ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous  (19)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (18)
  • Apennines
  • Elsevier Science Limited  (25)
  • Elsevier  (14)
  • Blackwell Publishing Ltd
  • 2010-2014  (40)
  • 1990-1994
  • 1980-1984
  • 1925-1929
Collection
Years
Year
  • 1
    Publication Date: 2021-05-17
    Description: The Lower Pliocene succession of the Crotone Basin (Calabrian Arc, Southern Italy) is mainly comprised of blue-grey marly clay with good magnetic properties. Here the bio-magnetostratigraphic data indicate a mean sedimentation rate of about 12–15 cm/kyr. Around 3.7–3.6 Ma a major change in the sedimentation regime occurred: the blue-grey hemipelagic marls grade rapidly into silty marls with a significant increase in the terrigenous fraction and with abundant siliceous remains throughout the whole interval. Magnetic properties of these sediments are very poor, but an integrated calcareous plankton biostratigraphy (foraminifera and nannofossils) infers a high average sedimentation rate (about 50–60 cm/kyr). The abrupt onset of this sedimentation regime in the Crotone Basin is contemporaneous with a major unconformity already recognized in the northern sector of the basin, part of amajor reorganization phase in the whole Apenninic–Maghrebid Chain known as “Globorotalia puncticulata event”. Reports of coeval siliceous sediments in other marginal basins of the Apennines (Southern Calabria, Southern and Northern Apennines) suggest that this “siliceous event” might have been regionally extensive, having important palaeoceanographical implications.We infer that the “siliceous event” is characterized by a combined tectonic- and climate-induced change in palaeoceanographic conditions. The tectonic triggering factors may have been linked to two synchronous events in the Tyrrhenian–Apennine system: 1) the shortening event also known as “G. puncticulata event”, and 2) the coeval opening of the Vavilov Basin in the Tyrrhenian Sea which yielded profound influences in terms of physiography and characteristics of the Crotone Basin. The consequent uplift of the Southern Apennines would have increased sediment supply and availability of silica, resulting in eutrophication and enhanced silica preservation. Strong winter mixing and possibly upwelling conditions could have increased primary productivity during heavy isotope stages Gi4, Gi2 and MG8, at the onset of the “siliceous event”. This important event, lasting from ca. 3.6 Ma to ca. 3.2 Ma, would have recorded a peculiar transitional period before further climatic deterioration and more drastic palaeoceanographic changes occurred around 3.1 Ma, leading to cyclic sapropel deposition in the whole of the Mediterranean sea.
    Description: Published
    Description: 398-410
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Biostratigraphy ; Magnetostratigraphy ; Pliocene ; Calabrian Arc ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-15
    Description: The Africa–Eurasia convergence in Sicily and southern Calabria is currently expressed by two different tectonic and geodynamic domains: thewestern region, governed by a roughlyN–S compression generated by a continental collision; the eastern one, controlled by a NW–SE extension related to the south-east-directed expansion of the Calabro–Peloritan Arc. The different deformation pattern of these two domains is accommodated by a right-lateral shear zone (Aeolian–Tindari–Letojanni fault system) which, from the Ionian Sea, north of Mt. Etna, extends across the Peloritani chain to the Aeolian Islands. In this work, we study the evidence of active tectonics characterizing this shear zone, through the analysis of seismic and geodetic data acquired by the INGV networks in the last 15 years. The study is completed by structural and morphological surveys carried out between Capo Tindari and the watershed of the chain. The results allowed defining a clear structural picture depicting the tectonic interferences between the two different geodynamic domains. The results indicate that, besides the regional ~N130°E horizontal extensional stress field, another one, NE–SW-oriented, is active in the investigated area. Both tension axes are mutually independent and have been active up to the present at different times. The coexistence of these different active horizontal extensions is the result of complex interactions between several induced stresses: 1) the regional extension (NW–SE) related to the slab rollback and back-arc extension; 2) the strong uplift of the chain; 3) the accommodation between compressional and extensional tectonic regimes along the Aeolian– Tindari–Letojanni faults, through a SSE–NNW right-lateral transtensional displacement. In these conditions, the greater and recurring uplift activity is not able to induce a radial extensional dynamics, but, under the “directing” action of the shear system, it can only act on the regional extension (NW–SE) and produce the second system of extension (NE–SW).
    Description: Published
    Description: 1-17
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Africa–Eurasia convergence ; Aeolian–Tindari fault system ; Transform activity ; Stress and strain fields ; Multidisciplinary approach ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-27
    Description: A variety of atypical plume-like structures and focused upwellings that are not rooted in the lower mantle have recently been discussed, and seismological imaging has shown ubiquitous small-scale convection in the uppermost mantle in regions such as the Mediterranean region, the western US, and around the western Pacific. We argue that the three-dimensional return flow and slab fragmentation associated with complex oceanic subduction trajectories within the upper mantle can generate focused upwellings and that these may play a significant role in regional tectonics. The testable surface expressions of this process are the outsidearc alkaline volcanism, topographic swell, and low-velocity seismic anomalies associated with partial melt. Using three-dimensional, simplified numerical subduction models, we show that focused upwellings can be generated both ahead of the slab in the back-arc region (though ~five times further inward from the trench than arc-volcanism) and around the lateral edges of the slab (in the order of 100 km away from slab edges). Vertical mass transport, and by inference the associated decompression melting, in these regions appears strongly correlated with the interplay between relative trench motion and subduction velocities. The upward flux of material from the depths is expected to be most pronounced during the first phase of slab descent into the upper mantle or during slab fragmentation. We discuss representative case histories from the Pacific and the Mediterranean where we find possible evidence for such slab-related volcanism.
    Description: Published
    Description: 54-68
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: subduction ; magmatism ; upper mantle convection ; geodynamic modeling ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-27
    Description: We model a fault cross-cutting the brittle upper crust and the ductile lower crust. In the brittle layer the fault is assumed to have stick–slip behaviour, whereas the lower ductile crust is inferred to deform in a steady-state shear. Therefore, the brittle–ductile transition (BDT) separates two layers with different strain rates and structural styles. This contrasting behaviour determines a stress gradient at the BDT that is eventually dissipated during the earthquake. During the interseismic period, along a normal fault it should form a dilated hinge at and above the BDT. Conversely, an over-compressed volume should rather develop above a thrust plane at the BDT. On a normal fault the earthquake is associated with the coseismic closure of the dilated fractures generated in the stretched hangingwall during the interseismic period. In addition to the shear stress overcoming the friction of the fault, the brittle fault moves when the weight of the hangingwall exceeds the strength of the dilated band above the BDT. On a thrust fault, the seismic event is instead associated with the sudden dilation of the previously over-compressed volume in the hangingwall above the BDT, a mechanism requiring much more energy because it acts against gravity. In both cases, the deeper the BDT, the larger the involved volume, and the bigger the related magnitude. We tested two scenarios with two examples from L’Aquila 2009 (Italy) and Chi-Chi 1999 (Taiwan) events. GPS data, energy dissipation and strain rate analysis support these contrasting evolutions. Our model also predicts, consistently with data, that the interseismic strain rate is lower along the fault segment more prone to seismic activation.
    Description: Published
    Description: 160-161
    Description: JCR Journal
    Description: open
    Keywords: faul activation ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-21
    Description: To define reference structural actions, engineers practicing earthquake resistant design are required by codes to account for ground motion likely to threaten the site of interest and also for pertinent seismic source features. In most of the cases, while the former issue is addressed assigning a mandatory design response spectrum, the latter is left unsolved. However, in the case that the design spectrum is derived from probabilistic seismic hazard analysis, disaggregation may be helpful, allowing to identify the earthquakes having the largest contribution to the hazard for the spectral ordinates of interest. Such information may also be useful to engineers in better defining the design scenario for the structure, e.g., in record selection for nonlinear seismic structural analysis. On the other hand, disaggregation results change with the spectral ordinate and return period, and more than a single event may dominate the hazard, especially if multiple sources affect the hazard at the site. This work discusses identification of engineering design earthquakes referring, as an example, to the Italian case. The considered hazard refers to the exceedance of peak ground acceleration and 1s spectral acceleration with four return periods between 50 and 2475 year. It is discussed how, for most of the Italian sites, more than a design earthquake exists, because of the modeling of seismic sources. Furthermore, it is explained how and why these change with the limit state and the dynamic properties of the structure. Finally, it is illustrated how these concepts may be easily included in engineering practice complementing design hazard maps and effectively enhancing definition of design seismic actions with relatively small effort.
    Description: Published
    Description: 1212–1231
    Description: JCR Journal
    Description: restricted
    Keywords: Engineering design ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-07
    Description: Low-field anisotropy of magnetic susceptibility (AMS) analyses were performed on 532 samples col-lected in 36 (mostly lower Pliocene to lower Pleistocene) marine clay sites from the Crotone basin, afore-arc basin located on top of the external Calabrian accretionary wedge. The Crotone basin formedsince mid-late Miocene under a predominant extensional tectonic regime, but it was influenced there-after by complex interactions with NW–SE left-lateral strike-faults bounding the basin, which also yieldedpost-1.2 Ma ~30◦counterclockwise block rotations. The basin is filled by continental to marine sedimentsyielding one of the thickest and best-exposed Neogene succession available worldwide. The deep-marinefacies – represented by blue-grey marly clays gave the best results, as they both preserved a clear mag-netic fabric, and provided accurate chronology based on previously published magnetostratigraphy andcalcareous plankton (i.e. foraminifers and nannofossils) biostratigraphy. Magnetic susceptibility rangeand rock magnetic analyses both indicate that AMS reflects paramagnetic clay matrix crystal arrange-ment. The fabric is predominantly oblate to triaxial, the anisotropy degree low (〈1.06), and the magneticfoliation mostly subparallel to bedding. Magnetic lineation is defined in 30 out of 36 sites (where thee12 angle is 〈35◦). By also considering local structural analysis data, we find that magnetic fabric wasgenerally acquired during the first tectonic phases occurring after sediment deposition, thus validatingits use as temporally dependent strain proxy. Although most of the magnetic lineations trend NW–SE andare orthogonal to normal faults (as observed elsewhere in Calabria), few NE–SW compressive lineationsshow that the Neogene extensional regime of the Crotone basin was punctuated by compressive episodes.Finally, compressive lineations (prolate magnetic fabric) documented along the strike-slip fault boundingthe basin to the south support the significance of Pleistocene strike-slip tectonics. Thus the Crotone basinshows a markedly different tectonics with respect to other internal and western basins of Calabria, asit yields a magnetic fabric still dominated by extensional tectonics but also revealing arc-normal short-ening episodes and recent strike-slip fault activity. The tectonics documented in the Crotone basin iscompatible with a continuous upper crustal structural reorganization occurring during the SE-migrationof the Calabria terrane above the Ionian subduction system.
    Description: Published
    Description: 67-79
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Calabrian Arc, Anisotropy of magnetic susceptibility, Structural analysis, Fore-arc region ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: In this paper we present and discuss an improved picture of the seismicity distribution of the Umbria– Marche–Abruzzi Apennines as obtained through the integration of the national and the regional seismic networks operating from 2002 to 2006. During this period, both the Istituto Nazionale di Geofisica e Vulcanologia (INGV) National Seismic Network and the regional networks have been greatly improved. We compare the results of the integrated catalogue obtained in this study with the Catalogue of the Italian Seismicity between 1981 and 2001 [Castello, B., Selvaggi, G., Chiarabba, C., Amato, A., 2006. CSI Catalogo della sismicità italiana 1981–2002, versione 1.1. INGV-CNT, Roma.http://legacy.ingv.it/CSI )], confirming the basic known features of the seismic activity in the region, but also evidencing some original and interesting results. In particular, the new data set allows us to better define the geometry and kinematics of the crustal seismicity, which is confined to the upper 20 km and shows a clear general deepening from west to east. In the crust, we find additional evidence of extensional seismicity below the central portion of the belt and thrust/reverse faulting mechanisms at the outer fronts of the Apennines. Looking at the seismicity along the belt, it is also possible to observe aseismic regions, which could be due to either locked or creeping portions of the Apenninic fault system. At greater depth, the west-dipping seismicity distribution down to about 70 km confirms the hypothesis of a slab of Adriatic lithosphere subducted below the Apennines, but also suggests that there are strong lateral heterogeneities and possibly tears in the slab.
    Description: Published
    Description: 121-135
    Description: 1.1. TTC - Monitoraggio sismico del territorio nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: Seismicity ; Seismic monitoring ; Focal mechanisms ; Subduction ; Apennines ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We re-evaluate the possibility that Earth's rotation contributes to plate tectonics on the basis of the following observations: 1) plates move along a westerly polarized flow that forms an angle relative to the equator close to the revolution plane of the Moon; 2) plate boundaries are asymmetric, being their geographic polarity the first order controlling parameter; unlike recent analysis, the slab dip is confirmed to be steeper along W-directed subduction zones; 3) the global seismicity depends on latitude and correlates with the decadal oscillations of the excess length of day (LOD); 4) the Earth's deceleration supplies energy to plate tectonics comparable to the computed budget dissipated by the deformation processes; 5) the Gutenberg–Richter law supports that the whole lithosphere is a self-organized system in critical state, i.e., a force is acting contemporaneously on all the plates and distributes the energy over the whole lithospheric shell, a condition that can be satisfied by a force acting at the astronomical scale. Assuming an ultra-low viscosity layer in the upper asthenosphere, the horizontal component of the tidal oscillation and torque would be able to slowly shift the lithosphere relative to the mantle.
    Description: Hungarian Scientific Research Fund OTKA in the framework of project K 60394
    Description: Published
    Description: 60-73
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Plate tectonics ; Earth's rotation ; Tidal despinning ; Earth's energy budget ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Detailed structural analysis of tourmaline-rich veins hosted in the contact aureole of the ∼6 Ma Porto Azzurro granite in southeastern Elba Island, northern Tyrrhenian Sea is presented. Using geometric features of the veins, the physical conditions at the time of vein formation are estimated, namely the stress ratio (Φ = (σ2 − σ3)/(σ1 − σ3)), driving stress ratio (R′ = (Pf − σ3)/(σ1 − σ3)) and fluid overpressure (ΔPo = Pf − σ3). Two vein sets (A veins and B veins) have been recognized based on orientation and thickness distributions and infilling material. Analysis of vein pole distributions indicates Φ = 0.57 and R′ = 0.24 for the A veins and Φ = 0.58 and R′ = 0.47 for the B veins, and fluid pressures less than the intermediate stress magnitude. Analysis of geometric features of the veins gives estimated fluid overpressures of between ∼16 MPa (A veins) and ∼32 MPa (B veins). We propose a model for the tectonic environment of vein development, in which formation of secondary permeability in the deforming thermal aureole of the Porto Azzurro pluton was controlled by ongoing development of fracture systems in the hinge zone of a regional NNW–SSE trending fold that favored transport and localization of hydrothermal fluids.
    Description: Published
    Description: 1509-1522
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Thermal aureole ; Upper crust ; Deformation ; Fluid circulation ; Northern Apennines ; Elba Island ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-03
    Description: In this paper we show the seismicity and velocity structure of a segment of the Alpine retro-belt front along the continental collision margin of the Venetian Alps (NE Italy). Our goal is to gain insight on the buried structures and deep fault geometry in a “silent” area, i.e., an area with poor instrumental seismicity but high potential for future earthquakes, as indicated by historical earthquakes (1695 Me = 6.7 Asolo and 1936 Ms = 5.8 Bosco del Cansiglio). Local earthquakes recorded by a dense temporary seismic network are used to compute 3-D Vp and Vp/Vs tomographic images, yielding well resolved images of the upper crust underneath the south-Alpine front. We show the presence of two main distinct high Vp S-verging thrust units, the innermost coincides with the piedmont hill and the outermost is buried under a thick pile of sediments in the Po plain. Background seismicity and Vp/Vs anomalies, interpreted as cracked fluid-filled volumes, suggest that the NE portion of the outermost blind thrust and its oblique/lateral ramps may be a zone of high fluid pressure prone to future earthquakes. Three-dimensional focal mechanisms show compressive and transpressive solutions, in agreement with the tectonic setting, stress field maps and geodetic observations. The bulk of the microseismicity is clustered in two different areas, both in correspondence of inherited lateral ramps of the thrust system. Tomographic images highlight the influence of the paleogeographic setting in the tectonic style and seismic activity of the region.
    Description: Published
    Description: 37-48
    Description: JCR Journal
    Description: restricted
    Keywords: seismicity ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: Earthquakes deliver in few seconds the elastic energy accumulated in hundreds of years. Where and when will be the next earthquake remains a difficult task due to the chaotic behaviour of seismicity and the present lack of available tools to measure the threshold of the crustal strength. However, the analysis of the background strain rate in Italy and the comparison with seismicity shows that larger earthquakes occur with higher probability in areas of lower strain rate. We present a statistical study in which a relationship linking the earthquake size (magnitude) and the total strain rate (SR) is found. We combine the information provided by the Gutenberg–Richter law (GR) of earthquake occurrence and the probability density distribution of SR in the Italian area. Following a Bayesian approach, we found a simple family of exponential decrease curves describing the probability that an event of a given size occurs within a given class of SR. This approach relies on the evidence that elastic energy accumulates in those areas where faults are locked and the SR is lower. Therefore, in tectonically active areas, SR lows are more prone to release larger amount of energy with respect to adjacent zones characterised by higher strain rates. The SR map of Italy, compared with 5 years seismicity supports this result and may become a powerful tool for identifying the areas more prone to the next earthquakes.
    Description: Published
    Description: 67-75
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Strain rate ; Magnitude ; Gutenberg–Richter law ; Bayesian analysis ; Seismic hazard ; Italian area ; L’ Aquila Emilia earthquakes ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Elsevier Science Limited
    In:  Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.jvolgeores.2012.08. 013.
    Publication Date: 2017-04-04
    Description: A pilot GIS-based system has been implemented for the assessment and analysis of hazard related to active faults affecting the eastern and southern flanks of Mt. Etna. The system structure was developed in ArcGis® environment and consists of different thematic datasets that include spatially-referenced arc-features and associated database. Arc-type features, georeferenced into WGS84 Ellipsoid UTM zone 33 Projection, represent the five main fault systems that develop in the analysed region. The backbone of the GIS-based system is constituted by the large amount of information which was collected from the literature and then stored and properly geocoded in a digital database. This consists of thirty five alpha-numeric fields which include all fault parameters available from literature such us location, kinematics, landform, slip rate, etc. Although the system has been implemented according to the most common procedures used by GIS developer, the architecture and content of the database represent a pilot backbone for digital storing of fault parameters, providing a powerful tool in modelling hazard related to the active tectonics of Mt. Etna. The database collects, organises and shares all scientific currently available information about the active faults of the volcano. Furthermore, thanks to the strong effort spent on defining the fields of the database, the structure proposed in this paper is open to the collection of further data coming from future improvements in the knowledge of the fault systems. By layering additional user-specific geographic information and managing the proposed database (topological querying) a great diversity of hazard and vulnerability maps can be produced by the user. This is a proposal of a backbone for a comprehensive geographical database of fault systems, universally applicable to other sites.
    Description: Published
    Description: 170-186
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.5. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: GIS-based system ; Hazard assessment ; Volcano-tectonics ; Flank dynamics ; Georeferenced arc-features ; Active fault database ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: The aim of this paper is to propose an alternative model for the Pliocene-Quaternary to present evolution of the Northern–Central Apennines by combining geometrical requirements (Riedel shear system) with existing structural and geological geometries (fault systems and their tectonic associations). We define three sectors characterized by different geological, seismological, geodetic and geothermal signatures: the North-Western Sector (NWS), the Western Central Sector (WCS) and the Eastern Central Sector (ECS). According to GPS data derived from literature the three blocks move independently. In particular, the NWS is bound between the ECS/WCS and the Alps; this constraint leads to a stress accumulation responsible for a fragmentation into further several blocks, which move either to the NE or SW. The WCS is relatively stable; the ECS moves towards NE and is characterized by the presence of numerous releasing and restraining bends, which can be related to the action of a main NNW–SSE left-lateral shear zone. Accordingly, the recent and active tectonic setting of the Northern–Central Apennines is rather related to the dynamics of the introduced blocks, caused by the push of the African plate against Europe, than to subduction processes.
    Description: Published
    Description: 55-63
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Northern-Central Apennines ; Riedel shear system ; Strike slip ; Restraining and releasing bends ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: The main goal of this study is to provide moment tensor solutions for small and moderate earthquakes of the Matese seismic sequence in southern Italy for the period of December 2013–January 2014. We estimate the focal mechanisms of 31 earthquakes with local magnitudes related to the Matese earthquake seismic sequence (December 2013–January 2014) in Southern-Central Italy which are recorded by the broadband stations of the Italian National Seismic Network and the Mediterranean Very Broadband Seismographic Network (MedNet) run by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The solutions show that normal faulting is the prevailing style of seismic deformation in agreement with the local faults mapped outin the area. Comparisons with already published solutions and with seismological and geological information available allowed us to properly interpret the moment tensor solutions in the frame of the seismic sequence evolution and also to furnish additional information about less energetic seismic phases. Focal data were inverted to obtain the seismogenic stress in the study area. The results are compatible with the major tectonic domain of the area.
    Description: Published
    Description: 118-124
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Moment tensors ; Southern Italy ; Apennines ; Stress inversion ; Seismicity and tectonics ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Following the paper by Fraser-Smith et al. (1990), many scientists have focused their research on the ULF geomagnetic field pulsations in the hope of finding possible anomalous signals caused by the seismic activity. Thereafter, many papers have reported ULF geomagnetic field polarization ratio increases which have been claimed to be related to the occurrence of moderate and strong earthquakes. Even if there is no firm evidence of correlation between the polarization ratio increase and seismic events, these publications maintain that these ‘‘anomalous’’ increases are without doubt precursors of pending earthquakes. Furthermore, several researchers suggest that these seismogenic signals may be considered a promising approach towards the possibility of developing short-term earthquake prediction capabilities based on electromagnetic precursory signatures. On the contrary, a part of the scientific community emphasizes the lack of validation of claimed seismogenic anomalies and doubt their association with the seismic activity. Since earthquake prediction is a very important topic of social importance, the authenticity of earthquake precursors needs to be carefully checked. The aim of this paper is to investigate the reliability of the ULF magnetic polarization ratio changes as an earthquakes’ precursor. Several polarization ratio increases of the geomagnetic field, which previous researchers have claimed to have a seismogenic origin, are put into question by a qualitative investigation. The analysis takes into account both the temporal evolution of the geomagnetic field polarization ratio reported in previous papers, and the global geomagnetic activity behaviour. Running averages of the geomagnetic index Kp are plotted onto the original figures from previous publications. Moreover, further quantitative analyses are also reported. Here, nine cases are investigated which include 17 earthquakes. In seven cases it is shown that the suggested association between the geomagnetic field polarization ratio increases and the earthquake preparation process seems to be rather doubtful. More precisely, the claimed seismogenic polarization ratio increases are actually closely related to decreases in the geomagnetic activity level. Furthermore, the last two investigated cases seem to be doubtful as well, although a close correspondence between polarization ratio and geomagnetic activity cannot be unambiguously demonstrated.
    Description: Published
    Description: 19-32
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake precursors ; Short-term earthquake prediction ; Geomagnetic field ; Seismology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: Society’s needs for a network of in situ ocean observing systems cross many areas of earth and marine science. Here we review the science themes that benefit from data supplied from ocean observatories. Understanding from existing studies is fragmented to the extent that it lacks the coherent long-term monitoring needed to address questions at the scales essential to understand climate change and improve geo-hazard early warning. Data sets from the deep sea are particularly rare with long-term data available from only a few locations worldwide. These science areas have impacts on societal health and well-being and our awareness of ocean function in a shifting climate. Substantial efforts are underway to realise a network of open-ocean observatories around European Seas that will operate over multiple decades. Some systems are already collecting high-resolution data from surface, water column, seafloor, and sub-seafloor sensors linked to shore by satellite or cable connection in real or near-real time, along with samples and other data collected in a delayed mode. We expect that such observatories will contribute to answering major ocean science questions including: How can monitoring of factors such as seismic activity, pore fluid chemistry and pressure, and gas hydrate stability improve seismic, slope failure, and tsunami warning? What aspects of physical oceanography, biogeochemical cycling, and ecosystems will be most sensitive to climatic and anthropogenic change? What are natural versus anthropogenic changes? Most fundamentally, how are marine processes that occur at differing scales related? The development of ocean observatories provides a substantial opportunity for ocean science to evolve in Europe. Here we also describe some basic attributes of network design. Observatory networks provide the means to coordinate and integrate the collection of standardised data capable of bridging measurement scales across a dispersed area in European Seas adding needed certainty to estimates of future oceanic conditions. Observatory data can be analysed along with other data such as those from satellites, drifting floats, autonomous underwater vehicles, model analysis, and the known distribution and abundances of marine fauna in order to address some of the questions posed above. Standardised methods for information management are also becoming established to ensure better accessibility and traceability of these data sets and ultimately to increase their use for societal benefit. The connection of ocean observatory effort into larger frameworks including the Global Earth Observation System of Systems (GEOSS) and the Global Monitoring of Environment and Security (GMES) is integral to its success. It is in a greater integrated framework that the full potential of the component systems will be realised.
    Description: Published
    Description: 1-33
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Seafloor and water columnobservatories ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions ; 03. Hydrosphere::03.01. General::03.01.08. Instruments and techniques ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions ; 03. Hydrosphere::03.03. Physical::03.03.02. General circulation ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability ; 03. Hydrosphere::03.03. Physical::03.03.05. Instruments and techniques ; 03. Hydrosphere::03.04. Chemical and biological::03.04.01. Biogeochemical cycles ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field ; 04. Solid Earth::04.05. Geomagnetism::04.05.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.01. Computational geophysics::05.01.01. Data processing ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data ; 05. General::05.08. Risk::05.08.01. Environmental risk ; 05. General::05.08. Risk::05.08.02. Hydrogeological risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: A local seismic network, over a five-year period, recorded about 450 earthquakes in western Argentina. In this region, the geodynamics is controlled by the subduction of the Nazca plate beneath the South American lithosphere, which is characterised here by a sub-horizontal path before reassuming its downward descent. As accurate earthquake locations are of primary importance when studying the seismicity of a given area, events recorded by the local seismic network enable in-depth investigations into seismo-tectonic patterns, allowing to improve the earthquake source characterization and knowledge on the ongoing seismo-tectonics of the region. To this end, we performed a simultaneous 1-D inversion of both the velocity structure and the hypocentre location. The minimum 1-D model obtained is complemented by station corrections which lead to a first insight into the deeper 3-D structure. In addition, stability tests were performed to verify the robustness of our earthquake location results. They reveal a fairly stable hypocentre determination, demonstrating that the locations obtained by the inversion process are not systematically biased. The results show that Sierra Pie de Palo is characterised by a crustal seismogenic structure, dipping west and extending from its eastern boundary to about 30 km of depth. The study also provided new constraints on the geometry of the subducted slab. We noted a great concentration of shallower seismicity compared to that of the surrounding areas of the Wadati-Benioff zone, at the expected position of the Juan Fernandez Ridge (JFR). Our hypocentres indicate that JFR certainly influences the subduction style along its strike, leading to the formation of a bend in the slab geometry.
    Description: Published
    Description: 44-54
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Minimum 1-D velocity model ; high precision earthquake location ; seismogenic structure ; flat-slab subduction ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: We present an improved evaluation of the current strain and stress fields in Southern Apennines (Italy) obtained through a careful analysis of geodetic, seismological and borehole data. In particular, our analysis provides an updated comparison between the accrued strain recorded by geodetic data, and the strain released by seismic activity in a region hit by destructive historical earthquakes. To this end, we have used 9 years of GPS observations (2001-2010) from a dense network of permanent stations, a dataset of 73 well constrained stress indicators (borehole breakouts and focal mechanisms of moderate to large earthquakes), and published estimations of the geological strain accommodated by active faults in the region. Although geodetic data are generally consistent with seismic and geologic information, previously unknown features of the current deformation in southern Italy emerge from this analysis. The newly obtained GPS velocity field supports the well-established notion of a dominant NE-SW-oriented extension concentrated in a ~50 km wide belt along the topographic relief of the Apennines, as outlined by the distribution of seismogenic normal faults. Geodetic deformation is, however, non uniform along the belt, with two patches of higher strain-rate and shear stress accumulation in the north (Matese Mountains) and in the south (Irpinia area). Low geodetic strain-rates are found in the Bradano basin and Apulia plateau to the east. Along the Ionian Sea margin of southern Italy, in southern Apulia and eastern Basilicata and Calabria, geodetic velocities indicate NW-SE extension which is consistent with active shallow-crustal gravitational motion documented by geological studies. In the west, along the Tyrrhenian margin of the Campania region, the tectonic geodetic field is disturbed by volcanic processes. Comparison between the magnitude of the geodetic and the seismic strain-rates (computed using a long historical seismicity catalogue) allow detecting areas of high correlation, particularly along the axis of the mountain chain, indicating that most of the geodetic strain is released by earthquakes. This relation does not hold for the instrumental seismic catalogue, as a consequence of the limited time span covered by instrumental data. In other areas (e.g. Murge plateau in central Apulia), where seismicity is very low or absent, the yet appreciable geodetic deformation might be accommodated in aseismic mode. Overall, the excellent match between the stress and the strain-rate directions in much of the Apennines indicates that both earthquakes and ground deformation patterns are driven by the same crustal forces.
    Description: Published
    Description: 1270-1282
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Satellite geodesy ; Plate motions ; Neotectonics ; Europe ; Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: We re-evaluate the 1984 Abruzzo-Lazio Earthquake on the basis of original seismological data discussed in light of previous interpretations from other authors. This sequence, characterized by two distinct mainshocks (Ms=5.8 and Ms=5.2; NEIS) having low spatial and temporal separation, developed at the border between Central and Southern Apennines. The sequence originated in a narrow area, adjacent to the main NW–SE structures belonging to the Apenninic Chain, crossed by fault segments with different orientation. The spatiotemporal evolution of the seismicity, the focal mechanisms of some aftershocks, never obtained before, and waveform analysis suggest that the sequence developed in several stages. The beginning of the two main stages was marked by two events (Ms=5.8 and Ms=5.2), and the entire sequence was strongly controlled by the structural heterogeneity in the medium involved in the stress release process. The ruptures nucleated on a ENE–WSW striking fault segment belonging to the NNE-striking Ortona-Roccamonfina tectonic line and propagated towards ENE. The presence of the NW–SE structures belonging to the Apennine Chain and their geometry acted as a barrier to the spread of the aftershocks northeastward. As a consequence, a local concentration of static stress in the area enclosed between the northern edge of the rupture segment of the first mainshock and the NW-striking structures triggered the Ms=5.2 event on a W–E pre-existing fault segment. In turn, the static stress changes due to the second mainshock activated adjacent NE–SW and NW– SE fault segments. The NW-striking structures belonging to the Apennines acted as a structural barrier, halting the propagation of the ruptures nucleating on a fault segment that belongs to the NNE-striking Ortona- Roccamonfina tectonic line.
    Description: Published
    Description: 92-104
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic sequence ; Focal mechanisms ; Central–Southern Apennines ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Elsevier Science Limited
    Publication Date: 2017-04-03
    Description: his study examines the seismicity of Vesuvius in the decades leading up to the great eruption of 16th December 1631. The period 1600–1631 is analyzed with the aims to point out any long-term seismic precursor of the eruption. The historical research has focused on contemporary Neapolitan memoirs and a large screening of diplomatic correspondence from the main Italian courts of the age (Florence, Mantua, Parma, Venice and the Vatican). Information was gathered on 18 earthquakes that were felt in Naples between 1601 and 1630. These data were listed with the sequence of 34 shocks that took place in November and December 1631, that preceded the beginning of the eruption. The 52 seismic events that have been highlighted overall are unknown in the parametric catalogues of Italian historical seismicity and 17 are unknown even in the scientific literature. The authors' view is that it makes little sense to talk of one single previous seismic precursor in this case, given the frequent seismic sequences and tremors noted by contemporaries from January 1616 onwards. The present state of knowledge suggests that seismic activity is a strong, early and persistent warning sign of an eruption of Vesuvius, of the same type as that of December 1631.
    Description: Published
    Description: 267-272
    Description: JCR Journal
    Description: restricted
    Keywords: Vesuvius ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: In this paper we introduce a simple procedure to identify clusters of multivariate waveforms based on a simultaneous assignation and alignment procedure. This approach is aimed at the identification of clusters of earthquakes,assuming that similarities between seismic events with respect to hypocentral parameters and focal mechanism correspond to similarities between waveforms of events. Therefore we define a distance measure between seismic curve, in order to interpret and better understand the main features of the generating seismic process.
    Description: Published
    Description: 60-69
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: JCR Journal
    Description: reserved
    Keywords: Waveforms clustering, multiplets, Ocean Bottom Seismometer ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: According to the most common interpretation, the Apennines developed in Neogene and Quaternary times in the hanging wall of a west directed subduction zone. Seismic tomography is the most powerful tool to investigate large volume of Earth at depth, and it has been extensively applied to shed light on the geometry and shape of the subduction under the Italian peninsula. The various experiments were able to display the slab under the Southern Apennines, but even the most recent tomographic images were non-uniquely interpretable and left open questions about the characteristics of the subduction in the Northern-Central sector of the chain. We here present the results of an improved inversion experiment focused on the Northern and Central Apennines. The results do not show any pronounced subduction slab and the most evident anomaly is a low velocity body extending down to 100 km depth, located in a relatively small area under the western Tuscany. On the basis of accurate synthetic tests, we assess that, if established, a subduction like geometry should be visible in our tomographic images. We then conclude that no subduction is imaged in the Northern and Central Apennines. We thus interpret this anomaly as an asthenospheric flow. However, we cannot exclude that our result is due to intrinsic limitations of the methodology. In fact in response to the original question about the capability of local earthquake tomography to settle the matter about subduction, we underline that the absence of deep earthquakes to illuminate the model from below, the existence of seismic gaps in some sectors of the area under study even at shallow depth and the non uniqueness of interpretation of the tomographic images make local tomography unable to give alone definitive information on the deep structure of the Northern and Central Apennines.
    Description: Published
    Description: 63-73
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic tomography ; Apennines ; Subduction ; Asthenospheric upwelling ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: Despite the clear evidence of active flank dynamics that is affecting the eastern side of Mount Etna, the contribution of tectonic processes has not been yet understood. So far, the various models proposed to explain the observed flank deformation have been based on onshore structural data, coming from the volcanic edifice. The Ionian offshore of Mount Etna has been only recently investigated using multichannel seismic profiles, and offers the opportunity to image the structural features of the substrate of the unstable flank of the volcano. This contribution aims at describing the deformation located offshore Mount Etna using multichannel seismic profiles recently acquired during three seismic surveys. The onshore flank deformation of Mount Etna appears to be laterally confined by two tectonic guidelines, trending roughly E–W, located to the north and south of the deforming flank; the northern guideline, in particular, takes the surface expression of a sharp fault (Pernicana Fault). Though often assumed that these boundary structures continue offshore as linear features, connected to a frontal thrust ramp, the occurrence of this simple offshore structural system has not been imaged. In fact, seismic data show a remarkable degree of structural complexity offshore Mount Etna. The Pernicana Fault, for instance, is not continuing offshore as a sharp feature; rather, the deformation is expressed as ENE–WSW folds located very close to the coastline. It is possible that these tectonic structures might have affected the offshore of Mount Etna before the Pernicana Fault system was developed, less than 15 ka ago. The southern guideline of the collapsing eastern flank of the volcano is poorly expressed onshore, and does not show up offshore; in fact, seismic data indicate that the Catania canyon, a remarkable E–W-trending feature, does not reflect a tectonic control. Seismic interpretation also shows the occurrence of a structural high located just offshore the edifice of Mount Etna. Whereas a complex deformation affects the boundary of this offshore bulge, it shows only limited internal deformation. Part of the topography of the offshore bulge pre-existed the constructional phase of Mount Etna, being an extension of the Hyblean Plateau. Only in the northern part, the bulge is a recent tectonic feature, being composed by Plio-Quaternary strata that were folded before and during the building of Mount Etna. The offshore bulge is bounded by a thrust fault that can be related to the intrusion of the large-scale magmatic body below Mount Etna.
    Description: Published
    Description: 50-64
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Mount Etna offshore ; Volcano flank instability ; Active tectonics ; Multichannel reflection seismics ; Intrusive body ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: We performed an in-depth analysis of the ongoing tectonics of a large sector of southern Sicily, including the Hyblean Foreland and the front of the Maghrebian Chain, as well as the Ionian Sea offshore, through the integration of seismic and GPS observations collected in the nearly two decades. In particular, a dataset consisting of more than 1100 small-to moderate-magnitude earthquakes (1.0 ≤ ML ≤ 4.6) has been used for local earthquake tomography in order to trace the characteristics of the faulting systems, and for focal mechanisms computation to resolve the current local stress field and to characterise the faulting regime of the investigated area. In addition, GPS measurements, carried out on both episodic and continuous stations, allowed us to infer the main features of the current crustal deformation pattern. Main results evidence that the Hyblean Plateau is subject to a general strike–slip faulting regime, with a maximum horizontal stress axis NW–SE to NNW–SSE oriented, in agreement with the Eurasia–Nubia direction of convergence. The Plateau is separated into two different tectonic crustal blocks by the left-lateral strike–slip Scicli–Ragusa Fault System. The western block moves in agreement with central Sicily while the eastern one accommodates part of the contraction arising from the main Eurasia–Nubia convergence. Furthermore, we provided evidences leading to consider the Hyblean–Maltese Escarpment Fault System as an active boundary characterised by a left-lateral strike–slip motion, separating the eastern block of the Plateau from the Ionian basin. All these evidences lend credit to a crustal segmentation of the southeastern Sicily.
    Description: Published
    Description: 137-149
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Southeastern Sicily ; Seismotectonics ; Tomography ; Focal mechanisms ; Crustal stress ; Geodetic strain rate ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-05-28
    Description: The Main Ethiopian Rift (MER) offers a complete record of the time–space evolution of a continental rift. We have characterized the brittle deformation in different rift sectors through the statistical analysis of a new database of faults obtained from the integration between satellite images and digital elevation models, and implemented with field controls. This analysis has been compared with the results of lithospheric-scale analogue models reproducing the kinematical conditions of orthogonal and oblique rifting. Integration of these approaches suggests substantial differences in fault architecture in the different rift sectors that in turn reflect an along-axis variation of the rift development and southward decrease in rift evolution. The northernmost MER sector is in a mature stage of incipient continental rupture, with deformation localised within the rift floor along discrete tectono-magmatic segments and almost inactive boundary faults. The central MER sector records a transitional stage in which migration of deformation from boundary faults to faults internal to the rift valley is in an incipient phase. The southernmost MER sector is instead in an early continental stage, with the largest part of deformation being accommodated by boundary faults and almost absent internal faults. The MER thus records along its axis the typical evolution of continental rifting, from fault-dominated rift morphology in the early stages of extension toward magma-dominated extension during break-up. The extrapolation of modelling results suggests that a variable rift obliquity contributes to the observed along-axis variations in rift architecture and evolutionary stage, being oblique rifting conditions controlling the MER evolution since its birth in the Late Miocene in relation to a constant post ca. 11 Ma ~ N100°E Nubia–Somalia motion.
    Description: Published
    Description: 479-492
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: continental rifting ; East African Rift ; Main Ethiopian Rift ; rift kinematics ; plate kinematics ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-04-04
    Description: The MATHCAD 2000 professional code to perform the Multiple Lapse Time Analysis (MLTWA) has been revised and rewritten in MATHEMATICA 7. The new code contains two new procedures to find the minimum of the misfit function between observation and model and a new example of application to real data from Chamoli earthquake aftershock sequence
    Description: Published
    Description: 1388–1392
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Seismic attenuation and scattering ; MLTWA ; MATHEMATICA7 ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2017-04-04
    Description: We present the velocity field in Italy derived from over 300 continuous GPS stations operated in the 1998– 2009 time span. The GPS network maps the whole country with a mean inter-site distance of about 50 km and provides a valuable source of data to study the ongoing deformation processes in the central Mediterranean. The estimated horizontal and vertical velocity fields show major significant features and also less known second-order kinematic features. A general uplift characterizes the whole Apennines and Alpine belts that follow the topographic ridge, whereas the Po Plain shows a gradually increasing subsidence from west to east. The Apennines belt displays a distinctive extension (50–80 10−9 yr−1)while compressive tectonic regimes characterize northern Sicily, eastern Alps and the northeast front of the northern Apennines (25–50 10−9 yr−1). Second-order deformation patterns, on large scale wavelength (~100 km) have been detected on the accretionary prism of central and southern Apennines that are highly correlated with other geophysical data (Vp anomalies, seismic anisotropy, etc.) and related to deep rooted sections (70– 100 km), marked by different subduction regimes. Apparently at this scale-length the observed deformations are governed by the lithosphere as a whole. We interpret these deformations as a result of different subduction mechanisms, such as variations of the subduction rollback velocity affecting different segments of the subduction zone and/or to mantle flows in proximity of the slab edges. Further south, in central-southern Sicily, we detect a contraction of (−1.1±0.2) mm/yr that probably accommodates part of the Africa–Eurasia convergence on the outer thrust front of the Apennines–Maghrebides belt. This hypothesis agrees with an independent analysis of the seismicity associated to the Sicilian Basal Thrust, thought to be still active. The ITRF2005 estimates of the new GPS velocity field are available also in SINEX format as supplementary file S1.
    Description: Published
    Description: 230-241
    Description: 1.9. Rete GPS nazionale
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: GPS velocity field ; Apennines ; Alps ; Adria ; Plate kinematics ; Subduction zone ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-04-04
    Description: Thin (0.5e2 mm thick) pseudotachylyte veins occur within muscovite-bearing (w10% volume), amphibolite-facies quartzites of the Schneeberg Normal Fault Zone (Austroalpine, Southern Tyrol, Italy). Pseudotachylytes are associated with precursor localized plastic microshear zones (50e150 mm thick) developed sub-parallel to the host-rock foliation and with conjugate sets oriented at a high angle to the foliation. Such microshear zones are characterized by recrystallization to ultrafine-grained (1e2 mm grain size) mosaic aggregates of quartz showing a transition from a host-controlled to a random crystallo- graphic preferred orientation towards the shear zone interior. Subsequent coseismic slip mainly exploited these microshear zones. Microstructural analysis provides evidence of extensive friction- induced melting of the muscovite-bearing quartzite, producing a bimodal melt composition. First, the host-rock muscovite was completely melted and subsequently crystallized, mainly as K-feldspar. Then, about 60% volume of the ultrafine-grained quartz underwent melting and crystallized as spherulitic rims (mostly consisting of quartz ` Ti ` Fe) around melt-corroded quartz clasts. The two melts show immiscibility structures in the major injection veins exploiting microshear zones at high angles to the quartzite foliation. In contrast, they were mechanically mixed during flow along the main fault veins.
    Description: Published
    Description: 169-186
    Description: JCR Journal
    Description: restricted
    Keywords: Quartz ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2017-04-04
    Description: Hirano and Hattori (2011), hereafter cited as H&H, report the observation of anomalous increases in the ULF geomagnetic field spectral density ratio which the authors claim to be possible precursors of the 2008 Iwate–Miyagi Nairiku earthquake. Here the results of H&H are reviewed taking into account the global geomagnetic activity level by means ofPKp index. This paper cast serious doubts on the seismogenic origin of the magnetic signatures documented by H&H showing that the anomalous signals are normal ULF magnetic variations induced by solar–terrestrial interaction. In summary, H&H’s claims that magnetic field disturbances about a month before the Mw 6.9 Iwate–Miyagi Nairiku earthquake on June 13, 2008 are precursors to the earthquake are unlikely to be correct.
    Description: Published
    Description: 258-262
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: restricted
    Keywords: Geomagnetic field ; Magnetic anomalies ; Earthquake precursors ; Seismology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-04-04
    Description: In this work we propose a high performance parallelization of the software package COMPSYN, devoted to the production of syntethic seismograms, on a cluster of multicore processors with multiple GPUs. To design and implement the proposed high performance version, we started from a na¨ıve parallel version of COMPSYN. The na¨ıve version consists in a simple parallelization on both device side, obtained by exploiting CUDA, and host side, obtained by exploiting the MPI paradigm and OpenMP API. The proposed high performance version implements several practical techniques of CUDA programming and deeply exploits the GPU architecture, thus achieving a much better performance with respect to the na¨ıve version. We compare the performance of the proposed high performance version and that of the na¨ıve one with the performance of the version running on the cluster of multicore processors without invoking the GPUs. We obtain for the high performance GPU version a speedup of 25x over the version running on the cluster of multicore processors without GPUs against the 10x of the na¨ıve version. Regarding the sequential version, we estimate about 380x the speedup of the high performance GPU version against the about 140x of the na¨ıve version.
    Description: Collaboration Agreement between Dept. of Computer Science, Sapienza University of Rome and Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, 2011. Project n. C26G074ABJ, 2007, Cluster of multicore processor for advanced computation, Sapienza University of Rome.
    Description: Published
    Description: 966-975
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: N/A or not JCR
    Description: restricted
    Keywords: GPU ; CUDA ; synthetic seismogram ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2017-04-04
    Description: Volcanic edifices are often unable to support their own load, triggering the instability of their flanks. Many analogue models have been aimed, especially in the last decade, at understanding the processes leading to volcano flank instability; general behaviors were defined and the experimental results were compared to nature. However, available data at well-studied unstable volcanoes may allow a deeper understanding of the specific processes leading to instability, providing insights also at the local scale. Etna (Italy) constitutes a suitable example for such a possibility, because of its well-monitored flank instability, for which different triggering factors have been proposed in the last two decades. Among these factors, recent InSAR data highlight the role played by magmatic intrusions and a weak basement, under a differential unbuttressing at the volcano base. This study considers original and recently published experimental data to test these factors possibly responsible for flank instability, with the final aim to better understand and summarize the conditions leading to flank instability at Etna. In particular, we simulate the following processes: a) the longterm activity of a lithospheric boundary, as the Malta Escarpment, separating the Ionian oceanic lithosphere from the continental Sicilian lithosphere, below the most unstable east flank of the volcano; b) spreading due to a weak basement, with different boundary conditions; c) the pressurization of a magmatic reservoir, as that active during the 1994–2001 inflation period; d) dike emplacement, as observed during the major 2001 and 2002–2003 eruptions. The experimental results suggest that: 1) the long-term activity of a lithospheric tectonic boundary may create a topographic slope which provides a differential buttressing at the volcano base, a preparing factor to drive longer-term (〉105 years) instability on the east flank of the volcano; 2) volcano spreading (b104 years) has limited effect on flank instability at Etna; 3) magmatic intrusions (b101 years), both in the form of Mogi-like sources or dikes, provide the most important conditions to trigger flank instability on the shorter-term.
    Description: Thisworkwas partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”).
    Description: Published
    Description: 98-111
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: volcano instability ; analogue modeling ; Etna ; unbuttressing ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.02. Experimental volcanism ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2017-04-04
    Description: Morphometric analyses of high resolution digital elevation models (DEM), with the support of Geographic Information Systems (GIS), have been implemented to provide a practical tool for the identification on a large scale of sites where, according to the EC8 prescriptions, a topography amplification is expected. An ad hoc procedure for the hilltop ridge detection was implemented to be used in the morphological characterization, together with the standard GIS sequence of steps. The proposed method allowed the fast classification of more than 800 seismic recording stations located on the Alps and the Apennine, according to the indications of the current European norm and the Italian seismic code. The aim is to improve the characterization of the stations of seismic archives, in the view of a potential cross-checking of observed amplification with the attributed site class category.
    Description: Published
    Description: 248-258
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: DEM ; Geographic Information system ; Ridge ; Morphometric analysis ; Seismic amplification ; Recording station ; Seismic code ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-04-03
    Description: In this paper, we analyse the distributions of number of events (N) and seismic energy (E) on the Earth's surface and along its radius as obtained from the global declustered catalogue of large independent events (M≥7.0), dissipating about 95% of the Earth's elastic budget. The latitude distribution of the seismic event density is almost symmetric with respect to the equator and the seismic energy flux distribution is bimodal; both have their medians near the equator so that they are equally distributed in the two hemispheres. This symmetry with respect to the equator suggests that the Earth's rotational dynamics contributes to modulate the long-term tectonic processes. The distributions of number and energy of earthquakes versus depth are not uniform aswell: 76% of the total earthquakes dissipates about 60% of the total energy in the first ~50 km; only 6% of events dissipates about 20% of the total amount of energy in a narrow depth interval, at the lower boundary of the upper mantle (550–680 km). Therefore, only the remaining 20% of energy is released along most of the depth extent of subduction zones (50–550 km). Since the energetic release along slabs is a minor fraction of the total seismic budget, the role of the slab pull appears as ancillary, if any, in driving plate tectonics. Moreover the concentration of seismic release in the not yet subducted lithosphere suggests that the force moving the plates acts on the uppermost lithosphere and contemporaneously all over the Earth's outer shell, again supporting a rotational/tidal modulation.
    Description: Published
    Description: 80-86
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Global seismicity ; Declustered catalogue ; Earthquake energy distribution ; Plate tectonics ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-04-03
    Description: This paper reports the analyses of ULF (Ultra-Low-Frequency) geomagnetic field observations coming from the Geomagnetic Observatory of L'Aquila during the period 2008–2009. This period includes the L'Aquila 2009 seismic sequence, where the main shock of 6 April heavily damaged the medieval centre of the town and its surrounding area, causing 308 deaths, more than 1000 injuries and about 60,000 displaced people. Recently, several publications have documented the observation of precursory signals which occurred before the 6 April earthquake (e.g. Eftaxias et al., 2009, 2010), while others do not find any pre-earthquake anomaly (e.g. Villante et al., 2010; Di Lorenzo et al., 2011). In light of this, the goal of this study is to carry out further retrospective investigations. ULF magnetic field data are investigated by means of conventional analyses of magnetic polarization ratio, improved magnetic polarization ratio, and fractal analysis. In addition, total geomagnetic field data coming from the INGV Central Italy tectonomagnetic network have also been investigated, using the simple inter-station differentiation method. Within the limits of these methods, no magnetic anomalous signal which may be reasonably characterized as a precursor of the L'Aquila earthquakes has been found.
    Description: Published
    Description: 310–317
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: restricted
    Keywords: Geomagnetic field ; Magnetic anomalies ; Earthquake precursors ; Seismology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2017-04-04
    Description: The problem of identifying precursory signals of earthquakes in the hope of mitigate the seismic hazard is a very important topic, but inaccurate documentations of precursory signatures decrease the credibility of this field of research. The statistical analysis by Kon et al. (2011) shows that there is tendency of positive total electron content (TEC) anomalies to occur 1–5 days before 52 M 〉 6 earthquakes which struck Japan during 1998–2010. Kon et al. (2011) also report in detail three selected case studies claiming the occurrence of TEC anomalies possibly related to large and destructive earthquakes. This paper casts doubts on the possibility that in the three cases the TEC disturbances were caused by seismic events suggesting that these TEC changes could be induced by normal variations of the global geomagnetic activity. As a consequence, also the results of the Superimposed Epoch Analysis performed by Kon et al. (2011) could be seriously influenced by global magnetospheric signals.
    Description: Published
    Description: 1-5
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: partially_open
    Keywords: Ionospheric anomalies ; Total electron content ; Earthquake-related ionospheric anomalies ; Short-term earthquake prediction ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Elsevier Science Limited
    In:  Takla, E.M., Yumoto, K., Sutcliffe, P.R., Nikiforovd, V.M., Marshalle, R., 2011. Possible association between anomalous geomagnetic variations and the Molise Earthquakes at Central Italy during 2002. Physics of the Earth and Planetary Interiors 185, 29–35. doi:10.1016/j.pepi.2010.12.003.
    Publication Date: 2017-04-04
    Description: Takla et al. (2011) documented the observation of seismogenic precursory signals in the geomagnetic field components of L’Aquila station (LAQ) which occurred before the 2002 Molise earthquakes. Here, these claims are reviewed taking into account the geomagnetic index ΣKp time-series and by means of data coming from the Geomagnetic Observatory of L’Aquila where the LAQ station is located. This review shows that before the Molise earthquakes the anomalous behaviour of LAQ geomagnetic field components was actually caused by a possible thermal drift of the instrumentation. In conclusion there is no firm relation between the earthquakes occurrence and the observed magnetic anomalous signatures documented by Takla et al. (2011).
    Description: Published
    Description: 92-94
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: partially_open
    Keywords: Geomagnetic field ; Magnetic anomalies ; Earthquake precursors ; Short-term earthquake prediction ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2017-04-04
    Description: We analyzed crater SO2 fluxes from Mt Etna, together with soil CO2 effluxes from the volcano's flanks, in the period from 2001 to 2005. Between the 2001 and 2002–2003 eruptions, persistently low values of both parameters suggest that no new gas-rich magma was accumulating at shallow depth (b5 km) within Etna's central conduit, whereas very high SO2 sin-eruptive fluxes during the two eruptions indicated sudden decompression of an un-degassed magma rising along newly-formed eccentric conduits. In November 2003, soil CO2 data indicate migration of gas-rich magma from deep (〉10 km) to shallow (b5 km) portions of the feeding conduits, preceded by an increase in crater SO2 fluxes. A similar behavior was observed also during and after the following 2004–2005 eruption. This degassing style matches a period of increased structural instability of the volcanic edifice caused by acceleration of spreading that affected both its eastern and southern flanks. Spreading could have triggered progressively deeper depressurization in the central conduit, inducing release of the more soluble gas (SO2) first, and then of CO2, contrary to what was observed before the 2001 eruption. This suggests that the edifice has depressurized, promoting ascent of fresh-magma and increasing permeability favouring release of CO2 flux. By integrating geochemical and structural data, previous degassing models developed at Mt. Etna have been updated to advance the understanding of eruptive events that occurred in recent years.
    Description: This work was funded by grants from the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and from the Dipartimento per la Protezione Civile (Italy).
    Description: Published
    Description: 90-97
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: reserved
    Keywords: Geochemical modeling ; volcano monitoring ; volcanic gases ; Tectonics and magmatism ; flank collapse ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Elsevier Science Limited
    Publication Date: 2017-04-03
    Description: Several fundamental questions (conundrums) about earthquakes and rocks are inexplicable in terms of conventional sub-critical geophysics. These questions have become so familiar that they are now generally accepted as the way earthquakes and rocks behave and are not recognised as presenting conceptual difficulties. These conundrums are resolved by a new understanding of fluid-rock deformation, where fluid-saturated microcracks in almost all rocks are so closely-spaced they verge on failure and hence are highly-compliant critical-systems which impose a range of new properties on conventional sub-critical geophysics. This new understanding of fluid-rock deformation, this New Geophysics, allows earthquakes to be stress-forecast, and has implications and applications to many solid Earth developments.
    Description: Published
    Description: 501–509
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Conundrums resolved ; Monitoring stress changes ; Seismic anisotropy ; Shear-wave splitting ; Stress-accumulation ; Stress-relaxation ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-04-04
    Description: In the present study the attenuation mechanism of seismic wave energy in and around the source area of the Chamoli earthquake of 29th March 1999 is estimated using the aftershock data. Most of the analyzed events are from the vicinity of the Main Central Thrust (MCT), which is a well-defined tectonic discontinuity in the Himalayas. Separation of intrinsic (Q 1 i ) and scattering (Q 1 s ) attenuation coefficient is done over the frequencies 1, 2, 4, 8 and 16 Hz using Multiple Lapse Time Window Analysis (MLTWA) method. It is observed that S-waves and their coda are primarily attenuated due to scattering attenuation and seismic albedo is very high at all the frequencies. A comparison of attenuation characteristics obtained using these aftershock data with those obtained using data of general seismicity of this region reveal that at lower frequencies both intrinsic and scattering attenuation for Chamoli was much higher compared to those for Garwhal-Kumaun region using general seismicity data. At higher frequencies intrinsic attenuation for Chamoli is lower than and scattering attenuation is comparable to those obtained using general seismicity data of Garwhal-Kumaun region.
    Description: A partial support has been given by Italy INGV-DPC (Istituto Nazionale di Geofisica e Vulcanologia and Dipartimento di Protezione Civile) Projects UNREST and SPEED, and by Italy’s Ministry of Education PRIN project (Seismic Hazard in Central Apennines, UR Del Pezzo).
    Description: Published
    Description: 446-454
    Description: 1T. Geodinamica e interno della Terra
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: MLTWA ; Intrinsic attenuation ; Scattering attenuation ; Chamoli Himalayas ; Himalayas ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-11-23
    Description: An underwater geomorphological survey along the coasts of six Cycladic islands (Sifnos, Antiparos, Paros, Naxos, Iraklia and Keros) revealed widespread evidence of a recent 30–40 cm submergence, part of which may have seismic origin. Comparison with information reported from earthquakes having affected the area suggests that at least part of the recent submergence might be an effect of the 1956 Amorgos earthquake. Modelling of the co-seismic and short-term post-seismic effects of the earthquake revealed that part of the observed subsidence may be explained in some of the islands by a fast post-seismic relaxation of a low-viscosity layer underlying the seismogenic zone. However far-field observations are underestimated by our model, and may be affected by a wider deformation field induced by the largest aftershock of the Amorgos sequence, or by other earthquakes.
    Description: Published
    Description: 27-40
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: tidal notch ; sea level change ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...