ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inorganic Chemistry  (3,365)
  • Aeronautics (General)
  • Cell & Developmental Biology
  • Organic Chemistry
  • 2010-2014  (218)
  • 2005-2009  (141)
  • 1935-1939  (5,912)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: Ice accretion codes depend on models of roughness parameters to account for the enhanced heat transfer during the ice accretion process. While mitigating supercooled large droplet (SLD or Appendix O) icing is a significant concern for manufacturers seeking future vehicle certification due to the pending regulation, historical ice roughness studies have been performed using Appendix C icing clouds which exhibit mean volumetric diameters (MVD) much smaller than SLD clouds. Further, the historical studies of roughness focused on extracting parametric representations of ice roughness using multiple images of roughness elements. In this study, the ice roughness developed on a 21-in. NACA 0012 at 0deg angle of attack exposed to short duration SLD icing events was measured in the Icing Research Tunnel at the NASA Glenn Research Center. The MVD's used in the study ranged from 100 micrometer to 200 micrometers, in a 67 m/s flow, with liquid water contents of either 0.6 gm/cubic meters or 0.75 gm/cubic meters. The ice surfaces were measured using a Romer Absolute Arm laser scanning system. The roughness associated with each surface point cloud was measured using the two-dimensional self-organizing map approach developed by McClain and Kreeger (2013) resulting in statistical descriptions of the ice roughness.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN14981 , AIAA/CEAS Aeroacoustics Conference; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing would occur. The ice crystal icing event, an uncommanded reduction in thrust, was able to be turned on and off by manipulating cloud TWC. A flight test point where no ice crystal icing event occurred was also duplicated in PSL. Physics based computational tools were successfully used to predict tunnel settings to induce ice buildup along the low pressure compression system flow path for several test points at incrementally lower altitudes, demonstrating that development of ice crystal icing scaling laws is potentially feasible. Analysis of PSL test data showed that uncommanded reduction in thrust occurs during ice crystal cloud on operation prior to fan speed reduction. This supports previous findings that the reduction of thrust for this test article is due to ice buildup leading to a restricted airflow from either physical or aerodynamic blockage in the engine core flow path.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN15560 , AIAA Aviation Technology, Integration, and Operations Conference; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: This paper describes the initial development of a framework to incorporate handling qualities analyses into a rotorcraft conceptual design process. In particular, the paper describes how rotorcraft conceptual design level data can be used to generate flight dynamics models for handling qualities analyses. Also, methods are described that couple a basic stability augmentation system to the rotorcraft flight dynamics model to extend analysis to beyond that of the bare airframe. A methodology for calculating the handling qualities characteristics of the flight dynamics models and for comparing the results to ADS-33E criteria is described. Preliminary results from the application of the handling qualities analysis for variations in key rotorcraft design parameters of main rotor radius, blade chord, hub stiffness and flap moment of inertia are shown. Varying relationships, with counteracting trends for different handling qualities criteria and different flight speeds are exhibited, with the action of the control system playing a complex part in the outcomes. Overall, the paper demonstrates how a broad array of technical issues across flight dynamics stability and control, simulation and modeling, control law design and handling qualities testing and evaluation had to be confronted to implement even a moderately comprehensive handling qualities analysis of relatively low fidelity models. A key outstanding issue is to how to 'close the loop' with an overall design process, and options for the exploration of how to feedback handling qualities results to a conceptual design process are proposed for future work.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN13010 , Rotorcraft Handling Qualities Specialists'' Meeting; Feb 19, 2014 - Feb 20, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Armstrong (formerly Dryden) Flight Research Center continues it's legacy of exciting work in the area of dynamics and control of advanced vehicle concepts. This status presentation highlights the research and technology development that Armstrong's Control and Dynamics branch is performing in the areas of Control of Flexible Structures and Automated Cooperative Trajectories.
    Keywords: Aeronautics (General)
    Type: DFRC-E-DAA-TN13765 , Aerospace Control and Guidance Systems Committee Meeting # 113; Mar 12, 2014 - Mar 14, 2014; Englewood, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A necessary step when developing next generation systems is to understand the tasks that operators will perform. One NextGen concept under evaluation termed Single Pilot Operations (SPO) is designed to improve the efficiency of airline operations. One SPO concept includes a Pilot on Board (PoB), a Ground Station Operator (GSO), and automation. A number of procedural changes are likely to result when such changes in roles and responsibilities are undertaken. Automation is expected to relieve the PoB and GSO of some tasks (e.g. radio frequency changes, loading expected arrival information). A major difference in the SPO environment is the shift to communication-cued crosschecks (verbal / automated) rather than movement-cued crosschecks that occur in a shared cockpit. The current article highlights a task analytic process of the roles and responsibilities between a PoB, an approach-phase GSO, and automation.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN13249 , Human Computer Interaction International 2014; Jun 22, 2014 - Jun 27, 2014; Crete, Greece; Greece
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The field of Avionics is advancing far more rapidly in terrestrial applications than in spaceflight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers, and from industry. It is our intent to develop a common core avionic system that has standard capabilities and interfaces, and contains the basic elements and functionality needed for any spacecraft. This common core will be scalable and tailored to specific missions. It will incorporate hardware and software from multiple vendors, and be upgradeable in order to infuse incremental capabilities and new technologies. It will maximize the use of reconfigurable open source software (e.g., Goddard Space Flight Center's (GSFC's) Core Flight Software (CFS)). Our long-term focus is on improving functionality, reliability, and autonomy, while reducing size, weight, and power. Where possible, we will leverage terrestrial commercial capabilities to drive down development and sustaining costs. We will select promising technologies for evaluation, compare them in an objective manner, and mature them to be available for future programs. The remainder of this paper describes our approach, technical areas of emphasis, integrated test experience and results as of mid-2014, and future plans. As a part of the AES Program, we are encouraged to set aggressive goals and fall short if necessary, rather than to set our sights too low. We are also asked to emphasize providing our personnel with hands-on experience in development, integration, and testing. That we have embraced both of these philosophies will be evident in the descriptions below.
    Keywords: Aeronautics (General)
    Type: JSC-CN-31483 , American Institute of Aeronautics and Astronautics (AIAA) Space 2014; Aug 04, 2014 - Aug 07, 2014; San Diego,CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Re-planning of LTCS TVAC testing and supporting RTA (Receiver Telescope Assembly) Test Plan and Procedure document preparation. The Laser Thermal Control System (LTCS) is designed to maintain the lasers onboard Advanced Topographic Laser Altimeter System (ATLAS) at their operational temperatures. In order to verify the functionality of the LTCS, a thermal balance test of the thermal hardware was performed. During the first cold start of the LTCS, the Loop Heat Pipe (LHP) was unable to control the laser mass simulators temperature. The control heaters were fully on and the loop temperature remained well below the desired setpoint. Thermal analysis of the loop did not show these results. This unpredicted behavior of the LTCS was brought up to a panel of LHP experts. Based on the testing and a review of all the data, there were multiple diagnostic performed in order to narrow down the cause. The prevailing theory is that gravity is causing oscillating flow within the loop, which artificially increased the control power needs. This resulted in a replan of the LTCS test flow and the addition of a GSE heater to allow vertical operation.
    Keywords: Aeronautics (General)
    Type: GSFC-E-DAA-TN13845 , Spacecraft Thermal Control Workshop; Mar 25, 2014 - Mar 27, 2014; El Segundo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN14630 , HFM-247 Human Autonomy Team Working Group Meeting; Apr 30, 2014; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: In an analytical study, SMART active flap rotor hub loads have been minimized using nonlinear programming constrained optimization methodology. The recently developed NLPQLP system (Schittkowski, 2010) that employs Sequential Quadratic Programming (SQP) as its core algorithm was embedded into a driver code (NLP10x10) specifically designed to minimize active flap rotor hub loads (Leyland, 2014). Three types of practical constraints on the flap deflections have been considered. To validate the current application, two other optimization methods have been used: i) the standard, linear unconstrained method, and ii) the nonlinear Generalized Reduced Gradient (GRG) method with constraints. The new software code NLP10x10 has been systematically checked out. It has been verified that NLP10x10 is functioning as desired. The following are briefly covered in this paper: relevant optimization theory; implementation of the capability of minimizing a metric of all, or a subset, of the hub loads as well as the capability of using all, or a subset, of the flap harmonics; and finally, solutions for the SMART rotor. The eventual goal is to implement NLP10x10 in a real-time wind tunnel environment.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN12525 , Decennial AHS Aeromechanics Specialists'' Conference; Jan 22, 2014 - Jan 24, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.
    Keywords: Aeronautics (General)
    Type: NF1676L-20607
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-12
    Description: Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2014-218282 , L-20431 , NF1676L-19188
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-12
    Description: Detailed aeroelastic analyses of the SemiSpan SuperSonic Transport (S4T) wind tunnel model at Mach 0.95 with a 1.75deg fixed angle of attack are presented. First, a numerical procedure using the Computational Fluids Laboratory 3-Dimensional (CFL3D) Version 6.4 flow solver is investigated. The mesh update method for structured multi-block grids was successfully applied to the Navier-Stokes simulations. Second, the steady aerodynamic analyses with a rigid structure of the S4T wind tunnel model are reviewed in transonic flow. Third, the static analyses were performed for both the Euler and Navier-Stokes equations. Both the Euler and Navier-Stokes equations predicted a significant increase of lift forces, compared to the results from the rigid structure of the S4T wind-tunnel model, over various dynamic pressures. Finally, dynamic aeroelastic analyses were performed to investigate the flutter condition of the S4T wind tunnel model at the transonic Mach number. The condition of flutter was observed at a dynamic pressure of approximately 75.0-psf for the Navier-Stokes simulations. However, it was observed that the flutter condition occurred a dynamic pressure of approximately 47.27-psf for the Euler simulations. Also, the computational efficiency of the aeroelastic analyses for the S4T wind tunnel model has been assessed.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2014-218287 , NF1676L-17507
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-12
    Description: This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2014-218252 , L-20395 , NF1676L-18677
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-12
    Description: This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2014-218178 , NF1676L-18332
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-12
    Description: In order to estimate the magnitude of turbulence in the National Full-Scale Aerodynamics Complex (NFAC) 80- by 120-Foot Wind Tunnel (80 x 120) caused by buildings located upwind from the 80 x 120 inlet, a 150th-scale study was performed that utilized a nominal two-dimensional blockage placed ahead of the inlet. The distance of the blockage ahead of the inlet was varied. This report describes velocity measurements made in the plane of the 80 x 120 model inlet for the case of zero ambient (atmospheric) wind.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2014-216637 , ARC-E-DAA-TN12585
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-12
    Description: The research presented herein is a first step toward integrating two emerging structural health management paradigms: digital twin and sensory materials. Digital twin is an emerging life management and certification paradigm whereby models and simulations consist of as-built vehicle state, as-experienced loads and environments, and other vehicle-specific history to enable high-fidelity modeling of individual aerospace vehicles throughout their service lives. The digital twin concept spans many disciplines, and an extensive study on the full domain is out of the scope of this study. Therefore, as it pertains to the digital twin, this research focused on one major concept: modeling specifically the as-manufactured geometry of a component and its microstructure (to the degree possible). The second aspect of this research was to develop the concept of sensory materials such that they can be employed within the digital twin framework. Sensory materials are shape-memory alloys that undergo an audible phase transformation while experiencing sufficient strain. Upon embedding sensory materials with a structural alloy, this audible transformation helps improve the reliability of crack detection especially at the early stages of crack growth. By combining these two early-stage technologies, an automated approach to evidence-based inspection and maintenance of aerospace vehicles is sought.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2014-218257 , L-20401 , NF1676L-18764
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-12
    Description: This paper describes the current state of sUAS regulation, their technical capabilities and the latest technologies that will allow for sUAS NAS integration. The research that is needed to demonstrate sUAS NAS integration capability is identified, and recommendations for conducting this necessary research are suggested.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2014-218253 , L-20338 , NF1676L-17583
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-20
    Description: The control stations of many unmanned systems have been characterized by inadequate human-system interfaces. Some of the interface problems may have been prevented had an existing regulation or cockpit design principle been applied. In other cases, the design problems may indicate a lack of suitable guidance material. The human factors of unmanned operations will be reviewed, and a NASA program to develop human-factor guidelines for control stations will be described. To be effective, guidelines must be relevant to a wide range of systems, must not be overly prescriptive, and must not impose premature standardization on evolving technologies. Several types of guidelines are described. These relate to required capabilities, information requirements, properties of the human machine interface, and general cognitive engineering principles.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN17388 , European Association for Aviation Psychology (EAAP); Sep 22, 2014 - Sep 26, 2014; Valletta; Malta
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-20
    Description: A dynamic Variational Multiscale Method (Hughes et al. 1998) is developed by leveraging the Germano procedure from classical Large-eddy Simulations (LES). The similarity between the classical and variational approaches is analyzed in the context of incompressible flow. This analysis leads to a consistent modeling approach for both incompressible and compressible flows, the latter being demonstrated in a priori testing for low-speed attached and separated boundary layers. Similar to the classical LES procedure from which it is derived, the variational dynamic procedure does not guarantee a positive semi-definite coefficient in the general case. However, reproducing the behavior of the classical LES dynamic approach is seen as a necessary first step to develop a VMM that automatically adjusts to the local resolution and flow physics.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN18251 , Center for Turbulence Research Summer Program 2014; Jul 06, 2014; Stanford, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-27
    Description: Reacting to potential on-orbit collision risk in an operational environment requires timely and accurate communication and exchange of data, information, and analysis to ensure informed decision-making for safety of flight and responsible use of the shared space environment. To accomplish this mission, it is imperative that all stakeholders effectively manage resources: devoting necessary and potentially intensive resource commitment to responding to high-risk conjunction events and preventing unnecessary expenditure of resources on events of low collision risk. After 10 years of operational experience, the NASA Robotic Conjunction Assessment Risk Analysis (CARA) is modifying its Concept of Operations (CONOPS) to ensure this alignment of collision risk and resource management. This evolution manifests itself in the approach to characterizing, reporting, and refining of collision risk. Implementation of this updated CONOPS is expected to have a demonstrated improvement on the efficacy of JSpOC, CARA, and owner/operator resources.
    Keywords: Aeronautics (General)
    Type: GSFC-E-DAA-TN17386 , Advanced Maui Optical and Space Surveillance Technologies Conference; 9-12 Sept. 2014; Wailea, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-27
    Description: A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.
    Keywords: Aeronautics (General)
    Type: NF1676L-18167 , International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements; 17-19 Sept. 2014; Marbella; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-12
    Description: This briefing will be given to ICAO Visitors to discuss project alignment with NASA, project overview, technical challenges, technology development approach and FY14 technical accomplishments.
    Keywords: Aeronautics (General)
    Type: AFRC-E-DAA-TN19796
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-12
    Description: Sonic booms generated by aircraft traveling at supersonic speeds have been the subject of extensive aeronautics research for over 60 years. Hundreds of papers have been published that document the experimental and analytical research conducted during this time period. The purpose of this publication is to assess and summarize this work and establish the state-of-the-art for researchers just entering the field, or for those interested in a particular aspect of the subject. This publication consists of ten chapters that cover the experimental and analytical aspects of sonic boom generation, propagation and prediction with summary remarks provided at the end of each chapter. Aircraft maneuvers, sonic boom minimization, simulation techniques and devices as well as human, structural, and other responses to sonic booms are also discussed. The geometry and boom characteristics of various low-boom concepts, both large civil transports and smaller business-jet concepts, are included. The final chapter presents an assessment of civilian supersonic overland flight and highlights the need for continued research and a low-boom demonstrator vehicle. Summary remarks are provided at the end of each chapter. The studies referenced in this publication have been drawn from over 500 references.
    Keywords: Aeronautics (General)
    Type: NASA/SP-2014-622 , L-20381 , NF1676L-18333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: NASA Langley Research Center embedded four rapporteurs at the Complex Aerospace Systems Exchange (CASE) held in August 2013 with the objective to capture the essence of the conference presentations and discussions. CASE was established to provide a discussion forum among chief engineers, program managers, and systems engineers on challenges in the engineering of complex aerospace systems. The meeting consists of invited presentations and panels from industry, academia, and government followed by discussions among attendees. This report presents the major and reoccurring themes captured throughout the meeting and provides analysis and insights to further the CASE mission.
    Keywords: Aeronautics (General)
    Type: NF1676L-18120 , AIAA Science and Technology Forum and Exposition (SciTech2014); Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: A survey of gradient reconstruction methods for cell-centered data on unstructured meshes is conducted within the scope of accuracy assessment. Formal order of accuracy, as well as error magnitudes for each of the studied methods, are evaluated on a complex mesh of various cell types through consecutive local scaling of an analytical test function. The tests highlighted several gradient operator choices that can consistently achieve 1st order accuracy regardless of cell type and shape. The tests further offered error comparisons for given cell types, leading to the observation that the "ideal" gradient operator choice is not universal. Practical implications of the results are explored via CFD solutions of a 2D inviscid standing vortex, portraying the discretization error properties. A relatively naive, yet largely unexplored, approach of local curvilinear stencil transformation exhibited surprisingly favorable properties
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN12598 , Science and Technology Forum and Exposition (SciTech2014); Jan 13, 2014 - Jan 17, 2014; National Harbor, MD.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN16187 , In Space Inspection Workshop; Jul 16, 2014; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) is a useful reference design for technology impact studies. The present paper takes a broad view of technology assessment by examining the extremes of what aerodynamic improvements might hope to accomplish. Performance was analyzed with aerodynamically idealized rotor, wing, and airframe, representing the physical limits of a large tiltrotor. The analysis was repeated with more realistic assumptions, which revealed that increased maximum rotor lift capability is potentially more effective in improving overall vehicle efficiency than higher rotor or wing efficiency. To balance these purely theoretical studies, some practical limitations on airframe layout are also discussed, along with their implications for wing design. Performance of a less efficient but more practical aircraft with non-tilting nacelles is presented.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN12696 , Decennial AHS Aeromechanics Specialists'' Conference; Jan 22, 2014 - Jan 24, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN14323 , American Helicopter Society Annual Forum and Technology Display; May 20, 2014 - May 22, 2014; Montreal, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: The authors provide observations from the AIAA Drag Prediction Workshops that have spanned over a decade and from a recent validation experiment at NASA Langley. These workshops provide an assessment of the predictive capability of forces and moments, focused on drag, for transonic transports. It is very difficult to manage the consistency of results in a workshop setting to perform verification and validation at the scientific level, but it may be sufficient to assess it at the level of practice. Observations thus far: 1) due to simplifications in the workshop test cases, wind tunnel data are not necessarily the correct results that CFD should match, 2) an average of core CFD data are not necessarily a better estimate of the true solution as it is merely an average of other solutions and has many coupled sources of variation, 3) outlier solutions should be investigated and understood, and 4) the DPW series does not have the systematic build up and definition on both the computational and experimental side that is required for detailed verification and validation. Several observations regarding the importance of the grid, effects of physical modeling, benefits of open forums, and guidance for validation experiments are discussed. The increased variation in results when predicting regions of flow separation and increased variation due to interaction effects, e.g., fuselage and horizontal tail, point out the need for validation data sets for these important flow phenomena. Experiences with a recent validation experiment at NASA Langley are included to provide guidance on validation experiments.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2014-0202 , NF1676L-16626 , AIAA Aerospace Sciences Meeting; Jan 13, 2014 - Jan 17, 2014; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: In response to the 2nd AIAA CFD High Lift Prediction Workshop, the DLR-F11 wind tunnel model is analyzed using the Reynolds-averaged Navier-Stokes flow solver OVERFLOW. A series of overset grids for a bracket-off landing configuration is constructed and analyzed as part of a general grid refinement study. This high Reynolds number (15.1 million) analysis is done at multiple angles-of-attack to evaluate grid resolution effects at operational lift levels as well as near stall. A quadratic constitutive relation recently added to OVERFLOW for improved solution accuracy is utilized for side-of-body separation issues at low angles-of-attack and outboard wing separation at stall angles. The outboard wing separation occurs when the slat brackets are added to the landing configuration and is a source of discrepancy between the predictions and experimental data. A detailed flow field analysis is performed at low Reynolds number (1.35 million) after pressure tube bundles are added to the bracket-on medium grid system with the intent of better understanding bracket/bundle wake interaction with the wing's boundary layer. Localized grid refinement behind each slat bracket and pressure tube bundle coupled with a time accurate analysis are exercised in an attempt to improve stall prediction capability. The results are inconclusive and suggest the simulation is missing a key element such as boundary layer transition. The computed lift curve is under-predicted through the linear range and over-predicted near stall, and the solution from the most complete configuration analyzed shows outboard wing separation occurring behind slat bracket 6 where the experiment shows it behind bracket 5. These results are consistent with most other participants of this workshop.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN15438 , Aviation 2014; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: For several decades, Multidisciplinary Design Optimization (MDO) has served an important role in aerospace engineering by incorporating physics based disciplinary models into integrated system or sub-system models for use in research, development, (R&D) and design. This paper examines MDO's role in facilitating the integration of the researchers from different single disciplines during R&D and early design of large-scale complex engineered systems (LaCES) such as aerospace systems. The findings in this paper are summarized from a larger study on interdisciplinary practices and perspectives that included considerable empirical data from surveys, interviews, and ethnography. The synthesized findings were derived by integrating the data with theories from organization science and engineering. The over-arching finding is that issues related to cognition, organization, and social interrelations mostly dominate interactions across disciplines. Engineering issues, such as the integration of hardware or physics-based models, are not as significant. Correspondingly, the data showed that MDO is not the primary integrator of researchers working across disciplines during R&D and early design of LaCES. Cognitive focus such as analysis versus design, organizational challenges such as incentives, and social opportunities such as personal networks often drove the human interactive practices among researchers from different disciplines. Facilitation of the inherent confusion, argument, and learning in crossdisciplinary research was identified as one of several needed elements of enabling successful research across disciplines.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2014-3143 , NF1676L-18014 , AVIATION 2014 (The Aviation and Aeronautics Forum and Exposition); Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: This paper presents a 2014 status of the Society of Allied Weight Engineers' process towards becoming an Accredited Standards Developer (ASD) under certification by the United States American National Standards Institute (ANSI). Included is material from the committee's 2013 International presentation, current status, and additional general background material. The document strives to serve as a reference point to assist SAWE Recommended Practice and Standards developers in negotiating United States Standards Strategy, international standards strategy, and the association of SAWE standards and recommended practices to those efforts. Required procedures for SAWE to develop and maintain Recommended Practices and ANSI/SAWE Standards are reviewed.
    Keywords: Aeronautics (General)
    Type: NF1676L-18065 , SAWE Paper No. 3618 , Annual SAWE International Conference on Mass Properties Engineering; May 17, 2014 - May 21, 2014; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN15180 , AIAA/CEAS Aeroacoustics Conference; Jun 16, 2014 - Jun 20, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: Testing was successfully completed in May 2010 on a full-scale UH-60A rotor system in the USAF's National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel.[1] The primary objective of this NASA Army sponsored test program was to acquire a comprehensive set of validation-quality measurements ona full-scale pressure-instrumented rotor system at conditions that challenge the most sophisticated modeling andsimulation tools. The test hardware included the same rotor blades used during the UH-60A Airloads flight test.[2] Key measurements included rotor performance, blade loads, blade pressures, blade displacements, and rotorwake measurements using large-field Particle Image Velocimetry (PIV) and Retro-reflective Background Oriented Schlieren (RBOS).
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN10157 , Decennial AHS Aeromechanics SpecialistsaEuro(TM) Conference; Jan 22, 2014 - Jan 24, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN14143 , Probabilistic Safety Assessment and Management (PSAM 12) Conference; Jun 22, 2014 - Jun 27, 2014; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: The field of Avionics is advancing far more rapidly in terrestrial applications than in space flight applications. Spaceflight Avionics are not keeping pace with expectations set by terrestrial experience, nor are they keeping pace with the need for increasingly complex automation and crew interfaces as we move beyond Low Earth Orbit. NASA must take advantage of the strides being made by both space-related and terrestrial industries to drive our development and sustaining costs down. This paper describes ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionic architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. Results from the AAE project's FY13 efforts are discussed, along with the status of FY14 efforts and future plans.
    Keywords: Aeronautics (General)
    Type: JSC-CN-30907 , SpaceOps 2014 International Conference on Space Operations; May 05, 2014 - May 09, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: In an effort to understand an 'unwanted noise' problem occasionally encountered in ground test facilities, the interaction of a jet flow with a duct is studied in a model scale experiment. While the interaction of subsonic jets was studied earlier, that of supersonic jets is considered in this paper. The effect of the presence of a cylindrical duct in the path of the jet is studied through sound pressure level spectral measurements as well as schlieren flow visualization. When the jet involves screech tones the placement of the duct is found to make only minor effects on the tones themselves as well as on the high frequency noise. However, there is increased energy at low frequencies. The increase in low frequency noise becomes clearer when screech is eliminated from the jet by two small tabs placed at the nozzle exit. It is shown that spectral peaks and increased sound pressure levels occur at frequencies corresponding to the axial acoustic resonance modes of the duct. These peaks persist into the supersonic regime, however, their amplitudes diminish relative to increasing spectral amplitudes at other frequencies with increasing jet Mach number. A wire-mesh screen attached to the end of the duct effectively suppresses such unwanted noise at subsonic as well as supersonic conditions.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN15266 , AIAA/CEAS Aeroacoustics Meeting; Jun 16, 2014 - Jun 18, 2014; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN14047
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-12
    Description: Direct numerical simulation (DNS) is used to investigate a time-dependent turbulent wake evolving in a stably stratified background. A large initial Froude number is chosen to allow the wake to become fully turbulent and axisymmetric before stratification affects the spreading rate of the mean defect. The uncertainty introduced by the finite sample size associated with gathering statistics from a simulation of a time-dependent flow is reduced, compared to earlier simulations of this flow. The DNS reveals the buoyancy-induced changes to the turbulence structure, as well as to the mean-defect history and the terms in the mean-momentum and turbulence-kinetic-energy budgets, that characterize the various states of this flow - namely the three-dimensional (essentially unstratified), non-equilibrium (or 'wake-collapse') and quasi-two-dimensional (or 'two-component') regimes observed elsewhere for wakes embedded in both weakly and strongly stratified backgrounds. The wake-collapse regime is not accompanied by transfer (or 'reconversion') of the potential energy of the turbulence to the kinetic energy of the turbulence, implying that this is not an essential feature of stratified-wake dynamics. The dependence upon Reynolds number of the duration of the wake-collapse period is demonstrated, and the effect of the details of the initial/near-field conditions of the wake on its subsequent development is examined.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2014-218523 , L-20448 , NF1676L-19383
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-12
    Description: This purpose of this report is to provides details of the measurement of the control system stiffness of the UH-60A rotor hub mounted on the Large Rotor Test Apparatus (UH-60A/LRTA). The UH-60A/LRTA was used in the 40- by 80-Foot Wind Tunnel to complete the full-scale wind tunnel test portion of the NASA / ARMY UH-60A Airloads Program. This report describes the LRTA control system and highlights the differences between the LRTA and UH-60A aircraft. The test hardware, test setup, and test procedures are also described. Sample results are shown, including the azimuthal variation of the measured control system stiffness for three different loadings and two different dynamic actuator settings. Finally, the azimuthal stiffness is converted to fixed system values using multi-blade transformations for input to comprehensive rotorcraft prediction codes.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2014-216649 , Log No. 1041 , ARC-E-DAA-TN13233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-26
    Description: Today, space is no longer just a field of advanced technological development and of scientific research of excellence, but has become an essential asset for everyday life. Space has spurred countless scientific and technological achievements which are commonly used in aeronautics, medicine, material science and production, in information and communications technology. In parallel, more and more services are carried out through the use of space applications, ranging from detection of natural disasters and environmental monitoring to global navigation and telecommunication. Using space missions to build a better understanding of the universe fulfills our centuries-old curiosity and leads humanity into the future, opening up new frontiers of knowledge. The International Astronautical Congresses have always represented an arena in which issues have been discussed with friendship and among experts: scientists, technicians and managers from universities, agencies, research centres and industry. At the same time it introduces students and young professionals to the field.
    Keywords: Aeronautics (General)
    Type: IAC-14,E1,6.2 , HQ-STI-14-120 , International Astronautical Congress; Sep 29, 2014 - Oct 03, 2014; Toronto; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN10931 , Thermal & Fluids Analysis Workshop (TFAWS); Jul 29, 2013 - Aug 02, 2013; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: This presentation presents information regarding the nose-cap flush airdata sensing (FADS) system on Orion's Pad Abort 1 (PA-1) vehicle. The purpose of the nose-cap FADS system was to test whether or not useful data could be obtained from a FADS system if it was placed in close proximity to firing rockets nozzles like the attitude control motor (ACM) nozzles on the PA-1 launch abort system (LAS). The nose-cap FADS systems use pressure measurements from a series of pressure ports which are arranged in a cruciform pattern and flush with the surface of the vehicle to estimate values of angle of attack, angle of side-slip, Mach number, impact pressure and free-stream static pressure.
    Keywords: Aeronautics (General)
    Type: DFRC-E-DAA-TN10655 , AIAA Atmospheric Flight Mechanics Conference; Aug 19, 2018 - Aug 22, 2018; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: This paper presents information regarding the nosecap Flush Airdata Sensing (FADS) system on Orions Pad Abort 1 (PA-1) vehicle. The purpose of the nosecap FADS system was to test whether or not useful data could be obtained from a FADS system if it was placed in close proximity to firing rocket nozzles like the Attitude Control Motor (ACM) nozzles on the PA-1 Launch Abort System. The nosecap FADS system used pressure measurements from a series of pressure ports which were arranged in a cruciform pattern and flush with the surface of the vehicle to estimate values of angle of attack, angle of sideslip, Mach number, impact pressure, and freestream static pressure. This paper will present the algorithms employed by the FADS system along with the development of the calibration datasets and a comparison of the final results to the Best Estimated Trajectory (BET) data for PA-1. Also presented in this paper is a Computational Fluid Dynamics (CFD) study to explore the impact of the ACM on the nosecap FADS system. The comparison of the nosecap FADS system results to the BET and the CFD study showed that more investigation is needed to quantify the impact of the firing rocket motors on the FADS system.
    Keywords: Aeronautics (General)
    Type: DFRC-E-DAA-TN10221 , AIAA Atmospheric Flight Mechanics Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: Arcjet testing and analysis of a three-dimensional (3D) woven carbon fabric has shown that it can be used as a thermal protection system and as a load bearing structural component for a low ballistic coefficient hypersonic decelerator called ADEPT (Adaptive Deployable Entry and Placement Technology). Results of arcjet tests proved that the 3D woven carbon fabric can withstand flight-like heating while under flight-like biaxial mechanical loads representative of those encountered during shallow entry flight path angles into the atmosphere of Venus. Importantly, the arcjet test results have been used to extend a preliminary material thermal response model based on previous testing of the same 3D woven carbon fabric under uni-axial mechanical loading.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN8193 , AIAA Aerodynamic Decelerator Systems Technology Conference; Mar 25, 2013 - Mar 28, 2013; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN9915 , International Planetary Probe Workshop; Jun 15, 2013 - Jun 16, 2013; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The conceptual design of a low-boom and low-drag supersonic aircraft remains a challenge despite significant progress in recent years. Inverse design using reversed equivalent area and adjoint methods have been demonstrated to be effective in shaping the ground signature propagated from computational fluid dynamics (CFD) off-body pressure distributions. However, there is still a need to reduce the computational cost in the early stages of design to obtain a baseline that is feasible for low-boom shaping, and in the search for a robust low-boom design over the entire sonic boom footprint. The proposed design method addresses the need to reduce the computational cost for robust low-boom design by using surface pressure distributions from CFD solutions to shape sonic boom ground signatures propagated from CFD off-body pressure.
    Keywords: Aeronautics (General)
    Type: NF1676L-15652 , AIAA Applied Aerodynamics Conference; Jun 24, 2013 - Jun 27, 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: This paper details analyses of condition indicator performance for the helicopter nose gearbox within the U.S. Army's Condition-Based Maintenance Program. Ten nose gearbox data sets underwent two specific analyses. A mean condition indicator level analysis was performed where condition indicator performance was based on a 'batting average' measured before and after part replacement. Two specific condition indicators, Diagnostic Algorithm 1 and Sideband Index, were found to perform well for the data sets studied. A condition indicator versus gear wear analysis was also performed, where gear wear photographs and descriptions from Army tear-down analyses were categorized based on ANSI/AGMA 1010-E95 standards. Seven nose gearbox data sets were analyzed and correlated with condition indicators Diagnostic Algorithm 1 and Sideband Index. Both were found to be most responsive to gear wear cases of micropitting and spalling. Input pinion nose gear box condition indicators were found to be more responsive to part replacement during overhaul than their corresponding output gear nose gear box condition indicators.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2013-217876 , E-18675 , Airworthiness, Condition Based Maintenance (CBM), and Health and Usage Monitoring (HUMS) Conference; Feb 11, 2013 - Feb 13, 2013; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: Although current technology simulator visual systems can achieve extremely realistic levels they do not completely replicate the experience of a pilot sitting in the cockpit, looking at the outside world. Some differences in experience are due to visual artifacts, or perceptual features that would not be present in a naturally viewed scene. Others are due to features that are missing from the simulated scene. In this paper, these differences will be defined and discussed. The significance of these differences will be examined as a function of several particular operational tasks. A framework to facilitate the choice of visual system characteristics based on operational task requirements will be proposed.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN9616 , IMAGE 2013 Conference; Jun 03, 2013 - Jun 06, 2013; Scottsdale, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: The goal of this study is to compare the results obtained by non-positivity-preserving methods with the recently developed positivity-preserving schemes for representative test cases. In particular the more di cult 3D Noh and Sedov problems are considered. These test cases are chosen because of the negative pressure/density most often exhibited by standard high-order shock-capturing schemes. The simulation of a hypersonic nonequilibrium viscous shock tube that is related to the NASA Electric Arc Shock Tube (EAST) is also included. EAST is a high-temperature and high Mach number viscous nonequilibrium ow consisting of 13 species. In addition, as most common shock-capturing schemes have been developed for problems without source terms, when applied to problems with nonlinear and/or sti source terms these methods can result in spurious solutions, even when solving a conservative system of equations with a conservative scheme. This kind of behavior can be observed even for a scalar case (LeVeque & Yee 1990) as well as for the case consisting of two species and one reaction (Wang et al. 2012). For further information concerning this issue see (LeVeque & Yee 1990; Griffiths et al. 1992; Lafon & Yee 1996; Yee et al. 2012). This EAST example indicated that standard high-order shock-capturing methods exhibit instability of density/pressure in addition to grid-dependent discontinuity locations with insufficient grid points. The evaluation of these test cases is based on the stability of the numerical schemes together with the accuracy of the obtained solutions.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN8768 , SIAM Conference on Numerical Combustion; Apr 08, 2013 - Apr 10, 2013; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Maximum blade loading capability of a coaxial, lift-offset rotor is investigated using a rotorcraft configuration designed in the context of short-haul, medium-size civil and military missions. The aircraft was sized for a 6600-lb payload and a range of 300 nm. The rotor planform and twist were optimized for hover and cruise performance. For the present rotor performance calculations, the collective pitch angle is progressively increased up to and through stall with the shaft angle set to zero. The effects of lift offset on rotor lift, power, controls, and blade airloads and structural loads are examined. The maximum lift capability of the coaxial rotor increases as lift offset increases and extends well beyond the McHugh lift boundary as the lift potential of the advancing blades are fully realized. A parametric study is conducted to examine the differences between the present coaxial rotor and the McHugh rotor in terms of maximum lift capabilities and to identify important design parameters that define the maximum lift capability of the rotor. The effects of lift offset on rotor blade airloads and structural loads are also investigated. Flap bending moment increases substantially as lift offset increases to carry the hub roll moment even at low collective values. The magnitude of flap bending moment is dictated by the lift-offset value (hub roll moment) but is less sensitive to collective and speed.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN8699 , American Helicopter Society (AHS) 69th Annual Forum and Technology Display; May 21, 2013 - May 23, 2013; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: The successful Mars atmospheric entry by the Mars Science Laboratory (MSL-Curiosity) combined with the success of the Earth atmospheric entry by the Stardust capsule have established PICA as a major Thermal Protection Systems (TPS) material. We expect that this class of materials will be on the short list selected by NASA for any atmospheric entry missions and that it will be the lead of that list of materials in any planning, feasibility studies or flight readiness studies. In addition to NASAs successes, the Dragon capsule, the successful commercial space vehicle built by SpaceX, uses PICA-X, while the European Space Agency is considering ASTERM for its exploration missions that involve atmospheric entries, both of these materials are of the same family as PICA. In the talk, a high-fidelity model will be detailed and discussed. The model tracks the chemical composition of the gases produced during pyrolysis. As in the conventional models, it uses equilibrium chemistry to determine the recession rate at high temperatures but switches to in-volume finite-rate ablation for lower temperatures. It also tracks the time evolution of the porosity of the material. Progress in implementing this high-fidelity model in a code will be presented. In addition, a set of basic experimental data being supported for model validation will be summarized. The validation process for the model development will be discussed. Preliminary results will be presented for a case where detailed pyrolysis product chemistry is computed. Finally, a wish list for a set of validation experiments will be outlined and discussed.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN7763 , Gordon Research Conference - Atmospheric Reentry; Feb 03, 2013 - Feb 08, 2013; Ventura, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: This paper describes the time-filtered Navier-Stokes approach capable of capturing unsteady flow structures important for turbulent mixing and an accompanying subgrid model directly accounting for the major processes in turbulence-chemistry interaction. They have been applied to the computation of two-phase turbulent combustion occurring in a single-element lean-direct-injection combustor. Some of the preliminary results from this computational effort are presented in this paper.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2013-217873 , E-18670 , AIAA Paper 2013-0707 , 51st Aerospace Sciences Meeting; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: A new regression model search algorithm was developed that may be applied to both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The algorithm is a simplified version of a more complex algorithm that was originally developed for the NASA Ames Balance Calibration Laboratory. The new algorithm performs regression model term reduction to prevent overfitting of data. It has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a regression model search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression model. Therefore, the simplified algorithm is not intended to replace the original algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new search algorithm.
    Keywords: Aeronautics (General)
    Type: AIAA Ground Testing Conference; Jun 22, 2013 - Jun 23, 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: This paper reviews five laser-induced fluorescence-based velocimetry techniques that have been used to study high-speed compressible flows at NASA Langley Research Center. The techniques discussed in this paper include nitric oxide (NO) molecular tagging velocimetry (MTV), nitrogen dioxide photodissociation (NO2-to-NO) MTV, and NO and atomic oxygen (O-atom) Doppler-shift-based velocimetry. Measurements of both single-component and two-component velocity have been performed using these techniques. This paper details the specific application and experiment for which each technique has been used, the facility in which the experiment was performed, the experimental setup, sample results, and a discussion of the lessons learned from each experiment.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2013-0339 , NF1676L-14797 , 51st AIAA Aerospace Sciences Meeting; Jan 07, 2013 - Jan 10, 2013; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: Looking ahead to the human exploration of Mars, NASA is planning for exploration of near-Earth asteroids and the Martian moons. Performing tasks near the surface of such low-gravity objects will likely require the use of an updated version of the Manned Maneuvering Unit (MMU) since the surface gravity is not high enough to allow astronauts to walk, or have sufficient resistance to counter reaction forces and torques during movements. The extravehicular activity (EVA) Jetpack device currently under development is based on the Simplified Aid for EVA Rescue (SAFER) unit and has maneuvering capabilities to assist EVA astronauts with their tasks. This maneuvering unit has gas thrusters for attitude control and translation. When EVA astronauts are performing tasks that require ne motor control such as sample collection and equipment placement, the current control system will re thrusters to compensate for the resulting changes in center-of-mass location and moments of inertia, adversely affecting task performance. The proposed design of a next-generation maneuvering and stability system incorporates control concepts optimized to support astronaut tasks and adds control-moment gyroscopes (CMGs) to the current Jetpack system. This design aims to reduce fuel consumption, as well as improve task performance for astronauts by providing a sti er work platform. The high-level control architecture for an EVA maneuvering system using both thrusters and CMGs considers an initial assessment of tasks to be performed by an astronaut and an evaluation of the corresponding human-system dynamics. For a scenario in which the astronaut orbits an asteroid, simulation results from the current EVA maneuvering system are compared to those from a simulation of the same system augmented with CMGs, demonstrating that the forces and torques on an astronaut can be significantly reduced with the new control system actuation while conserving onboard fuel.
    Keywords: Aeronautics (General)
    Type: JSC-CN-28443 , AIAA 43rd International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: One of the primary test vehicles for the Capsule Parachute Assembly System (CPAS) is the Parachute Test Vehicle (PTV), a capsule shaped structure similar to the Orion design but truncated to fit in the cargo area of a C-17 aircraft. The PTV has a full Orion-like parachute compartment and similar aerodynamics; however, because of the single point attachment of the CPAS parachutes and the lack of Orion-like Reaction Control System (RCS), the PTV has the potential to reach significant body rates. High body rates at the time of the Drogue release may cause the PTV to flip while the parachutes deploy, which may result in the severing of the Pilot or Main risers. In order to prevent high rates at the time of Drogue release, a "smart release" algorithm was implemented in the PTV avionics system. This algorithm, which was developed for the Orion Flight system, triggers the Drogue parachute release when the body rates are near a minimum. This paper discusses the development and testing of the smart release algorithm; its implementation in the PTV avionics and the pretest simulation; and the results of its use on two CPAS tests.
    Keywords: Aeronautics (General)
    Type: JSC-CN-28158 , AIAA Aerodynyamic Decelerator Systems Technology; Mar 25, 2013 - Mar 28, 2013; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The aviation industry continues to deal with icing-related incidents and accidents on a regular basis. Air traffic continues to increase, placing more aircraft in adverse icing conditions more frequently and for longer periods. Icing conditions once considered rare or of little consequence, such as super-cooled large droplet icing or high altitude ice crystals, have emerged as major concerns for modern aviation. Because of this, there is a need to better understand the atmospheric environment, the fundamental mechanisms and characteristics of ice growth, and the aerodynamic effects due to icing, as well as how best to protect these aircraft. The icing branch at NASA Glenn continues to develop icing simulation methods and engineering tools to address current aviation safety issues in airframe, engine and rotorcraft icing.
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN7983 , Ohio State University (OSU) Spring Semester Seminars; Feb 25, 2013; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: This is a photographic record of NASA Dryden flight research aircraft, spanning nearly 25 years. The author has served as a Dryden photographer, and now as its chief photographer and airborne photographer. The results are extraordinary images of in-flight aircraft never seen elsewhere, as well as pictures of aircraft from unusual angles on the ground. The collection is the result of the agency required documentation process for its assets.
    Keywords: Aeronautics (General)
    Type: NASA-SP-2013-4553 , DFRC-E-DAA-TN11617
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-12
    Description: The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2013-216506 , TH-097 , ARC-E-DAA-TN8281
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN7874 , Center for Turbulence Research, Annual Research Briefs; 347-358
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: GRC-E-DAA-TN8011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-12
    Description: This report describes the work conducted by The Boeing Company under American Recovery and Reinvestment Act (ARRA) and NASA funding to experimentally validate the conceptual design of a supersonic airliner feasible for entry into service in the 2018 to 2020 timeframe (NASA N+2 generation). The report discusses the design, analysis and development of a low-boom concept that meets aggressive sonic boom and performance goals for a cruise Mach number of 1.8. The design is achieved through integrated multidisciplinary optimization tools. The report also describes the detailed design and fabrication of both sonic boom and performance wind tunnel models of the low-boom concept. Additionally, a description of the detailed validation wind tunnel testing that was performed with the wind tunnel models is provided along with validation comparisons with pretest Computational Fluid Dynamics (CFD). Finally, the report describes the evaluation of existing NASA sonic boom pressure rail measurement instrumentation and a detailed description of new sonic boom measurement instrumentation that was constructed for the validation wind tunnel testing.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2013-217797 , NF1676L-15631
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-12
    Description: High-temperature oxygen permeability measurements had determined grain-boundary diffusivities (deltaD(sub gb)) in bulk polycrystalline alumina (Wada, Matsudaira, and Kitaoka). They predict that oxygen deltaD(sub gb,O) varies with oxygen pressure as P(O2)(sup -1/6) at low pressure whereas aluminum deltaD(sub gb),Al varies with P(O2)(sup +3/16) at high pressure. These relations were used to evaluate alumina scale growth in terms of diffusivity and grain size. A modified Wagner treatment for dominant inward oxygen growth produces the concise solution: (sub i) = k(sub p,i)G(sub i) = 12 deltaD(sub gb,O,int), where (sub i) is a constant and k(sub p,i) and G(sub i) refer to instantaneous values of the scale parabolic growth constant and grain size, respectively. A commercial FeCrAl(Zr) alloy was oxidized at 1100 to 1400 degC to determine k(sub p,i), interfacial grain size, , and thus deltaD(sub gb,O,int). The deltaD(sub gb,O,int) values predicted from oxidation at (375 kJ/mole) were about 20 times less than those obtained above (at 298 kJ/mole), but closer than extrapolations from high-temperature bulk measurements. The experimental oxidation results agree with similar FeCrAl(X) studies, especially where both k(sub p,i) and G(sub i) were characterized. This complete approach accounts for temperature-sensitive oxidation effects of grain enlargement, equilibrium interface pressure variation, and grain-boundary diffusivity.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2013-217855 , E-18644
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: E-664054 , Acoustics Technical Working Group Meeting; Apr 23, 2013 - Apr 24, 2013; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-12
    Description: This study investigates the applicability of a novel noncontact single-sided terahertz electromagnetic measurement method for measuring thickness in dielectric coating systems having either dielectric or conductive substrate materials. The method does not require knowledge of the velocity of terahertz waves in the coating material. The dielectric coatings ranged from approximately 300 to 1400 m in thickness. First, the terahertz method was validated on a bulk dielectric sample to determine its ability to precisely measure thickness and density variation. Then, the method was studied on simulated coating systems. One simulated coating consisted of layered thin paper samples of varying thicknesses on a ceramic substrate. Another simulated coating system consisted of adhesive-backed Teflon adhered to conducting and dielectric substrates. Alumina samples that were coated with a ceramic adhesive layer were also investigated. Finally, the method was studied for thickness measurement of actual thermal barrier coatings (TBC) on ceramic substrates. The unique aspects and limitations of this method for thickness measurements are discussed.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2013-216603 , E-18799 , GRC-E-DAA-TN11521
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: The National Airspace System (NAS) must be improved to increase capacity, reduce flight delays, and minimize environmental impacts of air travel. NASA has been tasked with aiding the Federal Aviation Administration (FAA) in NAS modernization. Automatic Dependent Surveillance-Broadcast (ADS-B) is an enabling technology that is fundamental to realization of the Next Generation Air Transportation System (NextGen). Despite the 2020 FAA mandate requiring ADS-B Out equipage, airspace users are lacking incentives to equip with the requisite ADS-B avionics. A need exists to validate in flight tests advanced concepts of operation (ConOps) that rely on ADS-B and other data links without requiring costly equipage. A potential solution is presented in this paper. It is possible to emulate future data link capabilities using the existing in-flight Internet and reduced-cost test equipment. To establish proof-of-concept, a high-fidelity traffic operations simulation was modified to include a module that simulated Internet transmission of ADS-B messages. An advanced NASA ConOp, Flight Deck Interval Management (FIM), was used to evaluate technical feasibility. A preliminary assessment of the effects of latency and dropout rate on FIM was performed. Flight hardware that would be used by proposed test environment was connected to the simulation so that data transfer from aircraft systems to test equipment could be verified. The results indicate that the FIM ConOp, and therefore, many other advanced ConOps with equal or lesser response characteristics and data requirements, can be evaluated in flight using the proposed concept.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2013-4340 , NF1676L-16091 , AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; Aug 13, 2013 - Aug 14, 2013; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: This paper describes experiments conducted at the National Research Council (NRC) of Canadas Research Altitiude Test Facility between March 26 and April 11, 2012. The tests, conducted collaboratively between NASA and NRC, focus on three key aspects in preparation for later scaling work to be conducted with a NACA 0012 airfoil model in the NRC Cascade rig: (1) cloud characterization, (2) scaling model development, and (3) ice-shape profile measurements. Regarding cloud characterization, the experiments focus on particle spectra measurements using two shadowgraphy methods, cloud uniformity via particle scattering from a laser sheet, and characterization of the SEA Multi-Element probe. Overviews of each aspect as well as detailed information on the diagnostic method are presented. Select results from the measurements and interpretation are presented which will help guide future work.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2013-216571 , AIAA Paper-2013-2675 , E-18758 , GRC-E-DAA-TN9099 , Atmospheric and Space Environments Conference; Jun 24, 2013 - Jun 27, 2013; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely severe entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic (CP) is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longer-term sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heat-shield for extreme entry environment.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN9828 , International Planetary Probe Workshop; Jun 17, 2013 - Jun 21, 2013; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: AIAA Guidance, Navigation, and Control Conference; Aug 19, 2013 - Aug 22, 2013; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: Two human-in-the-loop simulation experiments were conducted to investigate allocation of separation assurance functions between ground and air and between humans and automation. The experiments modeled a mixed-operations concept in which aircraft receiving ground-based separation services shared the airspace with aircraft providing their own separation service (i.e., self-separation). The two experiments, one pilot-focused and the other controller-focused, addressed selected key issues of mixed operations and modeling an emergence of NextGen technologies and procedures. This paper focuses on the results of the subjective assessments of pilots collected during the pilot-focused human-in-the-loop simulation, specifically workload and situation awareness. Generally the results revealed that across all conditions, pilots' perceived workload was low to medium, with the highest reported levels of workload occurring when the pilots experienced a loss of separation during the scenario. Furthermore, the results from the workload data and situation awareness data were complimentary such that when pilots reported lower levels of workload they also experienced higher levels of situation awareness.
    Keywords: Aeronautics (General)
    Type: NF1676L-16145 , AIAA Paper 2013-4360 , AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; Aug 12, 2013 - Aug 14, 2013; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: Game changing advances come about by the introduction of new technologies at a time when societal needs create the opportunity for new market solutions. A unique opportunity exists for NASA to bring about such a mobility revolution in General Aviation, extendable to other aviation markets, to maintain leadership in aviation by the United States. This report outlines the research carried out so far under NASA's leadership towards developing a new mobility choice, called Zip Aviation1,2,3. The feasibility, technology and system gaps that need to be addressed, and pathways for successful implementation have been investigated to guide future investment. The past decade indicates exciting trends in transportation technologies, which are quickly evolving. Automobiles are embracing automation to ease driver tasks as well as to completely control the vehicle with added safety (Figure 1). Electric propulsion is providing zero tail-pipe emission vehicles with dramatically lower energy and maintenance costs. These technologies have not yet been applied to aviation, yet offer compelling potential benefits across all aviation markets, and in particular to General Aviation (GA) as an early adopter market. The benefits of such an adoption are applicable in the following areas: Safety: The GA market experiences accident rates that are substantially higher than automobiles or commercial airlines, with 7.5 fatal accidents per 100 million vehicle miles compared to 1.3 for automobiles and.068 for airlines. Approximately 80% of these accidents are caused by some form of pilot error, with another 13% caused by single point propulsion system failure. Emissions: Environmental constraints are pushing for the elimination of 100Low Lead (LL) fuel used in most GA aircraft, with aviation fuel the #1 source of lead emissions into the environment. Aircraft also have no emission control systems (i.e. no catalytic converters etc.), so they are gross hydrocarbon polluters compared to automobiles. Community Noise: Hub and smaller GA airports are facing increasing noise restrictions, and while commercial airliners have dramatically decreased their community noise footprint over the past 30 years, GA aircraft noise has essentially remained same, and moreover, is located in closer proximity to neighborhoods and businesses. Operating Costs: GA operating costs have risen dramatically due to average fuel costs of over $6 per gallon, which has constrained the market over the past decade and resulted in more than 50% lower sales and 35% less yearly operations. Infusion of autonomy and electric propulsion technologies can accomplish not only a transformation of the GA market, but also provide a technology enablement bridge for both larger aircraft and the emerging civil Unmanned Aerial Systems (UAS) markets. The NASA Advanced General Aviation Transport Experiments (AGATE) project successfully used a similar approach to enable the introduction of primary composite structures and flat panel displays in the 1990s, establishing both the technology and certification standardization to permit quick adoption through partnerships with industry, academia, and the Federal Aviation Administration (FAA). Regional and airliner markets are experiencing constant pressure to achieve decreasing levels of community emissions and noise, while lowering operating costs and improving safety. But to what degree can these new technology frontiers impact aircraft safety, the environment, operations, cost, and performance? Are the benefits transformational enough to fundamentally alter aircraft competiveness and productivity to permit much greater aviation use for high speed and On-Demand Mobility (ODM)? These questions were asked in a Zip aviation system study named after the Zip Car, an emerging car-sharing business model. Zip Aviation investigates the potential to enable new emergent markets for aviation that offer "more flexibility than the existing transportation solutions." These studies indicate that autonomy and electric propulsion technology infusions offer a unique opportunity to provide breakthrough capabilities for new high speed, on-demand travel alternatives that can leapfrog the need for future expensive ground-based infrastructure investment. At the same time, such investments offer a method of laying the foundation for these technologies to be incubated for commercial aviation at lower cost, and with lower initial certification thresholds due to the relatively poor capabilities of GA aircraft to permit early adoption and private market capitalization by rapid technology accelerations, as depicted in Figure 2.
    Keywords: Aeronautics (General)
    Type: NF1676L-16920 , AIAA Aviation Technology, Integration, and Operations (ATIO) Conference; Aug 12, 2013 - Aug 14, 2013; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: NASA's future robotic missions utilizing an entry system into Venus and the outer planets, namely, Saturn, Uranus, Neptune, result in extremely high entry conditions that exceed the capabilities of state of the art low to mid density ablators such as PICA or Avcoat. Therefore mission planners typically assume the use of a fully dense carbon phenolic heat shield similar to what was flown on Pioneer Venus and Galileo. Carbon phenolic is a robust TPS material however its high density and relatively high thermal conductivity constrain mission planners to steep entries, with high heat fluxes and pressures and short entry durations, in order for CP to be feasible from a mass perspective. The high entry conditions pose challenges for certification in existing ground based test facilities and the longerterm sustainability of CP will continue to pose challenges. In 2012 the Game Changing Development Program (GCDP) in NASA's Space Technology Mission Directorate funded NASA ARC to investigate the feasibility of a Woven Thermal Protection System (WTPS) to meet the needs of NASA's most challenging entry missions. This project was highly successful demonstrating that a Woven TPS solution compares favorably to CP in performance in simulated reentry environments and provides the opportunity to manufacture graded materials that should result in overall reduced mass solutions and enable a much broader set of missions than does CP. Building off the success of the WTPS project GCDP has funded a follow on project to further mature and scale up the WTPS concept for insertion into future NASA robotic missions. The matured WTPS will address the CP concerns associated with ground based test limitations and sustainability. This presentation will briefly discuss results from the WTPS Project and the plans for WTPS maturation into a heatshield for extreme entry environment.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN9829 , National Space and Missile Materials Symposium; Jun 24, 2013 - Jun 27, 2013; Bellevue, WA
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-26
    Description: of a two part document. Part 2 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models, Part 2: A Centerline Supported Fullspan Model Tested for Gust Load Alleviation." A team comprised of the Air Force Research Laboratory (AFRL), Northrop Grumman, Lockheed Martin, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a semispan, aeroelastically scaled, wind tunnel model of a flying wing SensorCraft vehicle was mounted to a force balance to demonstrate gust load alleviation. In the second and third tests, the same wing was mated to a new, multi-degree of freedom, sidewall mount. This mount allowed the half-span model to translate vertically and pitch at the wing root, allowing better simulation of the full span vehicle's rigid body modes. Gust load alleviation (GLA) and Body freedom flutter (BFF) suppression were successfully demonstrated. The rigid body degrees-of-freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort.
    Keywords: Aeronautics (General)
    Type: NASA/TP-2013-218051 , L-20308 , NF1676L-17069
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: E-664046 , Acoustics Technical Working Group; Apr 23, 2013 - Apr 24, 2013; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-27
    Description: The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.
    Keywords: Aeronautics (General)
    Type: NF1676L-14022
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-27
    Description: Wind Tunnels have optimized their steady-state data systems for acquisition and analysis and even implemented large dynamic-data acquisition systems, however development of near real-time processing and analysis tools for dynamic-data have lagged. DDS-Suite is a set of tools used to acquire, process, and analyze large amounts of dynamic data. Each phase of the testing process: acquisition, processing, and analysis are handled by separate components so that bottlenecks in one phase of the process do not affect the other, leading to a robust system. DDS-Suite is capable of acquiring 672 channels of dynamic data at rate of 275 MB / s. More than 300 channels of the system use 24-bit analog-to-digital cards and are capable of producing data with less than 0.01 of phase difference at 1 kHz. System architecture, design philosophy, and examples of use during NASA Constellation and Fundamental Aerodynamic tests are discussed.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN5303
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: We review 25 articles presenting 5 general classes of computational models to predict pilot error. This more targeted review is placed within the context of the broader review of computational models of pilot cognition and performance, including such aspects as models of situation awareness or pilot-automation interaction. Particular emphasis is placed on the degree of validation of such models against empirical pilot data, and the relevance of the modeling and validation efforts to Next Gen technology and procedures.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN5182 , International Conference on Applied Human Factors and Ergonomics (2012); Jul 21, 2012 - Jul 25, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: Detached Eddy Simulations have been performed to investigate the effects of high-fidelity turbulence modeling on roughness-induced transition to turbulence during Mars entry. Chemically reacting flow solutions will be obtained for a gap filler of Mars Science Laboratory at the peak heating condition.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN4448 , 42nd AIAA Fluid Dynamics Conference; Jun 25, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: The Landsat Data Continuity Mission (LDCM) will be launched in January 2013 to continue the legacy of Landsat land imagery collection that has been on-going for the past 40 years. While the overall mission and science goals are designed to produce the SAME data over the years, the ground systems designed to support the mission objectives have evolved immensely. The LDCM Flight Dynamics System (FDS) currently being tested and deployed for operations is highly automated and well integrated with the other ground system elements. The FDS encompasses the full suite of flight dynamics functional areas, including orbit and attitude determination and prediction, orbit and attitude maneuver planning and execution, and planning product generation. The integration of the orbit, attitude, maneuver, and products functions allows a very smooth flow for daily operations support with minimal input needed from the operator. The system also provides a valuable real-time component that monitors the on-board orbit and attitude during every ground contact and will autonomously alert the Flight Operations Team (FOT) personnel when any violations are found. This paper provides an overview of the LDCM Flight Dynamics System and a detailed description of how it is used to support space operations. For the first time on a Goddard Space Flight Center (GSFC)-managed mission, the ground attitude and orbits systems are fully integrated into a cohesive package. The executive engine of the FDS permits three levels of automation: low, medium, and high. The high-level, which will be the standard mode for LDCM, represents nearly lights-out operations. The paper provides an in-depth look at these processes within the FDS in support of LDCM in all mission phases.
    Keywords: Aeronautics (General)
    Type: GSFC.CP.01288.2012 , SpaceOps 2012 Conference|SpaceOps 2012 Conference; Jun 13, 2012 - Jun 15, 2012; Stockholm; Sweden
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: A Translational Rate Command (TRC) control law has been developed to enable low speed maneuvering of a large civil tiltrotor with minimal pitch changes by means of automatic nacelle angle deflections for longitudinal velocity control. The nacelle actuator bandwidth required to achieve Level 1 handling qualities in hover and the feasibility of additional longitudinal cyclic control to augment low bandwidth nacelle actuation were investigated. A frequency-domain handling qualities criterion characterizing TRC response in terms of bandwidth and phase delay was proposed and validated against a piloted simulation conducted on the NASA-Ames Vertical Motion Simulator. Seven experimental test pilots completed evaluations in the ADS-33E-PRF Hover Mission Task Element (MTE) for a matrix of nacelle actuator bandwidths, equivalent rise times and control response sensitivities, and longitudinal cyclic control allocations. Evaluated against this task, longitudinal phase delay shows the Level 1 boundary is around 0.4 0.5 s. Accordingly, Level 1 handling qualities were achieved either with a nacelle actuator bandwidth greater than 4 rad/s, or by employing longitudinal cyclic control to augment low bandwidth nacelle actuation.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN5044 , American Helicopter Society 68th Annual Forum; May 01, 2012 - May 03, 2012; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: The effect of inceptor feel-system characteristics on piloted handling qualities has been a research topic of interest for many years. Most of the research efforts have focused on advanced fly-by-wire fixed-wing aircraft with only a few studies investigating the effects on rotorcraft. Consequently, only limited guidance is available on how cyclic force-feel characteristics should be set to obtain optimal handling qualities for rotorcraft. To study this effect, the U.S. Army Aeroflightdynamics Directorate working with the DLR Institute of Flight Systems in Germany under Task X of the U.S. German Memorandum of Understanding have been conducting flight test evaluations. In the U.S., five experimental test pilots have completed evaluations of two Mission Task Elements (MTEs) from ADS-33E-PRF and two command/response types for a matrix of center-stick cyclic force-feel characteristics at Moffett Field. In Germany, three experimental test Pilots have conducted initial evaluations of the two MTEs with two command/response types for a parallel matrix of side-stick cyclic force-feel characteristics at WTD-61 in Manching. The resulting data set is used to correlate the effect of changes in natural frequency and damping ratio of the cyclic inceptor on the piloted handling qualities. Existing criteria in ADS-33E and a proposed Handling Qualities Sensitivity Function that includes the effects of the cyclic force-feel characteristics are also evaluated against the data set and discussed.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN5043 , American Helicopter Society 68th Annual Forum; May 01, 2012; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: NASA Dryden has been engaging in some exciting work that will enable lighter weight and more fuel efficient vehicles through advanced control and dynamics technologies. The main areas of emphasis are Enabling Light-weight Flexible Structures, real time control surface optimization for fuel efficiency and autonomous formation flight. This presentation provides a description of the current and upcoming work in these areas. Additionally, status is for the Dreamchaser pilot training activity and KQ-X autonomous aerial refueling.
    Keywords: Aeronautics (General)
    Type: DFRC-E-DAA-TN4898 , Aerospace Control and Guidance Sub-committee Meeting 109 (ACGSC); Mar 07, 2012 - Mar 09, 2012; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN6133 , 5th International Workshop on Radiation of High Temperature Gases in Atmospheric Entry Workshop; Oct 15, 2012 - Oct 19, 2012; Barcelona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmospheres for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2012-217745 , AIAA Paper 2009-521 , E-18480 , 47th AIAA Aerospace Science Meeting including The New Horizons Forum and Aerospace Exposition; Jan 05, 2009 - Jan 08, 2009; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: The future exploration of the Solar System will require innovations in transportation and the use of entry, descent, and landing (EDL) systems at many planetary landing sites. The cost of space missions has always been prohibitive, and using the natural planetary and planet s moons atmosphere for entry, descent, and landing can reduce the cost, mass, and complexity of these missions. This paper will describe some of the EDL ideas for planetary entry and survey the overall technologies for EDL that may be attractive for future Solar System missions. Future EDL systems may include an inflatable decelerator for the initial atmospheric entry and an additional supersonic retro-propulsion (SRP) rocket system for the final soft landing. As part of those efforts, NASA began to conduct experiments to gather the experimental data to make informed decisions on the "best" EDL options. A model of a three engine retro-propulsion configuration with a 2.5 in. diameter sphere-cone aeroshell model was tested in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel (SWT). The testing was conducted to identify potential blockage issues in the tunnel, and visualize the rocket flow and shock interactions during supersonic and hypersonic entry conditions. Earlier experimental testing of a 70 Viking-like (sphere-cone) aeroshell was conducted as a baseline for testing of a supersonic retro-propulsion system. This baseline testing defined the flow field around the aeroshell and from this comparative baseline data, retro-propulsion options will be assessed. Images and analyses from the SWT testing with 300- and 500-psia rocket engine chamber pressures are presented here. The rocket engine flow was simulated with a non-combusting flow of air.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2012-217746 , AIAA Paper 2012-401 , E-18481 , 50th AlAA Aerospace Science Meeting; Jan 09, 2012 - Jan 12, 2012; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: Flying airplanes in extended formations, with separation distances of tens of wingspans, significantly improves safety while maintaining most of the fuel savings achieved in close formations. The present study investigates the impact of roll trim and compressibility at fixed lift coefficient on the benefits of extended formation flight. An Euler solver with adjoint-based mesh refinement combined with a wake propagation model is used to analyze a two-body echelon formation at a separation distance of 30 spans. Two geometries are examined: a simple wing and a wing-body geometry. Energy savings, quantified by both formation drag fraction and span efficiency factor, are investigated at subsonic and transonic speeds for a matrix of vortex locations. The results show that at fixed lift and trimmed for roll, the optimal location of vortex impingement is about 10% inboard of the trailing airplane s wing-tip. Interestingly, early results show the variation in drag fraction reduction is small in the neighborhood of the optimal position. Over 90% of energy benefits can be obtained with a 5% variation in transverse and 10% variation in crossflow directions. Early results suggest control surface deflections required to achieve trim reduce the benefits of formation flight by 3-5% at subsonic speeds. The final paper will include transonic effects and trim on extended formation flight drag benefits.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN4580 , 7th ICCFD Conference - International Conference on Computational Fluid Dynamics; Jul 09, 2012 - Jul 13, 2012; Big Island, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: UAS Integration in the NAS Project overview with details from each of the subprojects. Subprojects include: Communications, Certification, Integrated Test and Evaluation, Human Systems Integration, and Separation Assurance/Sense and Avoid Interoperability.
    Keywords: Aeronautics (General)
    Type: DFRC-E-DAA-TN5477 , NASA Advisory Council Aeronautics Committee, UAS; Jun 06, 2012; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This presentation will include the presentation of blade displacement measurements, data reduction, and validation. In addition, future considerations like work and collaboration will also be presented. Closing remarks include but are not limited to, preliminary results reported in publications will also be discussed in the presentation.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN4944 , NASA Fundamental Aeronautics 2012 Technical Conference; Mar 13, 2012 - Mar 15, 2012; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Reducing or eliminating the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions were due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed off the aircraft. Recent work has been performed to reduce the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Previous Computational Fluid Dynamics (CFD) analysis showed how the shock wave formed at the nozzle lip interacts with the nozzle boat-tail expansion wave. An experiment was conducted in the 1- by 1-foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Results show how the shock generated at the nozzle lip affects the near field pressure signature, and thereby the potential sonic boom contribution for a nozzle at vector angles from 3 to 8 . The experiment was based on the NASA F-15 nozzle used in the Lift and Nozzle Change Effects on Tail Shock experiment, which possessed a large external boat-tail angle. In this case, the large boat-tail angle caused a dramatic expansion, which dominated the near field pressure signature. The impact of nozzle vector angle and nozzle pressure ratio are summarized.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2012-217229 , AIAA Paper-2011-5974 , E-17790 , 47th Joint Propulsion Conference and Exhibit; Jul 31, 2011 - Aug 03, 2011; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN5171 , AHS International 68th Annual Forum and Technology Display; May 01, 2012 - May 03, 2012; Forth Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to quantify the effects of changing aircraft dynamics on an operator s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. A gradient descent estimator and a least squares estimator with exponential forgetting used these data to predict pilot stick input. The results indicate that individual pilot characteristics and vehicle dynamics did not affect the accuracy of either estimator method to estimate pilot stick input. These methods also were able to predict pilot stick input during changing aircraft dynamics and they may have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot.
    Keywords: Aeronautics (General)
    Type: NF1676L-14043 , 2012 AIAA Guidance, Navigation, and Control Conference; Aug 13, 2012 - Aug 18, 2012; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: The accuracy of the Ingard-Myers boundary condition and a recently proposed modified Ingard-Myers boundary condition is evaluated for use in impedance eduction under the assumption of uniform mean flow. The evaluation is performed at three centerline Mach numbers, using data acquired in a grazing flow impedance tube, using both upstream and downstream propagating sound sources, and on a database of test liners for which the expected behavior of the impedance spectra is known. The test liners are a hard-wall insert consisting of 12.6 mm thick aluminum, a linear liner without a facesheet consisting of a number of small diameter but long cylindrical channels embedded in a ceramic material, and two conventional nonlinear liners consisting of a perforated facesheet bonded to a honeycomb core. The study is restricted to a frequency range for which only plane waves are cut on in the hard-wall sections of the flow impedance tube. The metrics used to evaluate each boundary condition are 1) how well it educes the same impedance for upstream and downstream propagating sources, and 2) how well it predicts the expected behavior of the impedance spectra over the Mach number range. The primary conclusions of the study are that the same impedance is educed for upstream and downstream propagating sources except at the highest Mach number, that an effective impedance based on both the upstream and downstream measurements is more accurate than an impedance based on the upstream or downstream data alone, and that the Ingard-Myers boundary condition with an effective impedance produces results similar to that achieved with the modified Ingard-Myers boundary condition.
    Keywords: Aeronautics (General)
    Type: NF1676L-13782 , 18th AIAA/CEAS Aeronautics Conference; Jun 04, 2012 - Jun 06, 2012; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: Computational fluid dynamics assessment of the forward booster separation motor ignition over-pressure was performed on the space shuttle external tank X(sub T) 718 ice/frost ramp using the flow solver OVERFLOW. The main objective of this study was the investigation of the over-pressure during solid rocket booster separation and its affect on the local pressure and air-load environments. Delta pressure and plume impingement were investigated as a possible contributing factor to the cause of the debris loss on shuttle missions STS-125 and STS-127. A simplified computational model of the Space Shuttle Launch Vehicle was developed consisting of just the external tank and the solid rocket boosters with separation motor nozzles and plumes. The simplified model was validated by comparison to full fidelity computational model of the Space Shuttle without the separation motors. Quasi steady-state plume solutions were used to calibrate the thrust of the separation motors. Time-accurate simulations of the firing of the booster-separation motors were performed. Parametric studies of the time-step size and the number of sub-iterations were used to find the best converged solution. The computed solutions were compared to previous OVERFLOW steady-state runs of the separation motors with reaction control system jets and to ground test data. The results indicated that delta pressure from the overpressure was small and within design limits, and thus was unlikely to have contributed to the foam losses.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN4571 , 50th AIAA Meeting; Jan 09, 2012 - Jan 12, 2012; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: The NASA Langley Research Center (Langley) was founded in 1917 as the nation's first civilian aeronautical research facility and NASA's first field center. For nearly 100 years, Langley has made significant contributions to the Aeronautics, Space Exploration, and Earth Science missions through research, technology, and engineering core competencies in aerosciences, materials, structures, the characterization of earth and planetary atmospheres and, more recently, in technologies associated with entry, descent, and landing. An unfortunate but inevitable outcome of this rich history is an aging infrastructure where the longest serving building is close to 80 years old and the average building age is 44 years old. In the current environment, the continued operation and maintenance of this aging and often inefficient infrastructure presents a real challenge to Center leadership in the trade space of sustaining infrastructure versus not investing in future capabilities. To address this issue, the Center has developed a forward looking revitalization strategy that ties future core competencies and technical capabilities to the Center Master Facility Plan to maintain a viable Center well into the future. This paper documents Langley's revitalization strategy which integrates the Center's missions, the Langley 2050 vision, the Center Master Facility Plan, and the New Town repair-by-replacement program through the leadership of the Vibrant Transformation to Advance Langley (ViTAL) Team.
    Keywords: Aeronautics (General)
    Type: AIAA Paper 2012-1120 , NF1676L-13999 , 50th AIAA Aerospace Sciences Meeting and Exhibit; Jan 09, 2012 - Jan 12, 2012; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: A combination of ab initio, atomistic and finite element methods (FEM) were used to investigate the structures, energetics and lattice thermal conductance of grain boundaries for the ultra high temperature ceramic ZrB2. Atomic models of idealized boundaries were relaxed using density functional theory. Information about bonding across the interfaces was determined from the electron localization function. The Kapitza conductance of larger scale versions of the boundary models were computed using non-equilibrium molecular dynamics. The interfacial thermal parameters together with single crystal thermal conductivities were used as parameters in microstructural computations. FEM meshes were constructed on top of microstructural images. From these computations, the effective thermal conductivity of the polycrystalline structure was determined.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN4936
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: Micro aerial vehicles have limited sensor suites and computational power. For reconnaissance tasks and to conserve energy, these systems need the ability to autonomously land at vantage points or enter buildings (ingress). But for autonomous navigation, information is needed to identify and guide the vehicle to the target. Vision algorithms can provide egomotion estimation and target detection using input from cameras that are easy to include in miniature systems.
    Keywords: Aeronautics (General)
    Type: NPO-47841 , NASA Tech Briefs, September 2012; 32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: This paper presents the numerical simulations of the Jet-A spray reacting flow in a single element lean direct injection (LDI) injector by using the National Combustion Code (NCC) with and without invoking the Eulerian scalar probability density function (PDF) method. The flow field is calculated by using the Reynolds averaged Navier-Stokes equations (RANS and URANS) with nonlinear turbulence models, and when the scalar PDF method is invoked, the energy and compositions or species mass fractions are calculated by solving the equation of an ensemble averaged density-weighted fine-grained probability density function that is referred to here as the averaged probability density function (APDF). A nonlinear model for closing the convection term of the scalar APDF equation is used in the presented simulations and will be briefly described. Detailed comparisons between the results and available experimental data are carried out. Some positive findings of invoking the Eulerian scalar PDF method in both improving the simulation quality and reducing the computing cost are observed.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2012-217676 , E-18351
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: Turbine design concepts were studied for application to a large civil tiltrotor transport aircraft. The concepts addressed the need for high turbine efficiency across the broad 2:1 turbine operating speed range representative of the notional mission for the aircraft. The study focused on tailoring basic turbine aerodynamic design design parameters to avoid the need for complex, heavy, and expensive variable geometry features. The results of the study showed that good turbine performance can be achieved across the design speed range if the design focuses on tailoring the aerodynamics for good tolerance to large swings in incidence, as opposed to optimizing for best performance at the long range cruise design point. A rig design configuration and program plan are suggested for a dedicated experiment to validate the proposed approach.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2012-217424 , TR2011-02-28-0724 , E-18111
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: This paper describes a User Guide for the Systematic Sensor Selection Strategy (S4). S4 was developed to optimally select a sensor suite from a larger pool of candidate sensors based on their performance in a diagnostic system. For aerospace systems, selecting the proper sensors is important for ensuring adequate measurement coverage to satisfy operational, maintenance, performance, and system diagnostic criteria. S4 optimizes the selection of sensors based on the system fault diagnostic approach while taking conflicting objectives such as cost, weight and reliability into consideration. S4 can be described as a general architecture structured to accommodate application-specific components and requirements. It performs combinational optimization with a user defined merit or cost function to identify optimum or near-optimum sensor suite solutions. The S4 User Guide describes the sensor selection procedure and presents an example problem using an open source turbofan engine simulation to demonstrate its application.
    Keywords: Aeronautics (General)
    Type: NASA/CR-2012-215242 , E-16533
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...