set, statistical analysis of the mean fields can be calculated with larger confidence. The two branches of the NwAC, one over the continental slope and a second further offshore, are clearly captured. The Norwegian Coastal Current is also resolved. In addition, we observe a semipermanent anticylonic eddy in the Lofoten Basin, a feature seen previously in hydrography and in models. The eddy kinetic energy (EKE) is intensified along the path of the NwAC, with the largest values occurring in the Lofoten Basin. The strongest currents, exceeding 100 cm s−1, occur west of Lofoten. Lateral diffusivities were computed in five domains and ranged from 1–5 × 107 cm2 s−1. The Lagrangian integral time and space scales are 1–2 days and 7–23 km, respectively. The data set allows studies of seasonal and interannual variations as well. The strongest seasonal signal is in the NwAC itself, as the mean flow strengthens by approximately 20% in winter. The EKE and diffusivities on the other hand do not exhibit consistent seasonality in the sampled regions. There are no consistent indications of changes in either the mean or fluctuating surface velocities between the 1990s and 2000s.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-06-20
    Description: Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 ± 1.1 mm yr−1 (2.6 polyps per year). Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 100 (B6). pp. 9761-9788.
    Publication Date: 2017-11-27
    Description: Seismic techniques provide the highest-resolution measurements of the structure of the crust and have been conducted on a worldwide basis. We summarize the structure of the continental crust based on the results of seismic refraction profiles and infer crustal composition as a function of depth by comparing these results with high-pressure laboratory measurements of seismic velocity for a wide range of rocks that are commonly found in the crust. The thickness and velocity structure of the crust are well correlated with tectonic province, with extended crust showing an average thickness of 30.5 km and orogens an average of 46.3 km. Shields and platforms have an average crustal thickness nearly equal to the global average. We have corrected for the nonuniform geographical distribution of seismic refraction profiles by estimating the global area of each major crustal type. The weighted average crustal thickness based on these values is 41.1 km. This value is 10% to 20% greater than previous estimates which underrepresented shields, platforms, and orogens. The average compressional wave velocity of the crust is 6.45 km/s, and the average velocity of the uppermost mantle (Pn velocity) is 8.09 km/s. We summarize the velocity structure of the crust at 5-km depth intervals, both in the form of histograms and as an average velocity-depth curve, and compare these determinations with new measurements of compressional wave velocities and densities of over 3000 igneous and metamorphic rock cores made to confining pressures of 1 GPa. On the basis of petrographic studies and chemical analyses, the rocks have been classified into 29 groups. Average velocities, densities, and standard deviations are presented for each group at 5-km depth intervals to crustal depths of 50 km along three different geotherms. This allows us to develop a model for the composition of the continental crust. Velocities in the upper continental crust are matched by velocities of a large number of lithologies, including many low-grade metamorphic rocks and relatively silicic gneisses of amphibolite facies grade. In midcrustal regions, velocity gradients appear to originate from an increase in metamorphic grade, as well as a decrease in silica content. Tonalitic gneiss, granitic gneiss, and amphibolite are abundant midcrustal lithologies. Anisotropy due to preferred mineral orientation is likely to be significant in upper and midcrustal regions. The bulk of the lower continental crust is chemically equivalent to gabbro, with velocities in agreement with laboratory measurements of mafic granulite. Garnet becomes increasingly abundant with depth, and mafic garnet granulite is the dominant rock type immediately above the Mohorovicic discontinuity. Average compressional wave velocities of common crustal rock types show excellent correlations with density. The mean crustal density calculated from our model is 2830 kg/m3, and the average SiO2 content is 61.8%.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 100 (B5). pp. 8115-8131.
    Publication Date: 2017-01-23
    Description: We present a conceptual model of fluid circulation in a ridge flank hydrothermal system, the Mariana Mounds. The model is based on chemical data from pore waters extracted from piston cores and from push cores collected by deep-sea research vessel Alvin in small, meter-sized mounds situated on a local topographic high. These mounds are located within a region of heat flow exceeding that calculated from a conductive model and are zones of strong pore water upflow. We have interpreted the chemical data with time-dependent transport-reaction models to estimate pore water velocities. In the mounds themselves pore water velocities reach several meters per year to kilometers per year. Within about 100 m from these zones of focused upflow velocities decrease to several centimeters per year up to tens of centimeters per year. A larger area of low heat flow surrounds these heat flow and topographic highs, with upwelling pore water velocities less than 2 cm/yr. In some nearby cores, downwelling of bottom seawater is evident but at speeds less than 2 cm/yr. Downwelling through the sediments appears to be a minor source of seawater recharge to the basaltic basement. We conclude that the principal source of seawater recharge to basement is where basement outcrops exist, most likely a scarp about 2–4 km to the east and southeast of the study area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-07-17
    Description: Cold-water coral (CWC) reefs are heterogeneous ecosystems comprising numerous microhabitats. A typical European CWC reef provides various biogenic microhabitats (within, on and surrounding colonies of coral species such as Lophelia pertusa, Paragorgia arborea and Primnoa resedaeformis, or formed by their remains after death). These microhabitats may be surrounded and intermixed with non-biogenic microhabitats (soft sediment, hard ground, gravel/pebbles, steep walls). To date, studies of distribution of sessile fauna across CWC reefs have been more numerous than those investigating mobile fauna distribution. In this study we quantified shrimp densities associated with key CWC microhabitat categories at the Røst Reef, Norway, by analysing image data collected by towed video sled in June 2007. We also investigated shrimp distribution patterns on the local scale (〈40 cm) and how these may vary with microhabitat. Shrimp abundances at the Røst Reef were on average an order of magnitude greater in biogenic reef microhabitats than in non-biogenic microhabitats. Greatest shrimp densities were observed in association with live Paragorgia arborea microhabitat (43 shrimp m−2, SD = 35.5), live Primnoa resedaeformis microhabitat (41.6 shrimp m−2, SD = 26.1) and live Lophelia pertusa microhabitat (24.4 shrimp m−2, SD = 18.6). In non-biogenic microhabitat, shrimp densities were 〈2 shrimp m−2. CWC reef microhabitats appear to support greater shrimp densities than the surrounding non-biogenic microhabitats at the Røst Reef, at least at the time of survey.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-06-19
    Description: Submarine canyons are known as one of the seafloor morphological features where living cold-water coral (CWC) communities develop in the Mediterranean Sea. We investigated the CWC community of the two westernmost submarine canyons of the Gulf of Lions canyon system: the Cap de Creus Canyon (CCC) and Lacaze-Duthiers Canyon (LDC). Coral associations have been studied through video material recorded by means of a manned submersible and a remotely operated vehicle. Video transects have been conducted and analyzed in order to obtain information on (1) coral bathymetric distribution and density patterns, (2) size structure of coral populations, and (3) coral colony position with respect to the substrate. Madrepora oculata was the most abundant CWC in both canyons, while Lophelia pertusa and Dendrophyllia cornigera mostly occurred as isolated colonies or in small patches. An important exception was detected in a vertical cliff in LDC where a large L. pertusa framework was documented. This is the first record of such an extended L. pertusa framework in the Mediterranean Sea. In both canyons coral populations were dominated by medium and large colonies, but the frequent presence of small-sized colonies also indicate active recruitment. The predominant coral orientation (90° and 135°) is probably driven by the current regime as well as by the sediment load transported by the current flows. In general, no clear differences were observed in the abundance and in the size structure of the CWC populations between CCC and LDC, despite large differences in particulate matter between canyons.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-09-01
    Description: Methane is a potent greenhouse gas and large-scale rapid release of methane from hydrate may have contributed to past abrupt climate change inferred from the geological record. The discovery in 2008 of over 250 plumes of methane gas escaping from the seabed of the West Svalbard continental margin at ~400 m water depth (mwd) suggests that hydrate is dissociating in the present-day Arctic. Here we model the dynamic response of hydrate-bearing sediments over a period of 2300 years and investigate ocean warming as a possible cause for present-day and likely future dissociation of hydrate, within 350–800 mwd, west of Svalbard. Future temperatures are given by two climate models, HadGEM2 and CCSM4, and scenarios, Representative Concentration Pathways (RCPs) 8.5 and 2.6. Our results suggest that over the next three centuries 5.3–29 Gg yr−1 of methane may be released to the Arctic Ocean on the West Svalbard margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research, 76 (32). pp. 8021-8041.
    Publication Date: 2017-10-12
    Description: Aftershocks of shallow earthquakes larger than magnitude 7 in the Aleutians, southern Alaska, southeast Alaska, and offshore British Columbia from 1920 to 1970 were relocated by computer in an attempt to delineate the rupture zones of large earthquakes. Plate tectonic theory indicates that gaps in activity for large earthquakes for the past 10's to 100's of years are likely sites of future large earthquakes. Three prominent gaps of this type are delineated: one in southeast Alaska; another in southern Alaska near the epicenters of the great earthquakes of 1899 and 1900; and one in the far western Aleutians. These gaps deserve high priority for study and instrumentation. Large earthquakes appear to be much more regular than smaller shocks in their distributions with respect to space, time, and size. Aftershock zones of events since 1930 that are larger than magnitude 7.8 are longer than 250 km and those less than 7.5 are shorter than 125 km. The rupture zones of events that occurred before 1930 could not be delineated from aftershock locations. Aftershock zones of large earthquakes tend to abut without significant overlap even for rupture zones as long as 1200 km. Nearly the entire Alaska-Aleutian zone from 145°W to 171°E has broken since 1938 in a series of large earthquakes. The rupture zones of five large events appear to form a space-time sequence that progressed from 155°W in 1938 to 171°E in 1965. This sequence is much like the well-known westward progression of activity since 1939 along the North Anatolian fault. Shocks with long rupture zones tend to occur along those parts of the Alaska-Aleutian zone that are relatively simple tectonically. The ends of many aftershock zones of large earthquakes are located at the intersection of major transverse features with the Aleutian arc. Large earthquakes rarely, if ever, reoccur along the same part of a fault zone in less than several tens of years, i.e. within a time less than that for substantial strain accumulation. Events of comparable magnitude that occur soon after some great earthquakes usually involve rupture in a region adjacent to but different from that of the main shock. The March 30, 1965, earthquake of magnitude 7.5, which involved normal faulting in the Aleutian trench, appears to have been triggered by thrust faulting along the adjacent inner margin of the trench in the magnitude 7.9 earthquake of February 4, 1965. Large events of the thrust type are commonly followed within ten years by events involving normal faulting in the adjacent part of the trench. Estimates of average displacements and of the repeat times of great earthquakes from measurements of 20-sec surface waves are systematically too small and do not agree with the meager historic record of great shocks. Other estimates of repeat times vary from 30 to 850 years, but neither of these extremes appears to be typical. The aftershock zone of the April 1, 1946, Aleutian earthquake, which generated one of the largest and most widespread seismic sea waves in the Pacific during this century, was very small. A large displacement of the ocean floor may be responsible for the generation of the large sea wave. An average displacement of 2.4 to 4.1 meters was calculated from amplitudes of 100-sec waves.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 7 (3). pp. 679-694.
    Publication Date: 2017-11-03
    Description: We measured the respiratory isotope effect ϵresp for seven representative unicellular marine organisms. The bacterium Pseudomonas halodurans, the diatom Phaeodactylum tricornutum, the phytoflagellates Cryptomonas baltica and Dunaliella tertiolecta, the heterotrophic flagellates Paraphysomonas imperforata and Bodo sp., and the ciliate Uronema sp. exhibit ϵresp values in the range 14-26‰. We also measured ϵresp for three metazoans. The ϵresp for the copepod Acartia tonsa ranged from 17 to 25‰, while two larger organisms, the mollusk Mercenaria mercenaria and the salmon Salmo salmar, respire with a smaller ϵresp of 5-10‰. The average respiratory isotope effect of the dominant marine respirers (the bacteria, microalgae and zooplankton) is about 20 ± 3‰. An ϵresp of this magnitude supports the hypothesis that the photosynthesis-respiration cycle is responsible for the 23.5‰ enrichment in the δ18O ratio of atmospheric O2 relative to seawater (the Dole effect). The large value and high variability in the average ϵresp limits the usefulness of a proposed method using the δ18O of naturally fractionated dissolved O2 in seawater as a tracer of primary production in the oligotrophic ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 8 (3). pp. 363-376.
    Publication Date: 2017-11-03
    Description: We review the current understanding of the Dole effect (the observed difference between the δ18O of atmospheric O2 and that of seawater) and its causes, extend the record of variations in the Dole effect back to 130 kyr before present using data on the δ18O of O2 obtained from studying the Vostok ice core (Sowers et al., 1993), and discuss the significance of temporal variations. The Dole effect reflects oxygen isotope fractionation during photosynthesis, respiration, and hydrologic processes (evaporation, precipitation, and evapotranspiration). Our best prediction of the present-day Dole effect, +20.8‰, is considerably lower than the observed value, +23.5‰, and we discuss possible causes of this discrepancy. During the past 130 kyr, the Dole effect has been 0.05‰ lower than the present value, on average. The standard deviation of the Dole effect from the mean has been only ±0.2‰, and the Dole effect is nearly unchanged between glacial maxima and interglacial periods. The small variability in the Dole effect suggests that relative rates of primary production in the land and marine realms have been relatively constant. Most periodic variability in the Dole effect is in the precession band, suggesting that changes in this global biogeochemical term reflects variations in low-latitude land hydrology and productivity or possibly variability in low-latitude oceanic productivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 5 (5). pp. 823-833.
    Publication Date: 2018-04-24
    Description: Much attention has been paid, in recent years, to the potential application of the Ce anomaly, measured in various marine phases, as a paleoceanographic indicator of widespread marine anoxia. In this paper we present and discuss results from recent studies of present‐day rare earth element (REE) distributions (and hence Ce anomaly distributions) in the marine environment which are particularly pertinent to paleoceanography. Subsequently, we review and discuss the validity of the recent literature in which Ce anomalies have been employed as paleoredox indicators.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Tectonics, 30 (4). TC4001.
    Publication Date: 2019-08-05
    Description: On Syros, high‐pressure metamorphism affects a lithological pile that is composed of, from base to top: (1) the Komito‐Vari granitic basement, (2) a margin sedimentary sequence that is predominantly made of marbles and schists (the Pyrgos and Kastri units), and (3) the Kambos metaophiolitic mélange. The tectonic history occurred in three main stages. During the first stage, in the mid‐Eocene, the Kambos oceanic unit was thrust southward on top of the sedimentary pile. Top‐to‐the‐south‐southwest ductile senses of shear are synchronous with prograde high‐pressure metamorphism and associated with this thrusting event. The second stage corresponds to a top‐to‐the‐northeast ductile shear that affects the whole metamorphic pile and is synchronous with the metamorphic retrogression from eclogite to greenschist facies. However, the Kambos oceanic unit remained partly undeformed, as shown by significant volumes containing undeformed lawsonite pseudomorphs. No major extensional detachment related to this exhumation event outcrops on the island. The localized semibrittle to brittle deformation of the third stage is associated with the postmetamorphic development of (1) a ramp‐flat extensional system at the island scale, whose southward minimum displacement is estimated at approximately 7 km, and (2) two sets of steeply dipping strike‐slip faults with a normal component, trending either east–west or around north–south, indicating that the mean stretching and shortening directions are trending NNE–SSW and ESE–WNW, respectively. This sequence of major tectonic events and their relationship to metamorphism are interpreted within the framework of the subduction of the Pindos Ocean and then of the Adria continental passive margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 11 (3). pp. 833-842.
    Publication Date: 2017-05-09
    Description: In this study we present a comparative quantification of CaCO3 production rates by rhodolith-forming coralline red algal communities situated in high polar latitudes and assess which environmental parameters control these production rates. The present rhodoliths act as ecosystem engineers, and their carbonate skeletons provide an important ecological niche to a variety of benthic organisms. The settings are distributed along the coasts of the Svalbard archipelago, being Floskjeret (78◦180N) in Isfjorden, Krossfjorden (79◦080N) at the eastern coast of Haakon VII Land, Mosselbukta (79◦530N) at the eastern coast of Mosselhalvøya, and Nordkappbukta (80◦310N) at the northern coast of Nordaustlandet. All sites feature Arctic climate and strong seasonality.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 7 (6). pp. 815-831.
    Publication Date: 2017-07-25
    Description: Abundances of 12 species of planktonic foraminifera collected in two plankton tows from the east tropical Atlantic are compared to the chlorophyll content and the temperature of the sea water from which they were collected. As expected from previous work in the tropics, all dominant tropical species occur in greatest abundance within the photic zone. Many species occur in greatest abundances in the seasonal thermocline in association with the maximum chlorophyll concentration, while a few algal symbiont-bearing species occur in greatest abundance in the mixed layer. The δ18O measurements of planktonic foraminifera shells from core top sediment samples confirm the vertical stratification within the photic zone that is suggested by the relationship between hydrography and abundances found in the plankton tows and found in the statistical study by Ravelo et al. [1990]. Comparison between the measured δ18O values of planktonic foraminifera with the predicted δ18O profiles of the overlying water column at three core locations indicate that species abundances in the sediment record the seasonally integrated conditions of the photic zone and suggests that the abundance of a species in the sediment depends on whether the preferred ecological conditions of that species may be found within the photic zone of the overlying water column sometime during the year. Species which calcify below the photic zone have only trace relative abundances. Finally, it appears that the total range of δ18O values of the dominant species approximates the predicted annual δ18O of calcite range in the upper 80 m of the water column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 99 (B2). pp. 3067-3080.
    Publication Date: 2017-12-07
    Description: Pore water has been analyzed from sediment cores taken from three areas on the eastern flank of the Juan de Fuca Ridge as part of FlankFlux 90, a study of hydrothermal circulation through mid-ocean ridge flanks. Seismic reflection and heat flow surveys (Davis et al., 1992a) indicate that the three areas differ in sediment thickness, basement topography, abundance of outcrops, basement temperature, and fraction of heat lost by advection versus conduction. Area 1 is on 0.6 Ma crust with nearly continuous basement outcrop, area 2 is on 1.3 Ma crust over the first buried ridge parallel to the present ridge axis, and area 3 is on 3.5–3.8 Ma crust over two axis-parallel buried ridges that penetrate the sediment cover in three locations. Each area includes a hydrothermal system in which seawater flows into basement, reacts with crustal basalt, and then exits basement either through the sediment or directly into the overlying water column. As constrained by concentrations of sulfate and lithium in the pore waters, at least some seawater enters basement in all three areas without reacting fully with the overlying sediment, even where no outcrops are known nearby. Speeds of up welling of pore water through the sediment have been estimated by fitting profiles of dissolved magnesium and chlorinity, which behave conservatively in these areas, to numerical time-dependent transport models. The estimated velocities range from 〈0.1 to 7.4 cm/yr; faster flows probably occur but were not sampled. Upwelling speed correlates positively with heat flow and basement highs and negatively with sediment thickness. The correlation with heat flow differs from area 2 to area 3 along with differences in physical properties of the turbidite sediment. We have documented pore water upwelling through sediment up to 100 m thick. We estimate that upwelling continues at decreasing speeds through sediment up to 160 m thick, corresponding to a heat flow of 0.44 W/m2 in area 2 and 0.3 W/m2 in area 3. Concentrations of magnesium and chlorinity in the altered seawater upwelling from basement are uniform within each area but differ from one area to the next. Both species remain at the bottom seawater concentration in area 1, where basement is cooled to 〈10°C at the base of the sediments mainly by advection. The concentration of magnesium decreases with increasing basement temperature in areas 2 and 3 to a minimum of 2.5 mmol/kg at about 90°C in area 3. The transition from largely advective to largely conductive heat loss occurs over only 20 km between areas 1 and 2 and corresponds to a dramatic change in the composition of fluid circulating through basement, as the uppermost basement is heated from 〈10° to 40–50°C. Chlorinity of the basement fluid increases above the present-day bottom seawater concentration in areas 2 and 3 and in nearly all other mid-ocean ridge flanks studied to date, as a result of rock hydration and the higher chlorinity of bottom seawater during the last glacial period. While chlorinity generally correlates positively with uppermost basement temperature in various ridge flank hydrothermal systems, it reaches a maximum in area 2 at only 40°C, probably because alteration there occurs at a lower water/rock ratio than elsewhere. For all mid-ocean ridge flanks studied to date, the temperature at the basement interface correlates better with the fraction of heat lost by advection versus conduction and with the average thickness of the sediment cover than with crustal age.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 20 (22). pp. 2467-2470.
    Publication Date: 2018-02-22
    Description: An examination of 311 intraplate earthquakes in the Australian plate portion of the Pacific Ocean basin reported from 1918 to 1990 reveals that only 113 events are reliably intraplate, with most of the rest relocating to active trenches and transforms. The non-random distribution of the reliably intraplate events gives insight into the tectonic stresses present. The central Tasman Sea is mostly aseismic except for a swarm of activity at the predicted site of the Tasmantid hot spot. To the north, the broad regions of the Coral Sea, South Fiji Basin and Lord Howe Rise show very little intraplate seismicity, yet the narrow Norfolk Ridge and Three Kings Rise, caught between the double convergence of the New Hebrides and Tonga subduction zones, support many more earthquakes. High levels of intraplate seismicity in the southern Tasman Sea adjacent to the Macquarie Ridge Complex (MRC) indicate that this region may be undergoing internal deformation due to the unusual nature of the Australia-Pacific plate boundary. Additional support exists in the form of intraplate focal mechanisms similar to those at the plate boundary and a set of parallel gravity rolls which are observed in recent geoid maps. Some aftershocks of the Mw = 8.2 Macquarie Ridge earthquake of 1989 occurred in a fracture zone west of the Macquarie Ridge Complex [Das, 1992], but we have found several earthquakes from as early as 1924 which relocate to this feature, suggesting that its reactivation may be more significant than previously thought. This reactivation of a fossil fracture zone may be the result of the increasing amount of oblique convergence between the Australia and Pacific plates at the Macquarie Ridge Complex, formerly a spreading center, and the stresses associated with subducting recently formed Australian ocean crust beneath the older Pacific plate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  In: The Mediterranean Sea. , ed. by Borzelli, G. L. E., Gačić, M., Lionello, P. and Malanotte‐Rizzoli, P. Geophysical Monograph Series, 202 . AGU (American Geophysical Union), Wiley, Washington, pp. 75-83.
    Publication Date: 2020-08-03
    Description: The eastern Mediterranean transient (EMT) was caused by a combination of high‐salinity waters intruding into the Aegean Sea and the two particularly strong winters of 1991–1992 and 1992–1993. The approach in this chapter is to search for specific signatures in the historic hydrographic observations, which date back to 1910. To deal with the problem that up into the 1950s the data not only are of limited precision but also have gaps of about 20 years, it is advantageous to consider the fact that the evolution of the actual EMT is rather well documented over a similar time span. The chapter begins by outlining the characteristics of the current EMT. Thereafter, a selection of suitable hydrographic observations among the available historic data is provided to compare these with signatures expected from the evolution of the actual EMT.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 115 (C10). C10014.
    Publication Date: 2019-09-23
    Description: The Mauritanian coastal area is one of the most biologically productive upwelling regions in the world ocean. Shipboard observations carried out during maximum upwelling season and short-term moored observations are used to investigate diapycnal mixing processes and to quantify diapycnal fluxes of nutrients. The observations indicate strong tide-topography interactions that are favored by near-critical angles occurring on large parts of the continental slope. Moored velocity observations reveal the existence of highly nonlinear internal waves and bores and levels of internal wave spectra are strongly elevated near the buoyancy frequency. Dissipation rates of turbulent kinetic energy at the slope and shelf determined from microstructure measurements in the upper 200 m averages to ɛ = 5 × 10−8 W kg−1. Particularly elevated dissipation rates were found at the continental slope close to the shelf break, being enhanced by a factor of 100 to 1000 compared to dissipation rates farther offshore. Vertically integrated dissipation rates per unit volume are strongest at the upper continental slope reaching values of up to 30 mW m−2. A comparison of fine-scale parameterizations of turbulent dissipation rates for shelf regions and the open ocean to the measured dissipation rates indicates deficiencies in reproducing the observations. Diapycnal nitrate fluxes above the continental slope at the base of the mixed layer yielding a mean value of 12 × 10−2 μmol m−2 s−1 are amongst the largest published to date. However, they seem to only represent a minor contribution (10% to 25%) to the net community production in the upwelling region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 13 . Q05013.
    Publication Date: 2018-02-28
    Description: Water transported by slabs into the mantle at subduction zones plays key roles in tectonics, magmatism, fluid and volatiles fluxes, and most likely in the chemical evolution of the Earth's oceans and mantle. Yet, incorporation of water into oceanic plates before subduction is a poorly understood process. Several studies suggest that plates may acquire most water at subduction trenches because the ocean crust and uppermost mantle there are intensely faulted caused by bending and/or slab pull, and display anomalously low seismic velocities. The low velocities are interpreted to arise from a combination of fluid-filled fractures associated to normal faulting and mineral transformation by hydration. Mantle hydration by transformation of nominally dry peridotite to water-rich serpentinite could potentially create the largest fluid reservoir in slabs and is therefore the most relevant for the transport of water in the deep mantle. The depth of fracturing by normal-fault earthquakes is usually not well constrained, but could potentially create deep percolation paths for water that might hydrate up to tens of kilometers into the mantle, restrained only by serpentine stability. Yet, interpretation of deep intraplate mineral alteration remains speculative because active-source seismic experiments have sampled only the uppermost few kilometers of mantle, leaving the depth-extent of anomalous velocities and their relation to faulting unconstrained. Here we use a joint inversion of active-source seismic data, and both local and regional earthquakes to map the three dimensional distribution of anomalous velocities under a seismic network deployed at the trench seafloor. We found that anomalous velocities are restrained to the depth of normal-fault micro-earthquake activity recorded in the network, and are considerably shallower than either the rupture depth of teleseismic, normal-fault earthquakes, or the limit of serpentine stability. Extensional micro-earthquakes indicate that each fault in the region slips every 2–3 months which may facilitate regular water percolation. Deeper, teleseismic earthquakes are comparatively infrequent, and possibly do not cause significant fracturing that remains open long enough to promote alteration detectable with our seismic study. Our results show that the stability field of serpentine does not constrain the depth of potential mantle hydration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-04-21
    Description: The Mediterranean Sea is a semi-enclosed sea characterized by high salinities, temperatures and densities. The net evaporation exceeds the precipitation, driving an anti-estuarine circulation through the Strait of Gibraltar, contributing to very low nutrient concentrations. The Mediterranean Sea has an active overturning circulation, one shallow cell that communicates directly with the Atlantic Ocean, and two deep overturning cells, one in each of the two main basins. It is surrounded by populated areas and is thus sensitive to anthropogenic forcing. Several dramatic changes in the oceanographic and biogeochemical conditions have been observed during the past several decades, emphasizing the need to better monitor and understand the changing conditions and their drivers. During 2011 three oceanographic cruises were conducted in a coordinated fashion in order to produce baseline data of important physical and biogeochemical parameters that can be compared to historic data and be used as reference for future observational campaigns. In this article we provide information on the Mediterranean Sea oceanographic situation, and present a short review that will serve as background information for the special issue in Ocean Science on "Physical, chemical and biological oceanography of the Mediterranean Sea". An important contribution of this article is the set of figures showing the large-scale distributions of physical and chemical properties along the full length
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-10-20
    Description: Recent studies on the impacts of ocean acidification on pelagic communities have identified changes in carbon to nutrient dynamics with related shifts in elemental stoichiometry. In principle, mesocosm experiments provide the opportunity of determining temporal dynamics of all relevant carbon and nutrient pools and, thus, calculating elemental budgets. In practice, attempts to budget mesocosm enclosures are often hampered by uncertainties in some of the measured pools and fluxes, in particular due to uncertainties in constraining air–sea gas exchange, particle sinking, and wall growth. In an Arctic mesocosm study on ocean acidification applying KOSMOS (Kiel Off-Shore Mesocosms for future Ocean Simulation), all relevant element pools and fluxes of carbon, nitrogen and phosphorus were measured, using an improved experimental design intended to narrow down the mentioned uncertainties. Water-column concentrations of particulate and dissolved organic and inorganic matter were determined daily. New approaches for quantitative estimates of material sinking to the bottom of the mesocosms and gas exchange in 48 h temporal resolution as well as estimates of wall growth were developed to close the gaps in element budgets. However, losses elements from the budgets into a sum of insufficiently determined pools were detected, and are principally unavoidable in mesocosm investigation. The comparison of variability patterns of all single measured datasets revealed analytic precision to be the main issue in determination of budgets. Uncertainties in dissolved organic carbon (DOC), nitrogen (DON) and particulate organic phosphorus (POP) were much higher than the summed error in determination of the same elements in all other pools. With estimates provided for all other major elemental pools, mass balance calculations could be used to infer the temporal development of DOC, DON and POP pools. Future elevated pCO2 was found to enhance net autotrophic community carbon uptake in two of the three experimental phases but did not significantly affect particle elemental composition. Enhanced carbon consumption appears to result in accumulation of dissolved organic carbon under nutrient-recycling summer conditions. This carbon over-consumption effect becomes evident from mass balance calculations, but was too small to be resolved by direct measurements of dissolved organic matter. Faster nutrient uptake by comparatively small algae at high CO2 after nutrient addition resulted in reduced production rates under future ocean CO2 conditions at the end of the experiment. This CO2 mediated shift towards smaller phytoplankton and enhanced cycling of dissolved matter restricted the development of larger phytoplankton, thus pushing the system towards a retention type food chain with overall negative effects on export potential.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 14 (5). pp. 1523-1537.
    Publication Date: 2018-02-27
    Description: Understanding the pre-anthropogenic Pb cycle of central North Pacific deep water has attracted a lot of attention in recent years, partly because of its unique geographical location in that it is a remote gyre system characterized by high dust fluxes and sluggish overturning circulation. However, the factors controlling Pb isotope evolution in this area over the Cenozoic are still controversial and various mechanisms have been proposed in previous studies. Here we report new Pb and Nd isotope time series of four ferromanganese crusts (two from the western Pacific near the Mariana arc and the other two from the central Pacific). Together with previously published records, we discuss for the first time the significance of a persistent and systematic Pb isotopic provinciality recorded by central North Pacific crusts over the Cenozoic. We propose that globally well mixed stratosphere volcanic aerosols could contribute Pb but have not been the major factors controlling the Pb isotope distribution in the central North Pacific over time. Island arc input (and probably enhanced hydrothermal input between about 45 and 20 Ma) likely controlled the Pb isotope provinciality and evolution prior to ~20 Ma, when coeval Pb isotope records in different crusts showed large differences and atmospheric silicate dust flux was extremely low. After the Eocene, in particular after 20 Ma, Asian dust input has become an isotopically resolvable source, while island arc-derived Pb has remained important to balance the dust input and to produce the observed Pb isotope distribution in the central North Pacific during this period.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 118 . pp. 2761-2773.
    Publication Date: 2018-02-27
    Description: A realistic primitive-equation model of the Southern Ocean at eddying spatial resolution is used to examine the effect of ocean-surface-velocity dependence of the wind stress on the strength of near-inertial oscillations. Accounting for the ocean-surface-velocity dependence of the wind stress leads to a large reduction of wind-induced near-inertial energy of approximately 40 percent and of wind power input into the near-inertial frequency band of approximately 20 percent. A large part of this reduction can be explained by the leading-order modification to the wind stress if the ocean-surface velocity is included. The strength of the reduction is shown to be modulated by the inverse of the ocean-surface-mixed-layer depth. We conclude that the effect of surface-velocity dependence of the wind stress should be taken into account when estimating the wind-power input into the near-inertial frequency band and when estimating near-inertial energy levels in the ocean due to wind forcing.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Science Data, 5 . pp. 289-294.
    Publication Date: 2021-04-21
    Description: Here we report on data from an oceanographic cruise on the German research vessel Meteor covering large parts of the Mediterranean Sea during spring of 2011. The main objectives of this cruise was to conduct measurements of physical, chemical and biological variables on a section across the Mediterranean Sea with the goal of producing a synoptic picture of the distribution of relevant physical and biogeochemical properties, in order to compare those to historic data sets. During the cruise, a comprehensive data set of relevant variables following the guide lines for repeat hydrography outlined by the GO-SHIP group (http://www.go-ship.org/) was collected. The measurements include; salinity and temperature (CTD), an over-determined carbonate system, inorganic nutrients, oxygen, transient tracers (CFC-12, SF6), Helium isotopes and tritium, and carbon isotopes. The cruise sampled all major basins of the Mediterranean Sea following roughly an east-to-west section from the coast of Lebanon to through the Strait of Gibraltar, and to the coast of Portugal. Also a south-to-north section from the Ionian Sea to the Adriatic Sea was carried out. Additionally, sampling in the Aegean, Adriatic and Tyrrhenian Seas were carried out. The sections roughly followed lines and positions that have been sampled previously during other programs, thus providing the opportunity for comparative investigations of the temporal development of various parameters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 28 (7). pp. 631-647.
    Publication Date: 2016-02-25
    Description: This study presents a new estimate of the oceanic anthropogenic CO2(Cant) sink over the industrial era (1780 to present), from assimilation of potential temperature, salinity, radiocarbon, and CFC-11 observations in a global steady state ocean circulation inverse model (OCIM). This study differs from previous data-based estimates of the oceanic Cant sink in that dynamical constraints on ocean circulation are accounted for, and the ocean circulation is explicitly modeled, allowing the calculation of oceanic Cant storage, air-sea fluxes, and transports in a consistent manner. The resulting uncertainty of the OCIM-estimated Cant uptake, transport, and storage is significantly smaller than the comparable uncertainty from purely data-based or model-based estimates. The OCIM-estimated oceanic Cant storage is 160–166 PgC in 2012, and the oceanic Cant uptake rate averaged over the period 2000–2010 is 2.6 PgC yr−1 or about 30% of current anthropogenic CO2 emissions. This result implies a residual (primarily terrestrial) Cant sink of about 1.6 PgC yr−1 for the same period. The Southern Ocean is the primary conduit for Cant entering the ocean, taking up about 1.1 PgC yr−1 in 2012, which represents about 40% of the contemporary oceanic Cant uptake. It is suggested that the most significant source of remaining uncertainty in the oceanic Cant sink is due to potential variability in the ocean circulation over the industrial era.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-05-02
    Description: Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the southern annular mode (SAM) toward its high-index polarity. The positive phase of the SAM is characterized by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely, export production and downward transport of carbon north of the polar front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO2. In winter, biological mechanisms are inactive, and the surface ocean equilibrates with the atmosphere by releasing CO2. In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 27 (1). pp. 11-20.
    Publication Date: 2016-05-02
    Description: We combined data sets of measured sedimentary calcium carbonate (CaCO3) and satellite-derived pelagic primary production to parameterize the relation between CaCO3 content on the Antarctic shelves and primary production in the overlying water column. CaCO3 content predicted in this way was in good agreement with the measured data. The parameterization was then used to chart CaCO3 content on the Antarctic shelves all around the Antarctic, using the satellite-derived primary production. The total inventory of CaCO3 in the bioturbated layer of Antarctic shelf sediments was estimated to be 0.5 Pg C. This quantity is comparable to the total CO2 uptake by the Southern Ocean in only one to a few years (dependent on the uptake estimate and area considered), indicating that the dissolution of these carbonates will neither delay ocean acidification in this area nor augment the Southern Ocean CO2 uptake capacity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 100 (B9). pp. 17931-17946.
    Publication Date: 2016-05-10
    Description: The evolution of ridge-hotspot systems is not well understood. In this investigation, satellite-derived marine gravity data are used in conjunction with underway bathymetric and magnetic anomaly profiles to investigate the nature of ridge-hotspot interaction at four sparsely explored systems in the Southern Ocean. These systems illustrate three different stages of ridge-hotspot interaction in which a migrating spreading center approaches a hotspot (Pacific-Antarctic/Louisville), passes over or is captured by the hotspot (Mid-Atlantic/Shona-Discovery), and ultimately migrates away from the hotspot (Southeast Indian/Kerguelen). All of these systems show some evidence of discrete ridge jumps in the direction of the hotspot as the spreading center attempts to relocate toward the hotspot by asymmetric spreading. Interestingly, these ridge jumps show no evidence of propagating offsets as have been seen on many other ridge-hotspot systems. A simple model predicts that typical plume excess temperatures can weaken the lithosphere sufficiently to promote asymmetric spreading and possibly allow a discrete ridge jump. The presence of previously uncharted, obliquely oriented aseismic ridges and gravity lineations between the ridge and the hotspot supports the notion of asthenospheric flux from the plume to the spreading center both before and after the time when the hotspot is ridge centered. The azimuths of the aseismic ridges cannot be explained by plate kinematics alone; they consistently extend from the ends toward the centers of the adjacent spreading segments suggesting some interaction between plume derived asthenospheric flux and local lithospheric structure. The features discussed here also indicate that the transfer of asthenospheric material from the plume to the spreading center is influenced by the local plate boundary configuration and interaction with transform offsets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 39 (L01306).
    Publication Date: 2016-02-24
    Description: The combination of the Sunda megathrust and the (strike-slip) Sumatran Fault (SF) represents a type example of slip-partitioning. However, superimposed on the SF are geometrical irregularities that disrupt the local strain field. The largest such feature is in central Sumatra where the SF splits into two fault strands up to 35 km apart. A dense local network was installed along a 350 km section around this bifurcation, registering 1016 crustal events between April 2008 and February 2009. 528 of these events, with magnitudes between 1.1 and 6.0, were located using the double-difference relative location method. These relative hypocentre locations reveal several new features about the crustal structure of the SF. Northwest and southeast of the bifurcation, where the SF has only one fault strand, seismicity is strongly focused below the surface trace, indicating a vertical fault that is seismogenic to ∼15 km depth. By contrast intense seismicity is observed within the bifurcation, displaying streaks in plan and cross-section that indicate a complex system of faults bisecting the bifurcation. In combination with analysis of topography and focal mechanisms, we propose that the bifurcation is a strike-slip duplex system with complex faulting between the two main fault branches.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-08
    Description: Correlations between particulate organic carbon (POC) and mineral fluxes in the deep ocean have inspired the inclusion of “ballast effect” parameterizations in carbon cycle models. A recent study demonstrated regional variability in the effect of ballast minerals on the flux of POC in the deep ocean. We have undertaken a similar analysis of shallow export data from the Arctic, Atlantic, and Southern Oceans. Mineral ballasting is of greatest importance in the high-latitude North Atlantic, where 60% of the POC flux is associated with ballast minerals. This fraction drops to around 40% in the Southern Ocean. The remainder of the export flux is not associated with minerals, and this unballasted fraction thus often dominates the export flux. The proportion of mineral-associated POC flux often scales with regional variation in export efficiency (the proportion of primary production that is exported). However, local discrepancies suggest that regional differences in ecology also impact the magnitude of surface export. We propose that POC export will not respond equally across all high-latitude regions to possible future changes in ballast availability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-12-08
    Description: The role of biominerals in driving carbon export from the surface ocean is unclear. We compiled surface particulate organic carbon (POC), and mineral ballast export fluxes from 55 different locations in the Atlantic and Southern Oceans. Substantial surface POC export accompanied by negligible mineral export was recorded implying that association with mineral phases is not a precondition for organic export to occur. The proportion of non-mineral associated sinking POC ranged from 0 to 80% and was highest in areas previously shown to be dominated by diatoms. This is consistent with previous estimates showing that transfer efficiency in such regions is low. However we propose that, rather than the low transfer efficiency arising from diatom blooms being inherently characterized by poorly packaged aggregates which are efficiently exported but which disintegrate readily in mid water, it is due to such environments having very high levels of unballasted organic C export.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-09-23
    Description: Linking lower and higher trophic levels requires special focus on the essential role played by mid-trophic levels, i.e., the zooplankton. One of the most relevant pieces of information regarding zooplankton in terms of flux of energy lies in its size structure. In this study, an extensive data set of size measurements is presented, covering parts of the western European continental shelf and slope, from the Galician coast to the Ushant front, during the springs from 2005 to 2012. Zooplankton size spectra were estimated using measurements carried out in situ with the Laser Optical Plankton Counter (LOPC) and with an image analysis of WP2 net samples (200 μm mesh size) performed following the ZooScan methodology. The LOPC counts and sizes particles within 100–2000 μm of spherical equivalent diameter (ESD), whereas the WP2/ZooScan allows for counting, sizing and identification of zooplankton from ~ 400 μm ESD. The difference between the LOPC (all particles) and the WP2/ZooScan (zooplankton only) was assumed to provide the size distribution of non-living particles, whose descriptors were related to a set of explanatory variables (including physical, biological and geographic descriptors). A statistical correction based on these explanatory variables was further applied to the LOPC size distribution in order to remove the non-living particles part, and therefore estimate the size distribution of zooplankton. This extensive data set provides relevant information about the zooplankton size distribution variability, productivity and trophic transfer efficiency in the pelagic ecosystem of the Bay of Biscay at a regional and interannual scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-12-08
    Description: The oceanic biological carbon pump is an important factor in the global carbon cycle. Organic carbon is exported from the surface ocean mainly in the form of settling particles derived from plankton production in the upper layers of the ocean. The large variability in current estimates of the global strength of the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains poorly constrained. We present a database of 723 estimates of organic carbon export from the surface ocean derived from the 234Th technique. The dataset is archived on the data repository PANGEA® (www.pangea.de) under doi:10.1594/PANGAEA.809717. Data were collected from tables in papers published between 1985 and early 2013. We also present sampling dates, publication dates and sampling areas. Most of the open ocean provinces are represented by multiple measurements. However, the western Pacific, the Atlantic Arctic, South Pacific and the southern Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 300 m. Globally the fluxes ranged from 0 to 1500 mg C m−2 d−1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-12-16
    Description: Variability and trends in seasonal and interannual ice area export out of the Laptev Sea between 1992 and 2011 are investigated using satellite-based sea ice drift and concentration data. We found an average total winter (October to May) ice area transport across the northern and eastern Laptev Sea boundaries (NB and EB) of 3.48 × 10hoch5 km2. The average transport across the NB (2.87 × 10hoch5 km2)is thereby higher than across the EB (0.61 × 10hoch5 km2), with a less pronounced seasonal cycle. The total Laptev Sea ice area flux significantly increased over the last decades (0.85 × 10hoch5 km2 decade−1, p 〉 0.95), dominated by increasing export through the EB (0.55 × 10hoch5 km2 decade−1, p 〉 0.90), while the increase in export across the NB is smaller (0.3 × 10hoch5 km2 decade−1) and statistically not significant. The strong coupling between across-boundary SLP gradient and ice drift velocity indicates that monthly variations in ice area flux are primarily controlled by changes in geostrophic wind velocities, although the Laptev Sea ice circulation shows no clear relationship with large-scale atmospheric indices. Also there is no evidence of increasing wind velocities that could explain the overall positive trends in ice export. The increased transport rates are rather the consequence of a changing ice cover such as thinning and/or a decrease in concentration. The use of a back-propagation method revealed that most of the ice that is incorporated into the Transpolar Drift is formed during freeze-up and originates from the central and western part of the Laptev Sea, while the exchange with the East Siberian Sea is dominated by ice coming from the central and southeastern Laptev Sea. Furthermore, our results imply that years of high ice export in late winter (February to May) have a thinning effect on the ice cover, which in turn preconditions the occurence of negative sea ice extent anomalies in summer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-12-05
    Description: To examine the potentially competing influences of microzooplankton and calcite mineral ballast on organic matter remineralization, we incubated diatoms in darkness in rolling tanks with and without added calcite minerals (coccoliths) and microzooplankton (rotifers). Concentrations of particulate organic matter (POM in suspension or in aggregates), of dissolved organic matter (DOM), and of dissolved inorganic nutrients were monitored over 8 days. The presence of rotifers enhanced the remineralization of ammonium and phosphate, but not dissolved silicon, from the biogenic particulate matter, up to 40% of which became incorporated into aggregates early in the experiment. Added calcite resulted in rates of excretion of ammonium and phosphate by rotifers that were depressed by 67% and 36%, respectively, demonstrating the potential for minerals to inhibit the destruction of POM by zooplankton in the water column. Lastly, the presence of the rotifers and added calcite minerals resulted in a more rapid initial rate of aggregation, although not a greater overall amount of aggregation during the experiment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-05
    Description: A numerical algorithm based on Fermat's Principle was developed to simulate the propagation of Global Positioning System (GPS) radio signals in the refractivity field of a numerical weather model. The unique in the proposed algorithm is that the ray-trajectory automatically involves the location of the ground-based receiver and the satellite, i.e. the posed two-point boundary value problem is solved by an implicit finite difference scheme. This feature of the algorithm allows the fast and accurate computation of the signal travel-time delay, referred to as Slant Total Delay (STD), between a satellite and a ground-based receiver. We provide a technical description of the algorithm and estimate the uncertainty of STDs due to simplifying assumptions in the algorithm and due to the uncertainty of the refractivity field. In a first application, we compare STDs retrieved from GPS phase-observations at the German Research Centre for Geosciences Potsdam (GFZ STDs) with STDs derived from the European Center for Medium-Range Weather Forecasts analyses (ECMWF STDs). The statistical comparison for one month (August 2007) for a large and continuously operating network of ground-based receivers in Germany indicates good agreement between GFZ STDs and ECMWF STDs; the standard deviation is 0.5% and the mean deviation is 0.1%.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-12-08
    Description: Meridional and vertical distributions of several biogeochemical parameters were studied along a section in the southeastern Atlantic and the Southern Ocean south of South Africa during the austral summer 2008 of the International Polar Year to characterize the biogeochemical provinces and to assess the seasonal net diatom production. Based on analyses of macro-nutrients, ammonium (NH4), chlorophyll a, (Chl a), phaeopigments, biogenic silica (BSi), particulate inorganic carbon (PIC), and particulate organic carbon and nitrogen (POC and PON, respectively), four biogeochemical domains were distinguished along the section: the subtropical Atlantic, the confluence zone of the subtropical and subantarctic domains, the Polar Frontal Zone (PFZ) in the Antarctic Circumpolar Current (ACC), and the north-eastern branch of the Weddell Gyre. The subtropical region displayed extremely low nutrient concentrations featuring oligotrophic conditions, and sub-surface maxima of Chl a and phaeopigments never exceeded 0.5 µg L−1 and 0.25 µg L−1, respectively. The anticyclonic and cyclonic eddies crossed in the Cape Basin were characterized by a deepening and a rise, respectively, of the nutrients isoclines. The confluence zone of the subtropical domain and the northern side of the ACC within the subantarctic domain displayed remnant nitrate and phosphate levels, whereas silicate concentrations kept to extremely low levels. In this area, Chl a level of 0.4–0.5 µg L−1 distributed homogenously within the mixed layer, and POC and PON accumulated to values up to 10 µM and 1.5 µM, respectively, indicative of biomass accumulation along the confluence zone during the late productive period. In the ACC domain, the Polar Frontal Zone was marked by a post-bloom of diatoms that extended beyond the Polar Front (PF) during this late summer condition, as primarily evidenced by the massive depletion of silicic acid in the surface waters. The accumulation of NH4 to values up to 1.25 µM at 100 m depth centred on the PF and the accumulation of BSi up to 0.5 µM in the surface waters of the central part of the PFZ also featured a late stage of the seasonal diatom bloom. The silica daily net production rate based on the seasonal depletion of silicic acid was estimated to be 11.9 ± 6.5 mmol m−2 d−1 in the domain of the vast diatom post-bloom, agreeing well with the previously recorded values in this province. The Weddell Gyre occasionally displayed relative surface depletion of silicic acid, suggesting a late stage of a relatively minor diatom bloom possibly driven by iceberg drifting releases of iron. In this domain the estimated range of silica daily net production rate (e.g. 21.1 ± 8.8 mmol m−2 d−1) is consistent with previous studies, but was not significantly higher than that in the Polar Front region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-12-08
    Description: As part of the Bonus-GoodHope (BGH) campaign, 15N-labelled nitrate, ammonium and urea uptake measurements were made along the BGH transect from Cape Town to ~60° S in late austral summer, 2008. Our results are categorised according to distinct hydrographic regions defined by oceanic fronts and open ocean zones. High regenerated nitrate uptake rate in the oligotrophic Subtropical Zone (STZ) resulted in low f-ratios (f = 0.2) with nitrogen uptake being dominated by ρurea, which contributed up to 70 % of total nitrogen uptake. Size fractionated chlorophyll data showed that the greatest contribution (〉50 %) of picophytoplankton (〈2 μm) were found in the STZ, consistent with a community based on regenerated production. The Subantarctic Zone (SAZ) showed the greatest total integrated nitrogen uptake (10.3 mmol m−2 d−1), mainly due to enhanced nutrient supply within an anticyclonic eddy observed in this region. A decrease in the contribution of smaller size classes to the phytoplankton community was observed with increasing latitude, concurrent with a decrease in the contribution of regenerated production. Higher f-ratios observed in the SAZ (f = 0.49), Polar Frontal Zone (f= 0.41) and Antarctic Zone (f = 0.45) relative to the STZ (f = 0.24), indicate a higher contribution of NO3−-uptake relative to total nitrogen and potentially higher export production. High ambient regenerated nutrient concentrations are indicative of active regeneration processes throughout the transect and ascribed to late summer season sampling. Higher depth integrated uptake rates also correspond with higher surface iron concentrations. No clear correlation was observed between carbon export estimates derived from new production and 234Th flux. In addition, export derived from 15N estimates were 2–20 times greater than those based on 234Th flux. Variability in the magnitude of export is likely due to intrinsically different methods, compounded by differences in integration time scales for the two proxies of carbon export.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-04-23
    Description: In the vast Low Nutrient Low-Chlorophyll (LNLC) Ocean, the vertical nutrient supply from the subsurface to the sunlit surface waters is low, and atmospheric contribution of nutrients may be one order of magnitude greater over short timescales. The short turnover time of atmospheric Fe and N supply (〈1 month for nitrate) further supports deposition being an important source of nutrients in LNLC regions. Yet, the extent to which atmospheric inputs are impacting biological activity and modifying the carbon balance in oligotrophic environments has not been constrained. Here, we quantify and compare the biogeochemical impacts of atmospheric deposition in LNLC regions using both a compilation of experimental data and model outputs. A metadata-analysis of recently conducted field and laboratory bioassay experiments reveals complex responses, and the overall impact is not a simple “fertilization effect of increasing phytoplankton biomass” as observed in HNLC regions. Although phytoplankton growth may be enhanced, increases in bacterial activity and respiration result in weakening of biological carbon sequestration. The application of models using climatological or time-averaged non-synoptic deposition rates produced responses that were generally much lower than observed in the bioassay experiments. We demonstrate that experimental data and model outputs show better agreement on short timescale (days to weeks) when strong synoptic pulse of aerosols deposition, similar in magnitude to those observed in the field and introduced in bioassay experiments, is superimposed over the mean atmospheric deposition fields. These results suggest that atmospheric impacts in LNLC regions have been underestimated by models, at least at daily to weekly timescales, as they typically overlook large synoptic variations in atmospheric deposition and associated nutrient and particle inputs. Inclusion of the large synoptic variability of atmospheric input, and improved representation and parameterization of key processes that respond to atmospheric deposition, is required to better constrain impacts in ocean biogeochemical models. This is critical for understanding and prediction of current and future functioning of LNLC regions and their contribution to the global carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-02-19
    Description: Knowledge of calcium phosphate (Ca-P) solubility is crucial for understanding temporal and spatial variations of phosphorus (P) concentrations in water bodies and sedimentary reservoirs. In situ relationships between liquid-and solid-phase levels cannot be fully explained by dissolved analytes alone and need to be verified by determining particular sediment P species. Lack of quantification methods for these species limits the knowledge of the P cycle. To address this issue, we (i) optimized a specifically developed conversion-extraction (CONVEX) method for P species quantification using standard additions, and (ii) simultaneously determined solubilities of Ca-P standards by measuring their pH-dependent contents in the sediment matrix. Ca-P minerals including various carbonate fluorapatite (CFAP) specimens from different localities, fluorapatite (FAP), fish bone apatite, synthetic hydroxylapatite (HAP) and octacalcium phosphate (OCP) were characterized by XRD, Raman, FTIR and elemental analysis. Sediment samples were incubated with and without these reference minerals and then sequentially extracted to quantify Ca-P species by their differential dissolution at pH values between 3 and 8. The quantification of solid-phase phosphates at varying pH revealed solubilities in the following order: OCP〉 HAP〉 CFAP (4.5% CO3)〉 CFAP (3.4% CO3)〉 CFAP (2.2% CO3)〉 FAP. Thus, CFAP was less soluble in sediment than HAP, and CFAP solubility increased with carbonate content. Unspiked sediment analyses together with standard addition analyses indicated consistent differential dissolution of natural sediment species vs. added reference species and therefore verified the applicability of the CONVEX method in separately determining the most prevalent Ca-P minerals. We found surprisingly high OCP contents in the coastal sediments analyzed, which supports the hypothesis of apatite formation by an OCP precursor mechanism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-01-31
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 37 . L24401.
    Publication Date: 2017-06-13
    Description: The importance of the Gulf Stream Extension region in climate and seasonal prediction research is being increasingly recognised. Here we use satellite-derived eddy momentum fluxes to drive a shallow water model for the North Atlantic Ocean that includes the realistic ocean bottom topography. The results show that the eddy momentum fluxes can drive significant transport, sufficient to explain the observed increase in transport of the Gulf Stream following its separation from the coast at Cape Hatteras, as well as the observed recirculation gyres. The model also captures recirculating gyres seen in the mean sea surface height field within the North Atlantic Current system east of the Grand Banks of Newfoundland, including a representation of the Mann Eddy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-01-31
    Description: Here we make an initial step toward the development of an ocean assimilation system that can constrain the modelled Atlantic Meridional Overturning Circulation (AMOC) to support climate predictions. A detailed comparison is presented of 1° and 1/4° resolution global model simulations with and without sequential data assimilation, to the observations and transport estimates from the RAPID mooring array across 26.5° N in the Atlantic. Comparisons of modelled water properties with the observations from the merged RAPID boundary arrays demonstrate the ability of in situ data assimilation to accurately constrain the east-west density gradient between these mooring arrays. However, the presence of an unconstrained "western boundary wedge" between Abaco Island and the RAPID mooring site WB2 (16 km offshore) leads to the intensification of an erroneous southwards flow in this region when in situ data are assimilated. The result is an overly intense southward upper mid-ocean transport (0–1100 m) as compared to the estimates derived from the RAPID array. Correction of upper layer zonal density gradients is found to compensate mostly for a weak subtropical gyre circulation in the free model run (i.e. with no assimilation). Despite the important changes to the density structure and transports in the upper layer imposed by the assimilation, very little change is found in the amplitude and sub-seasonal variability of the AMOC. This shows that assimilation of upper layer density information projects mainly on the gyre circulation with little effect on the AMOC at 26° N due to the absence of corrections to density gradients below 2000 m (the maximum depth of Argo). The sensitivity to initial conditions was explored through two additional experiments using a climatological initial condition. These experiments showed that the weak bias in gyre intensity in the control simulation (without data assimilation) develops over a period of about 6 months, but does so independently from the overturning, with no change to the AMOC. However, differences in the properties and volume transport of North Atlantic Deep Water (NADW) persisted throughout the 3 year simulations resulting in a difference of 3 Sv in AMOC intensity. The persistence of these dense water anomalies and their influence on the AMOC is promising for the development of decadal forecasting capabilities. The results suggest that the deeper waters must be accurately reproduced in order to constrain the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-01-31
    Description: Since April 2004 the RAPID array has made continuous measurements of the Atlantic Meridional Overturning Circulation (AMOC) at 26° N. Two key components of this system are Ekman transport zonally integrated across 26° N and western boundary current transport in the Florida Straits. Whilst measurements of the AMOC as a whole are somewhat in their infancy, this study investigates what useful information can be extracted on the variability of the Ekman and Florida Straits transports using the decadal timeseries already available. Analysis is also presented for Sverdrup transports zonally integrated across 26° N. The seasonal cycles of Florida Straits, Ekman and Sverdrup transports are quantified at 26° N using harmonic analysis of annual and semi-annual constituents. Whilst Sverdrup transport shows clear semi-annual periodicity, calculations of seasonal Florida Straits and Ekman transports show substantial interannual variability due to contamination by variability at non-seasonal frequencies; the mean seasonal cycle for these transports only emerges from decadal length observations. The Florida Straits and Ekman mean seasonal cycles project on the AMOC with a combined peak-to-peak seasonal range of 3.5 Sv. The combined seasonal range for heat transport is 0.40 PW. The Florida Straits seasonal cycle possesses a smooth annual periodicity in contrast with previous studies suggesting a more asymmetric structure. No clear evidence is found to support significant changes in the Florida Straits seasonal cycle at sub-decadal periods. Whilst evidence of wind driven Florida Straits transport variability is seen at sub-seasonal and annual periods, a model run from the 1/4° eddy-permitting ocean model NEMO is used to identify an important contribution from internal oceanic variability at sub-annual and interannual periods. The Ekman transport seasonal cycle possesses less symmetric structure, due in part to different seasonal transport regimes east and west of 50 to 60° W. Around 60% of non-seasonal Ekman transport variability occurs in phase section-wide at 26° N and is related to the NAO, whilst Sverdrup transport variability is more difficult to decompose.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 37 . L24610.
    Publication Date: 2017-06-20
    Description: A decade of weak convection in the Labrador Sea associated with decreasing water mass transformation, in combination with advective and eddy fluxes into the convection area, caused significant warming of the deep waters in both the central Labrador Sea and boundary current system along the Labrador shelf break. The connection to the export of Deep Water was studied based on moored current meter stations between 1997 and 2009 at the exit of the Labrador Sea, near the shelf break at 5˚3N. More than 100 year -long current meter records spanning the full water column have been analyzed with respect to high frequency variability, decaying from the surface to the bottom layer, and for the annual mean flow, showing intra- to interannual variability but no detectable decadal trend in the strength of the deep and near-bottom flow out of the Labrador Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  [Talk] In: AGU Fall Meeting, 13.12.--17.12.2010, San Francisco, California, USA . EOS Transactions ; V52A-08 .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2017-06-20
    Description: Recent work shows that multichannel seismic (MCS) systems provide detailed information on the oceans' finestructure. The aim of this paper is to analyze if high order numerical algorithms are suitable to accurately model the extremely weak wavefield scattered by the oceans' finestructures. For this purpose, we generate synthetic shot records along a coincident seismic and oceanographic profile acquired across a Mediterranean salt lens in the Gulf of Cadiz. We apply a 2D finite-difference time-domain propagation model, together with second-order Complex Frequency Shifted Perfectly Matched Layers at the numerical boundaries, using as reference a realistic sound speed map with the lateral resolution of the seismic data. We show that our numerical propagator creates an acoustical image of the ocean finestructures including the salt lens that reproduces with outstanding detail the real acquired one
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  [Poster] In: AGU Fall Meeting, 13.12.--17.12.2010, San Francisco, California, USA . EOS Transactions ; V41A-2264 .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 37 (4). L04601.
    Publication Date: 2017-06-20
    Description: Recently seismic reflection methods have been successfully applied to oceanographic issues. Here, we present a new approach, combining XBT and CTD surveys with seismic observations, to visualize long sections with a resolution down to a few meters. The challenge to a full investigation of mixing processes has been the tremendous span of spatial scales ranging from hundreds of kilometers to centimeters. Traditional hydrographic observations could only resolve the large scale effects by measuring temperature and salinity profiles at discrete locations typically several kilometers apart, whereas dedicated localized measurements allowed investigation of the ocean fine structure at the other end of the spatial spectrum. The intermediate scales have in contrast been difficult to observe systematically. Here we present temperature and salinity data inverted from seismic observations that cover the intermediate scales and provide a new approach to image mesoscale processes and allow the investigation of their dynamics at unprecedented resolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2017-06-20
    Description: Nitrogen (N) fixation by specialized microorganisms (diazotrophs) influences global plankton productivity because it provides the ocean with most of its bio-available N. However, its global rate and large-scale spatial distribution is still regarded with considerable uncertainty. Here we use a global ocean nitrogen isotope model, in comparison with δ15NO3− observations, to constrain the pattern of N2 fixation across the Pacific Ocean. N2 fixation introduces isotopically light atmospheric N2 from to the ocean (δ15N = 0‰) relative to the oceanic average near 5‰, which makes nitrogen isotopes suitable to infer patterns of N2 fixation. Including atmospheric iron limitation of diazotrophy in the model shifts the pattern of simulated N2 fixation from the South Pacific to the North Pacific and from the East Pacific westward. These changes considerably improve the agreement with meridional transects of available δ15NO3− observations, as well as excess P (PO43− − NO3−/16), suggesting that atmospheric iron deposition is indeed important for N fixation in the Pacific Ocean. This study highlights the potential for using δ15N observations and model simulations to constrain patterns and rates of N fixation in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2017-11-07
    Description: The Atlantic‐Mediterranean exchange of water at Gibraltar represents a significant heat and freshwater sink for the North Atlantic and is a major control on the heat, salt and freshwater budgets of the Mediterranean Sea. Consequently, an understanding of the response of the exchange system to external changes is vital to a full comprehension of the hydrographic responses in both ocean basins. Here, we use a synthesis of empirical (oxygen isotope, planktonic foraminiferal assemblage) and modeling (analytical and general circulation) approaches to investigate the response of the Gibraltar Exchange system to Atlantic freshening during Heinrich Stadials (HSs). HSs display relatively flat W–E surface hydrographic gradients more comparable to the Late Holocene than the Last Glacial Maximum. This is significant, as it implies a similar state of surface circulation during these periods and a different state during the Last Glacial Maximum. During HS1, the gradient may have collapsed altogether, implying very strong water column stratification and a single thermal and d18Owater condition in surface water extending from southern Portugal to the eastern Alboran Sea. Together, these observations imply that inflow of Atlantic water into the Mediterranean was significantly increased during HS periods compared to background glacial conditions. Modeling efforts confirm that this is a predictable consequence of freshening North Atlantic surface water with iceberg meltwater and indicate that the enhanced exchange condition would last until the cessation of anomalous freshwater supply into to the northern North Atlantic. The close coupling of dynamics at Gibraltar Exchange with the Atlantic freshwater system provides an explanation for observations of increased Mediterranean Outflow activity during HS periods and also during the last deglaciation. This coupling is also significant to global ocean dynamics, as it causes density enhancement of the Atlantic water column via the Gibraltar Exchange to be inversely related to North Atlantic surface salinity. Consequently, Mediterranean enhancement of the Atlantic Meridional Overturning Circulation will be greatest when the overturning itself is at its weakest, a potentially critical negative feedback to Atlantic buoyancy change during times of ice sheet collapse.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 8 (6). pp. 1551-1464.
    Publication Date: 2019-09-23
    Description: Seawater concentrations of the four brominated trace gases dibromomethane (CH2Br2), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl) and bromoform (CHBr3) were measured at different depths of the water column in the Iberian upwelling off Portugal during summer 2007. Bromocarbon concentrations showed elevated values in recently upwelled and aged upwelled waters (mean values of 30 pmol L−1 for CHBr3), while values in the open ocean were significantly lower (7.4 pmol L−1 for CHBr3). Correlations with biological variables and marker pigments indicated that phytoplankton could be identified as a weak bromocarbon source in the open ocean. In upwelled water masses along the coast, halocarbons were not correlated to Chl-a, indicating an external source, overlapping the possible internal production by phytoplankton. We showed that the tidal frequency had a significant influence on halocarbon concentrations in the upwelling and we linked those findings to a strong intertidal coastal source, as well as to a transport of those halocarbon enriched coastal waters by westward surface upwelling currents. Coastal sources and transport can be accounted for maximum values of up to 185.1 pmol L−1 CHBr3 in the upwelling. Comparison with other productive marine areas revealed that the Iberian upwelling had stronger halocarbon sources than the phytoplankton dominated sources in the Mauritanian upwelling. However, the concentrations off the Iberian Peninsula were still much lower than those of coastal macroalgal influenced waters or those of polar regions dominated by cold water adapted diatoms
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 116 . D05102.
    Publication Date: 2018-02-06
    Description: The stratospheric climate and variability from simulations of sixteen chemistryclimate models is evaluated. On average the polar night jet is well reproduced though its variability is less well reproduced with a large spread between models. Polar temperature biases are less than 5 K except in the Southern Hemisphere (SH) lower stratosphere in spring. The accumulated area of low temperatures responsible for polar stratospheric cloud formation is accurately reproduced for the Antarctic but underestimated for the Arctic. The shape and position of the polar vortex is well simulated, as is the tropical upwelling in the lower stratosphere. There is a wide model spread in the frequency of major sudden stratospheric warnings (SSWs), late biases in the breakup of the SH vortex, and a weak annual cycle in the zonal wind in the tropical upper stratosphere. Quantitatively, “metrics” indicate a wide spread in model performance for most diagnostics with systematic biases in many, and poorer performance in the SH than in the Northern Hemisphere (NH). Correlations were found in the SH between errors in the final warming, polar temperatures, the leading mode of variability, and jet strength, and in the NH between errors in polar temperatures, frequency of major SSWs, and jet strength. Models with a stronger QBO have stronger tropical upwelling and a colder NH vortex. Both the qualitative and quantitative analysis indicate a number of common and long‐standing model problems, particularly related to the simulation of the SH and stratospheric variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 24 . GB4030.
    Publication Date: 2019-09-23
    Description: The phosphorus budget of the pre-human modern ocean is constrained applying the most recent estimates of the natural riverine, eolian, and ice-rafted input fluxes, the phosphorus burial in marine sediments, and the hydrothermal removal of dissolved phosphate from the deep ocean. This review of current flux estimates indicates that the phosphorus budget of the ocean is unbalanced since the accumulation of phosphorus in marine sediments and altered oceanic crust exceeds the continental input of particulate and dissolved phosphorus. The phosphorus mass balance is further tested considering the dissolved phosphate distribution in the deep water column, the marine export production of particulate organic matter, rain rates of phosphorus to the seafloor, benthic dissolved phosphate fluxes, and the organic carbon to phosphorus ratios in marine particles. These independent data confirm that the phosphate and phosphorus budgets were not at steadystate in the pre-human global ocean. The ocean is losing dissolved phosphate at a rate of ≥ 11.6 x 1010 mol yr-1 corresponding to a decline in the phosphate inventory of ≥ 4.5 % kyr-1. Benthic data show that phosphate is preferentially retained in pelagic deep-sea sediments where extended oxygen exposure times favor the degradation of particulate organic matter and the up-take of phosphate in manganese and iron oxides and hydroxides. Enhanced C : P regeneration ratios observed in the deep water column (〉400 m water depth) probably reflect the preferential burial of phosphorus in pelagic sediments. Excess phosphate is released from continental margin sediments deposited in low-oxygen environments. The dissolved oxygen threshold value for the enhanced release of dissolved phosphate is ~20 μM. Benthic phosphate fluxes increase drastically when oxygen concentrations fall below this value.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 115 (C12). C12038.
    Publication Date: 2018-02-27
    Description: The decay kinetics of superoxide (O2−) reacting with organic matter was examined in oligotrophic waters at, and nearby, the TENATSO ocean observatory adjacent to the Cape Verde archipelago. Superoxide is the short-lived primary photochemical product of colored dissolved organic matter (CDOM) photolysis and also reacts with CDOM or trace metals (Cu, Fe) to form H2O2. In the present work we focused our investigations on reactions between CDOM and superoxide. O2− decay kinetics experiments were performed by adding KO2 to diethylenetriaminepentaacetic acid (DTPA) amended seawater and utilizing an established chemiluminescence technique for the detection of O2− at nM levels. In Cape Verdean waters we found a significant reactivity of superoxide with CDOM with maximal rates adjacent to the chlorophyll maximum, presumably from production of new CDOM from bacteria/phytoplankton. This work highlights a poorly understood process which impacts on the biogeochemical cycling of CDOM and trace metals in the open ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  [Talk] In: EGU General Assembly 2010, 02.05.-07.05.2010, Vienna, Austria ; p. 4913 .
    Publication Date: 2013-02-18
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2017-06-20
    Description: Geophysical datasets sensitive to different physical parameters can be used to improve resolution of Earth's internal structure. Herein, we jointly invert long-period magnetotelluric (MT) data and surface-wave dispersion curves. Our approach is based on a joint inversion using a genetic algorithm for a one-dimensional (1-D) isotropic structure, which we extend to 1-D anisotropic media. We apply our new anisotropic joint inversion to datasets from Central Germany demonstrating the capacity of our joint inversion algorithm to establish a 1-D anisotropic model that fits MT and seismic datasets simultaneously and providing new information regarding the deep structure in Central Germany. The lithosphere/asthenosphere boundary is found at approx. 84 km depth and two main anisotropic layers with coincident most conductive/seismic fast-axis direction are resolved at lower crustal and asthenospheric depths. We also quantify the amount of seismic and electrical anisotropy in the asthenosphere showing an emerging agreement between the two anisotropic coefficients.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-09-23
    Description: A natural carbon dioxide (CO2) seep was discovered during an expedition to the southern German North Sea (October 2008). Elevated CO2 levels of ∼10–20 times above background were detected in seawater above a natural salt dome ∼30 km north of the East-Frisian Island Juist. A single elevated value 53 times higher than background was measured, indicating a possible CO2 point source from the seafloor. Measured pH values of around 6.8 support modeled pH values for the observed high CO2 concentration. These results are presented in the context of CO2 seepage detection, in light of proposed subsurface CO2 sequestering and growing concern of ocean acidification. We explore the boundary conditions of CO2 bubble and plume seepage and potential flux paths to the atmosphere. Shallow bubble release experiments conducted in a lake combined with discrete-bubble modeling suggest that shallow CO2 outgassing will be difficult to detect as bubbles dissolve very rapidly (within meters). Bubble-plume modeling further shows that a CO2 plume will lose buoyancy quickly because of rapid bubble dissolution while the newly CO2-enriched water tends to sink toward the seabed. Results suggest that released CO2 will tend to stay near the bottom in shallow systems (〈200 m) and will vent to the atmosphere only during deep water convection (water column turnover). While isotope signatures point to a biogenic source, the exact origin is inconclusive because of dilution. This site could serve as a natural laboratory to further study the effects of carbon sequestration below the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 8 (4). pp. 911-918.
    Publication Date: 2019-09-23
    Description: A steady state box model was developed to estimate the methane input into the Black Sea water column at various water depths. Our model results reveal a total input of methane of 4.7 Tg yr−1. The model predicts that the input of methane is largest at water depths between 600 and 700 m (7% of the total input), suggesting that the dissociation of methane gas hydrates at water depths equivalent to their upper stability limit may represent an important source of methane into the water column. In addition we discuss the effects of massive short-term methane inputs (e.g. through eruptions of deep-water mud volcanoes or submarine landslides at intermediate water depths) on the water column methane distribution and the resulting methane emission to the atmosphere. Our non-steady state simulations predict that these inputs will be effectively buffered by intense microbial methane consumption and that the upward flux of methane is strongly hampered by the pronounced density stratification of the Black Sea water column. For instance, an assumed input of methane of 179 Tg CH4 d−1 (equivalent to the amount of methane released by 1000 mud volcano eruptions) at a water depth of 700 m will only marginally influence the sea/air methane flux increasing it by only 3%.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-09-23
    Description: Reconstructions of the spatial pattern of recent multi-decadal sea level trends in the Indian Ocean (IO) indicate a zonally-extended band in the southern tropics where sea level has substantially fallen between the 1960s and 1990s; the decline is consistent with the observed subsurface cooling associated with a shoaling thermocline in this region. Here the origin and spatio-temporal characteristics of these trends are elucidated by a sequence of ocean model simulations. Whereas interannual variability in the southwestern tropical IO appears mainly governed by IO atmospheric forcing, longer term changes in the south tropical IO involve a strong contribution from the western Pacific via wave transmission of thermocline anomalies through the Indonesian Archipelago, and their subsequent westward propagation by baroclinic Rossby waves. The late 20th-century IO subsurface cooling trend reversed in the 1990s, reflecting the major regime shift in the tropical Pacific easterlies associated with the Pacific Decadal Oscillation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Biogeosciences, 115 . G01007.
    Publication Date: 2018-02-06
    Description: We determined methane (CH4) emissions in a field enclosure experiment in a littoral freshwater marsh under the influence of experimentally simulated warming and enhanced nitrogen deposition. Methane emissions by ebullition from the marsh composed of Phragmites australis were measured with funnel traps deployed in a series of enclosures for two 3 week periods. Diffusive fluxes were estimated on the basis of measured CH4 concentrations and application of Fick's law. Neither diffusive nor ebullitive fluxes of methane were significantly affected by warming or nitrate enrichment, possibly because variability both within and among replicate experimental enclosures was high. Average emission rates resulted primarily from ebullition (0.2–30.3 mmol CH4 m−2 d−1), which were 4 orders of magnitude higher than estimated diffusive fluxes and were of similar importance as the coarsely estimated advective methane transport through plants. Significant correlations between dissolved oxygen and dissolved methane and ebullition flux suggest that methane release from the sediment might feed back positively on methane production by reducing dissolved oxygen in the water column and oxygen flux into the sediment. Nitrate may have a similar effect. Extrapolation of our limited data indicates that total methane fluxes from vegetated littoral zones of temperate lakes may contribute 0.5%–7% of the global natural CH4 emissions. These results emphasize the importance of freshwater marshes as sources of methane emissions to the atmosphere, even when they occupy only relatively small littoral areas. More detailed investigations are clearly needed to assess whether global warming and nitrogen deposition can have climate feedbacks by altering methane fluxes from these wetlands.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 7 (8). pp. 2379-2396.
    Publication Date: 2012-07-06
    Description: The rugged submarine topography of the Azores supports a diverse heterozoan association resulting in intense biotically-controlled carbonate-production and accumulation. In order to characterise this cold-water (C) factory a 2-year experiment was carried out in the southern Faial Channel to study the biodiversity of hardground communities and for budgeting carbonate production and degradation along a bathymetrical transect from the intertidal to bathyal 500 m depth. Seasonal temperatures peak in September (above a thermocline) and bottom in March (stratification diminishes) with a decrease in amplitude and absolute values with depth, and tidal-driven short-term fluctuations. Measured seawater stable isotope ratios and levels of dissolved nutrients decrease with depth, as do the calcium carbonate saturation states. The photosynthetic active radiation shows a base of the euphotic zone in ~70 m and a dysphotic limit in ~150 m depth. Bioerosion, being primarily a function of light availability for phototrophic endoliths and grazers feeding upon them, is ~10 times stronger on the illuminated upside versus the shaded underside of substrates in the photic zone, with maximum rates in the intertidal (−631 g/m2/yr). Rates rapidly decline towards deeper waters where bioerosion and carbonate accretion are slow and epibenthic/endolithic communities take years to mature. Accretion rates are highest in the lower euphotic zone (955 g/m2/yr), where the substrate is less prone to hydrodynamic force. Highest rates are found – inversely to bioerosion – on down-facing substrates, suggesting that bioerosion may be a key factor governing the preferential settlement and growth of calcareous epilithobionts on down-facing substrates. In context of a latitudinal gradient, the Azores carbonate cycling rates plot between known values from the cold-temperate Swedish Kosterfjord and the tropical Bahamas, with a total range of two orders in magnitude. Carbonate budget calculations for the bathymetrical transect yield a mean 266.9 kg of epilithic carbonate production, −54.6 kg of bioerosion, and 212.3 kg of annual net carbonate production per metre of coastline in the Azores C factory.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 37 . L19705.
    Publication Date: 2019-09-23
    Description: The sensitivity of the hydrological cycle to changes in orbital forcing and atmospheric greenhouse gas (GHG) concentrations is assessed using a fully coupled atmosphere-ocean-sea ice general circulation model (Kiel Climate Model). An orbitally-induced intensification of the summer monsoon circulation during the Holocene and Eemian drives enhanced water vapor advection into the Northern Hemisphere, thereby enhancing the rate of water vapor changes by about 30% relative to the rate given by the Clausius-Clapeyron Equation, assuming constant relative humidity. Orbitally-induced changes in hemispheric-mean precipitation are fully attributed to inter-hemispheric water vapor exchange in contrast to a GHG forced warming, where enhanced precipitation is caused by increased both the moisture advection and evaporation. When considering the future climate on millennial time scales, both forcings combined are expected to exert a strong effect.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 115 (B7). B07106.
    Publication Date: 2018-04-26
    Description: We present results from a seismic refraction and wide-angle experiment surveying an oceanic core complex on the Mid-Atlantic Ridge at 22°19′N. Oceanic core complexes are settings where petrological sampling found exposed lower crustal and upper mantle rocks, exhumed by asymmetric crustal accretion involving detachment faulting at magmatically starved ridge sections. Tomographic inversion of our seismic data yielded lateral variations of P wave velocity within the upper 3 to 4 km of the lithosphere across the median valley. A joint modeling procedure of seismic P wave travel times and marine gravity field data was used to constrain crustal thickness variations and the structure of the uppermost mantle. A gradual increase of seismic velocities from the median valley to the east is connected to aging of the oceanic crust, while a rapid change of seismic velocities at the western ridge flank indicates profound differences in lithology between conjugated ridge flanks, caused by un-roofing lower crust rocks. Under the core complex crust is approximately 40% thinner than in the median valley and under the conjugated eastern flank. Clear PmP reflections turning under the western ridge flank suggest the creation of a Moho boundary and hence continuous magmatic accretion during core complex formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. , ed. by Rona, P. A. and Devey, C. W. Geophysical Monograph Series, 188 . AGU (American Geophysical Union), Washington, DC, pp. 133-152. ISBN 978-0-87390-478-8
    Publication Date: 2013-07-18
    Description: The Mid-Atlantic Ridge south of the equator is a key region for many aspects of spreading axis studies, from biogeography to ridge-hotspot interaction. Despite this, the ridge axis had, until 2004, seen little systematic study. Repeated trips to the area since then have mapped and explored some 900 km of ridge length, from 2° to 14°S. The result is complete bathymetric and side-scan coverage of the axial region and the discovery and characterization of the first hydrothermal vents south of the equator. Such multisegment detailed and interdisciplinary coverage allows us to formulate a general model for the interplay between volcanism, tectonics, and hydrothermalism on a slow spreading ridge. The model defines three basic types of ridge morphology with specific hydrothermal characteristics: (a) a deep, tectonically dominated rift valley where hydrothermalism is seldom associated with volcanism and much more likely confined to long-lived bounding faults; (b) a shallower, segment-center bulge where a combination of repeated magmatic activity and tectonism results in repeated, possibly temporally overlapping periods of hydrothermal activity on the ridge axis; and (c) a very shallow axis beneath which temperatures in all but the uppermost crust are so high that deformation is ductile, inhibiting the formation of high-porosity deep fractures and severely depressing hydrothermal circulation. This model is used together with satellitederived predicted bathymetry to provide forecasts of the best places to look for hydrothermal sites in the remaining unexplored regions of the South Atlantic.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  , ed. by Rona, P. A., Devey, C., Dyment, J. and Murton, B. Geophysical Monograph Series, 188 . AGU (American Geophysical Union), Washington DC, 440 pp. ISBN 978-0-87390-478-8
    Publication Date: 2013-08-13
    Type: Book , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 11 (7). Q07014.
    Publication Date: 2017-11-07
    Description: The Sahara Slide is a giant submarine landslide on the northwest African continental margin. The landslide is located on the open continental slope offshore arid Western Sahara, with a headwall at a water depth of ∼2000 m. High primary productivity in surface waters drives accumulation of thick fine-grained pelagic/hemipelagic sediment sequences in the slide source area. Rare but large-scale slope failures, such as the Sahara Slide that remobilized approximately 600 km3 of sediment, are characteristic of this sedimentological setting. Seismic profiles collected from the slide scar reveal a stepped profile with two 100 m high headwalls, suggesting that the slide occurred retrogressively as a slab-type failure. Sediment cores recovered from the slide deposit provide new insights into the process by which the slide eroded and entrained a volcaniclastic sand layer. When this layer was entrained at the base of the slide it became fluidized and resulted in low apparent friction, facilitating the exceptionally long runout of ∼900 km. The slide location appears to be controlled by the buried headwall of an older slope failure, and we suggest that the cause of the slide relates to differential sedimentation rates and compaction across these scarps, leading to local increases of pore pressure. Sediment cores yield a date of 50–60 ka for the main slide event, a period of global sea level rise which may have contributed to pore pressure buildup. The link with sea level rising is consistent with other submarine landslides on this margin, drawing attention to this potential hazard during global warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 115 (C9). C09011.
    Publication Date: 2019-09-23
    Description: The supply of oxygen-rich water to the oxygen minimum zones (OMZs) of the eastern North and South Pacific via zonal tropical currents is investigated using shipboard acoustic Doppler current profiler and hydrographic section data. Near the equator, the Equatorial Undercurrent (EUC), Northern and Southern Subsurface Countercurrents (SCCs), and the Northern and Southern Intermediate Countercurrents (ICCs) all carry water that is oxygen richer than adjacent westward flows, thereby providing a net oxygen supply to the eastern Pacific OMZs. The synoptic velocity-weighted oxygen concentration difference between eastward and westward flows is typically 10–50 μmol kg−1. Subthermocline zonal oxygen fluxes reflect decreasing oxygen concentrations of the EUC, the SCCs, and the ICCs as they flow eastward. Approximately 30 year time series in well-sampled regions of the equatorial Pacific show oxygen content decreasing as rapidly as −0.55 μmol kg−1 yr−1 in the major oxygen supply paths of the OMZs for a 200–700 m layer and similar trends for a density layer spanning roughly these depths. This finding is in gross agreement with climate models, which generally predict expanding OMZs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 115 (C10). C10004.
    Publication Date: 2019-09-23
    Description: Near the western boundary of the tropical North Atlantic, where the North Brazil Current (NBC) retroflects into the North Equatorial Countercurrent, large anticyclonic rings are shed. After separating from the retroflection region, the so-called NBC rings travel northwestward along the Brazilian coast, until they reach the island chain of the Lesser Antilles and disintegrate. These rings contribute substantially to the upper limb return flow of the Atlantic Meridional Overturning Circulation by carrying South Atlantic Water into the northern subtropical gyre. Their relevance for the northward transport of South Atlantic Water depends on the frequency of their generation as well as on their horizontal and vertical structure. The ring shedding and propagation and the complex interaction of the rings with the Lesser Antilles are investigated in the inline equation Family of Linked Atlantic Model Experiments (FLAME) model. The ring properties simulated in FLAME reach the upper limit of the observed rings in diameter and agree with recent observations on seasonal variability, which indicates a maximum shedding during the first half of the year. When the rings reach the shallow topography of the Lesser Antilles, they are trapped by the island triangle of St. Lucia, Barbados and Tobago and interact with the island chain. The model provides a resolution that is capable of resolving the complex topographic conditions at the islands and illuminates various possible fates for the water contained in the rings. It also reproduces laboratory experiments that indicate that both cyclones and anticyclones are formed after a ring passes through a topographic gap. Trajectories of artificial floats, which were inserted into the modeled velocity field, are used to investigate the pathways of the ring cores and their fate after they encounter the Lesser Antilles. The majority of the floats entered the Caribbean, while the northward Atlantic pathway was found to be of minor importance. No prominent pathway was found east of Barbados, where a ring could avoid the interaction with the islands and migrate toward the northern Lesser Antilles undisturbed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-09-23
    Description: A simple prognostic tool for gas hydrate (GH) quantification in marine sediments is presented based on a diagenetic transport-reaction model approach. One of the most crucial factors for the application of diagenetic models is the accurate formulation of microbial degradation rates of particulate organic carbon (POC) and the coupled formation of biogenic methane. Wallmann et al. (2006) suggested a kinetic formulation considering the ageing effects of POC and accumulation of reaction products (CH4, CO2) in the pore water. This model is applied to data sets of several ODP sites in order to test its general validity. Based on a thorough parameter analysis considering a wide range of environmental conditions, the POC accumulation rate (POCar in g/m2/yr) and the thickness of the gas hydrate stability zone (GHSZ in m) were identified as the most important and independent controls for biogenic GH formation. Hence, depth-integrated GH inventories in marine sediments (GHI in g of CH4 per cm2 seafloor area) can be estimated as: GHI=a ·POCar·GHSZb ·exp(−GHSZc/POCar/d)+e with a = 0.00214, b = 1.234, c = −3.339, d = 0.3148, e = −10.265. The transfer function gives a realistic first order approximation of the minimum GH inventory in low gas flux (LGF) systems. The overall advantage of the presented function is its simplicity compared to the application of complex numerical models, because only two easily accessible parameters need to be determined.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2012-07-06
    Description: Iron is a key micronutrient for phytoplankton growth in the surface ocean. Yet the significance of volcanism for the marine biogeochemical iron-cycle is poorly constrained. Recent studies, however, suggest that offshore deposition of airborne ash from volcanic eruptions is a way to inject significant amounts of bio-available iron into the surface ocean. Volcanic ash may be transported up to several tens of kilometers high into the atmosphere during large-scale eruptions and fine ash may stay aloft for days to weeks, thereby reaching even the remotest and most iron-starved oceanic regions. Scientific ocean drilling demonstrates that volcanic ash layers and dispersed ash particles are frequently found in marine sediments and that therefore volcanic ash deposition and iron-injection into the oceans took place throughout much of the Earth's history. Natural evidence and the data now available from geochemical and biological experiments and satellite techniques suggest that volcanic ash is a so far underestimated source for iron in the surface ocean, possibly of similar importance as aeolian dust. Here we summarise the development of and the knowledge in this fairly young research field. The paper covers a wide range of chemical and biological issues and we make recommendations for future directions in these areas. The review paper may thus be helpful to improve our understanding of the role of volcanic ash for the marine biogeochemical iron-cycle, marine primary productivity and the ocean-atmosphere exchange of CO2 and other gases relevant for climate in the Earth's history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-03-12
    Description: Dedicated to the memory of our colleague Klaus Hochheim, who tragically lost his life in the Arctic expedition in September 2013. A distinct, subsurface density front along the eastern St. Anna Trough in the northern Kara Sea is inferred from hydrographic observations in 1996 and 2008–2010. Direct velocity measurements show a persistent northward subsurface current (~ 18 cm s−1) along the St. Anna Trough eastern flank. This sheared flow, carrying the outflow from the Barents and Kara seas to the Arctic Ocean, is also evident from shipboard observations as well as from geostrophic velocities and numerical model simulations. Although we cannot substantiate our conclusions by direct observation-based estimates of mixing rates in the area, we hypothesize that the enhanced vertical mixing along the St. Anna Trough eastern flank favors the upward heat loss from the intermediate warm Atlantic water layer. Modeling results support this hypothesis. The upward heat flux inferred from hydrographic data and model simulations is of O(30–100) W m−2. The region of lowered sea ice thickness and concentration seen both in sea ice remote sensing observations and model simulations marks the Atlantic water pathway in the St. Anna Trough and adjacent Nansen Basin continental margin. In fact, the sea ice shows a delayed freeze-up onset during fall and a reduction in the sea ice thickness during winter. This is consistent with our results on the enhanced Atlantic water heat loss along the Atlantic water pathway in the St. Anna Trough.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-03-13
    Description: Following the launch of ESA's Soil Moisture and Ocean Salinity (SMOS) mission, it has been shown that brightness temperatures at a low microwave frequency of 1.4 GHz (L-band) are sensitive to sea ice properties. In the first demonstration study, sea ice thickness up to 50 cm has been derived using a semi-empirical algorithm with constant tie-points. Here, we introduce a novel iterative retrieval algorithm that is based on a thermodynamic sea ice model and a three-layer radiative transfer model, which explicitly takes variations of ice temperature and ice salinity into account. In addition, ice thickness variations within the SMOS spatial resolution are considered through a statistical thickness distribution function derived from high-resolution ice thickness measurements from NASA's Operation IceBridge campaign. This new algorithm has been used for the continuous operational production of a SMOS-based sea ice thickness data set from 2010 on. The data set is compared to and validated with estimates from assimilation systems, remote sensing data, and airborne electromagnetic sounding data. The comparisons show that the new retrieval algorithm has a considerably better agreement with the validation data and delivers a more realistic Arctic-wide ice thickness distribution than the algorithm used in the previous study (Kaleschke et al., 2012).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2017-01-17
    Description: Samoylov Island is centrally located within the Lena River Delta at 72° N, 126° E and lies within the Siberian zone of continuous permafrost. The landscape on Samoylov Island consists mainly of late Holocene river terraces with polygonal tundra, ponds and lakes, and an active floodplain. The island has been the focus of numerous multidisciplinary studies since 1993, which have focused on climate, land cover, ecology, hydrology, permafrost and limnology. This paper aims to provide a framework for future studies by describing the characteristics of the island's meteorological parameters (temperature, radiation and snow cover), soil temperature, and soil moisture. The land surface characteristics have been described using high resolution aerial images in combination with data from ground-based observations. Of note is that deeper permafrost temperatures have increased between 0.3 to 1.3 °C over the last five years. However, no clear warming of air and active layer temperatures is detected since 1998, though winter air temperatures during recent years have not been as cold as in earlier years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 39 (20). L20817.
    Publication Date: 2017-10-24
    Description: The Southern Hemisphere winter stratosphere exhibits prominent traveling planetary-scale Rossby waves, which generally are not able to induce Stratospheric Sudden Warmings. A series of runs of a simplified general circulation model is presented, aimed at better understanding the generation of these waves. While the generation of planetary-scale traveling waves through the interaction of synoptic-scale waves is observed in a control run, when the model is truncated to permit only waves with zonal wave number 1 or 2, the long waves are found to increase in strength, leading to a considerably more active stratosphere including Sudden Warmings comparable in strength to Northern Hemisphere winter. This finding suggests that the role of tropospheric synoptic eddies is two-fold: while generating a weak planetary-scale wave flux into the stratosphere, their main effect is to suppress baroclinic instability of planetary-scale waves by stabilizing the tropospheric mean state.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-05-28
    Description: The first long-term aerosol sampling and chemical characterization results from measurements at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente are presented and are discussed with respect to air mass origin and seasonal trends. In total 671 samples were collected using a high-volume PM10 sampler on quartz fiber filters from January 2007 to December 2011. The samples were analyzed for their aerosol chemical composition, including their ionic and organic constituents. Back trajectory analyses showed that the aerosol at CVAO was strongly influenced by emissions from Europe and Africa, with the latter often responsible for high mineral dust loading. Sea salt and mineral dust dominated the aerosol mass and made up in total about 80% of the aerosol mass. The 5-year PM10 mean was 47.1 ± 55.5 μg m−2, while the mineral dust and sea salt means were 27.9 ± 48.7 and 11.1 ± 5.5 μg m−2, respectively. Non-sea-salt (nss) sulfate made up 62% of the total sulfate and originated from both long-range transport from Africa or Europe and marine sources. Strong seasonal variation was observed for the aerosol components. While nitrate showed no clear seasonal variation with an annual mean of 1.1 ± 0.6 μg m−3, the aerosol mass, OC (organic carbon) and EC (elemental carbon), showed strong winter maxima due to strong influence of African air mass inflow. Additionally during summer, elevated concentrations of OM were observed originating from marine emissions. A summer maximum was observed for non-sea-salt sulfate and was connected to periods when air mass inflow was predominantly of marine origin, indicating that marine biogenic emissions were a significant source. Ammonium showed a distinct maximum in spring and coincided with ocean surface water chlorophyll a concentrations. Good correlations were also observed between nss-sulfate and oxalate during the summer and winter seasons, indicating a likely photochemical in-cloud processing of the marine and anthropogenic precursors of these species. High temporal variability was observed in both chloride and bromide depletion, differing significantly within the seasons, air mass history and Saharan dust concentration. Chloride (bromide) depletion varied from 8.8 ± 8.5% (62 ± 42%) in Saharan-dust-dominated air mass to 30 \textpm 12% (87 ± 11%) in polluted Europe air masses. During summer, bromide depletion often reached 100% in marine as well as in polluted continental samples. In addition to the influence of the aerosol acidic components, photochemistry was one of the main drivers of halogenide depletion during the summer; while during dust events, displacement reaction with nitric acid was found to be the dominant mechanism. Positive matrix factorization (PMF) analysis identified three major aerosol sources: sea salt, aged sea salt and long-range transport. The ionic budget was dominated by the first two of these factors, while the long-range transport factor could only account for about 14% of the total observed ionic mass.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 92 (47). p. 421.
    Publication Date: 2016-01-13
    Description: The Mw = 9.0 earthquake of 11 March 2011 at the Japan Trench and its devastating tsunami underscore the importance of understanding seismogenic behavior of subduction faults and realistically estimating the potential size of future earthquakes and tsunamis. For the Cascadia subduction zone (Figure 1a), a critical knowledge gap is the level of microseismicity offshore, especially near the megathrust, needed to better understand the state of the locked zone. In 2010 the first detailed seafloor earthquake monitoring campaign along the northern Cascadia subduction zone recorded nearby earthquakes in the local magnitude (ML) range from possibly around zero to 3.8 (Figures 1b and 1c) and larger earthquakes from outside this region. Preliminary analyses indicate that the network appears to have yielded a fairly complete catalog for events with ML 〉 1.2. Only a few tens of these events occurred beneath the continental shelf and slope (Figure 1a). The majority of the earthquakes were located along the margin-perpendicular Nootka fault zone. The relatively low seismicity away from the Nootka fault is consistent with a fully locked megathrust. Land-based GPS measurements cannot resolve the question of whether the offshore part of the megathrust seismogenic zone is narrow and fully locked or wider and only partially locked (slowly creeping). If it were only partially locked, the seafloor seismometer data should show many more small earthquakes along the interface than were actually detected.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-11-18
    Description: The accurate dating of meteorite impact structures on Earth has proven to be challenging. Melt sheets are amenable to high-precision dating by the U-Pb and 40Ar/39Ar methods, but many impact events do not produce them, or they are not preserved. In cases where high-temperature shock metamorphism of the target materials has occurred without widespread melting, these isotopic chronometers may be partially reset and yield dates that are difficult to interpret unambiguously as the age of impact. However, the (U-Th)/He chronometer is sensitive to thermal resetting and can provide a powerful new tool for dating impactites. We report (U-Th)/He dates for accessory minerals from the Manicouagan impact structure in Quebec, Canada. Nine zircons from a melt sheet sample yield a weighted mean age of 213.2 ± 5.4 Ma (2SE), indistinguishable from the published 214 ± 1 Ma (2σ) U-Pb zircon age for the impact. In contrast, five apatites from this sample yield dates between 205.9 ± 6.5 and 162.0 ± 5.3 Ma (2σ), indicating variable postimpact helium loss due to low-temperature thermal disturbance. Preimpact titanite crystals from a shocked meta-anorthosite sample yield two dates consistent with the impact age, at 212 ± 27 and 214 ± 13 Ma (2σ), and two younger dates of 189.6 ± 6.9 and 192.2 ± 9.8 Ma (2σ), suggestive of postimpact helium loss. These results indicate that (U-Th)/He chronometry is a suitable method for dating impact events, although interpretation of the results requires recognition of possible 4He loss related to reheating subsequent to impact.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Climate of the Past, 10 (2). pp. 811-824.
    Publication Date: 2015-11-20
    Description: An earth system model of intermediate complexity (CLIMate and BiosphERe – CLIMBER-2) and a land surface model (JSBACH), which dynamically represent vegetation, are used to simulate natural fire dynamics through the last 8000 yr. Output variables of the fire model (burned area and fire carbon emissions) are used to compare model results with sediment-based charcoal reconstructions. Several approaches for processing model output are also tested. Charcoal data are reported in Z-scores with a base period of 8000–200 BP in order to exclude the strong anthropogenic forcing of fire during the last two centuries. The model–data comparison reveals a robust correspondence in fire activity for most regions considered, while for a few regions, such as Europe, simulated and observed fire histories show different trends. The difference between modelled and observed fire activity may be due to the absence of anthropogenic forcing (e.g. human ignitions and suppression) in the model simulations, and also due to limitations inherent to modelling fire dynamics. The use of spatial averaging (or Z-score processing) of model output did not change the directions of the trends. However, Z-score-transformed model output resulted in higher rank correlations with the charcoal Z-scores in most regions. Therefore, while both metrics are useful, processing model output as Z-scores is preferable to areal averaging when comparing model results to transformed charcoal records.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 11 (24). pp. 7269-7274.
    Publication Date: 2021-04-23
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 40 (18). pp. 4933-4937.
    Publication Date: 2017-10-24
    Description: The tropospheric response to sudden stratospheric warmings (SSWs) is analyzed in an idealized model setup regarding the respective roles of planetary-scale and synoptic-scale waves. The control model run includes a full interactive wave spectrum, while a second run includes interactive planetary-scale waves but only the time-mean synoptic-scale wave forcing from the control run. In both runs, the tropospheric response is characterized by the negative phase of the respective tropospheric annular mode. But given their different latitudinal structure, the control run shows the expected response, i.e., an equatorward shift of the tropospheric jet, whereas the response in the absence of interactive synoptic eddies is characterized by a poleward jet shift. This opposite jet shift is associated with a different planetary wave variability that couples with the zonal flow between the stratosphere and the surface. These results indicate that the synoptic eddy feedback is necessary for the observed tropospheric response to SSWs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 7 . pp. 2159-2190.
    Publication Date: 2019-09-23
    Description: We review here the available information on methane (CH4) and nitrous oxide (N2O) from major marine, mostly coastal, oxygen (O2)-deficient zones formed both naturally and as a result of human activities (mainly eutrophication). Concentrations of both gases in subsurface waters are affected by ambient O2 levels to varying degrees. Organic matter supply to seafloor appears to be the primary factor controlling CH4 production in sediments and its supply to (and concentration in) overlying waters, with bottom-water O2-deficiency exerting only a modulating effect. High (micromolar level) CH4 accumulation occurs in anoxic (sulphidic) waters of silled basins, such as the Black Sea and Cariaco Basin, and over the highly productive Namibian shelf. In other regions experiencing various degrees of O2-deficiency (hypoxia to anoxia), CH4 concentrations vary from a few to hundreds of nanomolar levels. Since coastal O2-deficient zones are generally very productive and are sometimes located close to river mouths and submarine hydrocarbon seeps, it is difficult to differentiate any O2-deficiency-induced enhancement from in situ production of CH4 in the water column and its inputs through freshwater runoff or seepage from sediments. While the role of bottom-water O2-deficiency in CH4 formation appears to be secondary, even when CH4 accumulates in O2-deficient subsurface waters, methanotrophic activity severely restricts its diffusive efflux to the atmosphere. As a result, an intensification or expansion of coastal O2-deficient zones will probably not drastically change the present status where emission from the ocean as a whole forms an insignificant term in the atmospheric CH4 budget. The situation is different for N2O, the production of which is greatly enhanced in low-O2 waters, and although it is lost through denitrification in most suboxic and anoxic environments, the peripheries of such environments offer most suitable conditions for its production, with the exception of enclosed anoxic basins. Most O2-deficient systems serve as strong net sources of N2O to the atmosphere. This is especially true for coastal upwelling regions with shallow O2-deficient zones where a dramatic increase in N2O production often occurs in rapidly denitrifying waters. Nitrous oxide emissions from these zones are globally significant, and so their ongoing intensification and expansion is likely to lead to a significant increase in N2O emission from the ocean. However, a meaningful quantitative prediction of this increase is not possible at present because of continuing uncertainties concerning the formative pathways to N2O as well as insufficient data from key coastal regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Eos, Transactions American Geophysical Union, 94 (22). pp. 197-198.
    Publication Date: 2016-01-13
    Description: At 8:04 P.M. Pacific daylight time (PDT) on 27 October 2012 (03:04 universal time (UT), 28 October), Canada's second largest instrumentally recorded earthquake rocked Haida Gwaii (formerly Queen Charlotte Islands) and the mainland coast of British Columbia. The M 7.7 event off the west coast of Moresby Island caused a tsunami with local runup of more than 7 meters and amplitudes up to 0.8 meter on tide gauges 4000 kilometers away in Hawaii. Shaking was felt as far away as the Yukon, Alberta, Washington, and Montana, up to 1500 kilometers away. Little damage was caused, as the immediate region is an uninhabited National Park Reserve. The closest point of the rupture zone, as defined by aftershocks (Figures 1a and 1c), was 50 kilometers from the nearest community, Queen Charlotte, where damage was confined to a few chimneys and slumped roads.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-09-23
    Description: To reconstruct the history of water mass exchange between the NE Atlantic and the Nordic seas, sediment cores from ∼2 km water depth were studied across Termination II (TII) and through the last interglaciation (MIS5e). During early TII the sudden appearance of the low-latitude planktonic foraminifera Beella megastoma is noted in both regions along with a steep decrease in benthic foraminiferal δ18O. Since other proxies indicate that surface waters were cold and stratified because of meltwater, conditions which prevented near-surface thermohaline circulation and vertical convection in the Nordic seas, water mass exchange between the two areas occurred at the subsurface. During later TII, surface conditions changed, and this subsurface circulation style was eventually replaced by vertical convection. In the Nordic seas, B. megastoma vanished from the record together with ice-rafted debris (IRD) at the end of TII, while subpolar foraminiferal abundance rose. Peak interglacial conditions with intensive vertical convection now fully developed, generating a bottom water temperature gradient of ∼4°C between the two areas. However, surface water temperatures deteriorated in the Nordic seas already notably before IRD recurred, and δ18O increased at the end of MIS5e.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-01-15
    Description: Satellite observations of microwave brightness temperatures between 19 GHz and 85 GHz are the main data sources for operational sea-ice monitoring and retrieval of ice concentrations. However, microwave brightness temperatures depend on the emissivity of snow and ice, which is subject to pronounced seasonal variations and shows significant hemispheric contrasts. These mainly arise from differences in the rate and strength of snow metamorphism and melt. We here use the thermodynamic snow model SNTHERM forced by European Re-Analysis (ERA) interim data and the Microwave Emission Model of Layered Snowpacks (MEMLS), to calculate the sea-ice surface emissivity and to identify the contribution of regional patterns in atmospheric conditions to its variability in the Arctic and Antarctic. The computed emissivities reveal a pronounced seasonal cycle with large regional variability. The emissivity variability increases from winter to early summer and is more pronounced in the Antarctic. In the pre-melt period (January–May, July–November) the standard deviations in surface microwave emissivity due to diurnal, regional and inter-annual variability of atmospheric forcing reach up to Δε = 0.034, 0.043, and 0.097 for 19 GHz, 37 GHz and 85 GHz channels, respectively. Between 2000 and 2009, small but significant positive emissivity trends were observed in the Weddell Sea during November and December as well as in Fram Strait during February, potentially related to earlier melt onset in these regions. The obtained results contribute to a better understanding of the uncertainty and variability of sea-ice concentration and snow-depth retrievals in regions of high sea-ice concentrations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Nonlinear Processes in Geophysics, 17 (1). pp. 37-47.
    Publication Date: 2017-10-24
    Description: The role played by wind-forced anticyclones in the vertical transport and mixing at the ocean mesoscale is investigated with a primitive-equation numerical model in an idealized configuration. The focus of this work is to determine how the stratification impacts such transport. The flows, forced only at the surface by an idealized wind forcing, are predominantly horizontal and, on average, quasigeostrophic. Inside vortex cores and intense filaments, however, the dynamics is strongly ageostrophic. Mesoscale anticyclones appear as "islands" of increased penetration of wind energy into the ocean interior and they represent the maxima of available potential energy. The amount of available potential energy is directly correlated with the degree of stratification. The wind energy injected at the surface is transferred at depth through the generation and subsequent straining effect of Vortex Rossby Waves (VRWs), and through near-inertial internal oscillations trapped inside anticyclonic vortices. Both these mechanisms are affected by stratification. Stronger transfer but larger confinement close to the surface is found when the stratification is stronger. For weaker stratification, vertical mixing close to the surface is less intense but below about 150 m attains substantially higher values due to an increased contribution of both VRWs, whose time scale is on the order of few days, and of near-inertial motions, with a time scale of few hours.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: The Stratosphere: Dynamics, Transport, and Chemistry. , ed. by Polvani, L. M., Sobel, A. H. and Waugh, D. W. Geophysical Monograph Series . AGU (American Geophysical Union), Washington, USA, pp. 123-135. ISBN 9780875904795
    Publication Date: 2015-09-16
    Description: This chapter contains sections titled: Introduction Temperature Data Temperature Observations Stratospheric Water Vapor Summary and Discussion Appendix A: Linear Regression Analysis
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  In: The Mediterranean Sea: Temporal variability and spatial patterns. Geophysical Monograph Series, 202 . AGU (American Geophysical Union), Wiley, Washington, USA, pp. 75-83.
    Publication Date: 2015-09-28
    Type: Book chapter , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-10-19
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-11-04
    Description: [1] To assess the temporal variability in the methane fluxes from marine sediments that overly gas hydrate bearing sediments and the factors that might control its rate, in situ methane concentrations were measured near Bullseye Vent on the Northern Cascadia continental margin. A long-term sampling device collected overlying water and pore-fluid samples from 25 cm above seafloor, at the sediment-water interface (SWI), and 7 cmbsf (centimeters below seafloor) over a 9 month period (August 2009–May 2010). These samples provide a record at ∼4 day resolution of in situ methane, ethane, propane, sulfate, and chloride concentrations, as well as stable carbon isotope ratios of methane (δ13C-CH4) and dissolved inorganic carbon (δ13C-DIC). We show that pore fluids near the SWI are saturated or supersaturated with respect to methane (∼80 mM) and the methane flux from the seabed is variable over time. We hypothesized that regional seismic activity controlled this variable CH4 flux in the Northern Cascadia continental margin setting. However, we found no direct correlation between earthquakes and CH4 flux. We also posited alternative controls on CH4 flux variability, such as storms, regional oceanography and microbial activity. Again, no direct correlation was seen. This study takes first steps toward exploring which physical factors play a role in methane flux from hydrate-bearing sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2017-10-24
    Description: Epibenthos communities play an important role in the marine ecosystems of the Weddell Sea. Information on the factors controlling their structure and distribution are, however, still rare. In particular, the interactions between environmental factors and biotic assemblages are not fully understood. Nachtigaller Hill, a newly discovered seabed structure on the over-deepened shelf of the northwest Weddell Sea (Southern Ocean), offers a unique site to study these interactions in a high-latitude Antarctic setting. Based on high-resolution bathymetry and georeferenced biological data, the effect of the terrain and related environmental parameters on the epibenthos was assessed. At Nachtigaller Hill, both geomorphological and biological data showed complex distribution patterns, reflecting local processes such as iceberg scouring and locally amplified bottom currents. This variability was also generally reflected in the variable epibenthos distribution patterns although statistical analyses did not show strong correlations between the selected environmental parameters and species abundances. By analysing the interactions between environmental and biological patterns, this study provides crucial information towards a better understanding of the factors and processes that drive epibenthos communities on the shelves of the Weddell Sea and probably also on other Antarctic shelves.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...