ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (122)
  • Escherichia coli  (69)
  • Saccharomyces cerevisiae  (55)
  • 2010-2014
  • 2000-2004  (2)
  • 1990-1994  (103)
  • 1985-1989  (17)
  • 1950-1954
  • Process Engineering, Biotechnology, Nutrition Technology  (122)
  • 1
    ISSN: 1573-0972
    Keywords: Bacterial adherence ; bromodeoxyuridine (BrdU) ; Escherichia coli ; fimbria ; immunomax technique
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Fimbriated and fimbria-less strains of Escherichia coli were isolated from urine of pyelonephritis patients, labelled with bromodeoxyuridine and their adhesion to human umbillical vein endothelial cells was studied employing ELISA and immunocytochemistry. No significant differences were noted in adhesion of the two types of strains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 16 (2000), S. 719-724 
    ISSN: 1573-0972
    Keywords: Escherichia coli ; haemolytic uraemic syndrome ; haemorrhagic colitis ; pathogenicity ; Verocytotoxin ; VTEC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract In 1977, Konowalchuk and colleagues (Konowalchuk, J., Speirs, J.I. & Stavric, S. 1977 Infection and Immunity 18, 775–779) were the first to describe Verocytotoxin-producing strains of Escherichia coli or VTEC. The surveillance of infection caused by VTEC demonstrated strains of E. coli belonging to serogroup O157 as the main cause of human infection capable of causing haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS). Infection with O157 VTEC results in a range of disease manifestations including abdominal cramps, vomiting and fever. This frequently leads to cases with bloody diarrhoea and HC, and approximately 10% of patients develop HUS. The symptoms of disease caused by VTEC O157 have been well documented and the pathogenic mechanisms expressed by VTEC have been the focus of considerable attention. However, the role of putative pathogenic mechanisms in the pathogenesis of disease is not fully understood. The aim of this review is to consider the clinical aspects of infection with strains of VT-producing E. coli O157 in terms of the putative pathogenic mechanisms expressed by these bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 13 (1994), S. 30-34 
    ISSN: 1476-5535
    Keywords: Phytate ; Saccharomyces cerevisiae ; Polyacrylamide gel ; Inositol phosphates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Saccharomyces cerevisiae in the form of baker's yeast, cells cultivated on a yeast extract-peptone-glucose medium, as well as cells immobilized in 18% (w/v) polyacrylamide gel showed the ability to hydrolyze 1.727 mM sodium phytate solution at 45°C, pH 4.6, in a stirred tank reactor. Seventy percent yield of dephosphorylation was observed after 2 h using a baker's yeast concentration of 5.8 g dry matter per 100 ml. Hydrolytic activity at 1.8–2.0 μM Pi min−1 was observed between 1st and 3rd h of the reaction in cells cultured 24 or 48 h. No inhibition by the substrate was found at sodium phytate concentrations of 0.587–1.727 mM. After 1.5 h of hydrolysis a single, well distinguished peak ofmyo-inositol-triphosphate was the main product found. By means of immobilization the stability of the biocatalyst was enhanced 3.3-fold and reached its half-life at 64 ninety-minute runs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 13 (1994), S. 269-272 
    ISSN: 1476-5535
    Keywords: Wine ; Yeasts ; Fatty acids ; Ethyl esters ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The evolution of the cell and must contents of three short-chain fatty acids (C6, C8 and C10) and their ethyl esters during fermentations withSaccharomyces cerevisiae racescerevisiae, bayanus andcapensis were studied. The former is a fermentative yeast and the last two are ‘flor’ film yeasts. The acid concentrations in the musts increased throughout the alcoholic fermentations, and maximum cell concentrations of the fatty acids were reached after 48 h of fermentation. Maximum ester concentrations in the cells were attained after 48–72 h of fermentation. In the musts, ethyl octanoate and ethyl decanoate reached a peak also at this point, and ethyl hexanoate after 10 days. After 134 days,S. cerevisiae racecapensis formed a thick ‘flor’ film whileS. cerevisiae racebayanus developed a thin film andS. cerevisiae racecerevisiae formed no film. At this point, acid contents remained constant in the wines produced byS. cerevisiae racescerevisiae andbayanus, and decreased in those obtained with racecapensis. The ethyl ester contents tended to decrease with the exception of ethyl decanoate in the fermentations carried out byS. cerevisiae racescerevisiae andbayanus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 10 (1994), S. 346-347 
    ISSN: 1573-0972
    Keywords: Chromatography ; Escherichia coli ; plasmid ; transfection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A simple procedure to obtain plasmid preparations, suitable for transfecting mammalian cell lines using a calcium phosphate co-precipitation technique, is described. The protocol is based on the purification of plasmid DNA by double gel-filtration chromatography on Sephacryl S-1000 and additional slight modifications to the original transfection procedure. The purity of plasmid preparation was verified by analytical methods. The resulting preparation efficiently transfected NIH-3T3 cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 10 (1994), S. 572-575 
    ISSN: 1573-0972
    Keywords: Growth inhibition ; L-lysine ε-aminotransferase ; nitrogen limitation ; α-oxoadipic acid ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Lysine added to grain mashes under nitrogen-limiting conditions (as in most industrial fermentations) inhibited growth of Saccharomyces cerevisiae. This inhibition was relieved by raising the assimilable nitrogen content. Lysine-induced inhibition is not mediated through accumulation of α-oxoadipic acid, an intermediate of lysine metabolism which accumulates by a back up of intermediates in de novo synthesis. Lysine degradation is regulated by the synthesis of L-lysine ε-aminotransferase, an enzyme that catalyses the first step in one of three possible routes of lysine degradation (not previously reported in S. cerevisiae). Synthesis is repressed under nitrogenlimiting conditions, but derepressed when excess assimilable nitrogen is available. Derepression results in degradation of lysine and decreases inhibitory effects on growth. The toxic compound appears to be lysine itself.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 399-410 
    ISSN: 0006-3592
    Keywords: lac-based promoters ; Escherichia coli ; genetic control ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A model that describes induction of protein synthesis from lac-based promoters has been developed and incorporated into the single-cell model of Escherichia coli with transcriptional and translational modifications. Unlike previous models of lac-based promoters, this model allows a priori prediction of the intracellular parameters controlling transcription from lac-based promoters with only the extracellular levels of substrate and inducer as inputs. Because of the structural detail of the model, it is possible to simulate different genetic constructions for comparison, such as Laclq strains versus wild-type cells, or including lacl on a multicopy plasmid. Expression from lac to tac promoters is predicted to yield 5% and 30% of the total cellular protein, respectively, with a pBR322-type plasmid. The model predicts the experimental observation that the Laclq strain is not as fully induced as the wild-type strains, even at higher inducer concentrations. Additionally, the model predicts the right order of magnitude of protein production from lac and tac promoters when mechanisms for attenuation of transcription at lower translational efficiency are considered. Finally, the model predicts that for high copy number systems ribosomes become limiting in the synthesis of plasmid-encoded proteins. © 1994 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 132-139 
    ISSN: 0006-3592
    Keywords: glycogen ; Escherichia coli ; cell growth ; acetate ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Excessive production of acetate is a problem frequently encountered in aerobic high-cell-density fermentations of Escherichia coli. Here, we have examined genetic alterations resulting in glycogen overproduction as a possible means to direct the flux of carbon away from the acetate pool. Glycogen overaccumulation was achieved either by using a regulatory glgQ mutation or by transforming cells with a plasmid containing the glycogen biosynthesis genes glgC (encoding ADPG pyrophosphorylase) and glgA (encoding glycogen synthase) under their native promoter. Both strategies resulted in an approximately five-fold increase in glycogen levels but had no significant effect on acetate excretion. The glgC and glgA genes were then placed under the control of the isopropyl---D-thiogalactopyranoside (IPTG) inducible tac promoter, and this construct was used to stimulate glycogen production in a mutant defective in acetate biosynthesis due to deletion of the ack (acetate kinase) and pta (phosphotransacetylase) genes. If glycogen overproduction in the ack pta strain was induced during the late log phase, biomass production increased by 15 to 20% relative to uninduced controls. Glycogen overaccumulation had a significant influence on carbon partitioning: The output of carbon dioxide peaked earlier than in the control strain, and the levels of an unusual fermentation byproduct, pyruvate, were reduced. Exogenous pyruvate was metabolized more rapidly, suggesting higher activity of gluconeogenesis or the tricarboxylic acid (TCA) cycle as a result of glycogen overproduction. Potential mechanisms of the observed metabolic alterations are discussed. Our results suggest that ack pta mutants over producing glycogen may be a suitable starting point for constructing E. coli strains with improved characteristics in high-cell-density fermentations. © 1994 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 275-285 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; amino acids ; linear optimization ; metabolic fluxes ; metabolic engineering ; culture stability ; oxygen ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The simultaneous growth and product formation in a microbial culture is an important feature of several laboratory, industrial, and environmental bioprocesses. Metabolic burden associated with product formation in these bioprocesses may lead to growth advantage of a nonproducing mutant leading to a loss of the producing population over time. A simple population dynamics model demonstrates the extreme sensitivity of population stability to the engineered productivity of a strain. Here we use flux balance analysis to estimate the effects of the metabolic burden associated with product secretion on optimal growth rates. Comparing the optimal growth rates of the producing and nonproducing strains under a given processing condition allows us to predict the population stability. In order to increase stability of an engineered strain, we determine processing conditions that simultaneously maximize the growth rate of the producing population while minimizing the growth rate of a nonproducing population. Using valine, tryptophan, and lysine production as specific examples, we demonstrate that although an appropriate choice of oxygenation may increase culture longevity more than twofold, total production as governed by economic criterion can be increased by several orders of magnitude. Choice of optimal nutrient and oxygen supply rates to enhance stability is important both for strain screening as well as for culture of engineered strains. Appropriate design of the culture environment can thus be used to enhance the productivity of bioprocesses that use engineered production strains. © 1994 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 388-398 
    ISSN: 0006-3592
    Keywords: ribosome synthesis ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Details of the mechanism for ribosome synthesis have been incorporated in the single-cell Escherichia coli model, which enable us to predict the amount of protein synthesizing machinery under different environmental conditions. The predictions agree quite well with available experimental data. The model predicts that ribosomal protein limitations are important when the translational apparatus is in high demand. Ribosomal RNA synthesis is induced by an increase in translational activity, which, in turn, stimulates ribosomal protein synthesis. However, as the demand increases still more, the ribosomal protein mRNA must compete with the plasmid mRNA for ribosomes, and the efficiency of translation of ribosomal proteins is reduced. © 1994 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 1094-1101 
    ISSN: 0006-3592
    Keywords: crossflow filtration ; microfiltration ; Saccharomyces cerevisiae ; molasses ; backwashing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A broth of yeast cells cultivated in molasses was crossfiltered with a thin-channel module. The permeation flux gradually decreased at a constant cell concentration. The flux was much lower than that obtained for yeast broth cultivated in yeast extract, polypeptone, and dextrose (YPD) medium during the filtration. The flux did not depend on the membrane pore size (0.45 to 5 μm). The steady-state flux was one-twentieth that calculated for a cake filtration mode from the amount of cake per unit filtration area and the specific resistance of the cake measured in a dead-end filtration apparatus. The lower flux was due to small particles (most of which were less than 1 μm in diameter) in the molasses. The mehanism of crossflow filtration of broths of yeast cells cultivated in molasses was clarified by analysis of the change in flux with time and observations with scanning electron microscopy. At the initial stage of crossflow filtration the yeast cells and particles from the molasses were deposited on the membrane to form the molasses were deposited on the membrane to form a cake in a similar way to dead-end filtration. After the deposition of cells onto the membrane ceased, the fine particles from molasses formed a thin layer, which had higher resistance than the cake formed next to the membrane. The backwashing method was effective to increase the flux. The flux increased low when the pore size was 0.45 to 0.08 μm, but using larger pores of 3 to 5 μm it returned almost to the bases line. © 1994 John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 189-194 
    ISSN: 0006-3592
    Keywords: ethanol ; Saccharomyces cerevisiae ; carob pod ; fed-batch culture ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The production of ethanol from carob pod extract by free and immobilized Saccharomyces cerevisiae cells in batch and fed-batch culture was investigated. Fed-batch culture proved to be a better fermentation system for the production of ethanol than batch culture. In fed-batch culture, both free and immobilized S. cerevisiae cells gave the same maximum concentration (62 g/L) of final ethanol at an initial sugar concentration of 300 g/L and F = 167 mL/h. The maximum ethanol productivity (4.4 g/L h) was obtained with both free and immobilized cells at a substrate concentration of 300 g/L and F = 334 mL/h. In repeated fed-batch culture, immobilized S. cerevisiae cells gave a higher overall ethanol concentration compared with the free cells. The immobilized S. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 10 days. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 29-37 
    ISSN: 0006-3592
    Keywords: proteins, contaminant ; Escherichia coli ; Saccharomyces cerevisiae ; mammalian cell culture ; PAGE ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The protein components of three industrial recombinant expression systems: Escherichia coli, Saccharomyces cerevisiae, and a mammalian cell culture supernatant of CHO cells were characterized in terms of their molecular weight, isoelectric point, and relative surface hydrophobicity. Identification of individual proteins was done by reference to their position in protein band profiles by polyacrylamide gel electrophoresis (PAGE) of the crude material. This permitted a rapid and facile assignment of quantitative values for these three parameters to all the major protein components in these materials. Because it is the indigenous proteins in expression systems that will form the bulk of any impurities in the product, once the values of these parameters are known for any target recombinant protein, the data obtained will enable appropriate expression systems to be chosen for minimizing amounts of potential contaminants and reducing downstream processing requirements and costs. The data will also indicate which fractionation steps (i.e., charge, size or hydrophobicity-based) are likely to be best for distinguishing between target and contaminant proteins, thus aiding and early removal of the maximum quantities of undesired protein to bring subsequent bioseparation steps down in scale and cost and up in terms of efficiency. © 1994 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 539-548 
    ISSN: 0006-3592
    Keywords: cross-flow filtration ; Escherichia coli ; cell harvesting ; fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cross-flow filtration of Escherichia coli strains was examined at the laboratory and pilot scales using Romicon 500,000 molecular-weight-cutoff hollow fiber membranes. Both the series resistance and macrosolute polarization models were employed to compare performances. Total dissolved solids content above 90 g/L and viscosity above 1.1 × 10-3 paċ s of cell-free culture media were found to decrease average filtration fluxes by over 60% both in the absence and presence of cells. Broth filtration with culture media of dissolved solids levels below 80 g/L were influenced to a greater extent by harvest cell density. The collodial nature of the complex nutrient responsible for the total solids increase affected prediction of filtration performance. Differences in strain filterability were observed with JM109 preferred over DH5 in high solids-containing media and RR1 preferred over JM109 in low dissolved solids-containing media. Their research demonstrates the importance of cell strain and media selection in the performance of early downstream processing steps. © 1994 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 0006-3592
    Keywords: oxygen profiles ; oxygen microprobe ; Po2-microelectrode ; artifacts ; alginate beads ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Polarographic microcoaxial needle electrodes were used to measure internal profiles of dissolved oxygen tension (Po2) within single Ca-alginate beads of different diameter containing entrapped cells of Saccharomyces cerevisiae. For the investigations, single beads coming from variable growing conditions and distinct cultivation stages were fixed in a special holding device. In dependence on microbial growth steep oxygen gradients were observed. The Oxygen penetration depth at steady state lay between 50 and 100 μm. After 8 h of cultivation time, the anaerobic space within the beads (φ 2 mm; cultivation in a packed bed reactor) is beginning at ∼ 130 μm, whereas the anaerobic space within the beads (φ 2 mm) coming from the shaker flask culture is located ∼440 μm below the bead surface. Surprisingly, steep gradients were also observed, when recording profiles from cell-free Ca-alginate beads of different diameter and alginate concentrations. The steep oxygen gradients apparently had to be interpreted as pseudo-Po2-gradients. These results were borne by several effects, such as formation of artifacts and diffusion barriers in front of the electrode tip or oxygen “availability” at the tip and consumption of oxygen by the electrode itself. These phenomena could be documented by microscopic observation and photography. Thus, to obtain real Po2-profiles it is important to be exactly informed about the physical, chemical, and biological properties of the material to be investigated. Furthermore, it is necessary to apply a special stepwise puncture technique with distinct step-in/step-out movements of the electrode: e.g., unidirectional or contradirectional puncture techniques. © 1994 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 1295-1305 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; fusion proteins ; Cellulomonas fimi ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fusion of the leader peptide and the cellulose-binding domain (CBD) of endoglucanase A (CenA) from Cellulomonas fimi, with of without linker sequences, to the N-terminus of alkaline phosphatase (PhoA) from Escherichia coli leads to the accumulation of significant amounts of the CBD-PhoA fusion proteins in the supernatants of E. coli cultures. The fusion proteins can be purified from the supernatants by affinity chromatography on cellulose. The fusion protein can be desorbed from the cellulose with water or guanidine-HCl. If the sequence IEGR in present between the CBD and PhoA, the CBD can be cleaved from the PhoA with factor Xa. The efficiency of hydrolysis by factor Xa is strongly in fluenced by the amino acids on either side of the IEGR sequence. The CBD released by factor Xa is removed by adsorption to cellulose. A nonspecific proteases from C. fimi, which hydrolyzes native CenA between the CBD and the catalytic domain, may be useful for removing the CBD from some fusion proteins. © 1994 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 1337-1347 
    ISSN: 0006-3592
    Keywords: poly-(3-hydroxybutyric acid) ; PHB ; Escherichia coli ; morphology ; plasmid ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A stable high-copy-number plasmid pSYL105 containing the Alcaligenes eutrophus polyhydroxyalkanoic acid (PHA) biosynthesis genes was constructed. This plasmid was transferred to seven Escherichia coli strains (K12, B, W, XL1-Blue, JM109, DH5α, and HB101), which were subsequently compared for their ability to synthesize and accumulate ploy- (3-hydroxybutyric acid) (PHB). Growth of recombinant cells and PHB synthesis were investigated in detail in Luria-Bertani (LB) medium containing 20 g/L glucose. Cell growth, the rate of PHB synthesis, the extent of PHB accumulation, the amount of glucose utilized, and the amount of acetate formed varied from one strain to another. XL1-Blue (pSYL105) and B (pSYL105) synthesized PHB at the fastest rate, which was ca. 0.2 g PHB/g true cell mass-h, and produced PHB up to 6-7 g/L. The yields of cell mass, true cell mass, and PHB varied considerably among the strains. The PHB yield of XL1-Blue (pSYL105) in LB plus 20 g/L glucose was as high as 0.369 g PHB/g glucose. Strains W (pSYL105) and K12 (pSYL105) accumulated the least amount of PHB with the lowest PHB yield at the lowest synthesis rate. JM109 (pSYL105) accumulated PHB to the highest extent (85.6%) with relatively low true cell mass (0.77 g/L). Considerable filamentation of cells accumulating PHB was observed for all strains except for K12 and W, which seemed to be due either to the overexpression of the foreign PHA biosynthesis enzymes or to the accumulation of PHB. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 1362-1366 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; bioaccumulation ; gel immobilization ; cross-flow microfiltration ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cross-flow microfiltration was shown to retain Saccharomyces cerevisiae biomass utilized for heavy metal bioaccumulation. The passage of metal-laden influent through a series of sequential bioaccumulation systems allowed for further reductions in the levels of copper, cadmium, and cobalt in the final effluent than that afforded by a single bioaccumulation process. Serial bioaccumulation systems also allowed for partial separation of metals from dual metal influents. More than one elemental metal cation could be accumulated simultaneously and in greater quantities than when a single metal was present in the effluent (Cu2+ 0.43 mmol, Cu2+ + Cd2+ 0.67 mmol, and Cu2+ + Co2+ 0.83 mmol/g yeast dry mass when the initial concentration of each of the metal species was 0.2 mmol·L-1). Co-accumulation of two different metal cations allowed higher total levels of bioaccumulation than found with a single metal. The flux rate was 2.9 × 102 L·h-2μm-2 using a polypropylene microfiltration membrane (0.1 μm pore size) at 25°C. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 736-744 
    ISSN: 0006-3592
    Keywords: disruption kinetics ; Saccharomyces cerevisiae ; virus-like particles ; recombinant cells ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Recombinant cells of Saccharomyces cerevisiae, expressing virus-like particles (Ty-VLPs), can be readily disrupted in a high pressure homogenizer and show identical disruption kinetics to the untransformed host strain. When the cells are freeze/thawed before disruption, they become about four times more resistant to homogenization. This effect increases with the number of freeze/thaw cycles, but is independent of the time the cells remain frozen. The freeze/thaw effect is observed with cells harvested during both the logarithmic and stationary phase of growth, and occurs with the untransformed host strain as well as the transformed one. Freeze/thawed cells are twice as resistant to disruption in the bead mill as fresh cells. © 1994 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 429-433 
    ISSN: 0006-3592
    Keywords: disinfection ; Escherichia coli ; water disinfection ; activated carbon fiber ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel electrochemical reactor employing activated carbon fiber (ACF) electrodes was constructed for disinfecting bacteria in drinking water. Escherichia coli adsorbed preferentially onto ACF rather than to carbon-cloth or granular-activated carbon. E. coli cells, which adsorbed onto the ACF, were killed electrochemically when a potential of 0.8 V vs. a saturated calomel electrode (SCE) was applied. Drinking water was passed through the reactor in stop-flow mode: 2mL/min for 12 h, o L/min for 24 h, and 1 mL/min for 6 h. At an applied potential of 0.8 V vs, SCE, viable cell concentration reamined below 30 cells/mL. In the absence of an applied potential, bacteria grew to a maximum concentration of 9.5 × 103 cells/mL. After continuous operation at 0.8 V vs. SCE, cells adsorbed onto the ACF could not be observed by scanning electron microscopy. In addition, chlorine in drinking water was completely removed by the reactor. Therefore, clean and efficient inactivation of bacteria in drinking water was successfully performed. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 329-336 
    ISSN: 0006-3592
    Keywords: biofilm formation ; Escherichia coli ; C/N ratio ; plasmid retention ; extracellular polysaccharide ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Biofilm formation and plasmid segregational instability in biofilm cultures of Escherichia coli DH5α (pMJR1750) were investigated under different medium-carbon-to-nitrogen (C/N) ratios. At C/N ratios of 0.07 and 1, net accumulation of both biofilm plasmid-bearing and plasmid-free cells continued through the entire experiment without attaining any apparent steady state. At C/N ratios of 5 and 10, net biofilm cell accumulation for the two populations reached apparent steady states after 84 and 72 h, respectively. At C/N ratios of 0.07 and 1, polysaccharide production increased slowly and reached about 2g alginate equivalent/cm2 by the end of both experiments. At a C/N ratio of 5, polysaccharide increase significantly after 84 h, reaching about 7μg alginate equivalent/cm2 prior to termination. At a C/N ratio of 10, polysaccharide increased significantly after 72 h and reached 21 μg alginate equivalent/cm2 at 108 h. At C/N ratios of 0.07 and 1, protein production reached 6.5 and 4 μg/cm2, respectively. At C/N ratios of 5 and 10, protein production increased slightly for the first 84 h and reached a maximum at 108 h, at 3 and 2 μg/cm2, respectively, then decreased over the last 12 h of the experiment. Ratios of polysaccharide to protein increased with increasing C/N ratios. At C/N ratios of 0.07 and 1, the ratios between extracellular polysaccharide (EP) and protein were no more than 205 μg polysaccharide/μg protein, whereas those at C/N ratios of 5 and 10 increased to about 7 and 12 μg polysaccharide/μg protein, respectively.Probabilities of plasmid loss in the biofilm cultures increased with increasing C/N ratios. At C/N ratios of 0.07, 1, and 5, the probabilities of plasmid loss were 0.0013 ± 0.011, 0.020 ± 0.006 and 0.122 ± 0.021, respectively. At a C/N ratio of 10, the probability of plasmid loss was significantly higher, reaching 0.38 ± 0.125. The increase of probability of plasmid loss at higher C/N ratios results from competition between cell replication and extracellular polysaccharide production. © 1994 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 101-105 
    ISSN: 0006-3592
    Keywords: Aspergillus awamori ; glucoamylase ; kinetic ; thermostability ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Asn182 → Ala Aspergillus awamori glucoamylase expressed in Saccharomyces cerevisiae had a first-order thermodeactivation coefficient 40% that of wild-type glucoamylase at pH 4.5 between 60° and 65°C, caused by the elimination of an Asn - Gly sequence subject to deamidation and eventual chain breakage. Above 70°C, and at pHs 3.5 and 5.5, thermodeactivation coefficients of wild-type and mutant enzymes were roughly equal, because the fastest deactivation mechanism was no longer deamidation. The mutation had little effect on the enzyme's optimal pH for activity and subsite map, or on the glucose yield from starch dextrin hydrolysis. During enzyme production by yeast fermentation, highest cell densities and activities of wild-type and mutant glucoamylases were attained after a period of glucose starvation, followed by a second addition of glucose. © 1994 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 847-855 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; cellular energetics ; acetate production ; carbon yield ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An integrated metabolic model for the production of acetate by Escherichia coli growing on glucose under aerobic conditions was presented previously (Ko et al., 1993). The resulting model equations can be used to explain phenomena often observed with industrial fermentations, i.e., increased acetate production which follows from high glucose uptake rate, a low dissolved oxygen concentration, a high specific growth rate, or a combination of these conditions. However, several questions still need to be addressed. First, cell composition is growth rate and media dependent. Second, the macromolecular composition varied between E. coli strains. And finally, a model that represents the carbon fluxes between the Embden-Meyerhof-Parnas (EMP) and the hexose monophosphate (HMP) pathways when cells are subject to internal and/or external stresses is still not well defined. In the present work, we have made an effort to account for these effects, and the resulting model equations show good agreement for wild-type and recombinant E. coli experimental data for the acetate concentration, the onset of acetate secretion, and cell yield based on glucose. These results are useful for optimizing aerobic E. coli fermentation processes. More specifically, we have determined the EMP pathway carbon flux profiles required by the integrated metabolic model for an accurate fit of the acetic acid profile data from a wild-type E. coli strain ML308. These EMP carbon flux profiles were correlated with a dimensionless measurement of biomass and then used to predict the acetic acid profiles for E. coli strain F-122 expressing human immunodeficiency virus-(HIV528) β-galactosidase fusion protein. The effect of different macromolecular compositions and growth rates between these two E. coli strains required a constant scaling factor for improved quantitative predictions.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 1217-1227 
    ISSN: 0006-3592
    Keywords: acetophenone ; phenethyl alcohol ; Saccharomyces cerevisiae ; diffusion coefficient ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The intrabead diffusion coefficients of acetophenone and phenethyl alcohol were measured at 30°C in the triphasic immobilized yeast-water-hexane system. Saccharomyces cerevisiae cells were deactivated with hydrochloric acid and entrapped in calcium-alginate beads. Measurements of dry cell loss during deactivation, shrinkage of the beads during deactivation and the final porosity of the beads were made for various cell loadings. Final concentrations of wet cells in the beads ranged from approximately 0.25 to 0.30 g/mL. Mass transfer in the hexane phase, external to the beads, was eliminated experimentally. The estimated error of 5% to 10% in the diffusion coefficients is within the experimental error associated with the bead method. The effect of significant sampling volumes on the diffusivities was estimated theoretically and accounted for experimentally. The intrabead concentration of acetophenone and phenethyl alcohol was 150 to 800 ppm. The deactivated cells were shown to be impervious to acetophenone so that the measured diffusivities are extracellular parameters. The cell volume fraction in the beads ranged from 0.70 to 0.90, significantly higher than previously reported data. The effective diffusion coefficients conform to the random pore model. No diffusional interaction between acetophenone and phenethyl alcohol was observed. The addition of 2 vol% ethanol or methanol slightly increased the diffusivities. The thermodynamic partition coefficients were measured in the bead-free water-organic system and found to be an order of magnitude lower than the values calculated from the analysis of the diffusion data for the organic-bead system, suggesting that bead-free equilibrium data cannot be used in triphasic systems. © 1994 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 0006-3592
    Keywords: acetate reduction ; Bacillus subtilis ; Escherichia coli ; cloning ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel metabolic engineering technique involving the redirection ofcellular carbon fluxes was employed to reduce acetate production in an Escherichia coli culture. Metabolic engineering was achieved by cloning E. coli the gene for the Bacillus subtilis acetolactate synthase (ALS), an enzyme capable of catalyzing the conversion of pyruvate to nonacidic and less harmful species. The heterologous expression of the ALS catabolic enzyme in Escherichia coli drastically modified the cellular glycolytic fluxes. In particular, acetate excretion, which is a common characteristic of E. coli, as well as a physiological burden, was minimized. The residual acetate level was kept under control and maintained at a level that was below the toxic threshold. The expression of the biologically active ALS enzyme in E. coli did not result in any detectable changes on either cell growth rate or cell yields. The alternative product, acetoin, was shown to be 50 times less harmful than acetate. Similarities in the growth pattern of two different E. coli strains, RR1 and GJT001, under all cultivation conditions suggested that the ability of ALS to reduce acetate accumulation is generic and not strain-specific. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 952-960 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; protein production, recombinant ; glucose uptake ; acetate excretion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Reduction of acetate excretion using a modified cellular glucose uptake rate was examined. An Escherichia coli strain bearing a mutationin ptsG, a gene encoding enzyme II in glucose phosphotransferase system (PTS), was constructed and characterized. The growth rate of the mutant strain was slower than its parent in glucose defined medium, butwas not affected in complex medium. Experimental results using this mutant strain showed a significant improvement in culture performance in simple batch cultivations due to reduced acetate excretion through the modified glucose uptake. Both biomass and recombinant protein productivity were increased by more than 50% with the ptsG mutant when compared to the parent strain. Recombinant protein productivity by the newly constructed strain at a level of more than 1.6 g/L was attained consistently in a simple batch bioreactor. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 1083-1088 
    ISSN: 0006-3592
    Keywords: chitosan ; crosslinking ; yeast immobilization ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A new simple method for the preparation of chemically crosslinked chitosan beads is presented. It consists of the dropwise addition of 2-3% (w/v) low molecular weight chitosan solution containing 2% (w/v) glyoxal in 1% (w/v) tetrasodiumdiphosphate, pH 8.0. Immobilized viable baker's yeast (Saccharomyces cerevisiae) could be obtained via gel entrapment within the new beads when means preventing their direct contact with soluble chitosan were provided, “disguising” the cells until gelation and crosslinking were completed. Such means included cell suspension in castor oil or mixing with carboxymethyl-cellulose powder. Application of these means was shown to be necessary, as cells exposed to soluble chitosan immediately lost their viability and glycolytic activity. Yeast disguised in castor oil was also protected from bead reinforcement by glutaraldehyde treatment, significantly strengthening bead stability while operating under acidic conditions. This capability was demonstrated by continuous ethanol production by chitosan entrapped yeast. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 969-977 
    ISSN: 0006-3592
    Keywords: cross-flow membrane filtration ; inclusion bodies ; Escherichia coli ; extraction, rIL-2 ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A cross-flow membrane filtration process was developed for the recovery of rIL-2 inclusion bodies from homogenized Escherichia coli. The membrane extraction process was comprised of a two-step diafiltration followed by an extraction with 7 M GuHCl and a 40-fold dilution of the solubilized inclusion bodies into 0.01 M Tris-HCl, 0.035 M NaCl, pH 7.9. The first diafiltration was with a 0.03 M Tris-HCl, 5 mM ethylenediaminetetraacetic acid (EDTA), pH 8, followed by a diafiltration with 1.75 M GuHCl. All of the insoluble rIL-2 was retained behind the membrane, whereas a GuHCl wash solubilized approximately 15% of the rIL-2. The membrane process increased the yield of rIL-2 in the diluted extract by threefold as compared to a similar centrifuge process with a significant increase in purity as determined by reverse-phase high-performance liquid chromatography (HPLC). © 1994 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 12 (1993), S. 256-262 
    ISSN: 1476-5535
    Keywords: Listeria ; Salmonella ; Shigella ; Aeromonas ; Staphylococcus ; Escherichia coli ; Bacillus cereus ; Clostridium botulinum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary MKES Tools is a microbial kinetics expert system for developing food production systems and assessing product safety. The specific information required as input are: (1) a flowchart of the production system, (2) the factors affecting the survival and growth of food-borne pathogens and (3) the ranges of variation for each factor's parameters. With this information, MKES Tools simulates the growth and survival of pathogenic microorganisms when subjected to many different factor/parameter situations. The responses obtained are then used to estimate the significance of each factor's parameters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    ISSN: 1476-5535
    Keywords: Gene transfer ; Escherichia coli ; River water ; Indigenous bacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary This study examined the transfer of the plasmid pBGH1, an expression vector for bovine somatotropin (BST), fromEscherichia coli K-12 strain W3110G [pBGH1] to indigenous microorganisms present in flasks containing Missouri River water. Strain LBB269 is a nalidixic acid-resistant derivative of W3110G which was used as a plasmid-free control strain in these studies. Water samples were inoculated with strains W3110G [pBGH1] and LBB269; after 21 days of incubation the number of viable colony-forming units (CFU) of W3110G [pBGH1] and LBB269 were reduced from an initial level of about 1×107 CFU per ml to less than 1 CFU per 100 ml. At this time indigenous microbes resistant to both ampicillin and tetracycline (the antibiotic resistance markers on pBGH1) were isolated from 100 ml of water from each of the flasks inoculated with either strain W3110G [pBGH1] or LBB269. Plasmid DNA was isolated from these organisms and examined for sequences containing the gene for BST from pBGH1, using a polymerase chain reaction (PCR) assay. As expected, the day 0 sample from the flask inoculated withE. coli K-12 strain W3110G [pBGH1] gave a positive PCR response and the day 0 sample from the flask inoculated withE. coli K-12 strain LBB269 gave a negative PCR response. All of the day 21 samples containing indigenous microbes isolated from flasks that were inoculated with either W3110G [pBGH1] or LBB269 were negative in the PCR assay, indicating that the target sequence from pBGH1 was not present in any of these indigenous microorganisms. The results of this particular assay indicate that pBGH1 or the portion of pBGH1 including the BST structural gene had not been transferred from W3110G [pBGH1] to indigenous microbial inhabitants of the Missouri River water flasks during this study.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 11 (1993), S. 253-257 
    ISSN: 1476-5535
    Keywords: Colonization ; Escherichia coli ; Gastrointestinal ; Environmental ; Survival
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The colonizing potential ofEscherichia coli K12 containing a vector coding for somidobove (bovine somatotropin) was determined. Treated male and female Fischer-344 rats were given a single oral gavage inoculum of sucrose with/without tetracycline (15 μg/ml). Untreated control animals received similar drinking water regimes. All animals survived until termination. There were no clinical signs of toxicity observed and no treatment-related effect upon body weight, food consumption, or efficiency of food utilization. Fresh fecal samples were collected from each rat every 24 h following inoculation and the population of the marked strain was quantitated until no bacterial colonies were observed for two consecutive days. While all inoculated rats were positive at 24 h, by 72 and 96 h all had become negative for the test (marked) strain, as were the corresponding control group throughout the test. The frozen stock of the marked strain used as the positive control demonstrated that the agar plates were selective for the test strain. Fourteen days following inoculation, all groups of rats were killed and the gastrointestinal tracts removed and treated to recover the marked strain. There was no evidence of the marked strain in the gastrointestinal tract of any rat from any group. Thus, theE. coli K12 host/vector system used in this experiment does not colonize the gastrointestinal tract of Fischer-344 rats.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 34-36 
    ISSN: 1573-0972
    Keywords: Bacteriophages ; Escherichia coli ; Salmonella ; sewage ; wastewater
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A new method for quantifying F-specific bacteriophages in wastewater is described. Somatic coliphages were also determined. Host-strainSalmonella typhimurium WG 49 was sensitive to only a few bacteriophages and this could have arisen from infection by F-RNA phages. Host-strainEscherichia coli ATCC 9723 C, however, supported multiplication of a wide range of bacteriophages present in sewage, giving plaque counts one to three orders of magnitude greater than those on F+ and F- salmonellas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 583-586 
    ISSN: 1573-0972
    Keywords: Cell-free extracts ; plasmids ; recombination ; Saccharomyces cerevisiae ; topo-isomerase mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Cell-free extracts of the yeast Saccharomyces cerevisiae can be used to catalyse the recombination of bacterial plasmids in vitro. Recombination between homologous plasmids containing different mutations in the gene encoding tetracycline resistance is detectable by the appearance of tetracycline-resistance following transformation of the recombinant plasmid DNA into Escherichia coli DH5. This in vitro recombination system was used to determine the involvement of eukaryotic topo-isomerases in genetic recombination. Cell-free extracts prepared from a temperature-sensitive topo-isomerase II mutant (top2-1) of S. cerevisiae yielded tetracycline-resistant recombinants, when the recombination assays were performed at both a non-restrictive temperature (30°C) and the restrictive temperature (37°C). This result was obtained whether or not ATP was present in the recombination buffer. Extracts from a non-conditional topo-isomerase I mutant (top1-1) of S. cerevisiae yielded tetracycline-resistant recombinants, as did a temperature-sensitive double mutant (top2-1/top1-8) at the restrictive temperature. The results of this study indicate that neither topo-isomerase I nor topo-isomerase II was involved in the recombinational activity examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 609-610 
    ISSN: 1573-0972
    Keywords: Antibiotics ; Escherichia coli ; resistance ; river water
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Of 107 Escherichia coli strains isolated from the water, sediment and fish of the Bhavani River, all of which are considered potential causes of human enteric disease, 62% were resistant to more than four antibiotics. Levels of resistance to bacitracin, penicillin, and novobiocin were generally high whereas those to polymyxin-B and chloramphenicol were much lower. A high incidence of multiple antibiotic resistant E. coli was noted in all samples and the multiple antibiotic resistance index of the strains showed that 95% of the strains originated either from man or cattle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 662-663 
    ISSN: 1573-0972
    Keywords: Biosynthesis ; invertase ; molasses ; Saccharomyces cerevisiae ; yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Biosynthesis of invertase by Saccharomyces cerevisiae 01K32 was inversely proportional to the concentration of sugarcane blackstrap molasses included in the medium. In a fermenter, an intracellular invertase activity of 440 U/g dry cells was obtained.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 70-72 
    ISSN: 1573-0972
    Keywords: Beer ; brewing ; non-head forming ale yeast ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The physiological characteristics of two strains of brewery ale yeasts,Saccharomyces cerevisiae, with sedimentation abilities, were investigated to see if the strains were suitable for lager beer production. Compared with typical industrial ale strains ofS. cerevisiae and lager strains ofS. uvarum (nowS. cerevisiae), the investigated strains differ in fermentation dynamics, as well as in biological properties. The differences, however, particularly between the two strains and the lager brewing yeasts, were not significant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 316-324 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; acetic acid ; inhibition ; glycine ; methionine ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Among amino acids screened for their potential to relieve wild and recombinant Escherichia coli from the negative effects of acetic acid, glycine, and methionine showed a sparing effect. In the presence of 2 g/L of acetic acid, addition of 0.5 g/L of glycine or methionine resulted in either a complete recovery or a further enhancement in the specific growth rate, while the enhancement was significant but not fully complete in the presence of 4 g/L of acetic acid. The addition of 0.5 g/L of methionine alleviated the negative effect of acetic acid on recombinant E. Coli growth to produce more β-lactamase, which was encoded by plasmid pUC18. In continuous fermentation the methionine effect on recombinant. E. coli metabolism depended on dilution rate; at high dilution rates, above 0.4 h-1, the methionine addition enhanced β-lactamase production and reduced acetic acid formation, while at low dilution rates, below 0.3 h -1, the effect was reversed. In def-batch fermentation with wild-type E. Coli, cell growth rate and cell yield from glucose were enhanced with methionine addition, while the acetic acid concentration reached over 4 g/L. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 617-624 
    ISSN: 0006-3592
    Keywords: crossflow filtration ; microfiltration ; baker's yeast ; Saccharomyces cerevisiae ; molasses ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Factors affecting the performance of crossflow filtration were investigated with a thin-channel module and yeast cells. In crossflow filtration of Saccharomyces cerevisiae cells cultivated with YPD medium (Yeast extract, polypeptone, and dextrose) and suspended in saline, a steady state was attained within several minutes when the cell concentration was low and the circulation flow rate was high. The steady-state flux and the change in flux during the initial unsteady state were explained well by conventional filtration theory, with the amount of cake deposited and the mean specific resistance to the cake measured in a dead-end filtration apparatus used in calculation. When the circulation flow rate was lower than a critical value, a part of the channel of the crossflow filtration module was plugged with cell cake, and thus the steady-state flux was low. In crossflow filtration of suspensions of commercially available baker's yeast, the flux gradually decreased, and the flux after 8 h of filtration was lower than the value calculated by filtration theory. Fine particles contaminating the baker's yeast was responsible for the decrease. A similar phenomenon was responsible for the decrease. A similar phenomenon was observed in crossflow filtration of a broth of S. cerevisiae cells cultivated in molasses medium, which also contains such particles, had no effect of the permeation flux during crossflow filtration. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 30-36 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; fiber optic ; firefly luciferase ; on-line ; viability ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A novel method is described for the on-line determination of viable cell number. It has been tested in fermentations of Escherichia coli. The cells are transfected with the gene for firefly luciferase and fed low levels of luciferin in the medium. The reaction requires ATP, so the nonviable cells cannot produce light. Thus, light production is linear with viable cell density from innoculation through most of exponential growth. The light emitted by these cells is then conducted from the reaction vessel to the light detection equipment by an optical fiber. With the equipment described below, as few as a 106 cells/mL, or an OD600 of 0.004, are easily detectable and concentrations greater than 1010 cells/mL are well within range. The data are collected by a computer, so adaptation to on-line control applications is straightforward. During lag phase, this method is much more accurate then optical density measurements. At the end of exponential growth, rapid changes in light production mark carbon source depletion and the onset of cell lysis. A simple model accounts for the luciferin used during the fermentation and corrects the light detected to the proper cell density. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 59-73 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; amino acids ; nucleotides ; biosynthesis ; linear optimization ; metabolic fluxes ; metabolic engineering ; stoichiometry ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Microbial metabolism provides at mechanism for the conversion of substrates into useful biochemicals. Utilization of microbes in industrial processes requires a modification of their natural metabolism in order to increase the efficiency of the desired conversion. Redirection of metabolic fluxes forms the basis of the newly defined field of metabolic engineering. In this study we use a flux balance based approach to study the biosynthesis of the 20 amino acids and 4 nucleotides as biochemical products. These amino acids and nucleotides are primary products of biosynthesis as well as important industrial products and precursors for the production of other biochemicals. The biosynthetic reactions of the bacterium Escherichia coli have been formulated into a metabolic network, and growth has been defined as a balanced drain on the metabolite pools corresponding to the cellular composition. Theoretical limits on the conversion of glucose, glycerol, and acetate substrates to biomass as well as the biochemical products have been computed. The substrate that results in the maximal carbon conversion to a particular product is identified. Criteria have been developed to identify metabolic constraints in the optimal solutions. The constraints of stoichiometry, energy, and redox have been determined in the conversions of glucose, glycerol, and acetate substrates into the biochemicals. Flux distributions corresponding to the maximal production of the biochemicals are presented. The goals of metabolic engineering are the optimal redirection of fluxes from generating biomass toward producing the desired biochemical. Optimal biomass generation is shown to decrease in a piecewise linear manner with increasing product formation. In some cases, synergy is observed between biochemical production and growth, leading to an increased overall carbon conversion. Balanced growth and product formation are important in a bioprocess, particularly for nonsecreted products. © 1993 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 398-400 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; bioconversion ; fructose diphosphate production ; whey ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Genetically engineered Saccharomyces cerevisiae strains that express Escherichia coli β-galactosidase gene are able to bioconvert lactose or whey into fructose-1,6-diphosphate (FDP). High FDP yields from whey were obtained with an appropriate ratio between cell concentration and inorganic phosphate. The biomass of transformed cells can be obtained from different carbon sources, according to the expression vector bearing the lacZ gene. We showed that whey can be used as the carbon source for S. cerevisiae growth and as the substrate for bioconversion to fructose diphosphate. © 1993 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 221-230 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; medium optimization ; chemostat ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An optimized, defined minimal medium was developed to support balanced growth of Escherichia coli X90 harboring a recombinant plasmid. Foreign protein expression was repressed in these studies. A pulse injection technique was used to identify the growth responses to nutrients in a chemostat. Once the nutrients essential for growth had been identified, the yield coefficients for individual medium components. These yield coefficients were used to develop an optimized, glucose-limited defined minimal medium that supports balanced cell growth in chemostat culture. The biomass and substrate concentrations follow the Monod chemostat model. The maximum specific growth rate determined in a washout experiment is 0.87 h-1 for this strain in the optimized medium. the glucose yield factor is 0.42 g DCW/g glucose and the maintenance coefficient is zero in the glucose-limited chemostat culture. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 801-810 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; autoselection ; plasmid stability ; cloned gene expression ; medium enrichment ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Saccharomyces cerevisiae autoselection strains with mutations in the ura3, fur1, and urid-k genes have been obtained through a sequential isolation procedure. This autoselection system is an extension of one described by Loison et al. The mutations effectively block both the pyrimidine biosynthetic and salvage pathways and in combination are lethal to the host. Therefore, a plasmidencoded URA3 gene is essential for cell viability regardless of the growth conditions, and complex (traditionally nonselective) media can be employed without the risk of plasmid loss. The effects of medium enrichment on growth and cloned gene product synthesis were examined in batch culture for two autoselection strains. The plasmid gene product β-galactosidase was under the control of the yeast GAL1 promoter, and two methods of induction were employed; one strain was induced via temperature shift while the other was induced by galactose addition. Three nutrient media were investigated: a lean selective medium (SD), a richer semidefined medium (SDC), and a rich complex medium (YPD). The results demonstrated the improvements in cloned gene productivity possible when the growth medium is enriched, with up to 10-fold increases in β-galactosidase productivity observed. Plasmid instability and mutation reversion were not problems for the autoselection strains, even in uracil-containing medium. Short-term plasmid stabilities were approximately 90% in all three media tested. During continuous culture of the autoselection temperature-sensitive strain, long-term plasmid stability was excellent and β-galactosidase expression remained high after more than 25 residence times under inducing conditions. In contrast, both β-galactosidase specific activity and plasmid stability decreased linearly with time for an analogous nonautoselection strain. The introduced fur1 and uridk mutations were very stable; after more than 50 generations of growth in complex medium, stability values of 99-100% were measured. © 1993 Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 1352-1359 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; image analysis ; electronic particle counter ; viability test ; alcoholic fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A semiautomatic image analysis method, with minimal operator intervention, has been developed to characterize the morphology of yeast cells under the assumption that they have an ellipsoidic shape. The cells are observed by optical microscopy and the surface and the minor and major half-axes of the projection of the ellipsoid on the image plane are determined. Using this method, yeast size distributions and population kinetics (single and budding cells, cell clusters) are determined during alcoholic fermentations. Combination of image analysis with a methylene blue viability test is examined but the staining procedure induces a change in the size of the cells. © 1993 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 3-13 
    ISSN: 0006-3592
    Keywords: recombinant protein ; Escherichia coli ; inclusion body ; renaturation ; disulfide bond ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Expression of recombinant proteins in Escherichia coli often results in the formation of insoluble inclusion bodies, In case of expression of eukaryotic proteins containing cysteine, which may form disulfide bonds in the native active protein, often nonnative inter- and intramolecular disulfide bonds exist in the inclusion bodies. Hence, several methods have been developed to isolate recombinant eukaryotic polypeptides from inclusion bodies, and to generate native disulfide bonds, to get active proteins. This article summarizes the different steps and methods of isolation and renaturation of eukaryotic proteins containing disulfide bonds, which have been expressed in E. coli as inclusion bodies, and shows which methods originally developed for studying the folding mechanism of naturally occurring proteins have been successfully adapted for reactivation of recombinant eukaryotic proteins. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 237-244 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; iron transport ; enterobactin HPLC ; dialysis membrane fermentor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The article describes four different fermentation procedures for Escherichia coli AN311, a producer of enterobactin. A regular rotary shaker culture with a biphasic system consisting of an agar layer (as a reservoir for feeding processes) and a layer of liquid medium, 2.4 L and 10 L batch cultures, and a novel dialysis membrane fermentor were used. With the use of this latter fermentor type, the production of enterobactin could be increased by a factor of about 9.5, while growth increased by a factor of 12 compared to the other systems. For the rapid and reliable quantification of the concentration and purity of enterobactin an analytical and preparative high-performance liquid chromatography (HPLC) method was established. The degradation compounds of this siderophore were detected by diodearray and bioassays. A comparison of total catechol production as well as the distribution between enterobactin and its degradation compounds is given. © 1993 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 361-369 
    ISSN: 0006-3592
    Keywords: gravitational sedimentation ; sedimentation ; fermentation ; continuous ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mathematical model for the sedimentation velocity in an inclined parallel plate sedimenter is proposed. The parameters of the alcoholic fermentation broth (cell density of Saccharomyces cerevisiae, density of the fermentation medium, viscosity of the broth at various alcohol and biomass contents) were determined experimentally. The sedimentation velocities were predicted under the various operational conditions and parameters, both of the broth (the alcohol concentration and cell content) and the sedimenter prototype (length, distance between the plates, and slope). The proposed model for the sedimentation velocity presented a good correlation with the experimental results of continuous sedimentation. These sedimenter prototypes were assembled and tested for efficiency of separation of yeast cell under conditions considered for interest for continuous alcoholic fermentation. A selective filter for the overflow composed of calcium alginate gel improved operation. A high operational stability, high separation efficiency (over 98%), and adequate settler residence times (about 20 min) were attained. The operational results permitted the operation of continuous alcoholic fermentation with cellular recycling effected exclusively by gravitational sedimentation, this characterizing a process of enormous industrial interest because of the operational simplicity and low operational and maintenance costs. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 395-404 
    ISSN: 0006-3592
    Keywords: recombinant bacterium ; plasmid loss ; modeling ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A large number of models concerning cultures of genetically engineered bacteria have been described. Among them, some are specifically adapted to continuous cultures and lead to the determination of two variables: (i) the difference in the specific growth rates between plasmid-carrying cell and plasmid-free cells (δμ) and (ii) the frequency of plasmid loss by plasmid-containing cells (prμ+). Until now, studies have been performed on the global expression prμ+ and δμ, whose value during continuous assays have been supposed approximately constant (mean value) and not on separate values of both terms pr and μ+, respectively, probability of plasmid loss and specific growth rate of the plasmid-carrying cells. So far these studies do not allow examination of the relationship between these two last parameters. Experimental results were obtained with Escherichia coli C600 galk (GAPDH), a genetically engineered strain that synthetizes an elevated quantity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). From data obtained during continuous cultures, it is shown that during an assay, δμ, and prμ+ do not remain constant. An appropriate mathematical analysis of the expression of μ- (specific growth rate of the plasmid-free cells) and μ+ has been built up. This allows the evaluation of the values of μ+ and μ- during the continuous cultures carried out at different dilution rates. Values of pr have been calculated from these data. Indeed our results show that pr increases with μ+. A modeling approach which allows correct simulation of this variation is also proposed. This model is derived from the Hill equation regarding cooperative binding of enzymic type reaction. © 1993 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 666-670 
    ISSN: 0006-3592
    Keywords: oxygen fluctuations ; plasmid amplification ; Escherichia coli ; circulation time distribution ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Escherichia coli DH5α, carrying the pUC19 plasmid for the lacZ fragment of β-galactosidase and ampicillin resistance, was grown in a batch fermentor under conditions of fluctuating oxygen supply. A Monte Carlo method was used to control the on/off supply of air to simulate circulation of cells in a large fermentor. Rapid changes in oxygen supply reduced the rates of oxygen uptake the carbon dioxide release and prolonged the active second growth phase in batch culture, compared to growth with continuous aeration. Amplification of the plasmid was observed during the stationary phase when air supplied continuously, but not during the Monte Carlo experiments. © 1993 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 937-946 
    ISSN: 0006-3592
    Keywords: protein excretion ; continuous culture ; Escherichia coli ; β-lactamase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The stable continuous overproduction of a plasmidencoded protein, β-lactamase, for at least 50 days by Escherichia coli K-12, RB791(pKN), with release into the culture medium has been demonstrated in two-stage chemostats. The second-stage culture was continuously induced with 0.1 mM IPTG. Continuous expression of β-lactamase could not be sustained with this strain in a single-stage chemostat because of cell death and selection for lac-1 cells. β-Lactamase production in the second stage was sensitive to the second-stage dilution rate and the distribution of the limiting substrate (i.e., glucose) between the first and second stages. The fraction of viable, excreting cells and the average copy number in the induced culture was measurably higher under those conditions of dilution rate and substrate distribution which yielded high β-lactamase levels. The best operating conditions found at 20°C were a first-stage dilution rate of 0.12 h-1, a second-stage dilution rate of 0.03 h-1, and equal glucose feed supplied to each stage. Enzymatically active β-lactamase was produced at a level of 25% of total cellular protein with 90% excretion yielding 300 mg β-lactamase/L that was 50% pure at an OD600 〈 6. © 1993 Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 43-49 
    ISSN: 0006-3592
    Keywords: calcium alginate reactor ; NADH regeneration ; Saccharomyces cerevisiae ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Saccharomyces cerevisiae cells immobilized in a calcium alginate fiber reactor were used as a source of alcohol dehydrogenase for the NAD+-to-NADH reaction. The reaction was catalyzed by enzyme in cells on the surface of the fiber. Internal diffusional effects were present. The enzyme cell concentration was optimized by harvesting cells finally grown under anaerobic conditions. The results were expressed as an apparent reaction rate constant that was independent of NAD+ and excess ethanol concentration, was slightly affected by flow rate above a minimum value, and increased with immobilized cell concentration in the fiber. The reaction was complete after 6 to 7 h under optimal conditions of 36°C and 9.5 pH. The latter was 0.5 pH units above the free enzyme optimum, indicating that microenvironmental effects were in evidence. © 1993 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 215-221 
    ISSN: 0006-3592
    Keywords: on-line NMR ; phosphorus-31 NMR ; Escherichia coli ; aerobic and anaerobic metabolism ; intracellular pH ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An experimental system has been constructed which enables on-line measurements of phosphorus-31 (31P) nuclear magnetic resonance (NMR) spectra for growing bacterial suspensions under anaerobic or aerobic conditions. A sample stream from a laboratory bioreactor is circulated to the NMR sample chamber in a gas exchange system which permits maintenance of aerobic conditions for high-cell-density cultures. 31P NMR spectra with resolution comparable with those obtained traditionally using dense, concentrated, nongrowing cell suspensions can be obtained at cell densities above 25 g/L with acquisition times ranging from 14 to 3 minutes which decline as cell density increases. This system has been employed to characterize the changes in intracellular state of a stationary phase culture which is subjected to a transition from aerobic to anaerobic conditions. Both intracellular NTP level and cytoplasmic pH are substantially lower under anaerobic conditions. Also, the system has been employed to observe the response of a growing culture to external addition of acetate. Cells are able to maintain pH difference across the cytoplasmic membrane at extracellular acetate concentrations of 5 and 10 g/L. However, acetate concentrations of 20 g/L cause collapse of the transmembrane ΔpH and sharp reduction of the growth rate of the culture. The experimental configuration described should also permit NMR observations of many other types of microbial cultures and of other nuclei. © 1993 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 95-102 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; secretion ; MFα1 ; autoselection ; plasmid stability ; medium enrichment ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Two Saccharomyces cerevisiae strains were employed to investigate the effects of medium enrichment on the expression and secretion of a recombinant protein. One was a stable autoselection strain with mutations in the ura3, fur1, and urid-k genes. The combination of these three mutations blocks both the pyrimidine nucleotide biosynthetic and salvage pathways and is lethal to the cells. Retention of the plasmid, which carries a URA3 gene, was essential for cell viability. Therefore, all media were selective, allowing cultivation of the strain in complex medium. The second strain was a nonautoselection (control) strain and is isogenic to the first except for the fur1 and urid-k mutations. The plasmid utilized contains the yeast invertase gene under the control of the MFα1 promoter and leader sequence. The expression and secretion of invertase for the autoselection strain were examined in batch culture for three media: a minimal medium (SD), a semidefined medium (SDC), and a rich complex medium (YPD). Biomass yields and invertase productivity (volumetric activity) increased with the complexity of the medium; total invertase volumetric activity in YPD was 100% higher than in SDC and 180% higher than in SD. Specific activity, however, was lowest in the SDC medium. Secretion efficiency was extremely high in all three media; for the majority of the culture, 80-90% of the invertase was secreted into the periplasmic space and/or culture medium. A glucose pulse at the end of batch culture in YPD facilitated the transport of residual cytoplasmic invertase. For the nonautoselection strain, invertase productivity did not improve as the medium was enriched from SDC to YPD, and plasmid stability in the complex YPD medium dropped from 54% to 34% during one batch fermentation. During long-term sequential batch culture in YPD, invertase activity decreased by 90% and the plasmid-containing fraction dropped from 56% to 8.8% over 44 generations of growth. The expression level for the autoselection strain, however, remained high and constant over this time period, and no reversion at the fur1 or urid-k locus was observed. © 1993 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 325-329 
    ISSN: 0006-3592
    Keywords: chemostat ; enzyme overproduction ; plasmid stability ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of plasmid-mediated metabolic burden of on the expression of the host genes and its consequences on the plasmid maintenance were studied in carbon-limited chemostat culture of Escherichia coli 1EA(pBR322) subject to selection for strains overproducing chromosomally coded ribitol dehydrogenase. The chemostat population became rapidly heterogeneous and the competition among evolved strains was found to be crucial for the kinetics of the plasmid loss from the culture. The selective disadvantages in growth rate associated with plasmid carriage in the parent-like and ribitol dehydrogenase-overproducing strains was estimated. © 1993 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 781-790 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; recombinant ; fed batch ; high cell density ; trypsin ; fermention ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fed-batch techniques were employed to obtain high cell density cultures (92-100 g DCW/L) of Escherichia coli strain X90 producing a recombinant serine protease, rat anionic trypsin, secreted to the periplasm. The specific growth rate was controlled to minimize growth-inhibiting acetate formation by utilizing an exponential feeding profile determined from mass balance equation. The volumetric yield of recombinant rat anionic trypsin was 56 mg/L, and the final cell density was 92 g DCW/L when the culture was induced in the late logarithmic phase. However, when the culture was induced in the early logarithmic phase, the volumetric yield was 13 mg/L and the final cell density was 14 g DCW/L. Thus, the induction timing is shown to have a significant effect on the final cell density as well as the overall volumetric yield of the recombinant protease. © 1993 Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 826-829 
    ISSN: 0006-3592
    Keywords: biosorption ; biosorbent ; Saccharomyces cerevisiae ; cadmium biosorption ; metal uptake ; brewer's yeasts ; baker's yeasts ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cadmium uptake by nonliving and resting cells of Saccharomyces cerevisiae obtained from aerobic or anaerobic cultures from pure cadmium-bearing solutions was examined. The highest cadmium uptake exceeding 70 mg Cd/g was observed with aerobic baker's yeast biomass from the exponential growth phase. Nearly linear sorption isotherms featured by higher sorbing resting cells together with metal deposits localized exclusively in vacuoles indicate the possibility of a different metal-sequestering mechanism when compared to dry nonliving yeasts which did not usually accumulate more than 20 mg Cd/g. The uptake of cadmium was relatively fast, 75% of the sorption completed in less than 5 min. © 1993 Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 557-570 
    ISSN: 0006-3592
    Keywords: mathematical model of cell growth ; continuous culture ; protein excretion ; β-lactamase ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A simple mathematical model is developed to help explain the complex population dynamics of an Escherichia coli host-plasmid expression/excretion system for β-lactamase within single- and two-stage reactors. The model successfully integrates the individual regulatory (tac promoter induction), genetic (runaway plasmid replication), and population dynamics (culture instability) aspects of the system. The model predicts, and experiment confirms, that high-level β-lactamase production and excretion cannot be easily maintained in single-stage reactors using the current plasmid construction. Stable target protein production and excretion is mathematically predicted, and experimentally confirmed, within two-stage reactors. The model is used to provide insight into engineering a more stable host-vector expression/excretion system for use in single-stage reactors. © 1993 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 1190-1198 
    ISSN: 0006-3592
    Keywords: fermentation ; bioprocess monitoring ; bioluminescence ; inner filter effect ; Escherichia coli ; cell concentration monitoring ; fiber optic ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Bioluminescence has recently become a popular research tool in several fields, including medicine, pharmacology, biochemistry, bioprocessing, and environmental engineering. Beginning with purely qualitative goals, scientists are now targeting more demanding applications where accurate, quantitative interpretation of bioluminescence is necessary. Using the recent advances in fiber-optic technology, bioluminescence is easily monitored in vivo and in real time. However, the convenience of this measurement is often concealing an unsuspected problem: the bioluminescence signal might be corrupted by a large error caused by the extinction of light by biological cells. Since bioluminescent cultures not only emit light but also absorb and scatter it, the measured signal is related in a complex, nonlinear, and cell-concentration-dependent manner to the “true” bioluminescence. This light extinction effect, known as the “inner filter effect,” is significant in high-density cultures. Adequate interpretation of the bioluminescence signal can be difficult without its correction. Here, we propose a real-time algorithm for elimination of the inner filter effect in a bioreactor. The algorithm yields the bioluminescence which would be measured if the glowing culture was completely transparent. This technique has been successfully applied to batch and continuous cultivation of recombinant bioluminescent Escherichia coli. © 1993 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 1066-1074 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; SUC2 ; mathematical model ; conjugate gradient optimization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The aim of this study is to determine the medium feeding strategy to maximize the invertase productivity of recombinant Saccharomyces Cerevisiae using a fed-batch mode of operation. The yeast contains the plasmid, pRB58, which contains the yeast SUC2 gene, coding for the enzyme invertase. The expression of this gene is repressed at high glucose levels. A Goal-oriented model is development to describe the kinetics of fed-batch fermentations. This simple model could quantitatively describe previous experimental results. A conjugate gradient algorithm is then used, in conjunction gradient algorithm is then used, in conjunction with this mathematical model, to compute the optimum feed rate for maximization of invertase productivity. The optimal feeding procedure results in an initial high cell growth phase followed by a high invertase production phase. © 1993 Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 1092-1100 
    ISSN: 0006-3592
    Keywords: high cell density cultivation ; Escherichia coli ; XAD adsorbents ; dialysis reactor ; controlled substrate feed ; inhibitory products, removal of ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Reduction in nutrient loss during dialysis cultivation of Escherichia coli on a glycerol medium was investigated. A dialysis reactor with an inner fermentation and an outer dialysis chamber was used. Aerobic condition was maintained by limiting the glycerol feed rate to an optimum value which was estimated from the oxygen requirements for glycerol oxidation and oxygen transfer capacity of the reactor. High reduction in nutrient loss was achieved by using water as the dialyzing fluid. However, osmotic movement of water from the dialysis to the fermentation chamber was observed, and the final cell concentration was low. With a nutrient-split feeding strategy (feeding glycerol directly to the fermentation chamber and dialyzing with salt solution), glycerol loss was small, there was no osmotic flux of water to the fermentation chamber, and the cell concentration was high. Both glycerol and salt loss could be avoided, and a cell concentration of 170 g/L was obtained when the dialysis process was substituted by addition of XAD adsorbents to the dialysis chamber. Application of this nutrient-split feeding strategy to cell cultivation in a stirred tank reactor, coupled with dialysis in external dialyzer modules, resulted in low cell concentrations. © 1993 Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 211-220 
    ISSN: 0006-3592
    Keywords: plasmid retention ; gene expression ; biofilm ; β-galactosidase ; segregational instability ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Differences in plasmid retention and expression are studied in both suspended and biofilm cultures of Escherichia coli DH5α(PMJR1750). An alternative mathematical model is proposed which allows the determination of plasmid loss probability in both suspended batch and continuously fed biofilm cultures. In our experiments, the average probability of plasmid loss of E. coli DH5α(pMJR1750) is 0.0022 in batch culture in the absence of antibiotic selection pressure and inducer. Under the induction of 0.17 MM IPTG, the maximum growth rate of plasmid-bearing cells in suspended batch culture dropped from 0.45 h-1 to 0.35 h-1 and the β-galactosidase concentration reached an experimental maximum of 0.32. pg/cell 4 hours after the initiation of induction. At both 0.34 and 0.51 mM IPTG, growth rates in batch cultures decreased to 0.16 h-1, about 36% of that without IPTG, and the β-galactosidase concentration reached an experimental maximum of 0.47 pg/cell 3 hours after induction.In biofilm cultures, both plasmid-bearing and plasmid-free cells in increase with time reaching a plateau after 96 hours n the absence of both the inducer and any antibiotic selection pressure. Average probability of plasmid loss for biofilm-bound E. coli DH5β(pMJR1750) population was 0.017 without antibiotic selection. Once the inducer IPTG was added, the concentration of plasmid-bearing cells in biofilm dropped dramatically while plasmid-free cell numbers maintained unaffected. The β-galactosidase concentration reached a maximum in all biofilm experiments 24 hours after induction; they were 0.08, 0.1, and 0.12 pg/cel under 0.17, 0.34, and 0.51 mM IPTG, respectively. © 1993 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 14-24 
    ISSN: 0006-3592
    Keywords: penicillin G amidase ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, we constructed various recombinant E. coli HB101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic and (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the Hindlll fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 557-565 
    ISSN: 0006-3592
    Keywords: amino acid addition ; protein stability ; stress response ; Escherichia coli ; chloramphenicol-acetyl-transferase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this work, effective feeding schemes that would minimize stress responses to cloned-protein overexpression are investigated. The cloned-protein (chloramphenicolacetyl-transferase, CAT) contains a high aromatic amino acid content, most notably a high phenylalanine content. Experiments performed on Escherichia coli RR1 [pBR329] (constitutive promoter) and E. coli JM105 [pSH101] (inducible promoter) demonstrated that phenylalanine addition increases the rate of synthesis and yield of CAT. A previous study correlating inducer strength with CAT expression in E. coli JM105 [pSH101] indicated that the highest expression rate was accompanied by the highest apparent rate of protein degradation. In this work, the combined addition of isopropyl-β-D-thiogalactopyranoside (IPTG) and phenylalanine at intermediate levels resulted in substantial increase of CAT synthesis and partial reduction of protein degradation. Furthermore, transmission electron micrographs verified the absence of inclusion bodies, which, along with proteases, were suspected to reduce protein activity. The research demonstrates that significant enhancement in production and stability of heterologous proteins is possible by designing feeding strategies that incorporate knowledge of the interaction between primary cellular metabolism and foreign protein expression. © 1993 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 10 (1992), S. 169-177 
    ISSN: 1476-5535
    Keywords: l-Phenylacetyl carbinol ; Biotransformations ; Two-phase systems ; Whole cells ; Saccharomyces cerevisiae ; Cell structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Biotransformation of benzaldehyde and pyruvate to (R)-phenylacetyl carbinol bySaccharomyces cerevisiae was investigated in two-phase aqueous-organic reaction media. With hexane as organic solvent, maximum biotransformation activity was observed with a moisture content of 10%. Of the organic solvents tested, highest biotransformation activities were observed with hexane and hexadecane, and lowest activities occurred with chloroform and toluene. Biocatalyst samples from biphasic media containing hexane, decane and toluene manifested no apparent cell structural damage when examined using scanning electron microscopy. In contrast, cellular biocatalyst recovered from two-phase systems containing chloroform, butylacetate and ethylacetate exhibited damage in the form of cell puncturing after different incubation periods. Phospholipids were detected in reaction media from biocatalytic systems which exhibited cell damage in electron micrographs. Phospholipid release was much lower in the two-phase systems containing toluene or hexane or in 100% aqueous biocatalytic system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 1573-0972
    Keywords: Curing ; fermentative behaviour ; killer ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Fermentative behaviour and cell growth have been studied in grape juice inoculated either with two killerSaccharomyces cerevisiae wild strains or with their Acridine Orange-cured isogenic counterparts. The number of viable cells/ml at the beginning of the fermentation, as well as during exponential growth, were higher in grape juices inoculated with the cured strains. The CO2 production, fermentative rate and ethanol and acetic acid production were also higher in the cured strains, particularly during the stage of active fermentation. These differences, however, were minimal at the end of the fermentations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    ISSN: 1573-0972
    Keywords: Aroma ; compound ; Saccharomyces cerevisiae ; wine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Fourteen strains of the yeastSaccharomyces cerevisiae were isolated from three wineries in the Salnés wine region (N.W. Spain) at the three different periods of the natural fermentation. Each wild yeast was screened for production of acetaldehyde, ethyl acetate, isobutanol,n-propanol, amylic alcohol and other important enological compounds during laboratory scale fermentations of grape juice. After 25 days at 20°C, the analytical results evidenced variations in the production of acetaldehyde (from 13.1 to 24.3 mg/l), isobutanol (from 27.7 to 51.1 mg/l), amyl alcohols (from 111 to 183 mg/l) and ethyl acetate (from 19.3 to 43.7 mg/l). Although isolated from the same wine region, differences in the wine composition were observed depending on the particular yeast strain used for the vinification experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 8 (1992), S. 42-44 
    ISSN: 1573-0972
    Keywords: Saccharomyces cerevisiae ; maltose induction ; catabolite repression ; chemostat ; α-glucosidase ; permease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Glucose prevented maltose utilization in batch culture ofSaccharomyces cerevisiae whereas in a mixed carbohydrate-limited system, maltose and glucose were consumed simultaneously. The specific activity of α-glucosidase depended on the dilution rate as well as the proportion of maltose in the mixture. The chemostat provides a way of reaching the low residual concentrations of glucose in the broth that are necessary to release catabolite repression and permit maltose induction of α-glucosidase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 1573-0972
    Keywords: Flocculation ; linoleic acid hydroperoxide ; lipid hydroperoxide ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A lipid hydroperoxide-resistant mutant was isolated from a strain ofSaccharomyces cerevisiae. The mutant was resistant to 1.5mm tert-butylhydroperoxide and 1.0mm linoleic acid hydroperoxide. It flocculated in a Ca2+-dependent manner and the resistance against lipid hydroperoxide was suppressed by mannose, which also inhibited flocculation. A positive relationship between the acquirement of, the flocculent phenotype and resistance against lipid hydroperoxide is suggested. A protein with a molecular weight of 33 kDa was found on the surface of the mutant cell.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 663-671 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; acetic acid ; methionine ; yeast extract ; continuous fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Acetic acid formation in Escherichia coli fermentation has been studied in continuous cultures. Experimental results suggest that the limited capacity of the oxidative metabolism (perhaps the limited capacity of TCA cycle) may be responsible for acetic acid formation. At low growth rates, both anabolic and catabolic requirements may be satisfied by the oxidative metabolism. However, at high growth rates these two demands may exceed the capacity of the oxidative metabolism alone. It is proposed that under these circumstances, E. coli reorganizes the oxidative metabolism to first meet the anabolic requisition and then supply the necessary amount of energy using both the remaining capacity of the oxidative metabolism and acetic acid formation metabolism. Escherichia coli selects acetic acid synthesis as the aerobic energy source because it generates the second largest amount of ATP and NADH2. According to our proposition, acetic acid formation could be reduced by decreasing the anabolic requirement, i.e., reducing glucose uptake, or by increasing the capacity of the oxidative metabolism. These two approaches were experimentally confirmed by observing reduced acetic acid formation by reducing the glucose uptake with a yeast extract addition and enhancing the capacity of oxidative metabolism with a methionine addition.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 732-740 
    ISSN: 0006-3592
    Keywords: cell disruption ; chemical permeabilization ; Escherichia coli ; fermentation ; protein recovery ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Overall protein release greater than 75% in less than 1 h can be attained by exposing exponentially growing Escherichia coli cells to 0.4 M guanidine plus 0.5% Triton X-100 at 37°C in medium. Cell growth stops immediately upon addition of the chemicals, but the cells are not lysed. Guanidine concentrations lower than 0.2 M, in conjunction with 0.5% Triton X-100, do not release significant intracellular protein, nor do they inhibit cell growth. Under these conditions, the cells undergo an adaptation that confers resistance to protein release by further treatment with guanidine and Triton X-100. Cells treated with 0.2 M guanidine plus 0.5% Triton X-100 display intermediate behavior. Protein release is approximately 35%, and growth is temporarily interrupted by an extended lag phase. Subsequent resumption of cell growth results in resistant cells and no additional protein release. This resistance is shown to be reversible and is most likely due to physiological adaptation rather than genetic mutation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 775-780 
    ISSN: 0006-3592
    Keywords: formate ; Escherichia coli ; formate hydrogenlyase ; cell immobilization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Formate hydrogenlyase (FHL) activity was induced in a strain of Escherichia coli S13 during anaerobic growth in yeast extract-tryptone medium containing 100 mM formate. The cells obtained at the optimum growth phase were immobilized in 2.5% (w/v) agar gel when 50-60% of the whole cell FHL activity was retained. The immobilized FHL system had good storage stability and recycling efficiency. In the lysis of formate, an increase of formate concentration to 1.18M increased QH2 (initial) value of the immobilized cell, and subsequently cells, hydrogen evolution, in general, ceased after 6 to 8 of incubation, resulting in incomplete lysis of formate. Presence of small amount of glucose (28 mM) was more or less quantitatively lysed with concomitant disappearence of glucose from the medium. Synthesis of formate from hydrogen and bicarbonate solution by the immobilized cells was also characterized. Presence of glucose (10 mM) in 50 mM bicarbonate solution stimulated formate synthesis by immobilized cells. The pH optimum range, Km, and specific activity of the immobilized cells for the lysis of formate were 6.8-7.2 0.4M, and 66 mL/g cell-h, respectively. The cells could fix hydrogen to the extent of 24.4% (w/w) of its own wet cell mass in a 72-h reaction cycle. Potentiality of the immobilized FHL system for biotechnological exploitation was discussed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 235-246 
    ISSN: 0006-3592
    Keywords: Fed-batch fermentation ; concentration fluctuations ; mixing effects ; Saccharomyces cerevisiae ; circulation time distribution ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In production-scale, fed-batch fermentations, feed is often added to a single point at the top of the fermentor, which, combined with poor mixing, results in formation of a “feed zone” rich in nutrients. Frequent exposure of the culture to high concentrations of nutrients in the feed zone for sufficient duration can produce unexpected effects on its performance. The effect of the feed zone was evaluated by conducting aerobic fed-batch fermentations of Saccharomyces cerevisiae with both complex and defined media. The broth was recirculated between a recycle loop and a bench-scale fermentor, and feed was intermittently added into the recycle loop to simulate the circulation of cells through the feed zone. Experiments were carried out for a range of residence times in the recycle loop from 0.5 to 12 min. Biomass yields from the complex-media fermentations were not affected by exposure to high nutrient levels in the recycle loop for residence times up to 12 min. Ethanol consumption was reduced by as much as 50% for residence time in the loop up to 3 min. Very long exposure of yeast cells to excess nutrient levels (12 min) gave acetic acid formation. In a defined medium, the simulated feed zone effect increased biomass yield by up to 10%, but had no effect on ethanol levels. This study indicates that the feed zone effect on biomass yield in yeast fermentation, using complex substrates, will be negligible under fully aerobic conditions.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 271-279 
    ISSN: 0006-3592
    Keywords: carbon starvation ; Escherichia coli ; growth control ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The use of glucose starvation to uncouple the production of recombinant β-galactosidase from cell growth in Escherichia coli was investigated. A lacZ operon fusion to the carbon starvation-inducible cst-1 locus was used to control β-galactosidase synthesis. β-Galactosidase induction was observed only under aerobic starvation conditions, and its expression continued for 6 h following the onset of glucose starvation. The cessation of β-galactosidase expression closely correlated with the exhaustion of acetate, an overflow metabolite of glucose, from the culture medium. Our results suggest the primary role of acetate in cst-1-controlled protein expression is that of an energy source. Using this information, we metered acetate to a glucose-starved culture and produced a metabolically sluggish state, where growth was limited to a low linear rate and production of recombiant β-galactosidase occurred continuously throughout the experiment. The cst-1 controlled β-galactosidase synthesis was also induced at low dilution rates in a glucose-limited chemostat, suggesting possible applications to high-density cell systems such as glucose-limited recycle reactors. This work demonstrates that by using an appropriate promoter system and nutrient limitation, growth can be restrained while recombinant protein production is induced and maintained.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 289-297 
    ISSN: 0006-3592
    Keywords: batch alcoholic fermentation ; enthanol ; product inhibition ; substrate inhibition ; biomass yield ; product yield ; Saccharomyces cerevisiae ; lag time ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In ethanol fermentation, instantaneous biomass yield of the yeast Saccharmoyces cerevisiae was found to decrease (from 0.156 to 0.026) with increase in ethanol concentration (from 0 to 107 g/L), indicating a definite relationship between biomass yield and product inhibition. A suitable model was proposed to describe this decrease which incorporates the kinetic parameters of product inhibition rather than pure empirical constants. Substrate inhibition was found to occur when substrate concentration is above 150 g/L. A similar definite relationship was observed between substrate inhibition and instantaneous biomass yield. A simple empirical model is proposed to describe the declines in specfic growth rate and biomass yield due to substrate inhibition. It is observed that product inhibition does not have any effect on product yield whereas substrate inhibition significantly affects the product yield, reflecting a drop in overall product yield from 0.45 to 0.30 as the initial substrate concentration increases from 150 to 280 g/L. These results are expected to have a significant influence in formulating optimum fermentor design variables and in developing an effective control strategy for optimizing ethanol producitivity.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 225-232 
    ISSN: 0006-3592
    Keywords: electroconductive heating ; electrical pretreatment ; thermal death kinetics ; zygo Saccharomyces bailii ; Escherichia coli ; microorganisms ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Suspensions of yeast cell (zygo Saccharomyces bailii) in a phosphate buffer solution were subjected to conventional (hot water) and ohmic (electric current) heating under identical temperature histories. Experiments were also conducted with cells of Escherichia coli to compare the lethal effect of combination of sublethal electrical preteatment and conventional heating with conventional heating. The kinetic parameters (D,Z,K and Ea) were determined for both organisms during different treatments. There was no significant difference in the death rate of yeast cells during conventional and ohmic heating at the voltage range used in this study. Results of electrical pretreatment and conventional heating on E. coli indicated differences under certain conditions when compared with pure conventional heating. Thus it is concluded that microbial death during ohmic heating was due primarily to thermal effects with no significant effect of electric current per se. Sublethal electrical pretreatment appears to offer potential for increased bacterial inactivation in certain cases.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; 2D-image analysis ; flow cytometry ; electronic particle counter ; comparison of size distributions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An integrated measuring system was developed that directly compares the shape of size distributions of Saccharomyces cerevisiae populations obtained from either microscopic measurements, electronic particle counter, or flow cytometer. Because of its asymmetric mode of growth, a yeast population consists of two different subpopulations, parents and daughters. Although electronic particle counter and flow cytometer represent fast methods to assess the growth state of the population as a whole, the determination of important cell cycle parameters like the fraction of daughters or budded cells requires microscopic observation. We therefore adapted a semiautomatic and interactive 2D-image processing program for rapid and accurate determination of volume distributions of the different sub-populations. The program combines the capacity of image processing and volume calculation by contour-rotation, with the potential of visual evaluation of the cells. High-contrast images from electron micrographs are well suited for image analysis, but the necessary air drying caused the cells to shrink to 35% of their hydrated volume. As an alternative, hydrated cells overstained with the fluorochrome calcofluor and visualized by fluorescence light microscopy were used. Cell volumes calculated from length, and diameter measurements with the assumption of an ellipsoid cell shape were underestimated as compared to volumes derived from 2D-image analysis and contour rotation, because of a deviating cell shape, especially in the older parent cells with more than one bud scar. The bimodal volume distribution obtained from microscopic measurements was identical to the protein distribution measured with the flow cytometer using cells stained with dansylchloride, but differed significantly from the size distribution measured with the electronic particle counter. Compared with the flow cytometer, 2-D image analysis can thus provide accurate distributions with important additional information on, for instance, the distributions of subpopulations like parents, daughters, or budded cells.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 398-407 
    ISSN: 0006-3592
    Keywords: recombinant bacterium ; plasmid stability ; filtering ; smoothing ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A numerical method to process experimental data concerning plasmid stability of a recombinant bacteria during continuous cultures with nonselective media is proposed here. This method differs from previous ones in that it uses the derivatve form of the state equation of the Imanaka-Aiba model for recombinant cultures. The methodology proposed here allows one to estimate values for the two model parameters without forcing them to be constant. Until now, this could not be done using classical analytical techniques because these parameters have been considered invariable because of the integration used in the evaluation of the model. These parameters are (1) the difference in the specific growth rates between plasmid-carrying cells and plasmid-free cells (δμ), and (2) the probability of plasmid loss by plasmid-containing cells (ρr μ+). The derivative technique used here is completed by mathematical treatments involving data filtering and smoothing. The values of the two parameters are in agreement with those already publised. The current technique does not impose preconditions and permit us to further study related phenomena.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 457-461 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; biotransformations ; zymograms ; carbonyl reduction ; baker's yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The role of oxidoreductases in reduction of carbonyl compounds was investigated by application of zymogram techniques. Eight bands were observed using ethanol with nicotinamide adenine dinucleotide (NAD) as coenzyme. Bands observed with lactic acid and (R)-(-)-phenyl-1,2-ethanediol with nicotinamide adenine dinucleotide phosphate (NADP) had similar Rm values. 2-Hydroxyvalerate and malate manifested bands having similar Rm values and were active with both NAD and NADP. Based on their structural similarity and identical Rm values, oxidation of 1,4-cyclooctanediol (band #2) and cis-1,5-cyclooctanediol may be due to a common enzyme. The PAGE-zymogram technique may be used on a preparative scale to facilitate purification and full characterization on the observed stained bands.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 1359-1366 
    ISSN: 0006-3592
    Keywords: NMR studies ; cell cultures ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: When nuclear magnetic resonance (NMR) spectroscopy is employed for physiological experiments with suspended cells, providing for adequate nutrient and oxygen delivery is particularly important, because the inherent insensitivity of NMR requires that concentrated cell suspensions be used. In addition, it is desirable to be able to manipulate the growth rate of cells during a NMR experiment. To address these concerns, a continuous cell cultivator that provides convective oxygen and nutrient transport has been constructed for NMR experiments. The NMR detector coil is located within the cultivator volume. The location is advantageous because the rapid exchange of cells in and out of the coil leads to a small apparent spin lattice relaxation time, thus allowing for rapid pulsing and fast signal averaging. In this article we present the physical principles on which the cultivator's design is based. 31P spectra showing the response of continuously cultivated Saccharomyces cerevisiae cultures to a phosphate bolus and growth rate shift are then given. © 1992 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 799-805 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; lactose/whey ; biomass and ethanol production ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Strains of Saccharomyces cerevisiae transformed with a multicopy expression vector bearing both the Escherichia coli β-galactosidase gene under the control of the upstream activating sequence of the GAL1-10 genes and the GAL4 activator gene release part of β-galactosidase in the growth medium. This release is due to cell lysis of the older mother cells; the enzyme maintains its activity in buffered growth media. Fermentation studies with transformed yeast strains showed that the release of β-galactosidase allowed an efficient growth on buffered media containing lactose as carbon source as well as on whey-based media. The transformed strains utilized up to 95% of the lactose and a high growth yield was obtained in rich media. High productions of ethanol were also observed in stationary phase after growth in lactose minimal media.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 39 (1992), S. 870-876 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; benzyl alcohol ; reductive biotransformation ; biphasic systems ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Whole cells of Saccharomyces cerevisiae analyzed the conversion of benzaldehyde to benzyl alcohol in aqueous-organic biphasic media. Reaction rate increased dramatically as moisture content of the solvent was increased in the range 0% to 2%. The highest biotransformation rates were observed when hexane was used as organic solvent. Benzaldehyde was also converted to benzyl alcohol by a cell-free crude extract in biphasic systems containing hexane, although the rate of product formation was much lower. Mutant strains of S. cerevisiae lacking some or all of the ADH isoenzymes, ADH I, II, and III, manifested similar rates for bioconversion of benzaldehyde to benzyl alcohol in both aqueous and two-phase systems. In general, conversion rates observed in aqueous media were 2 to 3 times higher than those observed in hexane containing 2% moisture.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 103-109 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; pRB58 ; invertase expression ; fed batch ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fed-batch cultures of recombinant microorganisms have attracted attention as they can separate cell growth stage from cloned-gene expression phase during fermentations. In this work, the effect of different glucose feeding strategies on cell growth and cloned gene expression was studied during aerobic fed-batch fermentations of recombinant yeast, containing the plasmid pRB58. The plasmid contains the yeast SUC2 gene, which codes for the enzyme invertase. Some feeding policies resulted in a constant glucose concentration inside the fermentor, while others deliberately introduced a cyclic variation. The cell mass yield was found to be higher at low glucose concentrations, thus indicating a shift to the more energy-efficient respiratory pathway. The SUC2 gene expression was derepressed at glucose levels below 2 g/L. The response of specific invertase activity to changes in the medium glucose concentration was found to be almost immediate.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 137-146 
    ISSN: 0006-3592
    Keywords: anomeric specificity ; mechanism of glucose uptake ; Lactococcus cremoris ; Escherichia coli ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The mechanism and kinetics of the glucose uptake systems of three representative microorganisms are studied during cultivation in a chemostat. The three microorganisms are Lactococcus cremoris, Escherichia coli, and Saccharomyces cervisiae. Two models describing respectively competitive and independent uptake of the two glucose anomers are tested on experimental data where α- and β-glucose are determined by flow injection analysis after pulse addition of the pure anomers to a chemostat. The very accurate experimental results are used to give a convincingly clear model discrimination for all three microorganisms. The uptake of glucose by S. cervisiae occurs by a competitive mechanism with preference for α-glucose (Kα = 32 mg/L and Kβ = 48 mg/L). Surprisingly, the glucose uptake by the two bacteria is shown to be mediated by anomer specific transport systems with no competitive inhibition from the other glucose anomer. This novel finding has not been described in the literature on the phosphotransferase system. In L. cremoris the relative uptake rates of the glucose anomers match the equilibrium composition exactly (36% α-glucose). In E. coli the relative uptake rate of α-glucose at glucose unlimited growth is 26%, which means preference for β-glucose. However, the saturation constants of the two sites in E. coli are Kα = 2 mg/L and Kα = 15 mg/L, and a preference for α-glucose is exhibited at very low glucose concentrations. The results are of considerable improtance in relation to enzyme based on-line measurements during fermentations as well as to the modeling of glucose limited growth and product formation.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 638-642 
    ISSN: 0006-3592
    Keywords: catalase ; Saccharomyces cerevisiae ; polyacrylamide gel ; immobilization ; permeabilization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The permeabilization of Saccharomyces cerevisiae (baker's yeast), either before or after immobilization in polyacrylamide gel (PAG), has been examined as a means to increase the catalase activity of PAG-immobilized yeast cells. Prior permeabilization of the cells resulted in large losses of catalase activity during immobilization, but permeabilization after immobilization produced increases in the catalase activity of yeast/PAG particles. A dependence of the accessible catalase activity on the concentration of polyacrylamide in permeabilized yeast/PAG particles, and on the method of permeabilization of the immobilized cells, was observed. Optimal levels of stable catalase activity (1000-2000 IU/g PAG particles; ca. 5%-10% of total available activity) were obtained by immobilizing yeast cells (0.5 g wet cells/mL gel) in 10% (w/v) PAG, followed by permeabilization of the entrapped cells with either cetyltrimethylammonium bromide, Triton X-100 and one freeze-thaw, or five freeze-thaw cycles. © 1992 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 334-336 
    ISSN: 0006-3592
    Keywords: sampling, automatic containment ; Escherichia coli ; fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A containment sampling system for shake flasks and fermentors has been developed from a blood collection system used in hospitals. The core of the system is a collection vial with a vacuum inside. When a needle connected to the fermentation fluid penetrates a rubber seal on the vial, a sample is withdrawn. The system has been developed in two versions, a manual method for shake flasks, and an automated version for fermentors including cool storage of samples. The sampling system offers the same safety for fermentation containment as the original system offers safety for patients and hospital staff. © 1992 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 1197-1202 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; plasmid retention ; amino acid supplementation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effect of amino acid supplementation on plasmid stability in Escherichia coli B/r was tested experimentally. Comparisons of experimental results to computer-predicted values were made using a detailed, structured single-cell model. The plasmid, pDW17 (a pBR322 derivative with a mutated tac promoter controlling the β-lactamase gene), was used. In chemostat cultures, the amino acid supplemented cultures were always less stable than those grown in minimal medium. This effect was not a growth rate effect, as increasing growth rate imsproves stability for both cultures in minimal medium and in amino acid supplemented medium. The computer model also predicted a decrease in stability due to amino acid supplementation. The model also predicts that amino acid supplementation, combined with moderately strong plasmid-encoded protein expresion, results in a depletion of low-molecular-weight organics compared with plasmid-free cells. In minimal medium the same level of plasmid-encoded protein synthesis results in a strong reduction in amino acid pools compared with plasmid-free cells. With amino acid supplementation the growth differential between plasmid-bearing and plasmid-free cells may be due to an “energy limitation,” while in minimal medium the size of the growth rate differential may be due to a “building block” limitation. © 1992 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 1309-1318 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; fermentation ; cell wall ; surface electrochemistry ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The cell-wall properties of three strains of the yeast Sacharomyces cerevisiae have been experimentally studied at various times during fermentation. The cell walls have been characterized by electrophoretic mobility measurements, from which zeta potentials may be calculated. They have also been characterized by computerized pH titration, which gives direct information on the number and nature of groups in the yeast cell wall. The data have been quantitatively analyzed in three ways. First, a simplified analysis of the electrokinetic data of a type used by previous workers has been applied. Second, such a simplified analysis of the electrokinetic data has been developed more rigorously by means of a two-dimensional site-dissociation model of the outer cell wall-solution interface. Third, a description of the yeast cell-wall electrochemical properties in terms of a three-dimensional gel model incorporating site dissociation has been developed. The advantages and disadvantages of the three analyses are discussed. Only the three-dimensional gel model can account simultaneously for both the electrokinetic and pH surface titration data. It provides new insights into the changes that occur to the yeast cell wall during fermentation. © 1992 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 7 (1991), S. 131-135 
    ISSN: 1476-5535
    Keywords: Saccharomyces cerevisiae ; Jerusalem artichoke ; High-fructose syrup ; Ethanol ; Immobilized yeast cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The results from this study showed that Jerusalem artichoke juice can be used for the production of very enriched fructose syrup by selective conversion of glucose to ethanol in a continuous process using immobilized cells ofSaccharomyces cerevisiae ATCC 36859. The product contained up to 99% of the total carbohydrates as fructose compared to 76% in the feed. Using Jerusalem artichoke juice supplemented with some glucose a product was obtained with 7.5% w/v ethanol which made ethanol recovery economically favourable. It was found that some fructose was consumed in these continuous processes; the glucose/fructose conversion rate ratio was regulated by the glucose concentration in the product stream.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 7 (1991), S. 181-189 
    ISSN: 1476-5535
    Keywords: Saccharomyces cerevisiae ; Torulaspora delbrueckii ; Aroma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Thirty-three fermentations of Pedro Ximénez grapes, collected in three degrees of ripeness, were carried out by inoculation with three types of inoculum: pure cultures ofSaccharomyces cerevisiae races and ofTorulaspora delbrueckii, indigenous yeasts, and mixed cultures of indigenous yeasts enriched with the pure cultures. By means of variance analysis 21 compounds were determined whose final concentrations in the wines significantly depended on the musts, the inocula or both. Eleven products that depended significantly on the inocula were subjected to a discriminant analysis in which most of the pure cultures gathered in a discriminant space area different from that occupied by the indigenous yeasts. The centroids corresponding to most of the mixed cultures were shifted to the central area of the discriminant space, moved away from their corresponding pure cultures and approached the indigenous yeasts. The results show a high similarity between the fermentations carried out with mixed cultures with the addedS. cerevisiae races and those fermentations carried out with the indigenous yeasts, with regard to those compounds which were significantly dependent on the inocula.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    ISSN: 0006-3592
    Keywords: homogenization, high-pressure ; cell disruption ; inclusion bodies ; size distribution ; centrifuge, analytical ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The high-pressure homogenization of Escherichia coli, strain JM101, containing inclusion bodies of recombinant porcine somatotropin was investigated. A novel technique employing an analytical disc centrifuge was used to monitor the disruption. This a direct technique which measures cell disintegration rather than soluble protein release. The technique is particularly suited to measurements where the disruption approaches 100%. The disk centrifuge provides a size distribution of the homogenate, and furnishes evidence for the preferential disruption of larger cells. For E. coli containing inclusion bodies, and increase in the cell feed concentration from 145 g/L (wet weight) to 330 g/L resulted is poorer homogenization. Poorer disruption was also obtained by lowering the feed temperature from 20°C to 5°C. Only slight variations in performance were obtained by increasing the feed pH from 7.5 to 9.0 or by storing the feed at 4°C for 24 h prior to disruption. Comparison with uninduced E. coli strain JM101, showed that the disruption obtained is higher for bacteria containing a recombinant inclusion body.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 869-875 
    ISSN: 0006-3592
    Keywords: scu-PA ; pro-urokinase ; yeast ; respiratory quotient ; fermentation ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Secretion of a nonglycosylated form of human pro-urokinase, also known as single-chain urinary plasminogen activator (scu-PA), from Saccharomyces cerevisiae is described. A “supersecreting” yeast strain harboring multiple copies of integrated plasmids was grown batchwise and at constant respiratory quotient (RQ) in 20-L fermenters. Because the promoters used to drive expression of the pro-urokinase genes are not tightly regulated, secretion into the culture supernatant was growth associated. Although the final cell density achieved in the perturbed-batch fermentation (45 g dry wt/L) was less than that observed in the RQ-controlled culture (77 g dry wt/L), the scu-PA titer in the perturbed-batch fermentation (1863 IU/mL) was nearly twice that attained at constant RQ (1108 IU/mL). The effects on cell growth and scu-PA titer of other process variables (pH, temperature, phosphate concentration, and medium composition) are also discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 314-318 
    ISSN: 0006-3592
    Keywords: Escherichia coli ; maltoporin ; harvesting bacteria ; bacterial surfaces ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Addition of starch to suspensions of Escherichia coli K-12 resulted in the formation of bacterial flocs. The flocculation was dependent on the high expression of a receptor for starch (maltoporin) on the surface of the bacterium. Factors influencing floc formation were investigated and optimal conditions for flocculation based on cell density, starch concentration, time, and pH established. As quantitated by a sedimentation assay, over 80% of bacteria in a culture could be removed by settling without centrifugation in 3 h under optimal conditions. Floc formation was evident with bacteria containing wild-type maltoporin but was faster and occurred to a greater extent with strains expressing a high-affinity allele (lamB1400) of the starch receptor. Bacteria could be harvested by floc formation directly in growth medium under defined conditions of maltoporin expression and medium composition. These results demonstrate the effectiveness of starch-dependent aggregation in the harvesting of cells, using an inexpensive, biologically acceptable agent to induce flocculation.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 661-672 
    ISSN: 0006-3592
    Keywords: bacterial chemotaxis ; Escherichia coli ; random motility ; diffusion chamber assay ; mathematical model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A quantitative description of bacterial chemotaxis is necessary for making predictions about the migratory behavior of bacterial populations in applications such as biofilm development, release of genetically engineered bacteria into the environment, and in situ bioremediation technologies. The bacterial chemotactic response is characterized by a mathematical model which relates individual cell properties such as swimming speed and tumbling frequency to population parameters, specifically the random motility coefficient and the chemotactic sensitivity coefficient. Our model includes a nonlinear dependence of the chemotactic velocity on the attractant gradient as well as a dependence of the random motility coefficient on the temporal and spatial attractant gradients, both of which previous analyses have neglected. As we will show, these aspects are critical for interpreting the results from experiments like those performed in the stopped-flow diffusion chamber (SFDC) because the initial temporal and spatial gradients are very steep. Our analysis demonstrates that values for the random motility coefficient and chemotactic sensitivity coefficient can be obtained from experimental plots of net cell redistribution from initial conditions versus the square root of time. Values for these parameters are determined from experimental measurements of bacterial population distributions in the SFDC as described in the companion article. Using parameter values determined from independent experiments, μ = 1.1 ± 0.4 ± 10-5 cm2/s and χ0 = 8 ± 3 ± 10-5 cm2/s, excellent agreement is found between theoretically predicted bacterial density profiles and actual experimental profiles for Escherichia coli K12 responding to fucose over two orders of magnitude in initial attractant concentration. Thus, our model captures the concentration dependence of this behavioral response satisfactorily in terms of cell population parameters which are derived from individual cell properties and will therefore be useful for making predictions about the migratory behavior of bacterial populations in the environment.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 0006-3592
    Keywords: Escherichia coli ; growth factor ; epidermal growth factor ; fed batch culture ; human epidermal growth factor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Fed-batch cultures of recombinant E. coli HB101 harboring expression plasmid pTRLBT1 or pTREBT1, with acetate concentration monitoring, are investigated to obtain high cell density and large amounts of human epidermal growth factor (hEGF). The expression plasmid pTRlBT1 contains a synthetic hEGF gene attached downstream of the N-terminal fragment of the trp L gene preceded by the trp promoter. The expression plasmid pTREBT1 contains the same coding sequence attached downstream of the N-terminal fragment of the trp E gene preceded by the trp promoter, trp L gene, and attenuator region. E. coli harboring pTREBT1 produces 0.56 mg/L hEGE and immediately degrades it. On the other hand E. coli harboring pTRLBT1 produces 6.8 mg/L hEGF and does not decompose it. Prominent inclusion bodies are observed in E. coli cells harboring pTRLBT1 using an election microscope. To Cultivate E. coli harboring pTRLBT1, a fed-batch culture system, divided into a cell growth step and an hEGF production step, is carried out. The cells grow smoothly without acetate-induced inhibition. Cell concentration and hEGF quantity reach the high values of 21 g/L and 60 mg/L, respectively.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    ISSN: 0006-3592
    Keywords: energy balances ; Saccharomyces cerevisiae ; fermentation ; microcalorimetric monitoring ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Energy balance calculations were performed for different physiological states during batch growth of Saccharomyces cerevisiae with glucose as carbon and energy source. For the different physiological states, energy recoveries close to one were obtained, which permitted a continuous control that the constantly changing growth process was quantified accurately. During the respiro-fermantative phase of growth, during which glucose served as the carbon and energy source, a low-heat-yield value (ΔQx) of -8.6 kJ/g dry biomass formed was obtained. This low-heat-yield value was due to the mainly fermentative metabolism during the middle of this phase of growth. After a transition phase, the ethanol produced during the respiro-fermentative growth was respired. During this respiratory phase, the heat yield values increased markedly, resulting in a lowest value of -42.7 kJ/g. The low-heat-yield values of the respiro-fermentative growth is not a reflection of the most efficient metabolism of S. cerevisiae. On the contrary, during the middle of this phase, 74% of the energy input was dissipated as ethanol, 6% was dissipated as heat, and the energy conserved as biomass was just 13%, while during the early respiratory phase, 69% of the energy input was dissipated as heat, and 22% of the energy input was conserved as biomass. By mathematical modeling and direct monitoring on-line of the rate of heat production, continuous calculations of (1) glucose consumption, and (3) biomass production were performed, and were shown to correlate closely with measured values for the continuously changing growth process.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 831-837 
    ISSN: 0006-3592
    Keywords: fermentation ; Escherichia coli ; recombinant fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The effects of dilution rates on the performance of a two-stage fermentation system for a recombinant Escherichia coli culture were studied. Dilution rate determines the apparent or averaged specific growth rate of a heterogeneous population of cells in the recombinant culture. The specific growht rate affects the genetic parameters involved in product formation in the second stage, such as plasmid stability, plasmid content, and specific gene expression rate. Kinetic models and correlations were developed for these parameters based on experimental data. Simulations of plasmid stability in the first stage showed that for longer fermentation periods, plasmid stability is better at higher dilution rates. However, the plasmid content is lower at these dilution rates. The optimal apparent specific growth rate for maximum productivity in the second stage was determined using two methods: (1) direct search for a constant specific growth rate, and (2) dynamic optimization using the maximum principle for a time-dependent specific growth rate profile. The results of the calculations showed that the optimum constant apparent specific growth rate for maximum over-all productivity is 0.40 h-1. This coincides with the optimal specific growht rate for maximum plasmid content in the expressed stage. A 3.5% increase in overall productivity can be obtained by using a linear time dependent apparent specific growth rate control, μ2(t) = 0.0007t, in the course of the fermentation time.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 891-906 
    ISSN: 0006-3592
    Keywords: ribosome vector ; cloned-gene expression ; Escherichia coli ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An expression system utilizing specialized ribosomes has been constructed with β-galactosidase as the product. Ribosomes specific for lacZ mRNA are generated due to a mutation within the anti-Shine-Dalgarno region of a plasmidborne 16S rRNA gene that is complementary to a mutation within the ribosome-binding site of lacZ. Hence, a subpopulation of ribsomes specific for translation of the cloned gene mRNA is produced. Transcription of the lacZ gene is regulated by the tac promoter, while transcription of the mutated rrnB locus is controlled by the λPL promoter. Batch experiments indicate that full induction of both operons (2 mM IPTG, 42°C) leads to maximal β-galactosidase activity per cell at levels 35% higher than that obtained using a wild-type ribosome expression system. Using a novel, site-directed mutagenesis technique, construction of the specialized ribosome vector is outlined, and the results of lacZ expression are presented as transcription of both the cloned-gene and the specialized-ribosome locus are induced.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 1280-1284 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; biotransformation ; oxidoreductases ; carbonyl ; stereospecific ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The progress of reductive biotransformations of a variety of earbonyl compounds by whole cells of baker's yeast was monitored with time. Biotransformations rates ranged from 0.11 to 112.12 mg product formed per g dry yeast per h. While rapid biotransformations of citronellal and ethyl benzoylformate were observed, complete conversion of substrate to product did not occur. Reductive conversions of ethyl- and methyl-acetoacetate went to completion in 6 and 12 h respectively. Ethyl mandelate was produced stereoselectively, favoring the (R)- stereoisomer and ethyl and methyl-3-hydroxybutyrate were produced with (S)-enantiospecificity. Yeast crude extract and resuspended presence of NAD(P)H. Ethyl benzoylformate and methyl-and ethyl-acetoacetate were preferentially reduced by yeast crude extract as compared to resuspended pellet and, in the case of the former two substrates, the reaction manifested a preference for NADPH over NADH.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 647-660 
    ISSN: 0006-3592
    Keywords: bacterial chemotaxis ; Escherichia coli ; motility, random ; diffusion chamber assay ; mathematical model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Bacterial chemotaxis, the directed movement of a cell population in response to a chemical gradient, plays a critical role in the distribution and dynamic interaction of bacterial populations in nonmixed systems. Therefore, in order to make reliable predictions about the migratory behavior of bacteria within the environment, a quantitative characterization of the chemotactic response in terms of intrinsic cell properties is needed.The design of the stopped-flow diffusion chamber (SFDC) provides a well-characterized chemical gradient and reliable method for measuring bacterial migration behavior. During flow through the chamber, a step change in chemical concentration is imposed on a uniform suspension of bacteria. Once flow is stopped, diffusion causes a transient chemical gradient to develop, and bacteria respond by forming a band of high cell density which travels toward higher concentrations of the attractant. Changes in bacterial spatial distributions observed through light scattering are recorded on photomicrographs during a 10-min period. Computer-aided image analysis converts absorbance of the photographic negatives to a digital representation of bacterial density profiles. A mathematical model (part II) is used to quantitatively characterize these observations in terms of intrinsic cell parameters: a chemotactic sensitivity coefficient, μ0, from the aggregate cell density accumulated in the band and a random motility coefficient, μ, from population dispersion in the absence of a chemical gradient.Using the SFDC assay and an individual-cell-based mathematical model, we successfully determined values for both of these population parameters for Escherichia coli K12 responding to fucose. The values obtained were μ = 1.1 ± 0. 4 × 10-5 cm2/s and χo = 8 ± 3 ± 10-5 cm2/s. We have demonstrated a method capable of determining these parameter values from the now validated mathematical model which will be useful for predicting bacterial migration in application systems.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 296-303 
    ISSN: 0006-3592
    Keywords: ethanol ; genetic engineering ; Escherichia coli ; lignocellulose ; xylose ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The conversion of xylose to ethanol by recombinant Escherichia coli has been investigated in pH-controlled batch fermentations. Chemical and environmental parameters were varied to determine tolerance and to define optimal conditions. Relatively high concentrations of ethanol (56 g/L) were produced from xylose with excellent efficiencies. Volumetric productivities of up to 1.4 g ethanol/L h were obtained. Productivities, yields, and final ethanol concentrations achieved from xylose with recombinant E. coli exceeded the reported values with other organisms. In addition to xylose, all other sugar constituents of biomass (glucose, mannose, arabinose, and galactose) were efficiently converted to ethanol by recombinant E. coli. Unusually low inocula equivalent to 0.033 mg of dry cell weight/L were adequate for batch fermentations. The addition of small amounts of calcium, magnesium, and ferrous ions stimulated fermentation. The inhibitory effects of toxic compounds (salts, furfural, and acetate) which are present in hemicellulose hydrolysates were also examined.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...