ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
  • 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
  • American Geophysical Union  (19)
  • Wiley-Blackwell  (6)
  • 2010-2014  (25)
  • 1995-1999
Collection
Years
Year
  • 1
    Publication Date: 2021-05-25
    Description: The largest events of the 1997 Umbria-Marche sesimic sequence were the two September 26 earthquakes of Mw=5.7 (00:33 GMT) and Mw=6.0 (09:40 GMT), which caused severe damage and ground cracks in a wide area around the epicenters. We created an ERS-SAR differenrtial interferogram, where nine fringes are visible in and around the Colfiorito basin, corresponding to 25 cm of coseismic surface dispalacements. GPS data show a maximum horizontal displacement...
    Description: Published
    Description: 883-886
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Colfiorito, SAR, GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-21
    Description: We detail the Kamil crater (Egypt) structure and refine the impact scenario, based on the geological and geophysical data collected during our first expedition in February 2010. Kamil Crater is a model for terrestrial small-scale hypervelocity impact craters. It is an exceptionally well-preserved, simple crater with a diameter of 45 m, depth of 10 m, and rayed pattern of bright ejecta. It occurs in a simple geological context: flat, rocky desert surface, and target rocks comprising subhorizontally layered sandstones. The high depth-to-diameter ratio of the transient crater, its concave, yet asymmetric, bottom, and the fact that Kamil Crater is not part of a crater field confirm that it formed by the impact of a single iron mass (or a tight cluster of fragments) that fragmented upon hypervelocity impact with the ground. The circular crater shape and asymmetries in ejecta and shrapnel distributions coherently indicate a direction of incidence from the NW and an impact angle of approximately 30 to 45 . Newly identified asymmetries, including the off-center bottom of the transient crater floor downrange, maximum overturning of target rocks along the impact direction, and lower crater rim elevation downrange, may be diagnostic of oblique impacts in well-preserved craters. Geomagnetic data reveal no buried individual impactor masses 〉100 kg and suggest that the total mass of the buried shrapnel 〉100 g is approximately 1050–1700 kg. Based on this mass value plus that of shrapnel 〉10 g identified earlier on the surface during systematic search, the new estimate of the minimum projectile mass is approximately 5 t.
    Description: Published
    Description: 1842–1868
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Impact craters ; geophysical survey ; iron meteorite ; impact scenario ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-25
    Description: We present crustal deformation results from a geodetic experiment (Retreating-Trench, Extension, and Accretion Tectonics (RETREAT)) focused on the northern Apennines orogen in Italy. The experiment centers on 33 benchmarks measured with GPS annually or more frequently between 2003 and 2007, supplemented by data from an additional older set of 6 campaign observations from stations in northern Croatia, and 187 continuous GPS stations within and around northern Italy. In an attempt to achieve the best possible estimates for rates and their uncertainties, we estimate and filter common mode signals and noise components using the continuous stations and apply these corrections to the entire data set, including the more temporally limited campaign time series. The filtered coordinate time series data are used to estimate site velocity. We also estimate spatially variable seasonal site motions for stations with sufficient data. The RMS scatter of residual time series are generally near 1 mm and 4 mm, horizontal and vertical, respectively, for continuous and most of the new campaign stations, but scatter is slightly higher for some of the older campaign data. Velocity uncertainties are below 1 mm/yr for all but one of the stations. Maximum rates of site motion within the orogen exceed 3 mm/yr (directed NE) relative to stable Eurasia. This motion is accommodated by extension within the southwestern and central portions of the orogen, and shortening across the foreland thrust belt to the northeast of the range. The data set is consistent with contemporaneous extension and shortening at nearly equal rates. The northern Apennines block moves northeast faster than the Northern Adria microplate. Convergence between the Northern Apennines block and the Northern Adria microplate is accommodated across a narrow zone that coincides with the northeastern Apennines range front. Extension occurs directly above an intact vertically dipping slab inferred by previous authors from seismic tomography. The observed crustal deformation is consistent with a buried dislocation model for crustal faulting, but associations between crustal motion and seismically imaged mantle structure may also provide new insights on mantle dynamics.
    Description: Published
    Description: B04408
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: GPS, northern Apennines, retreat, Italy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-03
    Description: Application of light detection and ranging (LIDAR) technology in volcanology has 7 developed rapidly over the past few years, being extremely useful for the generation 8 of high‐spatial‐resolution digital elevation models and for mapping eruption products. 9 However, LIDAR can also be used to yield detailed information about the dynamics of 10 lava movement, emplacement processes occuring across an active lava flow field, and the 11 volumes involved. Here we present the results of a multitemporal airborne LIDAR survey 12 flown to acquire data for an active flow field separated by time intervals ranging from 13 15 min to 25 h. Overflights were carried out over 2 d during the 2006 eruption of Mt. Etna, 14 Italy, coincident with lava emission from three ephemeral vent zones to feed lava flow in 15 six channels. In total 53 LIDAR images were collected, allowing us to track the volumetric 16 evolution of the entire flow field with temporal resolutions as low as ∼15 min and at a 17 spatial resolution of 〈1 m. This, together with accurate correction for systematic errors, 18 finely tuned DEM‐to‐DEM coregistration and an accurate residual error assessment, 19 permitted the quantification of the volumetric changes occuring across the flow field. We 20 record a characteristic flow emplacement mode, whereby flow front advance and channel 21 construction is fed by a series of volume pulses from the master vent. Volume pulses 22 have a characteristic morphology represented by a wave that moves down the channel 23 modifying existing channel‐levee constructs across the proximal‐medial zone and building 24 new ones in the distal zone. Our high‐resolution multitemporal LIDAR‐derived DEMs 25 allow calculation of the time‐averaged discharge rates associated with such a pulsed flow 26 emplacement regime, with errors under 1% for daily averaged values.
    Description: This work was partially funded by the Italian 930 Dipartimento della Protezione Civile in the frame of the 2007–2009 Agree- 931 ment with Istituto Nazionale di Geofisica e Vulcanologia–INGV. A.F. 932 benefited from the MIUR‐FIRB project “Piattaforma di ricerca multi‐disci- 933 plinare su terremoti e vulcani (AIRPLANE)” n. RBPR05B2ZJ. S.T. 934 benefited from the project FIRB “Sviluppo di nuove tecnologie per la prote- 935 zione e difesa del territorio dai rischi naturali (FUMO)” funded by the Italian 936 Ministero dell’Istruzione, dell’Università e della Ricerca.
    Description: Published
    Description: B11203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: LIDAR ; lava flow ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Forecasting the time, nature, and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions are fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high‐resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land use and civil defense planning in the long term, to quantify, in real time, the impact of an imminent eruption, and to assess the efficiency of protective measures.
    Description: This work was sponsored by the Italian Ministry for Education, University and Research, FIRB project RBAU01RMZ4 “Lava flow simulations by Cellular Automata,” and by the National Civil Defense Department and INGV (National Institute of Geophysics and Volcanology), project V3_6/09 “V3_6 – Etna.”
    Description: Published
    Description: B04203
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: reserved
    Keywords: lava flows ; volcanic hazard ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-02-03
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union.
    Description: Volcano deformation may occur under different conditions. To understand how a volcano deforms, as well as relations with magmatic activity, we studied Mt. Etna in detail using interferometric synthetic aperture radar (InSAR) data from 1994 to 2008. From 1994 to 2000, the volcano inflated with a linear behavior. The inflation was accompanied by eastward and westward slip on the eastern and western flanks, respectively. The portions proximal to the summit showed higher inflation rates, whereas the distal portions showed several sectors bounded by faults, in some cases behaving as rigid blocks. From 2000 to 2003, the deformation became nonlinear, especially on the proximal eastern and western flanks, showing marked eastward and westward displacements, respectively. This behavior resulted from the deformation induced by the emplacement of feeder dikes during the 2001 and 2002–2003 eruptions. From 2003 to 2008, the deformation approached linearity again, even though the overall pattern continued to be influenced by the emplacement of the dikes from 2001 to 2002. The eastward velocity on the eastern flank showed a marked asymmetry between the faster sectors to the north and those (largely inactive) to the south. In addition, from 1994 to 2008 part of the volcano base (south, west, and north lower slopes) experienced a consistent trend of uplift on the order of ∼0.5 cm/yr. This study reveals that the flanks of Etna have undergone a complex instability resulting from three main processes. In the long term (103–104 years), the load of the volcano is responsible for the development of a peripheral bulge. In the intermediate term (≤101 years, observed from 1994 to 2000), inflation due to the accumulation of magma induces a moderate and linear uplift and outward slip of the flanks. In the short term (≤1 year, observed from 2001 to 2002), the emplacement of feeder dikes along the NE and south rifts results in a nonlinear, focused, and asymmetric deformation on the eastern and western flanks. Deformation due to flank instability is widespread at Mt. Etna, regardless of volcanic activity, and remains by far the predominant type of deformation on the volcano.
    Description: ESA provided the SAR data (Cat‐1 no. 4532 and GEO Supersite initiative). The DEM was obtained from the SRTM archive, while the ERS‐1/2 orbits are courtesy of the TU‐Delft, The Netherlands. This work was partially funded by INGV and the Italian DPC (DPCINGV project V4 “Flank”), the Italian DPC (under special agreement with IREA‐CNR), and the Italian Space Agency under contract “sistema rischio vulcanico (SRV).” The authors thank Francesco Casu, Paolo Berardino, and Riccardo Lanari for their support and Geoff Wadge and Michael Poland for their helpful and constructive review of the manuscript.
    Description: Published
    Description: B10405
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: Flank instability ; InSAR ; volcanoes ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.04. Instrumentation and techniques of general interest::05.04.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Forecasting the time, nature and impact of future eruptions is difficult at volcanoes such as Mount Etna, in Italy, where eruptions occur from the summit and on the flanks, affecting areas distant from each other. Nonetheless, the identification and quantification of areas at risk from new eruptions is fundamental for mitigating potential human casualties and material damage. Here, we present new results from the application of a methodology to define flexible high-resolution lava invasion susceptibility maps based on a reliable computational model for simulating lava flows at Etna and on a validation procedure for assessing the correctness of susceptibility mapping in the study area. Furthermore, specific scenarios can be extracted at any time from the simulation database, for land-use and civil defence planning in the long-term, to quantify, in real-time, the impact of an imminent eruption, and to assess the efficiency of protective measures.
    Description: This work was sponsored by the Italian Ministry for Education, University and Research, FIRB project n° RBAU01RMZ4 “Lava flow simulations by Cellular Automata”, and by the National Civil Defence Department and INGV (National Institute of Geophysics and Volcanology), project V3_6/09 “V3_6 – Etna”.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 4.4. Scenari e mitigazione del rischio ambientale
    Description: JCR Journal
    Description: open
    Keywords: lava flows ; Etna ; hazard evaluation ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The 2009 April 6, Mw= 6.3 L’Aquila earthquake occurred within a complex system of NW–SE trending normal faults in the Abruzzi Central Apennines (Italy). We analyse the coseismic deformation as measured by 〉70 global positioning system (GPS) stations, both from continuous and survey-mode networks, providing unprecedented details for a moderate normal faulting earthquake in Italy from GPS measurements. We use rectangular, uniform-slip, dislocations embedded in an elastic, homogeneous and isotropic half-space and a constrained, non-linear optimization algorithm, to solve for the best-fitting rectangular dislocation geometry and coseismic-slip distribution. We use a bootstrap approach to investigate uncertainties in the model parameters and define confidence bounds for all the inverted parameters. The rupture occurred on a N129°E striking and 50° southwestward dipping normal fault, in agreement with geological observations of surface breaks along the Paganica fault. Our distributed slip model exhibits a zone of relatively higher slip (〉60 cm) between ∼1.5 and ∼11 km depth, along a roughly downdip, NW–SE elongated patch, confined within the fault plane inverted assuming uniform-slip. The highest slip, of the order of ∼1 m, occurred on a ∼16 km2 area located at ∼5 km depth, SE of the mainshock epicentre. The analysis of model resolution suggests that slip at depth below ∼5 km can be resolved only at a spatial scale larger than 2 km, so a finer discretization of different asperities within the main patch of coseismic-slip is not allowed by GPS data. We compute the coseismic Coulomb stress changes in the crustal volume affected by the major aftershocks, and compare the results obtained from the uniform-slip and the heterogeneous-slip models. We find that most of the large aftershocks occurred in areas of Coulomb stress increase of 0.2–13 bar and that a deepening of the slip distribution down to a depth greater than 6 km in the SE part of the fault plane, in agreement with the inverted slip model, can explain the deepest, April 7, Mw 5.3 aftershock.
    Description: Published
    Description: 473-489
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Satellite geodesy ; Space geodetic surveys ; Earthquake ground motions ; Earthquake source observations ; Earthquake interaction, forecasting, and prediction ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: We present an improved rendition of the geodetic velocity and strain fields in Sicily and southern Calabria obtained through the analysis of 18 years of GPS observations from continuous and survey station networks. The dense spatial coverage of geodetic data provides precise quantitative estimates of previously established first-order active kinematic features, including: i) a narrow east-west-elongated belt of contraction (~1-1.5 mm/yr) extending offshore northern Sicily from Ustica to Stromboli across the Aeolian Islands; ii) a narrow east-west-trending contractional belt located along the northern rim of the Hyblean Plateau in southern Sicily, with shortening at up to 4.4 mm/yr; iii) right motion (~3.6 mm/yr) on the Aeolian-Tindari-Letojanni fault (ATLF) system, a main shear zone extending from the Aeolian Islands to the Ionian coast of Sicily, with significant transpression and transtension partitioned between discrete sectors of the fault; iv) transtension (~1 mm/yr) across the Sicily Channel between Sicily and North Africa. We use geodetic observations coupled to geological constraints to better elucidate the interplay of crustal blocks revealed in the investigated area. In particular, we focus on the ATLF, which forms the primary boundary between the Sicilian and Calabrian blocks. The ATLF juxtaposes north-south contraction between Sicily and the Tyrrhenian block with northwest-southeast extension in north-eastern Sicily and Calabria. Contraction between Sicily and Tyrrhenian blocks probably arises from the main Europe-Nubia convergence, although Sicily has a component of lateral motion away from Nubia. We found that convergence is not restricted to the northern offshore, as commonly believed, but is widely accommodated between the frontal belt and the northern rim of the Hyblean foreland in southern Sicily. Geodetic data also indicate that active right shear on the ATLF occurs to the southeast of the mapped fault array in northern Sicily, suggesting the fault cuts through till the Ionian coast of the island. The small geodetic divergence between the Hyblean and Apulian blocks rimming on both sides the Calabria block and subjacent Ionian slab, coupled with marine geophysical evidences in the Ionian Sea lends credit to the proposed deep root of the ATLF and to a fragmentation of the Ionian domain.
    Description: Published
    Description: B07401
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Calabro Peloritan Arc ; Geodesy ; plate tectonic ; Strain-rate ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Here we describe the horizontal velocities of continuous GPS stations in the Calabrian Arc (CA) and surrounding regions. The appropriate reference frame to evaluate the crustal motion of the CA is considered by assessing the internal deformation and the relative motion of the crustal blocks in the foreland of the Apennines␣Ionian␣Maghrebides subduction system. We propose that the motion of CA rela- tive to the subducting Ionian lower plate is most properly assessed by minimizing the GPS velocities in Apulia. In this reference frame the significant ␣2 mm/yr southeast- ward motion of the stations on the Ionian flank of the CA shows that the arc is still moving towards the trench in agreement with the observations of active shortening in the Ioanian wedge. This southeastward migration is associated to 1.4 ± 0.3 mm/yr E␣W extension of the forearc in northern Calabria, comparable with the seismic strain averaged in the last 500 years. The limited subaerial exposure decreases the resolution on locking of the subduction interface but the distribution and direction of crustal extension along the CA impose important constraints on geodynamic interpreta- tions of the area.
    Description: Published
    Description: L17304
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Calabrian Arc ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: This paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.
    Description: This paper presents a magnetotelluric (MT) survey of the unstable eastern flank of Mt. Etna. We take thirty soundings along two profiles oriented in the N-S and NW-SE directions, and from these data recover two 2D resistivity models of the subsurface. Both models reveal three major layers in a resistive-conductive-resistive sequence, the deepest extending to 14 km bsl. The shallow layer corresponds to the volcanic cover, and the intermediate conductive layer corresponds to underlying sediments segmented by faults. These two electrical units are cut by E-W-striking faults. The third layer (basement) is interpreted as mainly pertinent to the Apennine-Maghrebian Chain associated with SW-NE-striking regional faults. The detailed shapes of the resistivity profiles clearly show that the NE Rift is shallow-rooted ( 0–1 km bsl), thus presumably fed by lateral dikes from the central volcano conduit. The NW-SE profile suggests by a series of listric faults reaching up to 3 km bsl, then becoming almost horizontal. Toward the SE, the resistive basement dramatically dips (from 3 km to 10 km bsl), in correspondence with the Timpe Fault System. Several high-conductivity zones close to the main faults suggest the presence of hydrothermal activity and fluid circulation that could enhance flank instability. Our results provide new findings about the geometry of the unstable Etna flank and its relation to faults and subsurface structures.
    Description: Published
    Description: B03216
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; magnetotelluric ; flank instability ; volcano ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. We use nearly two decades of InSAR observations excluding wintertime acquisitions, to analyze the relationships between rift zones, dike emplacement and flank instability at Etna. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steadystate eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike injection, as in 2002, does the rift transiently becomes the upper border of the unstable flank. The flank's steady-state eastward movement is inferred to result from the interplay between magmatic activity, asymmetric topographic unbuttressing, and east-dipping detachment geometry at its base. This study documents the first evidence of steady-state volcano rift instability interrupted by transient dike injection at basaltic edifices.
    Description: Partially funded by INGV and the Italian DPC (DPC-INGV project V4 “Flank”). ERS and ENVISAT SAR data were provided by ESA through the Cat-1 project no. 4532 and the GEO Supersite initiative. The DEM was obtained from the SRTM archive. ERS-1/2 orbits are courtesy of the TU-Delft, The Netherlands. SAR data processing has been done at IREACNR, partially carried out under contract “Volcanic Risk System (SRV)” funded by the Italian Space Agency (ASI).
    Description: Published
    Description: L20311
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: restricted
    Keywords: flank instability ; rift zones ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.09. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2003. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved.
    Description: In this study, we modify and extend a data analysis technique to determine the stress orientations between data clusters by adding an additional constraint governing the probability algorithm. We apply this technique to produce a map of the maximum horizontal compressive stress (S_Hmax) orientations in the greater European region (including Europe, Turkey and Mediterranean Africa). Using the World Stress Map dataset release 2008, we obtain analytical probability distributions of the directional differences as a function of the angular distance, θ. We then multiply the probability distributions that are based on pre-averaged data within θ〈3° of the interpolation point and determine the maximum likelihood estimate of the S_Hmax orientation. At a given distance, the probability of obtaining a particular discrepancy decreases exponentially with discrepancy. By exploiting this feature observed in the World Stress Map release 2008 dataset, we increase the robustness of our S_Hmax determinations. For a reliable determination of the most likely S_Hmax orientation, we require that 90% confidence limits be less than ±60° and a minimum of three clusters, which is achieved for 57% of the study area, with small uncertainties of less than ±10° for 7% of the area. When the data density exceeds 0.8×10^-3 data/km2, our method provides a means of reproducing significant local patterns in the stress field. Several mountain ranges in the Mediterranean display 90° changes in the S_Hmax orientation from their crests (which often experience normal faulting) and their foothills (which often experience thrust faulting). This pattern constrains the tectonic stresses to a magnitude similar to that of the topographic stresses.
    Description: This work was supported by the DPC-INGV 2008-2010 S1 project, the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE; Grant agreement no. 226967), and project MIUR-FIRB "Abruzzo" (code: RBAP10ZC8K_003).
    Description: Published
    Description: 3.1. Fisica dei terremoti
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: partially_open
    Keywords: Neotectonics ; Seismicity and tectonics ; Fractures and faults ; Intra-plate processes ; Plate motions ; Dynamics: gravity and tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: The inversion of multitemporal DInSAR and GPS measurements unravels the coseismic and postseismic (afterslip) slip distributions associated with the 2009 MW 6.3 L’Aquila earthquake and provides insights into the rheological properties and long-term behavior of the responsible structure, the Paganica fault. Well-resolved patches of high postseismic slip (10–20 cm) appear to surround the main coseismic patch (maximum slip ≈1 m) through the entire seismogenic layer above the hypocenter without any obvious depth-dependent control. Time series of postseismic displacement are well reproduced by an exponential function with best-fit decay constants in the range of 20–40 days. A sudden discontinuity in the evolution of released postseismic moment at ≈130 days after the main shock does not correlate with independent seismological and geodetic data and is attributed to residual noise in the InSAR time series. The data are unable to resolve migration of afterslip along the fault probably because of the time interval (six days) between the main shock and the first radar acquisition. Surface fractures observed along the Paganica fault follow the steepest gradients of postseismic line-of-sight satellite displacements and are consistent with a sudden and delayed failure of the shallow layer in response to upward tapering of slip. The occurrence of afterslip at various levels through the entire seismogenic layer argues against exclusive depth-dependent variations of frictional properties on the fault, supporting the hypothesis of significant horizontal frictional heterogeneities and/or geometrical complexities. We support the hypothesis that such heterogeneities and complexities may be at the origin of the long-term variable behavior suggested by the paleoseismological studies. Rupture of fault patches with dimensions similar to that activated in 2009 appears to have a ≈500 year recurrence time interval documented by paleoseismic and historical studies. In addition to that, paleoseismological evidence of large (〉0.5 m) coseismic offsets seems to require seismic events, recurring every 1000–2000 years, characterized by (1) multisegment linkage, (2) surface ruptures larger than in 2009, and (3) complete failure of the 2009 coseismic and postseismic patches.
    Description: Published
    Description: B02402
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: Afterslip ; L'Aquila ; Apennines ; postseismic ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: We analyze the kinematic and crustal deformations of Mt. Etna from 2003 to 2008 as imaged by the Mt. Etna continuous GPS (CGPS) network (Etna@net). Through a careful analysis of GPS time series, six coherent phases of crustal deformations have been identified, three inflation phases and three deflation phases, superimposed on a major inflation of the volcanic edifice since 2001. The inversions of GPS velocities have enabled: 1) a better understanding of the evolution of the volcanic sources acting beneath the volcano; 2) analysis of the strain rate patterns; and 3) a delineation of potential coupling between volcanic sources and the observed ground deformations. The modelling of the pressure sources has shown a separation between inflation and deflation sources. The deflation sources show an upward migration, from 5.5 toward 2.0 km (b.s.l.), while the inflation sources are located within 5.5 and 4.0 km (b.s.l.). Our results indicate that the kinematic and ground deformations of the mid-upper eastern flank are driven by the interplay between the effect of the magmatic sources and a south-eastward motion. Furthermore, clockwise rotations have been detected that prevailed over the eastern motion of the flank during the inflation phase preceding the 2004-2005 and 2006 eruptions. Finally, the accordance between the higher geodetic shear strain rates and the area with the highest seismic energy release shows that measured geodetic shear strain rates can provide useful information on the potential occurrence of seismic activity.
    Description: Osservatorio Etneo, Istituto Nazionale di Geofisica e Vulcanologia,Catania, Italy. Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York, USA.
    Description: Published
    Description: B07208
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ground deformations ; Volcano monitoring ; Strain rate analysis ; Volcanic source modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: We used the SBAS DInSAR analysis technique to estimate the interseismic deformation along the western part of the Doruneh fault system (DFS), northeastern Iran. We processed 90 ENVISAT images from four different frames from ascending and descending orbits. Three of the ground velocity maps show a significant interseismic signal. Using a simple dislocation approach we model 2-D velocity profiles concerning three InSAR data set relative to the western part of the DFS, obtaining a good fit to the observations. The resulting model indicates that a slip rate of ∼5mmyr−1 accumulates on the fault below 10 km depth, and that in its western sector the Doruneh fault is not purely strike-slip (left-lateral) as in its central part, but shows a significant thrust component. Based on published geological observations, and assuming that all interseismic deformation is recovered with a single event, we can estimate a characteristic recurrence interval between 630 and 1400 yr.
    Description: Published
    Description: 622-628
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Image processing; Satellite geodesy; Seismic cycle; Radar interferometry; Seismicity and tectonics; Continental tectonics: strike-slip and transform. ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: In this study, we revisit the mechanism of the 1976 Friuli (NE Italy) earthquake sequence (main shocks M w 6.4, 5.9 and 6.0). We present a new source model that simultaneously fits all the available geodetic measurements of the observed deformation. We integrate triangulation measurements, which have never been previously used in the source modelling of this sequence, with high-precision levelling that covers the epicentral area. We adopt a mixed linear/non-linear optimization scheme, in which we iteratively search for the best-fitting solution by performing several linear slip inversions while varying fault location using a grid search method. Our preferred solution consists of a shallow north-dipping fault plane with assumed azimuth of 282◦ and accommodating a reverse dextral slip of about 1 m. The estimated geodetic moment is 6.6 × 1018 Nm (M w 6.5), in agreement with seismological estimates. Yet, our preferred model shows that the geodetic solution is consistent with the activation of a single fault system during the entire sequence, the surface expression of which could be associated with the Buia blind thrust, supporting the hypothesis that the main activity of the Eastern Alps occurs close to the relief margin, as observed in other mountain belts. The retrieved slip pattern consists of a main coseismic patch located 3–5 km depth, in good agreement with the distribution of the main shocks. Additional slip is required in the shallower portions of the fault to reproduce the local uplift observed in the region characterized by Quaternary active folding. We tentatively interpret this patch as postseismic deformation (afterslip) occurring at the edge of the main coseismic patch. Finally, our rupture plane spatially correlates with the area of the locked fault determined from interseismic measurements, supporting the hypothesis that interseismic slip on the creeping dislocation causes strain to accumulate on the shallow (above ∼10 km depth) locked section. Assuming that all the long-term accommodation between Adria and Eurasia is seismically released, a time span of 500–700 years of strain-accumulating plate motion would result in a 1976-like earthquake.
    Description: Published
    Description: 1279-1294
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: seismic cycle; earthquake source observations ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: The statistical analysis of volcanic activity at Mt Etna was conducted with the twofold aim of (1) constructing a probability map for vent opening of future flank eruptions and (2) forecasting the expected number of eruptive events at the summit craters. The spatiotemporal map of new vent opening at Etna volcano is based on the analysis of spatial locations and frequency of flank eruptions starting from 1610. Thanks to the completeness and accuracy of historical data over the last four centuries, we examined in detail the spatial and temporal distribution of flank eruptions showing that effusive events follow a nonhomogenous Poisson process with space-time varying intensities. After demonstrating the spatial nonhomogeneity and the temporal nonstationarity of flank eruptions at Etna, we calculated the recurrence rates (events expected per unit area per unit time) and produced different spatiotemporal probability maps of new vent opening in the next 1, 10 and 50 years. These probabilistic maps have an immediate use in evaluating the future timing and areas of Etna prone to volcanic hazards. Finally, the results of the analysis of the persistent summit activity during the last 110 years indicate that the hazard rate for eruptive events is not constant with time, differs for each summit crater of Mt Etna, highlighting a general increase in the eruptive frequency starting from the middle of last century and particularly from 1971, when the SE crater was formed.
    Description: This work was developed in the frame of the TecnoLab, the Laboratory for the Technological Advance in Volcano Geophysics organized by INGV-CT, DIEES-UNICT, and DMI-UNICT.
    Description: Published
    Description: 1925-1935
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 3IT. Calcolo scientifico e sistemi informatici
    Description: JCR Journal
    Description: restricted
    Keywords: Etna ; probabilistic modeling ; eruption ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.02. Cellular automata, fuzzy logic, genetic alghoritms, neural networks ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis ; 05. General::05.01. Computational geophysics::05.01.05. Algorithms and implementation ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: Flank instability at basaltic volcanoes is often related to repeated dike intrusions along rift zones and accompanied by surface fracturing and seismicity. These processes have been mostly studied during specific events, and the lack of longer-term observations hinders their better understanding. Here we analyze ~20 years of deformation of the Pernicana Fault System (PFS), the key structure controlling the instability of the eastern flank of Mt. Etna. We exploit East-West and vertical components of mean deformation velocity, as well as corresponding time series, computed from ERS/ENVISAT (1992–2010) and COSMO-SkyMed (2009–2011) satellite radar sensors via Synthetic Aperture Radar Interferometry techniques. We then integrate and compare this information with field, seismic, and leveling data, collected between 1980 and 2012. We observe transient displacements accompanied by seismicity, overprinted on a long-term background eastward motion (~2 cm/yr). In the last decades, these transient events were preceded by a constant amount of accumulated strain near the PFS. The time of strain accumulation varies between a few years and a few decades, also depending on magma emplacement within the nearby North East Rift, which may increase the strain along the PFS. These results suggest that the amount of deformation near the PFS may be used as a gauge to forecast the occurrence of instability transients on the eastern flank of Etna. In this context, the PFS may provide an ideal, small-scale structure to test the relations between strain accumulation, stress loading, and seismic energy release.
    Description: This work has been partially supported by the Italian Space Agency (ASI) within the SAR4Volcanoes project, agreement I/ 034/11/0.
    Description: Published
    Description: 4398-4409
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 3V. Dinamiche e scenari eruttivi
    Description: 4V. Vulcani e ambiente
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: JCR Journal
    Description: restricted
    Keywords: Volcano flank instability ; Pernicana fault ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: Here I compare estimates of tectonic strain rates from dense Global Positioning System measurements with the seismicity released in the last ~500 years in the Apennines (Italy). The rates of seismic moment accumulation from geodesy and of historical seismic release by earthquakes agree within the uncertainties, ruling out significant aseismic deformation. Within the considered 400 km long section of the Apennines, this balance yields an average recurrence interval of 30–75 years for MW≥6.5 events without requiring a future earthquake larger than those observed historically (MW~7). A minimum estimate of unreleased strain allows MW≥6.5 and MW≥6.9 events to be released in ~35% and ~10% of the central-southern Apennines, respectively. The definition of the seismic potential for smaller events is more uncertain, and their occurrence remains a significant threat throughout the Apennines.
    Description: Published
    Description: 1155–1162
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Crustal deformation ; Earthquakes ; GPS ; Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: For decades, many authors have attempted to define the location, geometry and kinematics of the causative fault for the 1908 December 28, M 7.1 earthquake that struck the Messina Straits between Sicily and Calabria (southern Italy). The coseismic displacement caused a predominant downwarping of the Straits and small land uplift away from it, which were documented by levelling surveys performed 1 yr before and immediately after the earthquake. Most of the source models based on inversion of levelling data suggested that the earthquake was caused by a low angle, east-dipping blind normal fault, whose upper projection intersects the Earth surface on the Sicilian (west) side of the Messina Straits.An alternative interpretation holds that the causative fault is one of the high-angle, west-dipping faults located in southern Calabria, on the eastern side of the Straits, and may in large part coincide with the mapped Armo Fault. Here, we critically review the levelling data with the aim of defining both their usefulness and limits in modelling the seismogenic fault. We demonstrate that the levelling data alone are not capable of discriminating between the two oppositely dipping fault models, and thus their role as a keystone for modellers is untenable. However, new morphotectonic and geodetic data indicate that the Armo Fault has very recent activity and is accumulating strain. The surface observations, together with appraisal ofmacroseismic intensity distribution, available seismic tomography and marine geophysical evidence, lends credit to the hypothesis that the Armo and possibly the S. Eufemia faults are part of a major crustal structure that slipped during the 1908 earthquake.
    Description: Published
    Description: 1025-1041
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source ; Messina Straits ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: We use 2.5 to 14 years long position time series from 〉800 continuous Global Positioning System (GPS) stations to study vertical deformation rates in the Euro-Mediterranean region. We estimate and remove common mode errors in position time series using a principal component analysis, obtaining a significant gain in the signal-to-noise ratio of the displacements data. Following the results of a maximum likelihood estimation analysis, which gives a mean spectral index ~ 0.7, we adopt a power law + white noise stochastic model in estimating the final vertical rates and find 95% of the velocities within ±2 mm/yr, with uncertainties from filtered time series ~40% smaller than from the unfiltered ones. We highlight the presence of statistically significant velocity gradients where the stations density is higher. We find undulations of the vertical velocity field at different spatial scales both in tectonically active regions, like eastern Alps, Apennines, and eastern Mediterranean, and in regions characterized by a low or negligible tectonic activity, like central Iberia and western Alps. A correlation between smooth vertical velocities and topographic features is apparent in many sectors of the study area. Glacial isostatic adjustment and weathering processes do not completely explain the measured rates, and a combination of active tectonics and deep-seated geodynamic processes must be invoked. Excluding areas where localized processes are likely, or where subduction processes may be active, mantle dynamics is the most likely process, but regional mantle modeling is required for a better understanding.
    Description: Published
    Description: 6003–6024
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 1R. Reti di monitoraggio e Osservazioni
    Description: JCR Journal
    Description: restricted
    Keywords: GPS ; Geodynamics ; Mediterranean ; Vertical deformation ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union
    Description: We investigate the role of the Africa-Eurasia convergence in the recent tectonic evolution of the central Mediterranean. To this end we focused on two sectors of the Adriatic-Hyblean foreland of the Apennine-Maghrebian chain as they allow tectonic evidence for relative plate motions to be analyzed aside from the masking effect of other more local tectonic phenomena (e.g., subduction, chain building, etc.). We present a thorough review of data and interpretations on two major shear zones cutting these foreland sectors: the E-W Molise-Gondola in central Adriatic and the N-S Vizzini-Scicli in southern Sicily. The selected foreland areas exhibit remarkable similarities, including an unexpectedly high level of seismicity and the presence of the investigated shear zones since the Mesozoic. We analyze the tectonic framework, active tectonics, and seismicity of each of the foreland areas, highlighting the evolution of the tectonic understanding. In both areas, we find that current strains at midcrustal levels seem to respond to the same far-field force oriented NNW-SSE to NW-SE, similar to the orientation of the Africa-Eurasia convergence. We conclude that this convergence plays a primary role in the seismotectonics of the central Mediterranean and is partly accommodated by the reactivation of large Mesozoic shear zones.
    Description: The work has been funded by project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali,” by the Italian Ministry of Education and Research (MIUR), and by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: B12404
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Molise-Gondola shear zone ; Vizzini-Scicli shear zone ; Gargano Promontory ; Hyblean Plateau ; slip reversal ; 1627 earthquake ; 1693 earthquake ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2017-04-04
    Description: Flank instability is common at volcanoes, even though the subsurface structures, including the depth to a detachment fault, remain poorly constrained. Here, we use a multidisciplinary approach, applicable to most volcanoes, to evaluate the detachment depth of the unstable NE flank of Mt. Etna. InSAR observations of Mount Etna during 1995–2008 show a trapdoor subsidence of the upper NE flank, with a maximum deformation against the NE Rift. The trapdoor tilt was highest in magnitude in 2002–2004, contemporaneous with the maximum rates of eastward slip along the east flank. We explain this deformation as due to a general eastward displacement of the flank, activating a rotational detachment and forming a rollover anticline, the head of which is against the NE Rift. Established 2D rollover construction models, constrained by morphological and structural data, suggest that the east‐dipping detachment below the upper NE flank lies at around 4 km below the surface. This depth is consistent with seismicity that clusters above 2–3 km below sea level. Therefore, the episodically unstable NE flank lies above an east‐dipping rotational detachment confined by the NE Rift and Pernicana Fault. Our approach, which combines short‐term (InSAR) and long‐term (geological) observations, constrains the 3D geometry and kinematics of part of the unstable flank of Etna and may be applicable and effective to understand the deeper structure of volcanoes undergoing flank instability or unrest.
    Description: This work was partially funded by INGV and the DPC‐INGV project “Flank”, and partially by the ASI (SRV project).
    Description: Published
    Description: L16304
    Description: 1.3. TTC - Sorveglianza geodetica delle aree vulcaniche attive
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: flank instability ; fault ; InSAR ; Etna ; rollover ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.99. General or miscellaneous ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-04
    Description: Mediterranean tectonics has been characterized by an irregular, complex temporal evolution with episodic rollback and retreat of the subducted plate followed by period of slow trench-migration. To provide insight into the geodynamics of the Calabrian arc, we image the characteristics and lithospheric structure of the convergent, Apulian and Hyblean forelands at the cusps of the arc. Specifically we investigate the crustal and lithospheric thicknesses using teleseismic S-to-p converted phases, applied to the Adria-Africa plate margin for the first time. We find that the Moho in the Apulian foreland is nearly flat at ∼30 km depth, consistent with previous P receiver functions results, and that the Hyblean crustal thickness is more complex, which can be understood in terms of the nature of the individual pieces of carbonate platform and pelagic sediments that make up the Hyblean platform. The lithospheric thicknesses range between 70–120 km beneath Apulia and 70–90 km beneath Sicily. The lithosphere of the forelands at each end of the Calabrian arc are continental in nature, buoyant compared to the subducting oceanic lithosphere and have previously been interpreted as mostly undeformed carbonate platforms. Our receiver function images also show evidence of lithospheric erosion and thinning close to Mt. Etna and Mt. Vulture, two volcanoes which have been associated with asthenospheric upwelling and mantle flow around of the sides the slab. We suggest that as the continental lithosphere resists being subducted it is being thermo-mechanically modified by toroidal flow around the edges of the subducting oceanic lithosphere of the Calabrian arc.
    Description: Published
    Description: L23301
    Description: JCR Journal
    Description: restricted
    Keywords: continental lithosphere ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...