ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Aquaculture research 26 (1995), S. 0 
    ISSN: 1365-2109
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Aquaculture research 25 (1994), S. 0 
    ISSN: 1365-2109
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 41 (1994), S. 149-154 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract. Yeast cells are capable of accumulation of various heavy metals, preferentially accumulating those of potential toxicity and also those of value. They retain their ability to accumulate heavy metals under a wide range of ambient conditions. In the present study it was shown that yeast cells in suspension accumulate heavy metal cations such as Cu2+, Co2+, and Cd2+. The level of copper accumulation was dependent on the ambient metal concentration and was markedly inhibited by extremes of ambient pH. Temperature (5–40°C) and the presence of the alkali metal sodium had much smaller effects on the level of copper accumulation. This suggests that in waste-waters of pH 5.0–9.0, yeast biomass could provide an effective bioaccumlator for removal and/or recovery of the metal. During bioaccumulation and subsequent processes it is necessary to retain the biomass. It was shown in the present study that this could be achieved by cell immobilization. Immobilization allowed for complete removal of Cu2+, Co2+, and Cd2+ from synthetic metal solutions. The immobilized material could be freed of metals by use of the chelating agent ethylenediamine tetraacetic acid (EDTA) and recycled for further bioaccumulation events with little loss of accumulation capacity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 41 (1994), S. 149-154 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Yeast cells are capable of accumulation of various heavy metals, preferentially accumulating those of potential toxicity and also those of value. They retain their ability to accumulate heavy metals under a wide range of ambient conditions. In the present study it was shown that yeast cells in suspension accumulate heavy metal cations such as Cu2+, Co2+. The level of copper accumulation was dependent on the ambient metal concentration and was markedly inhibited by extremes of ambient pH. Temperature (5–40°C) and the presence of the alkali metal sodium had much smaller effects on the level of copper accumulation. This suggests that in waste-waters of pH 5.0–9.0, yeast biomass could provide an effective bioaccumlator for removal and/or recovery of the metal. During bioaccumulation and subsequent processes it is necessary to retain the biomass. It was shown in the present study that this could be achieved by cell immobilization. Immobilization allowed for complete removal of Cu2+, Co2+, and Cd2+ from synthetic metal solutions. The immobilized material could be freed of metals by use of the chelating agent ethylenediamine tetraacetic acid (EDTA) and recycled for further bioaccumulation events with little loss of accumulation capacity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied electrochemistry 11 (1981), S. 253-259 
    ISSN: 1572-8838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Aluminium, usually in sheet form, is often subjected to a graining process prior to further treatment. This is normally a batchwise acid pickle. A study was carried out on a laboratory scale to show that electrochemical machining can be used to produce grained aluminium surfaces by a continuous, high-rate process using non-acid electrolytes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied electrochemistry 6 (1976), S. 275-277 
    ISSN: 1572-8838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Weinheim [u.a.] : Wiley-Blackwell
    Materials and Corrosion/Werkstoffe und Korrosion 25 (1974), S. 420-424 
    ISSN: 0947-5117
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Description / Table of Contents: Analyse einiger für die atmosphärische Korrosion von Eisen in Gegenwart von SO2 vorgeschlagener MechanismenDie geltenden Theorien der atmosphärischen Korrosion von Eisen in Gegenwart von Schwefeldioxid - nämlich der Säure-Regenerationszyklus und ein elektrochemisches Modell - werden aufgrund neuerer experimenteller Ergebnisse überprüft. Dabei wird gezeigt, daß zwischen diesen neuen Ergebnissen und der Annahme des elektrochemischen Modells als des wichtigsten Korrosionsmechanismus kein Widerspruch entsteht. Theoretische Analysen der vorgeschlagenen elektrochemischen Mechanismen werden erörtert und die Ergebnisse auf einen früher vorgeschlagenen Mechanismus sowie auf einen neuen Mechanismus angewandt, der hier als Erweiterung aufgrund der neueren Ergebnisse vorgeschlagen wird.
    Notes: Two established theories of SO2/atmospheric corrosion of iron, viz. the Acid Regeneration Cycle and an electrochemical model, are reviewed in terms of recently reported experimental results and acceptance of the electrochemical model as the main corrosion path.Theoretical analyses of proposed electrochemical mechanism are discussed and applied to a previously suggested mechanism, and a new one suggested here as an extension of recently reported results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 297-302 
    ISSN: 0006-3592
    Keywords: cell walls ; metal binding ; polymers ; yeast ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Isolated cell walls of the yeast Saccharomyces cerevisiae were treated by either chemical (alkali and acid) or enzymatic (protease, mannanase or β-glucuronidase) processes to yield partially purified products. These products were partially characterized by infrared analysis. They were subsequently reacted with heavy metal cation solutions and the quantity of metal accumulated by the cell wall material determined. The Cu2+ ion (0.24, 0.36, 1.12, and 0.60 μmol/mg) was accumulated to a greater extent than either Co2+ (0.13, 0.32, 0.43, and 0.32 μmol/mg) or Cd2+ (0.17, 0.34, 0.39, and 0.32 μmol/mg) by yeast cell walls, glucan, mannan, and chitin, respectively The isolated components each accumulated greater quantities of the cations than the intact cell wall. Removal of the protein component of the yeast cell walls by Pronase caused a 29.5% decrease in metal accumulation by yeast cell walls per mass, indicating the protein is a heavy metal accumulating component. The data indicate that the outer mannan-protein layer of the yeast cell wall is more important than the inner glucan-chitin layer in heavy metal action accumulation. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 44 (1994), S. 1362-1366 
    ISSN: 0006-3592
    Keywords: Saccharomyces cerevisiae ; bioaccumulation ; gel immobilization ; cross-flow microfiltration ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cross-flow microfiltration was shown to retain Saccharomyces cerevisiae biomass utilized for heavy metal bioaccumulation. The passage of metal-laden influent through a series of sequential bioaccumulation systems allowed for further reductions in the levels of copper, cadmium, and cobalt in the final effluent than that afforded by a single bioaccumulation process. Serial bioaccumulation systems also allowed for partial separation of metals from dual metal influents. More than one elemental metal cation could be accumulated simultaneously and in greater quantities than when a single metal was present in the effluent (Cu2+ 0.43 mmol, Cu2+ + Cd2+ 0.67 mmol, and Cu2+ + Co2+ 0.83 mmol/g yeast dry mass when the initial concentration of each of the metal species was 0.2 mmol·L-1). Co-accumulation of two different metal cations allowed higher total levels of bioaccumulation than found with a single metal. The flux rate was 2.9 × 102 L·h-2μm-2 using a polypropylene microfiltration membrane (0.1 μm pore size) at 25°C. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1977-08-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...