ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (206)
  • AMS (American Meteorological Society)  (206)
  • 2015-2019  (64)
  • 2000-2004  (82)
  • 1995-1999  (60)
  • 1955-1959
  • 1945-1949
Collection
  • Other Sources  (206)
Source
Years
Year
  • 1
    Publication Date: 2020-02-06
    Description: Arctic sea ice area (SIA) during late summer and early fall decreased substantially over the last four decades, and its decline accelerated beginning in the early 2000s. Statistical analyses of observations show that enhanced poleward moisture transport from the North Pacific to the Arctic Ocean contributed to the accelerated SIA decrease during the most recent period. As a consequence, specific humidity in the Arctic Pacific sector significantly increased along with an increase of downward longwave radiation beginning in 2002, which led to a significant acceleration in the decline of SIA in the Arctic Pacific sector. The resulting sea ice loss led to increased evaporation in the Arctic Ocean, resulting in a further increase of the specific humidity in mid-to-late fall, thus acting as a positive feedback to the sea ice loss. The overall set of processes is also found in a long control simulation of a coupled climate model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (22). pp. 9321-9337.
    Publication Date: 2020-08-04
    Description: In the present study, the influence of some major tropical modes of variability on northern hemisphere regional blocking frequency variability during boreal winter is investigated. Reanalysis data and an ensemble experiment with the ECMWF model using relaxation towards the ERA-Interim reanalysis data inside the tropics are used. The tropical modes under investigation are El Niño Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO) and the upper tropospheric equatorial zonal-mean zonal wind . An early (late) MJO phase refers to the part of the MJO cycle when enhanced (suppressed) precipitation occurs over the western Indian Ocean and suppressed (enhanced) precipitation occurs over the Maritime Continent and the western tropical Pacific. Over the North Pacific sector, it is found that enhanced (suppressed) high latitude blocking occurs in association with El Niño (La Niña) events, late (early) MJO phases and westerly (easterly) . Over central to southern Europe and the east Atlantic, it is found that late MJO phases, as well as a suppressed MJO are leading to enhanced blocking frequency. Furthermore, early (late) MJO phases are followed by blocking anomalies over the western North Atlantic region, similar to those associated with a positive (negative) North Atlantic Oscillation. Over northern Europe, the easterly (westerly) phase of is associated with enhanced (suppressed) blocking. These results are largely confirmed by both the reanalysis and the model experiment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 48 (4). pp. 757-771.
    Publication Date: 2021-02-08
    Description: The Eddy Kinetic Energy (EKE) associated with the Subtropical Countercurrent (STCC) in the western subtropical South Pacific is known to exhibit substantial seasonal and decadal variability. Using an eddy-permitting ocean general circulation model, which is able to reproduce the observed, salient features of the seasonal cycles of shear, stratification, baroclinic production and the associated EKE, we investigate the decadal changes of EKE. We show that the STCC region exhibits, uniquely among the subtropical gyres of the world’s oceans, significant, atmospherically forced, decadal EKE variability. The decadal variations are driven by changing vertical shear between the STCC in the upper 300 m and the South Equatorial Current below, predominantly caused by variations in STCC strength associated with a changing meridional density gradient. In the 1970s, an increased meridional density gradient results in EKE twice as large as in later decades in the model. Utilizing sensitivity experiments, decadal variations in the wind field are shown to be the essential driver. Local wind stress curl anomalies associated with the Interdecadal Pacific Oscillation (IPO) lead to up- and downwelling of the thermocline, inducing strengthening or weakening of the STCC and the associated EKE. Additionally, remote wind stress curl anomalies in the eastern subtropical South Pacific, which are not related to the IPO, generate density anomalies that propagate westward as Rossby waves and can account for up to 30–40 % of the density anomalies in the investigated region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 98 (8) (8). AMS (American Meteorological Society), Si-S280, 277 pp.
    Publication Date: 2020-10-21
    Type: Report , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multi-decadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the 20th Century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multi-decadal variations associated with the Pacific Decadal Oscillation and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multi-decadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean Dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: The North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO) describe the dominant part of the variability in the Northern Hemisphere extratropical troposphere. Due to the strong connection of these patterns with surface climate, recent years have shown an increased interest and an increasing skill in forecasting them. However, it is unclear what the intrinsic limits of short-term predictability for the NAO and AO patterns are. This study compares the variability and predictability of both patterns, using a range of data and index computation methods for the daily NAO/AO indices. Small deviations from Gaussianity are found and characteristic decorrelation time scales of around one week. In the analysis of the Lyapunov spectrum it is found that predictability is not significantly different between the AO and NAO or between reanalysis products. Differences exist however between the indices based on EOF analysis, which exhibit predictability time scales around 12 - 16 days, and the station-based indices, exhibiting a longer predictability of 18 - 20 days. Both of these time scales indicate predictability beyond that currently obtained in ensemble prediction models for short-term predictability. Additional longer-term predictability for these patterns may be gained through local feedbacks and remote forcing mechanisms for particular atmospheric conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 98 (6). ES139-ES142.
    Publication Date: 2020-07-16
    Description: The 13th European Polar Low Workshop was organized by the European Polar Low Working Group (www.uni-trier.de/index.php?id=20308)and gathered scientists from nine countries focusing on polar mesocyclones in both hemispheres and other mesoscale weather phenomena such as katabatic winds, tip jets, boundary layer fronts, cold air outbreaks, and weather extremes in polar regions. Topics included experimental, climatological, theoretical, modeling, and remote sensing studies. The aim was to bring together scientists and forecasters to present their latest work and recent findings on these topics and to encourage discussions on improving forecasting and understanding of these phenomena.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (22). pp. 8913-8927.
    Publication Date: 2020-02-06
    Description: The regional climate model COSMOin Climate Limited-AreaMode (COSMO-CLM or CCLM) is used with a high resolution of 15km for the entire Arctic for all winters 2002/03–2014/15. The simulations show a high spatial and temporal variability of the recent 2-m air temperature increase in the Arctic. The maximum warming occurs north of Novaya Zemlya in the Kara Sea and Barents Sea between March 2003 and 2012 and is responsible for up to a 208C increase. Land-based observations confirm the increase but do not cover the maximum regions that are located over the ocean and sea ice.Also, the 30-km version of theArctic SystemReanalysis (ASR) is used to verify the CCLM for the overlapping time period 2002/03–2011/12. The differences between CCLM and ASR 2-m air temperatures vary slightly within 18C for the ocean and sea ice area. Thus,ASR captures the extreme warming as well. The monthly 2-m air temperatures of observations and ERA-Interim data show a large variability for the winters 1979–2016. Nevertheless, the air temperature rise since the beginning of the twenty-first century is up to 8 times higher than in the decades before. The sea ice decrease is identified as the likely reason for the warming. The vertical temperature profiles show that the warming has a maximum near the surface, but a 0.58Cyr21 increase is found up to 2 km. CCLM, ASR, and also the coarser resolved ERA-Interim data show that February and March are the months with the highest 2-m air temperature increases, averaged over the ocean and sea ice area north of 708N; for CCLM the warming amounts to an average of almost 58C for 2002/03–2011/12.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 75 (8). pp. 2815-2826.
    Publication Date: 2021-02-08
    Description: The formation of secondary ice in clouds, i.e. ice particles that are created at temperatures above the limit for homogeneous freezing without the direct involvement of a heterogeneous ice nucleus is one of the longest standing puzzles in cloud physics. Here we present comprehensive laboratory investigations on the formation of small ice particles upon the freezing of drizzle-sized cloud droplets levitated in an electrodynamic balance. Four different categories of secondary ice formation (bubble bursting, jetting, cracking, breakup) could be detected and their respective frequencies of occurrence as a function of temperature and droplet size are given. We find that bubble bursting occurs more often than droplet splitting. While we do not observe the shattering of droplets into many large fragments, we find that the average number of small secondary ice particles released during freezing is strongly droplet-size dependent and may well exceed unity for droplets larger than 300 μm in diameter. This leaves droplet fragmentation an important secondary ice process effective at temperatures around -10 °C in clouds where large drizzle droplets are present.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-01
    Description: Well-known problems trouble coupled general circulation models of the eastern Atlantic and Pacific Ocean basins. Model climates are significantly more symmetric about the equator than is observed. Model sea surface temperatures are biased warm south and southeast of the equator, and the atmosphere is too rainy within a band south of the equator. Near-coastal eastern equatorial SSTs are too warm, producing a zonal SST gradient in the Atlantic opposite in sign to that observed. The U.S. Climate Variability and Predictability Program (CLIVAR) Eastern Tropical Ocean Synthesis Working Group (WG) has pursued an updated assessment of coupled model SST biases, focusing on the surface energy balance components, on regional error sources from clouds, deep convection, winds, and ocean eddies; on the sensitivity to model resolution; and on remote impacts. Motivated by the assessment, the WG makes the following recommendations: 1) encourage identification of the specific parameterizations contributing to the biases in individual models, as these can be model dependent; 2) restrict multimodel intercomparisons to specific processes; 3) encourage development of high-resolution coupled models with a concurrent emphasis on parameterization development of finer-scale ocean and atmosphere features, including low clouds; 4) encourage further availability of all surface flux components from buoys, for longer continuous time periods, in persistently cloudy regions; and 5) focus on the eastern basin coastal oceanic upwelling regions, where further opportunities for observational–modeling synergism exist.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (8). pp. 2921-2935.
    Publication Date: 2020-02-06
    Description: The ratio of global mean surface air temperature change to cumulative CO2 emissions, referred to as transient climate response to cumulative CO2 emissions (TCRE), has been shown to be approximately constant on centennial time scales. The mechanisms behind this constancy are not well understood, but previous studies suggest that compensating effects of ocean heat and carbon fluxes, which are governed by the same ocean mixing processes, could be one cause for this approximate constancy. This hypothesis is investigated by forcing different versions of the University of Victoria Earth System Climate Model, which differ in the ocean mixing parameterization, with an idealized scenario of 1% annually increasing atmospheric CO2 until quadrupling of the preindustrial CO2 concentration and constant concentration thereafter. The relationship between surface air warming and cumulative emissions remains close to linear, but the TCRE varies between model versions, spanning the range of 1.2°–2.1°C EgC−1 at the time of CO2 doubling. For all model versions, the TCRE is not constant over time while atmospheric CO2 concentrations increase. It is constant after atmospheric CO2 stabilizes at 1120 ppm, because of compensating changes in temperature sensitivity (temperature change per unit radiative forcing) and cumulative airborne fraction. The TCRE remains approximately constant over time even if temperature sensitivity, determined by ocean heat flux, and cumulative airborne fraction, determined by ocean carbon flux, are taken from different model versions with different ocean mixing settings. This can partially be explained with temperature sensitivity and cumulative airborne fraction following similar trajectories, which suggests ocean heat and carbon fluxes scale approximately linearly with changes in vertical mixing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-02-06
    Description: The Weddell Sea polynya is a large opening in the open-ocean sea ice cover associated with intense deep convection in the ocean. A necessary condition to form and maintain a polynya is the presence of a strong subsurface heat reservoir. This study investigates the processes that control the stratification and hence the buildup of the subsurface heat reservoir in the Weddell Sea. To do so, a climate model run for 200 years under preindustrial forcing with two eddying resolutions in the ocean (0.25° CM2.5 and 0.10° CM2.6) is investigated. Over the course of the simulation, CM2.6 develops two polynyas in the Weddell Sea, while CM2.5 exhibits quasi-continuous deep convection but no polynyas, exemplifying that deep convection is not a sufficient condition for a polynya to occur. CM2.5 features a weaker subsurface heat reservoir than CM2.6 owing to weak stratification associated with episodes of gravitational instability and enhanced vertical mixing of heat, resulting in an erosion of the reservoir. In contrast, in CM2.6, the water column is more stably stratified, allowing the subsurface heat reservoir to build up. The enhanced stratification in CM2.6 arises from its refined horizontal grid spacing and resolution of topography, which allows, in particular, a better representation of the restratifying effect by transient mesoscale eddies and of the overflows of dense waters along the continental slope.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 47 (7). pp. 1685-1699.
    Publication Date: 2020-02-06
    Description: Seasonal variability in pathways of warm water masses toward the Kangerdlugssuaq Fjord-Glacier system (KF/KG), southeast Greenland, is investigated by backtracking Lagrangian particles seeded at the fjord mouth in a high-resolution regional ocean model simulation in the ice-free and the ice-covered seasons. The waters at KF are a mixture of Atlantic-origin water advected from the Irminger Basin (FF for Faxaflói), the deep waters from the Denmark Strait and the waters from the Arctic Ocean, both represented by the Kögur section (KO). Below 200m depth, the warm water is a mixture of FF and KO water masses, and is warmer in winter than in summer. We find that seasonal differences in pathways double the fraction of FF particles in winter, causing the seasonal warming and salinification. Seasonal temperature variations at the upstream sections (FF and KO) have a negligible impact on temperature variations near the fjord. Successful monitoring of heat flux to the fjord therefore needs to take place close to the fjord, and cannot be inferred from upstream conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 72 (7). pp. 2786-2805.
    Publication Date: 2019-01-08
    Description: In Ammassalik, in southeast Greenland, downslope winds can reach hurricane intensity and represent a hazard for the local population and environment. They advect cold air down the ice sheet and over the Irminger Sea, where they drive large ocean–atmosphere heat fluxes over an important ocean convection region. Earlier studies have found them to be associated with a strong katabatic acceleration over the steep coastal slopes, flow convergence inside the valley of Ammassalik, and—in one instance—mountain wave breaking. Yet, for the general occurrence of strong downslope wind events, the importance of mesoscale processes is largely unknown. Here, two wind events—one weak and one strong—are simulated with the atmospheric Weather Research and Forecasting (WRF) Model with different model and topography resolutions, ranging from 1.67 to 60 km. For both events, but especially for the strong one, it is found that lower resolutions underestimate the wind speed because they misrepresent the steepness of the topography and do not account for the underlying wave dynamics. If a 5-km model instead of a 60-km model resolution in Ammassalik is used, the flow associated with the strong wind event is faster by up to 20 m s−1. The effects extend far downstream over the Irminger Sea, resulting in a diverging spatial distribution and temporal evolution of the heat fluxes. Local differences in the heat fluxes amount to 20%, with potential implications for ocean convection.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Earth Interactions, 22 (1). pp. 1-15.
    Publication Date: 2021-02-08
    Description: Predicting tropical cyclone (TC) activity becomes more important every year while the understanding of what factors impact them continues to be complicated. El Niño–Southern Oscillation (ENSO) is one of the primary factors impacting the activities in both the Pacific and the Atlantic, but an extensive examination of the fluctuation in this system has yet to be studied in its entirety. This article analyzes the ENSO impacts on the Atlantic tropical cyclone activity during the assessed warm and cold years to show the dominant centennial-scale variation impact. This study looks to plausibly link this variation to the Southern Ocean centennial variability, which is rarely mentioned in any factors affecting the Atlantic tropical cyclone activity. This centennial variability could be used to enhance future work related to predicting tropical cyclones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-02-08
    Description: Downward wave coupling (DWC) is an important process that characterizes the dynamical coupling between the stratosphere and troposphere via planetary wave reflection. A recent modeling study indicated that natural forcing factors, including sea-surface temperature variability and quasi-biennial oscillation, influence DWC and the associated surface impact in the Northern Hemisphere (NH). In light of this, we further investigate how DWC in the NH is affected by anthropogenic forcings, using a fully coupled chemistry-climate model CESM1 (WACCM). The results indicate that the occurrence of DWC is significantly suppressed in the future, starting later in the seasonal cycle, with more events concentrated in late winter (February-March). The future decrease in DWC events is associated with enhanced wave absorption in the stratosphere due to increased greenhouse gases. The enhanced wave absorption is manifest as more absorbing types of stratospheric sudden warmings, with more events concentrated in early winter. This early winter condition leads to a delay in the development of the upper stratospheric reflecting surface, resulting in a shift in the seasonal cycle of DWC towards late winter. The tropospheric responses to DWC events in the future exhibit different spatial patterns compared to those of the past. In the North Atlantic sector, DWC-induced circulation changes are characterized by a poleward shift and an eastward extension of the tropospheric jet, while in the North Pacific sector, the circulation changes are characterized by a weakening of the tropospheric jet. These responses are consistent with a change in the pattern of DWC-induced synoptic-scale eddy-mean flow interaction.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-02-08
    Description: Decadal variabilities in Indian Ocean subsurface ocean heat content (OHC; 50–300 m) since the 1950s are examined using ocean reanalyses. This study elaborates on how Pacific variability modulates the Indian Ocean on decadal time scales through both oceanic and atmospheric pathways. High correlations between OHC and thermocline depth variations across the entire Indian Ocean Basin suggest that OHC variability is primarily driven by thermocline fluctuations. The spatial pattern of the leading mode of decadal Indian Ocean OHC variability closely matches the regression pattern of OHC on the interdecadal Pacific oscillation (IPO), emphasizing the role of the Pacific Ocean in determining Indian Ocean OHC decadal variability. Further analyses identify different mechanisms by which the Pacific influences the eastern and western Indian Ocean. IPO-related anomalies from the Pacific propagate mainly through oceanic pathways in the Maritime Continent to impact the eastern Indian Ocean. By contrast, in the western Indian Ocean, the IPO induces wind-driven Ekman pumping in the central Indian Ocean via the atmospheric bridge, which in turn modifies conditions in the southwestern Indian Ocean via westward-propagating Rossby waves. To confirm this, a linear Rossby wave model is forced with wind stresses and eastern boundary conditions based on reanalyses. This linear model skillfully reproduces observed sea surface height anomalies and highlights both the oceanic connection in the eastern Indian Ocean and the role of wind-driven Ekman pumping in the west. These findings are also reproduced by OGCM hindcast experiments forced by interannual atmospheric boundary conditions applied only over the Pacific and Indian Oceans, respectively.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 17 (19). pp. 3761-3774.
    Publication Date: 2017-08-23
    Description: The decadal-scale variability in the tropical Pacific has been analyzed herein by means of observations and numerical model simulations. The two leading modes of the sea surface temperature (SST) variability in the central western Pacific are a decadal mode with a period of about 10 yr and the ENSO mode with a dominant period of about 4 yr. The SST anomaly pattern of the decadal mode is ENSO like. The decadal mode, however, explains most variance in the western equatorial Pacific and off the equator. A simulation with an ocean general circulation model (OGCM) forced by reanalysis data is used to explore the origin of the decadal mode. It is found that the variability of the shallow subtropical–tropical overturning cells is an important factor in driving the decadal mode. This is supported by results from a multicentury integration with a coupled ocean–atmosphere general circulation model (CGCM) that realistically simulates tropical Pacific decadal variability. Finally, the sensitivity of the shallow subtropical–tropical overturning cells to greenhouse warming is discussed by analyzing the results of a scenario integration with the same CGCM.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-09-07
    Description: Oceanic ecosystems altered by interdecadal climate variability may provide a feedback to the physical climate by phytoplankton affecting heat fluxes into the upper ocean and dimethylsulfide fluxes into the atmosphere
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 . pp. 817-843.
    Publication Date: 2020-08-04
    Description: The current system east of the Grand Banks was intensely observed by World Ocean Circulation Experiment (WOCE) array ACM-6 during 1993–95 with eight moorings, reaching about 500 km out from the shelf edge and covering the water column from about 400-m depth to the bottom. More recently, a reduced array by the Institut für Meerskunde (IfM) at Kiel, Germany, of four moorings was deployed during 1999–2001, focusing on the deep-water flow near the western continental slope. Both sets of moored time series, each about 22 months long, are combined here for a mean current boundary section, and both arrays are analyzed for the variability of currents and transports. A mean hydrographic section is derived from seven ship surveys and is used for geostrophic upper-layer extrapolation and isopycnal subdivision of the mean transports into deep-water classes. The offshore part of the combined section is dominated by the deep-reaching North Atlantic Current (NAC) with currents still at 10 cm s−1 near the bottom and a total northward transport of about 140 Sv (Sv ≡ 106 m3 s−1), with the details depending on the method of surface extrapolation used. The mean flow along the western boundary was southward with the section-mean North Atlantic Deep Water outflow determined to be 12 Sv below the σθ = 27.74 kg m−3 isopycnal. However, east of the deep western boundary current (DWBC), the deep NAC carries a transport of 51 Sv northward below σθ = 27.74 kg m−3, resulting in a large net northward flow in the western part of the basin. From watermass signatures it is concluded that the deep NAC is not a direct recirculation of DWBC water masses. Transport time series for the DWBC variability are derived for both arrays. The variance is concentrated in the period range from 2 weeks to 2 months, but there are also variations at interannual and longer periods, with much of the DWBC variability being related to fluctuations and meandering of the NAC. A significant annual cycle is not recognizable in the combined current and transport time series of both arrays. The moored array results are compared with other evidence on deep outflow and recirculation, including recent models of different types and complexity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 59 . pp. 2951-2965.
    Publication Date: 2018-04-16
    Description: This study investigates and accounts for the influence of various ice cloud parameters on the retrieval of the surface solar radiation budget (SSRB) from reflected flux at the top of the atmosphere (TOA). The optical properties of ice clouds depend on ice crystal shape, size distribution, water content, and the vertical profiles of geometric and microphysical structure. As a result, the relationship between the SSRB and TOA-reflected flux for an ice cloud atmosphere is more complex and differs from that for water cloud and cloudless atmospheres. The sensitivities of the relationship between the SSRB and TOA-reflected flux are examined with respect to various ice cloud parameters. Uncertainties in the retrieval of the SSRB due to inadequate knowledge of various ice cloud parameters are evaluated thoroughly. The uncertainty study is concerned with both pure ice clouds and multiphase clouds (ice cloud above water cloud). According to the magnitudes of errors in the SSRB retrieval caused by different input variables, parameterized correction terms were introduced. If the input variables are known accurately, errors in the retrieval of the SSRB under a wide range of ice cloud conditions are expected to diminish substantially, to less than 10 W m−2 for 91% of the simulated ice cloud cases. In comparison, the same accuracy may be attained for only 19% of the retrievals for the same ice cloud cases using the retrieval algorithm designed for non-ice-cloud conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-08-04
    Description: Downward wave coupling occurs when an upward propagating planetary wave from the troposphere decelerates the flow in the upper stratosphere, and forms a downward reflecting surface that redirects waves back to the troposphere. To test this mechanism and potential factors influencing the downward wave coupling, three 145-year sensitivity simulations with NCAR’s Community Earth System Model (CESM-WACCM), a state-of-the-art high-top chemistry-climate model, are analyzed. The results show that the QBO and SST variability significantly impact downward wave coupling. Without the QBO, the occurrence of downward wave coupling is significantly suppressed. In contrast, stronger and more persistent downward wave coupling occurs when SST variability is excluded. The above influence on the occurrence of downward wave coupling is mostly due to a direct influence of the QBO and SST variability on stratospheric planetary wave source and propagation. The strengths of the tropospheric circulation and surface responses to a given downward wave coupling event, however, behave differently. The surface anomaly is significantly weaker (stronger) in the experiment with fixed SSTs (without QBO), even though the statistical signal of downward coupling is strongest (weakest) in this experiment. This apparent mismatch is explained by the differences in the strength of the synoptic-scale eddy-mean flow feedback and the possible contribution of SST anomalies in the North Atlantic during DWC event. The weaker synoptic-scale eddy-mean flow feedback, and the absence of the positive NAO-related SST-tripole pattern in the fixed SST experiment are consistent with a weaker tropospheric response in this experiment. The results highlight the importance of synoptic-scale eddies in setting the tropospheric response to downward wave coupling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 12 (4). pp. 923-934.
    Publication Date: 2020-08-04
    Description: A method to derive salinity data from RAFOS float temperature and pressure measurements is described. It is based on evaluating the float's in situ density from its mechanical properties and in situ pressure and temperature data. The salinity of the surrounding water may then be determined, assuming that the float has reached equilibrium with its environment. This method, in comparison with the possible use of floatborne salinity cells, has the advantage of being both cost and energy neutral and highly stable in the long term. The effect on the estimated salinity of various parameters used in the determination of the float's in situ density is discussed. Results of seven RAFOS Boats deployed in the Brazil Basin are compared with corresponding CTD data to estimate the magnitude of these errors. At present, an accuracy of 0.3 psu is achieved. The accuracy may be improved to 0.02 psu by referring the float's calculated density to a reference density established by a CTD cast at the time of launch. Results from five floats deployed in the heterogeneous water masses of the Iberian Basin are compared with the corresponding CM casts to demonstrate the variability and interpretation of p-T-S float datasets from different areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 73 (6). pp. 2509-2528.
    Publication Date: 2020-08-04
    Description: There is evidence that the strengthened stratospheric westerlies arising from the Antarctic ozone hole–induced cooling cause a polar mesospheric warming and a subsequent cooling in the lower thermosphere. While previous studies focus on the role of nonresolved (gravity) wave drag filtering, here the role of resolved (planetary) wave drag and radiative forcing on the Antarctic mesosphere and lower thermosphere (MLT) is explored in detail. Using simulations with NCAR’s Community Earth System Model, version 1 (Whole Atmosphere Community Climate Model) [CESM1(WACCM)], it is found that in late spring and early summer the anomalous polar mesospheric warming induced by easterly nonresolved wave drag is dampened by anomalous dynamical cooling induced by westerly resolved wave drag. This resolved wave drag is attributed to planetary-scale wave (k = 1–3) activity, which is generated in situ as a result of increased instability of the summer mesospheric easterly jet induced by the ozone hole. On the other hand, the anomalous cooling in the polar lower thermosphere induced by westerly nonresolved wave drag is enhanced by anomalous dynamical cooling due to westerly resolved wave drag. In addition, radiative effects from increased greenhouse gases during the ozone hole period contribute partially to the cooling in the polar lower thermosphere. The polar MLT temperature response to the Antarctic ozone hole is, through thermal wind balance, accompanied by the downward migration of anomalous zonal-mean wind from the lower thermosphere to the stratopause. The results highlight that a proper accounting of both dynamical and radiative effects is required in order to correctly attribute the causes of the polar MLT response to the Antarctic ozone hole.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 25 (1). pp. 77-91.
    Publication Date: 2020-08-04
    Description: The Southern Hemisphere Subtropical Front (STF) is a narrow zone of transition between upper-level subtropical waters to the north and subantarctic waters to the south. It is found near 40 degrees S across the South Atlantic and South Indian Oceans and is associated with an eastward geostrophic current band, The current band in each basin is found at or just north of the surface front except near the eastern boundaries where most of the subtropical waters turn north into the eastern limbs of the subtropical gyres. The bands associated with the STF are thus distinct features separated from the strong zonal flows of the Antarctic Circumpolar Current farther south. The authors have referred to the current bands in the two respective oceans as the South Atlantic Current and the South Indian Ocean Current. In this paper the authors use the historical database from the South Pacific Ocean to investigate the geostrophic flow associated with the STF there. The STF extends across the southern Tasman Sea from south of Tasmania to southern New Zealand, and a weak eastward flow appears to be associated with it. The transport amounts to only about 3 Sv (1Sv = 10(6) m(3) s(-1)), little of which passes south of New Zealand. Mixing within the eddy-rich Tasman Sea may account for this weakness, while also setting up another more significant front in the northern Tasman Sea, the Tasman Front. It branches off from the East Australian Current toward the north of New Zealand, along which moves a flow of about 14 Sv. After passing north of New Zealand, a portion of this current flows east to contribute to a current band near 30 degrees S, while another portion turns south as the East Auckland Current and meets with subantarctic waters near Chatham Rise (44 degrees S), thus reestablishing the STF. An enhanced eastward current band is associated with the front there, one that extends across the remainder of the South Pacific and is referred to as the South Pacific Current. In comparison with its counterparts in the other basins, which typically begin by carrying 30 Sv (Atlantic) to 60 Sv (Indian) in the upper 1000 m in their western portions before weakening to 10-15 Sv in the east, the South Pacific Current is weak. Near Chatham Rise, it starts with a transport of approximately 5 Sv, and it remains near this strength as it shifts gradually north across the basin toward South America. The current appears to split into two smaller bands in the region of 115 degrees-85 degrees W, while near 28 degrees 5, 83 degrees W it begins to turn more strongly north and becomes shallower and weaker. Potential vorticity distributions indicate that this current acts as an impediment toward the northward spreading of Antarctic Intermediate Water, But why the South Pacific Current east of New Zealand should be so much weaker than its counterparts in the other basins is not particularly clear. It may be due to the presence of New Zealand and other topographic barriers to deep now east of Australia, to the axis of the subtropical gyre in the South Pacific shifting more rapidly southward with depth than those elsewhere, thus causing greater reductions in the underlying zonal velocities, and to strong poleward eddy heat and salt fluxes in the other two basins leading to smaller cross-STF gradients in the Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 33 . pp. 1990-1999.
    Publication Date: 2018-04-10
    Description: Intrinsic oscillations of stable geophysical surface frontal currents of the unsteady, nonlinear, reduced-gravity shallow-water equations on an f plane are investigated analytically and numerically. For frictional (Rayleigh) currents characterized by linear horizontal velocity components and parabolic cross sections, the primitive equations are reduced to a set of coupled nonlinear ordinary differential equations. In the inviscid case, two periodic analytical solutions of the nonlinear problem describing 1) the inertially reversing horizontal displacement of a surface frontal current having a fixed parabolic cross section and 2) the cross-front pulsation of a coastal current emerging from a motionless surface frontal layer are presented. In a linear and in a weakly nonlinear context, analytical expressions for field oscillations and their frequency shift relative to the inertial frequency are presented. For the fully nonlinear problem, solutions referring to a surface frontal coastal current are obtained analytically and numerically. These solutions show that the currents oscillate always superinertially, the frequency and the amplitude of their oscillations depending on the magnitude of the initial disturbance and on the squared current Rossby number. In a linear framework, it is shown that disturbances superimposed on the surface frontal current are standing waves within the bounded region, the frequencies of which are inertial/superinertial for the first mode/higher modes. In the same frame, a zeroth mode, which could be interpreted as the superposition of an inertial wave on a background vorticity field, would formally yield subinertial frequencies. For surface frontal currents affected by Rayleigh friction, it is shown that the magnitude of the mean current decays according to a power law and that the oscillations decay faster, because this decay follows an exponential law. Implications of the intrinsic oscillations and of their rapid dissipation for the near-inertial motion in an active ambient ocean are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 18 (8). pp. 1354-1366.
    Publication Date: 2018-07-04
    Description: A method for combining ground-based passive microwave radiometer retrievals of integrated liquid water (LWP), radar reflectivity profiles (Z), and statistics of a cloud model is proposed for deriving cloud liquid water profiles (LWC). A dynamic cloud model is used to determine Z–LWC relations and their errors as functions of height above cloud base. The cloud model is also used to develop an LWP algorithm based on simulations of brightness temperatures of a 20–30-GHz radiometer. For the retrieval of LWC, the radar determined Z profile, the passive microwave retrieved LWP, and a model climatology are combined by an inverse error covariance weighting method. Model studies indicate that LWC retrievals with this method result in rms errors that are about 10%–20% smaller in comparison to a conventional LWC algorithm, which constrains the LWC profile exactly to the measured LWP. According to the new algorithm, errors in the range of 30%–60% are to be anticipated when profiling LWC. The algorithm is applied to a time series measurement of a stratocumulus layer at GKSS in Geesthacht, Germany. The GKSS 95-GHz cloud radar, a 20–30-GHz microwave radiometer, and a laser ceilometer were collocated within a 5-m radius and operated continuously during the measurement period. The laser ceilometer was used to confirm the presence of drizzle-sized drops.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-08-04
    Description: North Atlantic synoptic-scale processes are analyzed by bandpassing 6-hourly NCEP–NCAR reanalysis data (1958–98) for several synoptic ranges corresponding to ultrahigh-frequency variability (0.5–2 days), synoptic-scale variability (2–6 days), slow synoptic processes (6–12 days), and low-frequency variability (12–30 days). Climatological patterns of the intensity of synoptic processes are not collocated for different ranges of variability, especially in the lower troposphere. Intensities of synoptic processes demonstrate opposite trends between the North American coast and in the northeast Atlantic. Although north of 40°N the intensity of ultrahigh-frequency variability and synoptic-scale processes show similar interannual variability, further analysis indicates that secular changes, and decadal-scale and interannual variability in the intensities of synoptic processes may not be necessarily consistent for different synoptic timescales. Magnitudes of winter ultrahigh-frequency variability are highly correlated with the intensity of synoptic-scale processes in the 1960s and early 1970s. However, they show little agreement with each other during the last two decades, pointing to the remarkable change in atmospheric variability over the North Atlantic in late 1970s. North Atlantic ultrahigh-frequency variability in winter is highly correlated with surface temperature gradient anomalies in the Atlantic–American sector. These gradients are computed from the merged fields of SST and surface temperature over the continent. They demonstrate a dipolelike pattern associated with the North American coast on one hand, with the subpolar SST front and continental Canada on the other. High-frequency variability and its synoptic counterpart demonstrate different relationships with the North Atlantic Oscillation. Reliability of these results and their sensitivity to the filtering procedures are addressed by comparison to radiosonde data and application of alternative filters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 30 . pp. 215-224.
    Publication Date: 2018-04-06
    Description: Bottom water temperatures in the central Greenland Sea have been increasing for the last two decades. The warming is most likely related to the absence of deep convective mixing, which cools and freshens the deep water. However, recent observations confirm a slow and steady increase of anthropogenic tracers such as chlorofluorocarbons (CFCs). This points to some amount of bottom water “ventilation” in the absence of deep convective mixing and poses a challenge to our understanding of deep water renewal. One explanation for the observed trends in both temperature and CFCs is significant vertical mixing. The basin-averaged diapycnal diffusivity, required to explain both trends, kυ,av 2–3 (×10−3 m2 s−1), is very unlikely to occur in the interior of the ocean. However, a diffusivity of kυ,bbl 10−2 m2 s−1 within a 150-m thick bottom boundary layer would be sufficient to explain the deep tracer increase. The implications of a secondary circulation driven by such large boundary layer mixing are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 33 . pp. 431-435.
    Publication Date: 2018-04-10
    Description: Aspects of the dynamics of warm-core eddies evolving in a deep ocean are investigated using the results of laboratory experiments and numerical simulations. The vortices, produced experimentally in a system brought to solid body rotation by rapidly lifting a bottomless cylinder containing freshwater immersed in a salty ambient fluid, show clearly the presence of inertial oscillations: deepenings and contractions, shoalings and expansions, alternate during an exact inertial period. These pulsations, though predicted analytically and simulated numerically, had never been measured before for surface eddies having aspect ratios, as well as Rossby and Burger numbers, typical of geophysical warm-core eddies. The spatial structure of the vortex radial and tangential velocity components is analyzed using the experimental results and numerical simulations carried out by means of a layered, nonlinear, reduced-gravity frontal model. It is found that, while the dependence of the vortex radial velocity on the vortex radius evolves toward linearity as time elapses, different spatial structures seem to be possible for the vortex tangential velocity dependence. This behavior, which strongly differs from the “pulson” dynamics, is instead consistent with recently found analytical solutions of the nonlinear, reduced-gravity shallow-water equations describing the dynamics of warm-core eddies on an f plane.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 17 (22). pp. 4301-4315.
    Publication Date: 2020-08-04
    Description: Simulations and seasonal forecasts of tropical Pacific SST and subsurface fields that are based on the global Consortium for Estimating the Circulation and Climate of the Ocean (ECCO) ocean-state estimation procedure are investigated. As compared to similar results from a traditional ENSO simulation and forecast procedure, the hindcast of the constrained ocean state is significantly closer to observed surface and subsurface conditions. The skill of the 12-month lead SST forecast in the equatorial Pacific is comparable in both approaches. The optimization appears to have better skill in the SST anomaly correlations, suggesting that the initial ocean conditions and forcing corrections calculated by the ocean-state estimation do have a positive impact on the predictive skill. However, the optimized forecast skill is currently limited by the low quality of the statistical atmosphere. Progress is expected from optimizing a coupled model over a longer time interval with the coupling statistics being part of the control vector.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 16 . pp. 133-145.
    Publication Date: 2020-08-04
    Description: The reliability of the Comprehensive Ocean–Atmosphere Dataset (COADS) Release 1a 2° monthly winds is tested by comparing it with instrumental measurements in the northwest Atlantic from 1981 to 1991. The instrumental dataset contains anemometer measurements of a very high homogeneity and quality, which were taken by six research sister ships with known anemometer heights in the northwest Atlantic. Special data processing was made with instrumental samples to provide compatibility with the COADS winds. Comparison shows overestimation of the COADS winds in the low ranges and underestimation of the strong and moderate winds. Application of the alternative equivalent Beaufort scales does not remove this bias and makes it even more pronounced. Thus, the conclusion is made that the disagreement obtained results primarily from the uncertainties of anemometer measurements in COADS, especially from the incorrect evaluation of the true wind. Instrumental data also do not indicate significant long-term interannual changes, which are pronounced in the COADS dataset for the 1980s. Some regional features of the comparison are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 31 (3). pp. 765-776.
    Publication Date: 2018-04-06
    Description: The authors derive a string function that describes the propagation of large-scale, potentially large amplitude, baroclinic energy anomalies in a two-layer ocean with variable topography and rotation parameter. The generality of the two-layer results allows results for the 1-layer, 1.5-layer, inverted 1.5-layer, lens, and dome models to be produced as limiting-cases. The string function is a scalar field that acts as a streamfunction for the propagation velocity. In the linear case the string function is simply c2o/f, where co is the background baroclinic shallow water wave speed, and typically describes propagation poleward on the eastern boundaries, westward (with some topographic steering) over the middle ocean, and equatorward on the western boundaries. In the more general nonlinear case, the string function is locally distorted by the anomaly. In the fully nonlinear examples of a lens or dome, there is no rest or background string function; the string function is generated entirely by the disturbance and propagation is due to asymmetric distribution of the anomalous mass over the string function contours. It is shown that conventional beta/topographic propagation results (e.g., beta drift of eddies, the Nof speed of cold domes) can be obtained as limiting cases of the string function. The string function provides, however, more general propagation velocities that are also usually simpler to derive. The first baroclinic mode string function for the global oceans is calculated from hydrographic data. The westward propagation speeds in the ocean basins as derived from the meridional gradient of the string function are typically two to five times faster than those expected from standard theory and agree well with the propagation speeds observed for long baroclinic Rossby waves in the TOPEX/Poseidon data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 29 (11). pp. 2785-2801.
    Publication Date: 2020-08-04
    Description: The Rio Grande Rise acts as a natural barrier for the equatorward flow of Antarctic Bottom Water in the subtropical South Atlantic. In addition to the Vema Channel, the Hunter Channel cuts through this obstacle and offers a separate route for bottom-water import into the southern Brazil Basin. On the occasion of the Deep Basin Experiment, a component of the World Ocean Circulation Experiment (WOCE), the expected deep flow through the Hunter Channel was directly observed for the first time by an array of moored current meters and thermistor chains from December 1992 to May 1994. Main results are (i) the Hunter Channel is, in fact, a conduit for bottom-water flow into the Brazil Basin. Our new mean transport from moored current meters [2.92 (±1.24) × 106 m3 s−1] is significantly higher than earlier estimates that were based on geostrophic calculations. (ii) During the WOCE observational period a tendency toward increased bottom-water temperatures was observed. This observation from the Hunter Channel is consistent with findings from the Vema Channel. (iii) The overflow through the Hunter Channel is highly variable and puts in perspective earlier synoptic geostrophic transport estimates
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 33 (1). pp. 75-87.
    Publication Date: 2018-04-11
    Description: Two large-scale free-drifting isobaric-floats experiments, “SOFARGOS”/Marine Science and Technology Programme, phase 2 (MAST2) and Mass Transfer and Ecosystem Response (MATER)/MAST3, undertaken in 1994–95 in the northwestern Mediterranean Sea and in 1997–98 in the Algerian Basin, respectively, have revealed for the first time that Western Mediterranean Deep Water, newly formed by deep convection in the Gulf of Lion (the so-called Medoc site), can be advected several hundreds of kilometers away from the formation area by anticyclonic submesoscale coherent vortices (SCVs). This behavior implies that SCVs participate actively in the large-scale thermohaline circulation and deep ventilation of the western Mediterranean Sea. These SCVs are characterized by small radius (5 km), very low potential vorticity, high aspect ratio (0.1), and extended lifetime (〉0.5 yr).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 (11). pp. 2398-2412.
    Publication Date: 2020-08-04
    Description: In the eastern South Pacific Ocean, at a depth of about 200 m, a salinity minimum is found. This minimum is associated with a particular water mass, the “Shallow Salinity Minimum Water” (SSMW). SSMW outcrops in a fresh tongue (Smin) centered at about 45°S. The Smin appears to emanate from the eastern boundary, against the mean flow. The watermass transformation that creates SSMW and Smin is investigated here. The Smin and SSMW are transformed from saltier and warmer waters originating from the western South Pacific. The freshening and cooling occur when the water is advected eastward at the poleward side of the subtropical gyre. Sources of freshening and cooling are air–sea exchange and advection of water from south of the subtropical gyre. A freshwater and heat budget for the mixed layer reveals that both sources equally contribute to the watermass transformation in the mixed layer. The freshened and cooled mixed layer water is subducted into the gyre interior along the southern rim of the subtropical gyre. Subduction into the zonal flow restricts the transformation of interior properties to diffusion only. A simple advection/diffusion balance reveals diffusion coefficients of order 2000 m2 s−1. The tongue shape of the Smin is explained from a dynamical viewpoint because no relation to a positive precipitation–evaporation balance was found. Freshest Smin values are found to coincide with slowest eastward mixed layer flow that accumulates the largest amounts of freshwater in the mixed layer and creates the fresh tongue at the sea surface. Although the SSMW is the densest and freshest mode of water subducted along the South American coast, the freshening and cooling in the South Pacific affect a whole range of densities (25.0–26.8 kg m−3). The transformed water turns northward with the gyre circulation and contributes to the hydrographic structure of the gyre farther north. Because the South Pacific provides most of the source waters that upwell along the equatorial Pacific, variability in South Pacific hydrography may influence equatorial Pacific hydrography. Because one-half of the transformation is found to be controlled through Ekman transport, variability in wind forcing at the southern rim of the subtropical gyre may be a source for variability of the equatorial Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 (2). pp. 401-410.
    Publication Date: 2019-09-23
    Description: Turbulent fluxes of momentum and sensible heat were estimated from sonic anemometer measurements gathered over the Labrador Sea during a winter cruise of the R/V Knorr. The inertial dissipation method was used to calculate turbulent fluxes of momentum. The resulting drag coefficients agree well with earlier findings. Sensible heat fluxes were computed using both cross-correlation and inertial dissipation techniques. There is good agreement between results from both methods, although there is more scatter in the correlation fluxes than the dissipation fluxes. The inertial dissipation method gives reasonable results even under conditions of high wind speeds and low air temperatures, which combined with the relatively warm sea surface temperatures lead to sensible heat fluxes of several hundred watts per square meter. Sensible heat fluxes obtained from the sonic anemometer measurements agree well with bulk turbulent fluxes according to the formulation of Isemer and Hasse.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 (1). pp. 293-305.
    Publication Date: 2018-04-11
    Description: An analytical model is developed to study the tidally induced mean circulation in the frontal zone. Four distinct forcing mechanisms are identified, which result in the generation of the counterclockwise Bernoulli cell, the clockwise Ekman cell, the clockwise frontal cell, and the Stokes drift (facing in the direction with the shallow water to the left). The decomposition of the cross-frontal circulation provides a dynamical framework for interpreting and understanding its complex structure. To illustrate the underlying physics, three model configurations are considered pertaining to a homogenous ocean and winter and summer fronts. For a homogeneous ocean, the circulation is dominated by three cells; for the winter front, the offshore Bernoulli cell is strengthened; and for the summer front, two counterrotating cells are found in the vertical direction, associated with the two branches of the front. The dependence of the cell structure on the Ekman, Burger, and other dimensionless numbers is examined.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-09-07
    Description: A multi-model ensemble-based system for seasonal-to-interannual prediction has been developed in a joint European project known as DEMETER (Development of a European Multimodel Ensemble Prediction System for Seasonal to Interannual Prediction). The DEMETER system comprises seven global atmosphere–ocean coupled models, each running from an ensemble of initial conditions. Comprehensive hindcast evaluation demonstrates the enhanced reliability and skill of the multimodel ensemble over a more conventional single-model ensemble approach. In addition, innovative examples of the application of seasonal ensemble forecasts in malaria and crop yield prediction are discussed. The strategy followed in DEMETER deals with important problems such as communication across disciplines, downscaling of climate simulations, and use of probabilistic forecast information in the applications sector, illustrating the economic value of seasonal-to-interannual prediction for society as a whole.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-08-04
    Description: This study focuses on an important aspect of air–sea interaction in models, namely, large-scale, spurious heat fluxes due to false pathways of the Gulf Stream and North Atlantic Current (NAC) in the “storm formation region” south and east of Newfoundland. Although high-resolution eddy-resolving models show some improvement in this respect, results are sensitive to poorly understood, subgrid-scale processes for which there is currently no complete, physically based parameterization. A simple method to correct an ocean general circulation model (OGCM), acting as a practical substitute for a physically based parameterization, is explored: the recently proposed “semiprognostic method,” a technique for adiabatically adjusting flow properties of a hydrostatic OGCM. The authors show that application of the method to an eddy-permitting model of the North Atlantic Ocean yields more realistic flow patterns and watermass characteristics in the Gulf Stream and NAC regions; in particular, spurious surface heat fluxes are reduced. Four simple modifications to the method are proposed, and their benefits are demonstrated. The modifications successfully account for three drawbacks of the original method: reduced geostrophic wave speeds, damped mesoscale eddy activity, and spurious interaction with topography. It is argued that use of a corrected (eddy permitting) OGCM in a coupled modeling system for simulating present climate (as now becomes possible because of increasing computer power) should lead to a more realistic simulation in regions of strong air–sea interaction as compared with that obtained with an uncorrected model. The method is also well suited for the simulation of the uptake and transport of passive tracers, such as anthropogenic carbon dioxide or components of ecosystem models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 28 (10). pp. 1904-1928.
    Publication Date: 2018-04-06
    Description: The mean warm water transfer toward the equator along the western boundary of the South Atlantic is investigated, based on a number of ship surveys carried out during 1990–96 with CTD water mass observations and current profiling by shipboard and lowered (with the CTD/rosette) acoustic Doppler current profiler and with Pegasus current profiler. The bulk of the northward warm water flow follows the coast in the North Brazil Undercurrent (NBUC) from latitudes south of 10°S, carrying 23 Sv (Sv ≡ 106 m3 s−1) above 1000 m. Out of this, 16 Sv are waters warmer than 7°C that form the source waters of the Florida Current. Zonal inflow from the east by the South Equatorial Current enters the western boundary system dominantly north of 5°S, adding transport northwest of Cape San Roque, and transforming the NBUC along its way toward the equator into a surface-intensified current, the North Brazil Current (NBC). From the combination of moored arrays and shipboard sections just north of the equator along 44°W, the mean NBC transport was determined at 35 Sv with a small seasonal cycle amplitude of only about 3 Sv. The reason for the much larger near-equatorial northward warm water boundary current than what would be required to carry the northward heat transport are recirculations by the zonal current system and the existence of the shallow South Atlantic tropical–subtropical cell (STC). The STC connects the subduction zones of the eastern subtropics of both hemispheres via equatorward boundary undercurrents with the Equatorial Undercurrent (EUC), and the return flow is through upwelling and poleward Ekman transport. The persistent existence of a set of eastward thermocline and intermediate countercurrents on both sides of the equator was confirmed that recurred throughout the observations and carry ventilated waters from the boundary regime into the tropical interior. A strong westward current underneath the EUC, the Equatorial Intermediate Current, returns low-oxygen water westward. Consistent evidence for the existence of a seasonal variation in the warm water flow south of the equator could not be established, whereas significant seasonal variability of the boundary regime occurs north of the equator: northwestward alongshore throughflow of about 10 Sv of waters with properties from the Southern Hemisphere was found along the Guiana boundary in boreal spring when the North Equatorial Countercurrent is absent or even flowing westward, whereas during June–January the upper NBC is known to connect with the eastward North Equatorial Countercurrent through a retroflection zone that seasonally migrates up and down the coast and spawns eddies. The equatorial zone thus acts as a buffer and transformation zone for cross-equatorial exchanges, but knowledge of the detailed pathways in the interior including the involved diapycnal exchanges is still a problem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 31 . pp. 1287-1303.
    Publication Date: 2018-04-06
    Description: A general circulation ocean model has been used to study the formation and propagation mechanisms of North Atlantic Oscillation (NAO)-generated temperature anomalies along the pathway of the North Atlantic Current (NAC). The NAO-like wind forcing generates temperature anomalies in the upper 440 m that propagate along the pathway of the NAC in general agreement with the observations. The analysis of individual components of the ocean heat budget reveals that the anomalies are primarily generated by the wind stress anomaly-induced oceanic heat transport divergence. After their generation they are advected with the mean current. Surface heat flux anomalies account for only one-third of the total temperature changes. Along the pathway of the NAC temperature anomalies of opposite signs are formed in the first and second halves of the pathway, a pattern called here the North Atlantic dipole (NAD). The response of the ocean depends fundamentally on Rt = (L/υ)/τ, the ratio between the time it takes for anomalies to propagate along the NAC [(L/υ) 10 years] compared to the forcing period τ. The authors find that for NAO periods shorter than 4 years (Rt 〉 1) the response in the subpolar region is mainly determined by the local forcing. For NAO periods longer than 32 years (Rt 〈 1); however, the SST anomalies in the northeastern part of the NAD become controlled by ocean advection. In the subpolar region maximal amplitudes of the temperature response are found for intermediate (decadal) periods (Rt 1) where the propagation of temperature anomalies constructively interferes with the local forcing. A comparison of the NAO-generated propagating temperature anomalies with those found in observations will be discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 45 . pp. 1709-1734.
    Publication Date: 2021-05-18
    Description: We perform eddy-resolving and high-vertical-resolution numerical simulations of the circulation in an idealized equatorial Atlantic Ocean in order to explore the formation of the deep equatorial circulation (DEC) in this basin. Unlike in previous studies, the deep equatorial intraseasonal variability (DEIV) that is believed to be the source of the DEC is generated internally by instabilities of the upper ocean currents. Two main simulations are discussed: Solution 1, configured with a rectangular basin and with wind forcing that is zonally and temporally uniform; and Solution 2, with realistic coastlines and with an annual cycle of wind forcing varying zonally. Somewhat surprisingly, Solution 1 produces the more realistic DEC: The large-vertical-scale currents (Equatorial Intermediate Currents or EICs) are found over a large zonal portion of the basin, and the small-vertical-scale equatorial currents (Equatorial Deep Jets or EDJs) form low-frequency, quasi-resonant, baroclinic equatorial basin modes with phase propagating mostly downward, consistent with observations. We demonstrate that both types of currents arise from the rectification of DEIV, consistent with previous theories. We also find that the EDJs contribute to maintaining the EICs, suggesting that the nonlinear energy transfer is more complex than previously thought. In Solution 2, the DEC is unrealistically weak and less spatially coherent than in the first simulation probably because of its weaker DEIV. Using intermediate solutions, we find that the main reason for this weaker DEIV is the use of realistic coastlines in Solution 2. It remains to be determined, what needs to be modified or included to obtain a realistic DEC in the more realistic configuration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 32 (8). pp. 1536-1543.
    Publication Date: 2020-08-04
    Description: A yet unexplained drift of (some) oxygen optodes during storage/transport and thus significant deviations from factory/laboratory calibrations have been a major handicap for autonomous oxygen observations. Optode drift appears to be systematic and is predominantly a slope effect due to reduced oxygen sensitivity. A small contribution comes from a reduced luminophore lifetime, which causes a small positive offset. A reliable in situ reference is essential to correct such a drift. Traditionally, this called for a ship-based reference cast, which poses some challenges for opportunistic float deployments. This study presents an easily implemented alternative using near-surface/in-air measurements of an Aanderaa optode on a 10-cm stalk and compares it to the more traditional approaches (factory, laboratory, and in situ deployment calibration). In-air samples show a systematic bias depending on the water saturation, which is likely caused by occasional submersions of the standard-height stalk optode. Linear regression of measured in-air supersaturation against in-water supersaturation (using ancillary meteorological data to define the saturation level) robustly removes this bias and thus provides a precise (0.2%) and accurate (1%) in situ correction that is available throughout the entire instrument’s lifetime.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 33 (7). pp. 1351-1364.
    Publication Date: 2019-04-29
    Description: Bulk properties of the Denmark Strait overflow (DSO) plume observed in velocity and hydrography surveys undertaken in 1997 and 1998 are described. Despite the presence of considerable short-term variability, it is found that the pathway and evolution of the plume density anomaly are remarkably steady. Bottom stress measurements show that the pathway of the plume core matches well with a rate of descent controlled by friction. The estimated entrainment rate diagnosed from the rate of plume dilution with distance shows a marked increase in entrainment at approximately 125 km from the sill, leading to a net dilution consistent with previous reports of a doubling of overflow transport measured by current meter arrays. The entrainment rate increase is likely related to the increased topographic slopes in the region, compounded by a decrease in interface stratification as the plume is diluted and enters a denser background.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2017-10-24
    Description: Predictability on seasonal time scales over the North Atlantic–Europe region is assessed using a seasonal prediction system based on an initialized version of the Max Planck Institute Earth System Model (MPI-ESM). For this region, two of the dominant predictors on seasonal time scales are El Niño–Southern Oscillation (ENSO) and sudden stratospheric warming (SSW) events. Multiple studies have shown a potential for improved North Atlantic predictability for either predictor. Their respective influences are however difficult to disentangle, since the stratosphere is itself impacted by ENSO. Both El Niño and SSW events correspond to a negative signature of the North Atlantic Oscillation (NAO), which has a major influence on European weather. This study explores the impact on Europe by separating the stratospheric pathway of the El Niño teleconnection. In the seasonal prediction system, the evolution of El Niño events is well captured for lead times of up to 6 months, and stratospheric variability is reproduced with a realistic frequency of SSW events. The model reproduces the El Niño teleconnection through the stratosphere, involving a deepened Aleutian low connected to a warm anomaly in the northern winter stratosphere. The stratospheric anomaly signal then propagates downward into the troposphere through the winter season. Predictability of 500-hPa geopotential height over Europe at lead times of up to 4 months is shown to be increased only for El Niño events that exhibit SSW events, and it is shown that the characteristic negative NAO signal is only obtained for winters also containing major SSW events for both the model and the reanalysis data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-10-21
    Description: Classical theory concerning theEliassen–Palmrelation is extended in this study to allowfor a unified treatment of midlatitude inertia–gravity waves (MIGWs), midlatitude Rossby waves (MRWs), and equatorial waves (EQWs). A conservation equation for what the authors call the impulse-bolus (IB) pseudomomentum is useful, because it is applicable to ageostrophic waves, and the associated three-dimensional flux is parallel to the direction of the group velocity of MRWs. The equation has previously been derived in an isentropic coordinate system or a shallow-water model. The authors make an explicit comparison of prognostic equations for the IB pseudomomentum vector and the classical energy-based (CE) pseudomomentum vector, assuming inviscid linear waves in a sufficiently weak mean flow, to provide a basis for the former quantity to be used in an Eulerian time-mean (EM) framework. The authors investigate what makes the three-dimensional fluxes in the IB and CE pseudomomentum equations look in different directions. It is found that the two fluxes are linked by a gauge transformation, previously unmentioned, associated with a divergence-form wave-induced pressure L. The quantity L vanishes for MIGWs and becomes nonzero for MRWs and EQWs, and it may be estimated using the virial theorem. Concerning the effect of waves on the mean flow, L represents an additional effect in the pressure gradient term of both (the three-dimensional versions of) the transformed EM momentum equations and the merged form of the EMmomentumequations, the latter of which is associated with the nonacceleration theorem.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 96, Special supplement (7). S157-S160.
    Publication Date: 2018-06-20
    Description: [in “State of the Climate in 2014” : Special Supplement to the Bulletin of the American Meteorological Society Vol. 96, No. 7, July 2015]
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 72 . pp. 4029-4045.
    Publication Date: 2018-04-16
    Description: Atmospheric deposition contributes potentially significant amounts of the nutrients iron, nitrogen and phosphorus (via mineral dust and anthropogenic aerosols) to the oligotrophic tropical North Atlantic Ocean. Transport pathways, deposition processes and source strengths contributing to this atmospheric flux are all highly variable in space and time. Atmospheric sampling was conducted during 28 research cruises through the Eastern Tropical North Atlantic (ETNA) over a 12 year period and a substantial dataset of measured concentrations of nutrients and trace metals in aerosol and rainfall over the region was acquired. This database was used to quantify (on a spatial- and seasonal-basis) the atmospheric input of ammonium, nitrate, soluble phosphorus and soluble and total iron, aluminium and manganese to the ETNA. The magnitude of atmospheric input varies strongly across the region, with high rainfall rates associated with the Inter-tropical Convergence Zone contributing to high wet deposition fluxes in the south, particularly for soluble species. Dry deposition fluxes of species associated with mineral dust exhibited strong seasonality, with highest fluxes associated with winter-time low-level transport of Saharan dust. Overall (wet plus dry) atmospheric inputs of soluble and total trace metals were used to estimate their soluble fractions. These also varied with season and were generally lower in the dry north than in the wet south. The ratio of ammonium plus nitrate to soluble iron in deposition to the ETNA was lower than the N:Fe requirement for algal growth in all cases, indicating the importance of the atmosphere as a source of excess iron.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 29 (1). pp. 61-76.
    Publication Date: 2019-02-01
    Description: The transport of dissolved oxygen (O2) from the surface ocean into the interior is a critical process sustaining aerobic life in mesopelagic ecosystems, but its rates and sensitivity to climate variations are poorly understood. Using a circulation model constrained to historical variability by assimilation of observations, we show that the North Pacific thermocline effectively takes up O2 primarily by expanding the area through which O2-rich mixed layer water is detrained into the thermocline. The outcrop area during the critical winter season varies in concert with the Pacific Decadal Oscillation (PDO). When the central North Pacific Ocean is in a cold phase, the winter outcrop window for the Central Mode Water class (CMW; a neutral density range of γ = 25.6 - 26.6) expands southward allowing more O2-rich surface water to enter the ocean’s interior. An increase in volume flux of water to the CMW density class is partly compensated by a reduced supply to the shallower densities of Subtropical Mode Water (γ = 24.0 - 25.5). The thermocline has become better oxygenated since the 1980s due partly to strong O2 uptake. Positive O2 anomalies appear first near the outcrop and subsequently downstream in the subtropical gyre. In contrast to the O2 variations within the ventilated thermocline, observed O2 in Intermediate Water (density range of γ = 26.7 – 27.2) shows a declining trend over the past half-century, a trend not explained by the open ocean water mass formation rate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 97 (6). pp. 1069-1072.
    Publication Date: 2019-02-01
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 31 (11). pp. 3214-3229.
    Publication Date: 2018-04-06
    Description: A densely spaced hydrographic survey of the northern Irminger Basin together with satellite-tracked near-surface drifters confirm the intense mesoscale variability within and above the Denmark Strait overflow. In particular, the drifters show distinct cyclonic vortices over the downslope edge of the outflow plume. Growing perturbations such as these can be attributed to the baroclinic instability of a density current. A primitive equation model with periodic boundaries is used to simulate the destabilization of an idealized dense filament on a continental slope that resembles the northeastern Irminger Basin. Unstable waves evolve rapidly if the initial temperature profile is perturbed with a sinusoidal anomaly that exceeds a certain cutoff wavelength. As the waves grow to large amplitudes isolated eddies of both signs develop. Anticyclones form initially within the dense filament and are rich in overflow water. In contrast, cyclones form initially with their center in the ambient water but wrap outflow water around their center, thus containing a mixture of both water types. The nonlinear advection of waters that were originally located within the front between both water masses contributes most significantly to the stronger intensification of the cyclones in comparison with anticyclones. The frontal waters carry positive relative vorticity into the center of the cyclone. The process bears therefore some resemblance to atmospheric frontal cyclogenesis. After saturation there is a bottom jet of overflow water that is confined by counterrotating eddies: anticyclones upslope and cyclones downslope of the overflow core. The parameter dependence of the maximum growth rate is studied, and the implications of eddy-induced mixing for the water mass modification is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 96 (9). pp. 1561-1564.
    Publication Date: 2015-11-11
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 29 (4). pp. 1353-1368.
    Publication Date: 2020-08-04
    Description: This study investigates the interaction of the Quasi-Biennial Oscillation (QBO) and the El Niño-Southern Oscillation (ENSO) in the troposphere separately for the North Pacific and North Atlantic region. Three 145-year model simulations with NCAR’s Community Earth Sytem Model (CESM-WACCM) are analyzed where only natural and no anthropogenic forcings are considered. These long simulations allow us to obtain statistically reliable results from an exceptional large number of cases for each combination of the QBO (westerly and easterly) and ENSO phases (El Niño and La Niña). Two different analysis methods were applied to investigate where nonlinearity might play a role in QBO-ENSO interactions. The analyses reveal that the stratospheric equatorial QBO anomalies extend down to the troposphere over the North Pacific during Northern hemisphere winter only during La Niña and not during El Niño events. The Aleutian low is deepened during QBO westerly (QBOW) as compared to QBO easterly (QBOE) conditions, and the North Pacific subtropical jet is shifted northward during La Niña. In the North Atlantic, the interaction of QBOW with La Niña conditions (QBOE with El Niño) results in a positive (negative) North Atlantic Oscillation (NAO) pattern. For both regions, nonlinear interactions between the QBO and ENSO might play a role. The results provide potential to enhance the skill of tropospheric seasonal predictions in the North Atlantic and North Pacific region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 32 . pp. 2305-2317.
    Publication Date: 2020-08-04
    Description: We investigated the effect of hydrostatic pressure of up to 6000 dbar on Aanderaa and Sea-Bird oxygen optodes both in the laboratory and in the field. The overall pressure response is a reduction in the O2 reading by 3 – 4 % per 1000 dbar which is closely linear with pressure and increases with temperature. Closer inspection reveals two superimposed processes with opposite effect: an O2-independent pressure response on the luminophore which increases optode O2 readings and an O2-dependent change in luminescence quenching which decreases optode O2 readings. The latter process dominates and is mainly due to a shift in the equilibrium between sensing membrane and sea water under elevated pressures. If only the dominant O2-dependent process is considered, Aanderaa and Sea-Bird optodes differ in their pressure response. Compensation of the O2-independent process, however, yields a uniform O2 dependence for Aanderaa optodes with standard foil and fast-response foil as well as Sea-Bird optodes. A new scheme to calculate optode O2 from raw data is proposed to account for the two processes. The overall uncertainty of the optode pressure correction amounts to 0.3 % per 1000 dbar, mainly due to variability between sensors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 28 (11). pp. 2250-2274.
    Publication Date: 2018-04-06
    Description: In the present paper a hydrostatic “reduced gravity” model, generally used to simulate transient bottom-arrested gravity plumes, was coupled with a sediment transport model. The coupled model considers the respective contribution of suspended sediment particles on the buoyancy of a plume and allows one to simulate autosuspension and size-differential deposition of sediments based on the local turbulence and settling velocities. Simulations using the coupled model reveal that sediment-enriched plumes are able to inject both entrained and original shelf water masses into intermediate and bottom layers of an adjacent ocean basin in an ageostrophic dynamical balance. Hence the mechanism described here is more rapid than classic, “seawater” plumes, which are solely driven by surplus density of the water masses. Results suggest that “turbidity” plumes may constitute an important process in the formation and renewal of deep waters in the Arctic Ocean. In case a turbidity plume reaches its level of equilibrium density, deposition of suspended particles causes the density of the interstitial fluid to be lower than the density of the ambient fluid. This initiates upward convection within the water column. The substantial difference between TS- and turbidity plumes is described by model experiments that utilize idealized slope and sediment distributions. A realistic simulation of a turbidity plume cascading down the continental slope of the western Barents Sea is presented. The computed distribution of deposited sediments agrees well with observations in an area of high accumulation of shelf-derived sediments. The frequency of occurrence of sediment-enriched gravity plumes originating from the Barents Sea shelf is estimated from the various geological variables (thickness of sediments at the bottom, grain size composition) measured from bottom sediments samples.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 28 (24). pp. 9697-9706.
    Publication Date: 2020-08-04
    Description: The upper tropical Atlantic Ocean has markedly warmed since the 1960s. It has been shown that this warming was not due to local heat fluxes, and that the trade winds that drive the coastal and equatorial upwelling have intensified rather than weakened. Remote forcing might thus have played an important role. Here model experiments are used to investigate the contribution from an increased inflow of warm Indian Ocean water through Agulhas leakage. A high-resolution hindcast experiment with interannually varying forcing for the time period 1948 to 2007, in which Agulhas leakage increases by about 45% from the 1960s to the early 2000s, reproduces the observed warming trend. To tease out the role of Agulhas leakage, a sensitivity experiment designed to only increase Agulhas leakage is used. Compared to a control simulation it shows a pronounced warming in the upper tropical Atlantic Ocean. A Lagrangian trajectory analysis confirms that a significant portion of Agulhas leakage water reaches the upper 300m of the tropical Atlantic Ocean within two decades, and that the tropical Atlantic warming in the sensitivity experiment is mainly due to water of Agulhas origin. Therefore, it is suggested that the increased trade winds since the 1960s favor upwelling of warmer subsurface waters, which in parts originate from the Agulhas, leading to higher SSTs in the tropics
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 20 (5). pp. 742-751.
    Publication Date: 2020-08-04
    Description: A new shipboard current profiler, a 75-kHz ocean surveyor, was operationally used during two research cruises in the tropical Atlantic and the subpolar North Atlantic, respectively. Here, a report is presented on the first experience with this instrument in two very different current regimes, in the Tropics with large vertical shears, and in the subpolar regime with mainly barotropic flow. The ocean surveyor continuously measured currents in the upper ocean from near the surface to about 500–700-m depth. The measurement range showed a dependence on the regional and temporal variations of scattering particles and on the intensity of swell and wind waves. Statistical comparisons are performed with on-station lowered acoustic Doppler current profiler (LADCP) profiles and underway measurements by classic shipboard acoustic Doppler current profiler (ADCP) measurements. Accuracy estimates for hourly averaged ocean surveyor currents result in errors of about 1 cm s–1 for on-station data and of 2–4 cm s–1 for underway measurements, depending on the regional abundance of scatterers and on the weather conditions encountered.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 17 . pp. 1439-1443.
    Publication Date: 2020-08-04
    Description: The World Ocean Circulation Experiment has established Lagrangian observations with neutrally buoyant floats as a routine tool in the study of deep-sea currents. Here a novel variant of the well-proven RAFOS concept for seeding floats at locations where they can be triggered on a timed basis is introduced. This cost-effective method obviates the need to revisit sites with a high-priced research vessel each time floats are to be deployed. It enables multiple Lagrangian time series, for example, for the observation of intermediate point sources of water masses, which are independent but have identical start points. This can be done even in environmentally challenging regions such as below the ice. The successfully tested autonomous float park concept does not rely on a release carousel moored on the seafloor. Instead, a second release was added to the standard RAFOS float for optional delay of regular drift missions. A float park can easily be installed by a conductivity–temperature–depth recorder system with a slightly modified rosette sampler.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 (3). pp. 566-581.
    Publication Date: 2020-08-04
    Description: Two major water masses dominate the deep layers in the Mariana and Caroline Basins: the Lower Circumpolar Water (LCPW), arriving from the Southern Ocean along the slopes north of the Marshall Islands, and the North Pacific Deep Water (NPDW) reaching the region from the northeastern Pacific Ocean. Hydrographic and moored observations and multibeam echosounding were performed in the East Mariana and the East Caroline Basins to detail watermass distributions and flow paths in the area. The LCPW enters the East Mariana Basin from the east. At about 13°N, however, in the southern part of the basin, a part of this water mass arrives in a southward western boundary flow along the Izu–Ogasawara–Mariana Ridge. Both hydrographic observations and moored current measurements lead to the conclusion that this water not only continues westward to the West Mariana Basin as suggested before, but also provides bottom water to the East Caroline Basin. The critical throughflow regions were identified by multibeam echosounding at the Yap Mariana Junction between the East and West Mariana Basins and at the Caroline Ridge between the East Mariana and East Caroline Basins. The throughflow is steady between the East and West Mariana Basins, whereas more variability is found at the Caroline Ridge. At both locations, throughflow fluctuations are correlated with watermass property variations suggesting layer-thickness changes. The total transport to the two neighboring basins is only about 1 Sverdrup (1Sv ≡ 106 m3 s−1) but has considerable impact on the watermass structure in these basins. Estimates are given for the diapycnal mixing that is required to balance the inflow into the East Caroline Basin. Farther above in the water column, the high-silica tongue of NPDW extends from the east to the far southwestern corner of the East Mariana Basin, with transports being mostly southward across the basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 60 . pp. 152-165.
    Publication Date: 2018-04-16
    Description: A new mechanism is proposed that explains two key features of the observed El Niño–Southern Oscillation (ENSO) phenomenon—its irregularity and decadal amplitude changes. Using a low-order ENSO model, the authors show that the nonlinearities in the tropical heat budget can lead to bursting behavior characterized by decadal occurrences of strong El Niño events. La Niña events are not affected, a feature that is also seen in ENSO observations. One key result of this analysis is that decadal variability in the Tropics can be generated without invoking extratropical processes or stochastic forcing. The El Niño bursting behavior simulated by the low-order ENSO model can be understood in terms of the concept of homoclinic and heteroclinic connections. It is shown that this new model for ENSO amplitude modulations and irregularity, although difficult to prove, might explain some features of ENSO dynamics seen in more complex climate models and the observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 19 (5). pp. 794-807.
    Publication Date: 2017-01-25
    Description: Lowered acoustic Doppler current profilers (LADCPs) have matured from an experimental instrument to an operational hydrographic tool to study ocean dynamics. The data processing, however, is still in a rather primitive state. First, a method to estimate bottom-track velocities using the standard water profile data was developed. Then inverse solutions are presented that enhance the standard data processing by adding external constraints such as bottom-referenced velocity profiles. Depending on the depth of the profile and the ADCP range the inclusion of bottom-track data can reduce the local velocity errors by a significant factor. The least squares framework also allows for simplified error analysis of the LADCP system and some of the trade-offs are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 17 . pp. 240-254.
    Publication Date: 2018-07-04
    Description: A new approach based on statistical estimation is proposed for the analysis of tomographic traveltime data in cases of significant nonlinear dependence of the traveltimes on the sound-speed variations. Traditional tomography schemes based on linear perturbative inversions about a single, a priori fixed background state cannot properly handle such cases since the linearized model relations will lead to considerable inversion errors, depending on the extent of nonlinearity. In contrast, the background state is considered here as a variable unknown quantity to be estimated from the traveltime data, simultaneously with the peak identification function and the sound-speed perturbation. Using the maximum likelihood approach and the Gaussian assumption, the statistical estimation problem reduces to a weighted least squares problem to be solved simultaneously for the three unknown quantities. A posteriori inversion-error estimates are derived accounting also for uncertainties in the background selection and the peak identification. The proposed method is applied to nine-month-long traveltime data from the Thetis-2 experiment, conducted from January to October 1994 in the Western Mediterranean Sea, where the variability of the ocean environment gives rise to significant nonlinear dependencies between sound-speed and traveltime variations. The recovered temporal variability and stratification compare well with independent XBT observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Applied Meteorology, 37 (8). pp. 832-844.
    Publication Date: 2017-07-03
    Description: A neural network (NN) has been developed in order to retrieve the cloud liquid water path (LWP) over the oceans from Special Sensor Microwave/Imager (SSM/I) data. The retrieval with NNs depends crucially on the SSM/I channels used as input and the number of hidden neurons—that is, the NN architecture. Three different combinations of the seven SSM/I channels have been tested. For all three methods an NN with five hidden neurons yields the best results. The NN-based LWP algorithms for SSM/I observations are intercompared with a standard regression algorithm. The calibration and validation of the retrieval algorithms are based on 2060 radiosonde observations over the global ocean. For each radiosonde profile the LWP is parameterized and the brightness temperatures (Tb’s) are simulated using a radiative transfer model. The best LWP algorithm (all SSM/I channels except T85V) shows a theoretical error of 0.009 kg m−2 for LWPs up to 2.8 kg m−2 and theoretical “clear-sky noise” (0.002 kg m−2), which has been reduced relative to the regression algorithm (0.031 kg m−2). Additionally, this new algorithm avoids the estimate of negative LWPs. An indirect validation and intercomparison is presented that is based upon SSM/I measurements (F-10) under clear-sky conditions, classified with independent IR-Meteosat data. The NN-based algorithms outperform the regression algorithm. The best LWP algorithm shows a clear-sky standard deviation of 0.006 kg m−2, a bias of 0.001 kg m−2, nonnegative LWPs, and no correlation with total precipitable water. The estimated accuracy for SSM/I observations and two of the proposed new LWP algorithms is 0.023 kg m−2 for LWP ⩽ 0.5 kg m−2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-08-04
    Description: Sea surface temperature (SST) observations in the North Atlantic indicate the existence of strong multidecadal variability with a unique spatial structure. It is shown by means of a new global climate model, which does not employ flux adjustments, that the multidecadal SST variability is closely related to variations in the North Atlantic thermohaline circulation (THC). The close correspondence between the North Atlantic SST and THC variabilities allows, in conjunction with the dynamical inertia of the THC, for the prediction of the slowly varying component of the North Atlantic climate system. It is shown additionally that past variations of the North Atlantic THC can be reconstructed from a simple North Atlantic SST index and that future, anthropogenically forced changes in the THC can be easily monitored by observing SSTs. The latter is confirmed by another state-of-the-art global climate model. Finally, the strong multidecadal variability may mask an anthropogenic signal in the North Atlantic for some decades.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 26 . pp. 1721-1734.
    Publication Date: 2018-04-05
    Description: An initially resting ocean of stratification N is considered, subject to buoyancy loss at its surface of magnitude B0 over a circular region of radius r, at a latitude where the Coriolis parameter is f. Initially the buoyancy loss gives rise to upright convection as an ensemble of plumes penetrates the stratified ocean creating a vertically mixed layer. However, as deepening proceeds, horizontal density gradients at the edge of the forcing region support a geostrophic rim current, which develops growing meanders through baroclinic instability. Eventually finite-amplitude baroclinic eddies sweep stratified water into the convective region at the surface and transport convected water outward and away below, setting up a steady state in which lateral buoyancy flux offsets buoyancy loss at the surface. In this final state quasi-horizontal baroclinic eddy transfer dominates upright “plume” convection. By using “parcel theory” to consider the energy transformations taking place, it is shown that the depth, hfinal at which deepening by convective plumes is arrested by lateral buoyancy flux due to baroclinic eddies, and the time tfinal it takes to reach this depth, is given by both independent of rotation. Here γ and β are dimensionless constants that depend on the efficiency of baroclinic eddy transfer. A number of laboratory and numerical experiments are then inspected and carried out to seek confirmation of these parameter dependencies and obtain quantitative estimates of the constants. It is found that γ = 3.9 ± 0.9 and β = 12 ± 3. Finally, the implications of our study to the understanding of integral properties of deep and intermediate convection in the ocean are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 13 . pp. 2845-2862.
    Publication Date: 2018-07-24
    Description: Numerical experiments are performed to examine the causes of variability of Atlantic Ocean SST during the period covered by the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis (1958-98). Three ocean models are used. Two are mixed layer models: one with a 75-m-deep mixed layer and the other with a variable depth mixed layer. For both mixed layer models the ocean heat transports are assumed to remain at their diagnosed climatological values. The third model is a full dynamical ocean general circulation model (GCM). All models are coupled to a model of the subcloud atmospheric mixed layer (AML). The AML model computes the air temperature and humidity by balancing surface fluxes, radiative cooling, entrainment at cloud base, advection and eddy heat, and moisture transports. The models are forced with NCEP-NCAR monthly mean winds from 1958 to 1998. The ocean mixed layer models adequately reproduce the dominant pattern of Atlantic Ocean climate variability in both its spatial pattern and time dependence. This pattern is the familiar tripole of alternating zonal bands of SST anomalies stretching between the subpolar gyre and the subtropics. This SST pattern goes along with a wind pattern that corresponds to the North Atlantic Oscillation (NAO). Analysis of the results reveals that changes in wind speed create the subtropical SST anomalies while at higher latitudes changes in advection of temperature and humidity and changes in atmospheric eddy fluxes are important. An observational analysis of the boundary layer energy balance is also performed. Anomalous atmospheric eddy heat fluxes are very closely tied to the SST anomalies. Anomalous horizontal eddy fluxes damp the SST anomalies while anomalous vertical eddy fluxes tend to cool the entire midlatitude North Atlantic during the NAO's high-index phase with the maximum cooling exactly where the SST gradient is strengthened the most. The SSTs simulated by the ocean mixed layer model are compared with those simulated by the dynamic ocean GCM. In the far North Atlantic Ocean anomalous ocean heat transports are equally important as surface fluxes in generating SST anomalies and they act constructively. The anomalous heat transports are associated with anomalous Ekman drifts and are consequently in phase with the changing surface fluxes. Elsewhere changes in surface fluxes dominate over changes in ocean heat transport. These results suggest that almost all of the variability of the North Atlantic SST in the last four decades can be explained as a response to changes in surface fluxes caused by changes in the atmospheric circulation. Changes in the mean atmospheric circulation force the SST while atmospheric eddy fluxes dampen the SST. Both the interannual variability and the longer timescale changes can be explained in this way. While the authors were unable to find evidence for changes in ocean heat transport systematically leading or lagging development of SST anomalies, this leaves open the problem of explaining the causes of the low-frequency variability. Possible causes are discussed with reference to the modeling results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 (8). pp. 2205-2235.
    Publication Date: 2018-04-10
    Description: Zonal transports of North Atlantic Deep Water (NADW) in the South Atlantic are determined. For this purpose the circulation of intermediate and deep water masses is established on the basis of hydrographic sections from the World Ocean Circulation Experiment (WOCE) and some pre-WOCE sections, using temperature, salinity, nutrients, and anthropogenic tracers. Multiple linear regression is applied to infer missing parameters in the bottle dataset. A linear box-inverse model is used for a set of closed boxes given by sections and continental boundaries. After performing a detailed analysis of water mass distribution, 11 layers are prescribed. Neutral density surfaces are selected as layer interfaces, thus improving the description of water mass distribution in the transition between the subtropical and subpolar latitudes. Constraints for the inverse model include integral meridional salt and phosphorus transports, overall salt and silica conservation, and transports from moored current meter observations. Inferred transport numbers for the mean meridional thermohaline overturning are given. Persistent zonal NADW transport bands are found in the western South Atlantic, in particular eastward flow of relatively new NADW between 20° and 25°S and westward flow of older NADW to the north of this latitude range. The axis of the eastward transport band corresponds to the core of property distributions in this region, suggesting Wüstian flow. Part of the eastward flow appears to cross the Mid-Atlantic Ridge at the Rio de Janeiro Fracture Zone. Results are compared qualitatively with deep float observations and results from general circulation models
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 25 . pp. 289-305.
    Publication Date: 2018-04-05
    Description: This paper describes, and establishes the dynamical mechanisms responsible for, the large-scale, time-mean, midlatitude circulation in a high-resolution model of the North Atlantic basin. The model solution is compared with recently proposed transport schemes and interpretations of the dynamical balances operating in the sub-tropical gyre. In particular, the question of the degree to which Sverdrup balance holds for the subtropical gyre is addressed. At 25°N, thermohaline-driven bottom flows cause strong local departures from the Sverdrup solution for the vertically integrated meridional mass transport, but these nearly integrate to zero across the interior of the basin. In the northwestern region of the subtropical gyre, in the vicinity of the Gulf Stream, higher-order dynamics become important, and linear vorticity dynamics is unable to explain the model's vertically integrated transport. In the subpolar gyre, the model transport bears little resemblance to the Sverdrup prediction, and higher-order dynamics are important across the entire longitudinal extent of the basin. The sensitivity of the model transport amplitudes, patterns, and dynamical balances are estimated by examining the solutions under a range of parameter choices and for four different wind stress forcing specifications. Taking into account a deficit of 7–10 Sv (Sv ≡ 106 m3 s−1) in the contribution of the model thermohaline circulation to the meridional transports at 25°N, the wind stress climatology of Isemer and Hasse appears to yield too strong of a circulation, while that derived from the NCAR Community Climate Model yields too weak of a circulation. The Hellerman and Rosenstein and ECMWF climatologies result in wind-driven transports close to observational estimates at 25°N. The range between cases for the annual mean southward transport in the interior above 1000 m is 14 Sv, which is 40%–70% of the mean transport itself. There is little sensitivity to the model closure parameters at this latitude. At 55°N, in the subpolar gyre, there is little sensitivity of the model solution to the choice of either closure parameters or wind climatology, despite large differences in the Sverdrup transports implied by the different wind stress datasets. Large year to year variability of the meridional transport east of the Bahamas makes it difficult to provide robust estimates of the sensitivity of the Antilles and deep western boundary current systems to forcing and parameter changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 573-584.
    Publication Date: 2020-08-04
    Description: Fifteen profiling floats were injected into the deep boundary current off Labrador. They were ballasted to drift in the core depth of Labrador Sea Water (LSW) at 1500-m depth and were deployed in two groups during March and July/August 1997. Initially, for about three months, the floats were drifting within the boundary current, and the flow vectors were used to determine the mean horizontal structure of the Deep Labrador Current, which was found to be about 100 km wide with an average core speed of 18 cm s−1. North of Flemish Cap the boundary current encounters complicated topography around “Orphan Knoll,” and there the LSW outflow splits up into different routes. One obvious LSW path is eastward through the Charlie Gibbs Fracture Zone and another route is a narrow recirculation toward the central Labrador Sea. A surprising result was that none of the floats were able to follow the boundary current southward to the Grand Banks area and exit into the subtropics. Trajectories and temperature profiles of the eastward drifting floats indicate the importance of the North Atlantic Current for dispersing the floats, even at the level of LSW.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 29 . pp. 2065-2098.
    Publication Date: 2018-04-06
    Description: A 12-month mooring record (May 1994–June 1995), together with accompanying PALACE float data, is used to describe an annual cycle of deep convection and restratification in the Labrador Sea. The mooring is located at 56.75°N, 52.5°W, near the former site of Ocean Weather Station Bravo, in water of 3500 m depth. This is a pilot experiment for climate monitoring, and also for studies of deep-convection dynamics. Mooring measurements include temperature (T), salinity (S), horizontal and vertical velocity, and acoustic measurement of surface winds. The floats made weekly temperature–salinity profiles between their drift level (near 1500 m) and the surface. With moderately strong cooling to the atmosphere (300 W m−2 averaged from November to March), wintertime convection penetrated from the surface to about 1750 m, overcoming the stabilizing effect of upper-ocean low-salinity water. The water column restratifies rapidly after brief vertical homogenization (in potential density, salinity, and potential temperature). Both the rapid restratification and the energetic high-frequency variations of T and S observed at the mooring are suggestive of a convection depth that varies greatly with location. Lateral variations in T and S exist down to very small scales, and these remnants of convection decay (with e-folding time 170 day) after convection ceases. Lateral variability at the scale of 100 km is verified by PALACE profiles. The Eulerian mooring effectively samples the convection in a mesoscale region of ocean as eddies sweep past it; the Lagrangian PALACE floats are complementary in sampling the geography of deep convection more widely. This laterally variable convection leaves the water column with significant vertical gradients most of the year. Convection followed by lateral mixing gives vertical salinity profiles the (misleading) appearance that a one-dimensional diffusive process is fluxing freshwater downward. During spring, summer, and fall the salinity, temperature, and buoyancy rise steadily with time throughout most of the water column. This is likely the result of mixing with the encircling boundary currents, compensating for the escape of Labrador Sea Water from the region. Low-salinity water mixes into the gyre only near the surface. The water-column heat balance is in satisfactory agreement with meteorological assimilation models. Directly observed subsurface calorimetry may be the more reliable indication of the annual-mean air–sea heat flux. Acoustic instrumentation on the mooring gave a surprisingly good time series of the vector surface wind. The three-dimensional velocity field consists of convective plumes of width 200 to 1000 m, vertical velocities of 2 to 8 cm s−1, and Rossby numbers of order unity, embedded in stronger (20 cm s−1) lateral currents associated with mesoscale eddies. Horizontal currents with timescales of several days to several months are strongly barotropic. They are suddenly energized as convection reaches great depth in early March, and develop toward a barotropic state, as also seen in models of convectively driven geostrophic turbulence in a weakly stratified, high-latitude ocean. Currents decay through the summer and autumn, apart from some persistent isolated eddies. These coherent, isolated, cold anticyclones carry cores of pure convected water long after the end of winter. Boundary currents nearby interact with the Labrador Sea gyre and provide an additional source of eddies in the interior Labrador Sea. An earlier study of the pulsation of the boundary currents is supported by observations of sudden ejection of floats from the central gyre into the boundary currents (and sudden ingestion of boundary current floats into the gyre interior), in what may be a mechanism for exchange between Labrador Sea Water and the World Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Applied Meteorology, 36 . pp. 919-930.
    Publication Date: 2017-07-03
    Description: A neural network is used to calculate the longwave net radiation (Lnet) at the sea surface from measurements of the Special Sensor Microwave/Imager (SSM/I). The neural network applied in this study is able to account largely for the nonlinearity between Lnet and the satellite-measured brightness temperatures (TB). The algorithm can be applied for instantaneous measurements over oceanic regions with the area extent of satellite passive microwave observations (30–60 km in diameter). Comparing with a linear regression method the neural network reduces the standard error for Lnet from 17 to 5 W m−2 when applied to model results. For clear-sky cases, a good agreement with an error of less than 5 W m−2 for Lnet between calculations from SSM/I observations and pyrgeometer measurements on the German research vessel Poseidon during the International Cirrus Experiment (ICE) 1989 is obtained. For cloudy cases, the comparison is problematic due to the inhomogenities of clouds and the low and different spatial resolutions of the SSM/I data. Global monthly mean values of Lnet for October 1989 are computed and compared to other sources. Differences are observed among the climatological values from previous studies by H.-J. Isemer and L. Hasse, the climatological values from R. Lindau and L. Hasse, the values of W. L. Darnell et al., and results from this study. Some structures of Lnet are similar for results from W. L. Darnell et al. and the present authors. The differences between both results are generally less than 15 W m−2. Over the North Atlantic Ocean the authors found a poleward increase for Lnet, which is contrary to the results of H.-J. Isemer and L. Hasse.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 30 . pp. 2172-2185.
    Publication Date: 2018-04-06
    Description: The horizontal and vertical structure of large-amplitude internal solitary waves propagating in stratified waters on a continental shelf is investigated by analyzing the results of numerical simulations and in situ measurements. Numerical simulations aimed at obtaining stationary, solitary wave solutions of different amplitudes were carried out using a nonstationary model based on the incompressible two-dimensional Euler equations in the frame of the Boussinesq approximation. The numerical solutions, which refer to different density stratifications typical for midlatitude continental shelves, were obtained by letting an initial disturbance evolve according to the numerical model. Several intriguing characteristics of the structure of the simulated large-amplitude internal solitary waves like, for example, wavelength–amplitude and phase speed–amplitude relationship as well as form of the locus of zero horizontal velocity emerge, consistent with those obtained previously using stationary Euler models. The authors’ approach, which tends to exclude unstable oceanic internal solitary waves as they are filtered out during the evolution process, was also employed to perform a detailed comparison between model results and characteristics of large-amplitude internal solitary waves found in high-resolution in situ data acquired north and south of the Strait of Messina, in the Mediterranean Sea. From this comparison the importance of using higher-order theoretical models for a detailed description of large-amplitude internal solitary waves observed in the real ocean emerge. Implications of the results showing the complexity related to a possible inversion of sea surface manifestations of oceanic internal solitary waves into characteristics of the interior ocean dynamics are finally discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 33 . pp. 2307-2319.
    Publication Date: 2018-04-10
    Description: Processes that influence the volume and heat transport across the Greenland–Scotland Ridge system are investigated in a numerical model with ° horizontal resolution. The focus is on the sensitivity of cross-ridge transports and the reaction of the subpolar North Atlantic Ocean circulation to changes in wind stress and buoyancy forcing on seasonal to interannual timescales. A general relation between changes in wind stress or cross-ridge density contrasts and the overturning transport of Greenland–Iceland–Norwegian Seas source water is established from a series of idealized experiments. The relation is used subsequently to interpret changes in an experiment over the years 1992–97 with realistic forcing. On seasonal and interannual timescales there is a clear correlation between heat flux and wind stress curl variability. The realistic model suggests a steady decrease in the strength of the cyclonic subpolar gyre of the North Atlantic with a corresponding decrease in heat transport during the 1990s
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 16 (15). pp. 2569-2585.
    Publication Date: 2020-08-04
    Description: The role of mean and stochastic freshwater forcing on the generation of millennial-scale climate variability in the North Atlantic is studied using a low-order coupled atmosphere–ocean–sea ice model. It is shown that millennial-scale oscillations can be excited stochastically, when the North Atlantic Ocean is fresh enough. This finding is used in order to interpret the aftermath of massive iceberg surges (Heinrich events) in the glacial North Atlantic, which are characterized by an excitation of Dansgaard–Oeschger events. Based on model results, it is hypothesized that Heinrich events trigger Dansgaard–Oeschger cycles and that furthermore the occurrence of Heinrich events is dependent on the accumulated climatic effect of a series of Dansgaard–Oeschger events. This scenario leads to a coupled ocean–ice sheet oscillation that shares many similarities with the Bond cycle. Further sensitivity experiments reveal that the timescale of the oscillations can be decomposed into stochastic, linear, and nonlinear deterministic components. A schematic bifurcation diagram is used to compare theoretical results with paleoclimatic data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 31 (4). pp. 1031-1053.
    Publication Date: 2018-04-06
    Description: Observations from the WOCE PCM-1 moored current meter array east of Taiwan for the period September 1994 to May 1996 are used to derive estimates of the Kuroshio transport at the entrance to the East China Sea. Three different methods of calculating the Kuroshio transport are employed and compared. These methods include 1) a “direct” method that uses conventional interpolation of the measured currents and extrapolation to the surface and bottom to estimate the current structure, 2) a “dynamic height” method in which moored temperature measurements from moorings on opposite sides of the channel are used to estimate dynamic height differences across the current and spatially averaged baroclinic transport profiles, and 3) an “adjusted geostrophic” method in which all moored temperature measurements within the array are used to estimate a relative geostrophic velocity field that is referenced and adjusted by the available direct current measurements. The first two methods are largely independent and are shown to produce very similar transport results. The latter two methods are particularly useful in situations where direct current measurements may have marginal resolution for accurate transport estimates. These methods should be generally applicable in other settings and illustrate the benefits of including a dynamic height measuring capability as a backup for conventional direct transport calculations. The mean transport of the Kuroshio over the 20-month duration of the experiment ranges from 20.7 to 22.1 Sv (1 Sv ≡ 106 m3 s−1) for the three methods, or within 1.3 Sv of each other. The overall mean transport for the Kuroshio is estimated to be 21.5 Sv with an uncertainty of 2.5 Sv. All methods show a similar range of variability of ±10 Sv with dominant timescales of several months. Fluctuations in the transport are shown to have a robust vertical structure, with over 90% of the transport variance explained by a single vertical mode. The moored transports are used to determine the relationship between Kuroshio transport and sea-level difference between Taiwan and the southern Ryukyu Islands, allowing for long-term monitoring of the Kuroshio inflow to the East China Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 1567-1573.
    Publication Date: 2020-08-04
    Description: The analysis of high-resolution oceanographic data referring to velocity measurements carried out by means of a vessel-mounted acoustic Doppler current profiler on 12 November 2000 in the equatorial Atlantic, at 44°W between 4.5° and 6°N, reveals the presence of three large-amplitude internal solitary waves superimposed on the velocity field associated with the North Equatorial Countercurrent (NECC). These waves were found in the deep ocean, more than 500 km off the continental shelf and far from regions of topographic variations. They propagated toward the north-northeast, strongly inclined with respect to the main axis of the NECC and perpendicular to the Brazilian shelf, as well as to the North Brazil Current, and were characterized by maximum horizontal velocities of about 2 m s−1 and maximum vertical velocities of about 20 cm s−1. The large magnitudes of the measured velocities indicate that the observed waves represent disturbances evolving in a strongly stratified ocean. The distance separating the waves (about 70 km) indicates that the observed features cannot be considered as elements of a single train of internal solitary waves. The waves consist, instead, of truly disconnected, pulselike intense solitary disturbances. This behavior, which strongly differs from that typically observed for trains of tidally generated internal solitary waves, indicates that different mechanisms were possibly involved in their generation and/or evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 13 . pp. 246-254.
    Publication Date: 2018-06-01
    Description: The incidence angles of the SSM/I radiometers on the DMSP satellites vary from satellite to satellite and exhibit variations of up to 1.5° during one orbit. The effects of these variations on the measured brightness temperatures are investigated on the basis of simulated and measured data for oceanic arm. A deviation of 1° from the nominal incidence angle of 53.0° causes brightness temperature changes of up to 2 K depending on surface and atmospheric conditions. Errors of retrieved geophysical parameters on the order of 5%–10% result when the incidence angle variation is not taken into account. This is a common property of most published statistical algorithms. For total precipitable water and cloud liquid water content the error increases with increasing parameter value. For wind speed the error is largest for low wind speed and decreases with increasing wind speed. Due to the slowly varying latitudinal dependence of the incidence angle, these errors do not cancel out when monthly means are computed. A correction method is developed on the basis of simulated data and tested successfully with measured data. Observed brightness temperature differences between DMSP F10 and F11 are reduced when using corrected data. If diurnal variations of geophysical parameters are investigated, the incidence angle correction is mandatory to obtain useful results, especially for DMSP F10.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 79 (10). pp. 2033-2058.
    Publication Date: 2016-09-07
    Description: In the autumn of 1996 the field component of an experiment designed to observe water mass transformation began in the Labrador Sea. Intense observations of ocean convection were taken in the following two winters. The purpose of the experiment was, by a combination of meteorological and oceanographic field observations, laboratory studies, theory, and modeling, to improve understanding of the convective process in the ocean and its representation in models. The dataset that has been gathered far exceeds previous efforts to observe the convective process anywhere in the ocean, both in its scope and range of techniques deployed. Combined with a comprehensive set of meteorological and air-sea flux measurements, it is giving unprecedented insights into the dynamics and thermodynamics of a closely coupled, semienclosed system known to have direct influence on the processes that control global climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2017-08-18
    Description: A systematic modular approach to investigate the respective roles of the ocean and atmosphere in setting El Niño characteristics in coupled general circulation models is presented. Several state-of-the-art coupled models sharing either the same atmosphere or the same ocean are compared. Major results include 1) the dominant role of the atmosphere model in setting El Niño characteristics (periodicity and base amplitude) and errors (regularity) and 2) the considerable improvement of simulated El Niño power spectratoward lower frequencywhen the atmosphere resolution is significantly increased. Likely reasons for such behavior are briefly discussed. It is argued that this new modular strategy represents a generic approach to identifying the source of both coupled mechanisms and model error and will provide a methodology for guiding model improvement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 29 (6). pp. 1251-1264.
    Publication Date: 2018-04-06
    Description: A dynamic–thermodynamic sea ice–mixed layer model for the Weddell Sea is complemented by a simple, diagnostic model to account for local sea ice–atmosphere interaction. To consider the atmospheric influence on the oceanic mixed layer, the pycnocline upwelling velocity is calculated using the theory of Ekman pumping. In several experiments, formation and conservation of a polynya in the Weddell Sea are investigated. Intrusion of heat into the lower atmosphere above the polynya area is assumed to cause a thermal perturbation and a cyclonic thermal wind field. Superposed with daily ECMWF surface winds, this modified atmospheric forcing field intensifies oceanic upwelling and induces divergent ice drift. Simulation results indicate that in case of a weak atmospheric cross-polynya flow the formation of a thermal wind field can significantly extend the lifetime of a large polynya. The repeated occurrence of the Weddell polynya in the years 1974–76 thus appears to be an effect of feedback mechanisms between sea ice, atmosphere, and oceanic mixed layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 3020-3038.
    Publication Date: 2018-04-09
    Description: The ventilation of the permanent thermocline of the Southern Hemisphere gyres is quantified using climatological and synoptic observational data. Ventilation is estimated with three independent methods: the kinematic method provides subduction rates from the vertical and horizontal fluxes through the base of the mixed layer, the water age uses in situ age distribution of thermocline waters, and the annual-mean water mass formation through air–sea interaction is calculated. All three independent estimates agree within their error bars, which are admittedly large. The subduction rates are mainly controlled through their vertical and lateral components with only minor transient eddy contributions. The vertical transfer, derived from Ekman pumping, ventilates over most of the areas of the subtropical gyres, while lateral transfer occurs mainly along the Subtropical and Subantarctic Fronts, where it injects mode and intermediate waters. For the permanent thermocline the overall ventilation of the South Atlantic is about 21 Sv (Sv ≡ 106 m3 s−1). Of this, lateral transfer contributes 10 Sv, mainly in the Brazil–Malvinas confluence zone and to the northeast of Drake Passage. The effective vertical transfer at the bottom of the mixed layer is only two-thirds of the Ekman pumping due to strong northward forcing of the mixed layer itself. The Indian Ocean is ventilated at a rate of 35 Sv with equal lateral and vertical contributions. The South Pacific's overall ventilation is 44 Sv of which the lateral input contributes little more than half. West of 130°W, the South Pacific is ventilated through Ekman pumping and with only minor lateral transfer. In the east lateral transfer dominates between 10° and 20°S and along the Subantarctic Front in a narrow density range. Combining overall transports with earlier estimates for the Northern Hemisphere gives a ventilation of the World Ocean's permanent thermocline of about 160 Sv. Analysis of atmospheric reanalysis air–sea flux data reveals an overall increase in the formation of thermocline waters for all three Southern Hemisphere oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 29 . pp. 1682-1700.
    Publication Date: 2018-04-06
    Description: Different processes have been proposed to explain the large-scale spreading of Mediterranean Water (MW) in the North Atlantic, however, no systematic study comparing the efficiency of different processes is yet available. Here, the authors present a series of experiments in a unified framework that is designed to quantify the effects of several physical processes on the spreading of MW in an idealized model of the North Atlantic. The common technique of restoring temperature and salinity to an observed distribution near the Mediterranean inflow fails to produce an adequate amount of MW because the eastern boundary region near the MW inflow is rather quiescent in models. Diapycnal processes like double diffusion and cabbeling turn out too inefficient to alone account for the large-scale MW anomaly. However, with a preexisting anomaly, double diffusion leads to a considerable northward and zonal redistribution of MW. The density anomaly induced by cabbeling curtails the zonal spreading of MW while it increases the northward spreading. With isopycnal mixing and the weak mean flow that prevails in the outflow region, a spatial distribution of the MW anomaly is obtained that is inconsistent with observations. Unrealistically high diffusion coefficients would be necessary to reproduce the observed salt flux into the Atlantic. The most effective process in the experiments is the volume flux associated with the Atlantic–Mediterranean exchange. The current system that is established in response to the inflow of MW into the Atlantic carries the anomaly almost 30° of longitude into the basin and along the eastern margin up to the northeastern corner of the domain and farther along the northern boundary.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 10 (11). pp. 2711-2724.
    Publication Date: 2018-07-24
    Description: Parameterization of turbulent wind stress and sensible and latent heat fluxes is reviewed in the context of climate studies and model calculations, and specific formulas based on local measurements are recommended. Wind speed is of key importance, and in applying experimental results, the differences between local and modeled winds must be considered in terms of their method of observation or calculation. Climatological wind data based on Beaufort wind force reports require correction for historical trends. Integrated long-term net turbulent and radiative heat fluxes at the sea surface, calculated from archived data, are consistent with meridional heat transport through oceanographic sections; this lends support to the methods used
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  AMS (American Meteorological Society) , Boston, 855 pp. 2
    Publication Date: 2012-07-16
    Type: Book , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 55 (17). pp. 2874-2883.
    Publication Date: 2018-04-16
    Description: The roles of ice particle size distributions (SDs) and particle shapes in cirrus cloud solar radiative transfer are investigated by analyzing SDs obtained from optical array probe measurements (particle sizes larger than 20–40 μm) during intensive field observations of the International Cirrus Experiment, the European Cloud and Radiation Experiment, the First ISCCP Regional Experiment, and the Central Equatorial Pacific Experiment. It is found that the cloud volume extinction coefficient is more strongly correlated with the total number density than with the effective particle size. Distribution-averaged mean single scattering properties are calculated for hexagonal columns, hexagonal plates, and polycrystals at a nonabsorbing (0.5 μm), moderately absorbing (1.6 μm), and strongly absorbing (3.0 μm) wavelength. At 0.5 μm (1.6 μm) (3.0 μm), the spread in the resulting mean asymmetry parameters due to different SDs is smaller than (comparable to) (smaller than) the difference caused by applying different particle shapes to these distributions. From a broadband solar radiative transfer point of view it appears more important to use the correct particle shapes than to average over the correct size distributions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 16 . pp. 2717-2734.
    Publication Date: 2018-07-24
    Description: Synoptic-scale variability in the air–sea turbulent fluxes in the areas of midlatitudinal western boundary currents is analyzed. In the Gulf Stream area, ocean–atmosphere fluxes on synoptic time- and space scales are clearly coordinated with the propagating synoptic-scale atmospheric transients. The statistical analysis of 6-hourly resolution sea level pressure and surface turbulent fluxes from the NCEP–NCAR reanalysis for the period from 1948 to 2000 in the area of strong sea surface temperature gradients in the Gulf Stream gives strong proof for the association between the propagating cyclones and synoptic patterns of surface turbulent fluxes. It is shown that sea–air interaction in this area is controlled by the sharpness of surface temperature gradients in the ocean and by the intensity of the advection of the air masses in different parts of cyclones during the cold-air and warm-air outbreaks. A simple parameter based on the joint consideration of the characteristics of sea surface temperature and sea level pressure fields is used to characterize the synoptic variability of air–sea turbulent fluxes. The effectiveness of the relationship between surface temperature and surface pressure on one side and air–sea flux anomalies on the other vary from year to year in phase with variability in the frequencies of deep atmospheric cyclones in the Gulf Stream area. The limits of applicability of the approach, its sensitivity to higher-resolution sea surface temperature data, and the possibility of its further applications are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Atmospheric and Oceanic Technology, 15 . pp. 1051-1059.
    Publication Date: 2018-07-04
    Description: A new optical disdrometer has been developed that is optimized for use in high wind speeds, for example, on board ships. The minimal detectable size of droplets is 0.35 mm. Each drop is measured separately with regard to its size and residence time within the sensitive volume. From the available information, the drop size distribution can be calculated with a resolution of 0.05 mm in diameter either by evaluation of the residence time of drops or by drop counting knowing the local wind. Experience shows that using the residence time leads to better results. Rain rates can be determined from the droplet spectra by assuming terminal fall velocity of the drops according to their size. Numerical modeling of disdrometer measurements has been performed, allowing the study of the effect of multiple occupancy of the sensitive volume and grazing incidences on disdrometer measurements. Based on these studies an iterative procedure has been developed to eliminate the impact of these effects on the calculated drop size distributions. This technique may also be applied to any other kind of disdrometer. Long-term simultaneous measurements of the disdrometer and a conventional rain gauge have been used to validate this procedure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 34 . pp. 772-792.
    Publication Date: 2018-04-11
    Description: The Indonesian Throughflow (ITF) spreading pathways and time scales in the Indian Ocean are investigated using both observational data and two numerical tracer experiments, one being a three-dimensional Lagrangian trajectory experiment and the other a transit-time probability density function (PDF) tracer experiment, in an ocean general circulation model. The model climatology is in agreement with observations and other model results except that speeds of boundary currents are lower. Upon reaching the western boundary within the South Equatorial Current (SEC), the trajectories of the ITF tracers within the thermocline exhibit bifurcation. The Lagrangian trajectory experiment shows that at the western boundary about 38%±5% thermocline ITF water flows southward to join the Agulhas Current, consequently exiting the Indian Ocean, and the rest, about 62%±5%, flows northward to the north of SEC. In boreal summer, ITF water penetrates into the Northern Hemisphere within the Somali Current. The primary spreading pathway of the thermocline ITF water north of SEC is upwelling to the surface layer with subsequent advection southward within the surface Ekman layer toward the southern Indian Ocean subtropics. There it is subducted and advected northward in the upper thermocline to rejoin the SEC. Both the observations and the trajectory experiment suggest that the upwelling occurs mainly along the coast of Somalia during boreal summer and in the open ocean within a cyclonic gyre in the Tropics south of the equator throughout the year. All the ITF water eventually exits the Indian Ocean along the western boundary within the Mozambique Channel and the east coast of Madagascar and, farther south, the Agulhas Current region. The advective spreading time scales, represented by the elapsed time corresponding to the maximum of transit- time PDF, show that in the upper thermocline the ITF crosses the Indian Ocean, from the Makassar Strait to the east coast of the African continent, on a time scale of about 10 yr and reaches the Arabian Sea on a time scale of over 20 yr.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 31 (2). pp. 616-636.
    Publication Date: 2018-04-06
    Description: Transient eddies in the atmosphere induce a poleward transport of heat and moisture. A moist static energy budget of the surface layer is determined from the NCEP reanalysis data to evaluate the impact of the storm track. It is found that the transient eddies induce a cooling and drying of the surface layer with a monthly mean maximum of 60 W m−2. The cooling in the midlatitudes extends zonally over the entire basin. The impact of this cooling and drying on surface heat fluxes, sea surface temperature (SST), water mass transformation, and vertical structure of the Pacific is investigated using an ocean model coupled to an atmospheric mixed layer model. The cooling by atmospheric storms is represented by adding an eddy-induced transfer velocity to the mean velocity in an atmospheric mixed layer model. This is based on a parameterization of tracer transport by eddies in the ocean. When the atmospheric mixed layer model is coupled to an ocean model, realistic SSTs are simulated. The SST is up to 3 K lower due to the cooling by storms. The additional cooling leads to enhanced transformation rates of water masses in the midlatitudes. The enhanced shallow overturning cells affect even tropical regions. Together with realistic SST and deep winter mixed layer depths, this leads to formation of homogeneous water masses in the upper North Pacific, in accordance to observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 30 (12). pp. 3191-3211.
    Publication Date: 2020-08-04
    Description: The circulation of the low-salinity Antarctic Intermediate Water in the South Atlantic and the associated dynamical processes are studied, using recent and historical hydrographic profiles, Lagrangian and Eulerian current measurements as well as wind stress observations. The circulation pattern inferred for the Antarctic Intermediate Water supports the hypothesis of an anticyclonic basinwide recirculation of the intermediate water in the subtropics. The eastward current of the intermediate anticyclone is fed mainly by water recirculated in the Brazil Current and by the Malvinas Current. An additional source region is the Polar Frontal zone of the South Atlantic. The transport in the meandering eastward current ranges from 6 to 26 Sv (Sv = 10(6) m(3) s(-1)). The transport of the comparably uniform westward flow of the gyre varies between 10 and 30 Sv. Both transports vary with longitude. At the western boundary near 28 degreesS, in the Santos Bifurcation, the westward current splits into two branches. About three-quarters of the 19 Sv at 40 degreesW go south as an intermediate western boundary current. The remaining quarter flows northward along the western boundary. Simulations with a simple model of the ventilated thermocline reveal that the wind-driven subtropical gyre has a vertical extent of over 1200 m. The transports derived from the simulations suggest that about 90% of the transport in the westward branch of the intermediate gyre and about 50% of the transport in the eastward branch can be attributed to the wind-driven circulation. The structure of the simulated gyre deviates from observations to some extent. The discrepancies between the simulations and the observations are most likely caused by the interoceanic exchange south of Africa, the dynamics of the boundary currents, the nonlinearity, and the seasonal variability of the wind field. A simulation with an inflow/outflow condition for the eastern boundary reduces the transport deviations in the eastward current to about 20%. The results support the hypothesis that the wind field is of major importance for the subtropical circulation of Antarctic Intermediate Water followed by the interoceanic exchange. The simulations suggest that the westward transport in the subtropical gyre undergoes seasonal variations. The transports and the structure of the intermediate subtropical gyre from the Parallel Ocean Climate Model (Semtner-Chervin model) agree better with observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 687-701.
    Publication Date: 2018-04-06
    Description: The quasi-decadal salinity fluctuations in the upper 300 m of the Labrador Sea are investigated by partitioning all available salinity station data since 1948 by region and bottom depth. There are major freshwater anomalies in the early 1970s (the Great Salinity Anomaly), mid-1980s, and early 1990s. These vary in amplitude throughout the region, being least on the shelf and greatest over the slope region near the Labrador Current. The Labrador Sea cannot be considered a simple conduit for freshwater anomalies originating in the East Greenland Current. There is evidence that local processes modulate the anomaly. The freshwater anomalies in the Labrador Current are approximately twice as large as those in the East Greenland Current. The Baffin Island Current flowing southward through the western Davis Strait is the only local source of freshwater with sufficient volume to account for this increase. The propagation speed, 2–3 cm s−1, of the anomaly along the Labrador Sea margin is much less than the advection speed indicating a highly damped system. The connection of the North Atlantic Oscillation (NAO) with these quasi-decadal salinity fluctuations is most obvious in the Labrador Sea interior, where increased surface buoyancy flux during positive NAO drives deep convective mixing and thus terminates the fresh surface anomalies. Less clear are the processes by which NAO-forced changes of lateral freshwater flux modulate the salinity along the margin. The authors propose a feedback mechanism where, during years of low wind speed, freshwater accumulates offshore of the slope front in the surface layer. The increased upper-layer buoyancy prohibits further mixing, and low salinities persist.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-08-04
    Description: In 1997, a unique hydrographic and chlorofluorocarbon (CFC: component CFC-11) dataset was obtained in the subpolar North Atlantic. To estimate the synopticity of the 1997 data, the recent temporal evolution of the CFC and Labrador Sea Water (LSW) thickness fields are examined. In the western Atlantic north of 50°N, the LSW thickness decreased considerably from 1994–97, while the mean CFC concentrations did not change much. South of 50°N and in the eastern Atlantic, the CFC concentration increased with little or no change in the LSW thickness. On shorter timescales, local anomalies due to the presence of eddies are observed, but for space scales larger than the eddies the dataset can be treated as being synoptic over the 1997 observation period. The spreading of LSW in the subpolar North Atlantic is described in detail using gridded CFC and LSW thickness fields combined with Profiling Autonomous Lagrangian Circulation Explorer (PALACE) float trajectories. The gridded fields are also used to calculate the CFC-11 inventory in the LSW from 40° to 65°N, and from 10° to 60°W. In total, 2300 ± 250 tons of CFC-11 (equivalent to 16.6 million moles) were brought into the LSW by deep convection. In 1997, 28% of the inventory was still found in the Labrador Sea west of 45°W and 31% of the inventory was located in the eastern Atlantic. The CFC inventory in the LSW was used to estimate the lower limits of LSW formation rates. At a constant formation rate, a value of 4.4–5.6 Sv (Sv ≡ 106 m3 s−1) is obtained. If the denser modes of LSW are ventilated only in periods with intense convection, the minimum formation rate of LSW in 1988–94 is 8.1–10.8 Sv, and 1.8–2.4 Sv in 1995–97
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 32 . pp. 666-686.
    Publication Date: 2018-04-06
    Description: Time series of hydrographic and transient tracer (3H and 3He) observations from the central Labrador Sea collected between 1991 and 1996 are presented to document the complex changes in the tracer fields as a result of variations in convective activity during the 1990s. Between 1991 and 1993, as atmospheric forcing intensified, convection penetrated to progressively increasing depths, reaching 2300 m in the winter of 1993. Over that period the potential temperature (θ)/salinity (S) properties of Labrador Sea Water stayed nearly constant as surface cooling and downward mixing of freshwater was balanced by excavating and upward mixing of the warmer and saltier Northeast Atlantic Deep Water. It is shown that the net change in heat content of the water column (150–2500 m) between 1991 and 1993 was negligible compared to the estimated mean heat loss over that period (110 W m−2), implying that the lateral convergence of heat into the central Labrador Sea nearly balances the atmospheric cooling on a surprisingly short timescale. Interestingly, the 3H–3He age of Labrador Sea Water increased during this period of intensifying convection. Starting in 1995, winters were milder and convection was restricted to the upper 800 m. Between 1994 and 1996, the evolution of 3H–3He age is similar to that of a stagnant water body. In contrast, the increase in θ and S over that period implies exchange of tracers with the boundaries via both an eddy-induced overturning circulation and along-isopycnal stirring by eddies [with an exchange coefficient of O(500 m2 s−1)]. The authors construct a freshwater budget for the Labrador Sea and quantitatively demonstrate that sea ice meltwater is the dominant cause of the large annual cycle of salinity in the Labrador Sea, both on the shelf and the interior. It is shown that the transport of freshwater by eddies into the central Labrador Sea (140 cm between March and September) can readily account for the observed seasonal freshening. Finally, the authors discuss the role of the eddy-induced overturning circulation with regard to transport and dispersal of the newly ventilated Labrador Sea Water to the boundary current system and compare its strength (2–3 Sv) to the diagnosed buoyancy-forced formation rate of Labrador Sea Water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 26(10) . pp. 2281-2285.
    Publication Date: 2018-04-05
    Description: The compatibility of the Gent and McWilliams thickness mixing parameterization with perturbation thickness fluxes evaluated from eddy-resolving North Atlantic model results is investigated. After extensive spatial and temporal averaging, a linear correlation between the parameterized fluxes and those calculated directly from model fluctuations in the subtropics could be found. A direct estimate of a constant mixing parameter κ could be inferred in the order of 1.0 × 107 cm2 s−1.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 26 . pp. 2251-2266.
    Publication Date: 2018-04-06
    Description: A simple point-vortex “heton” model is used to study localized ocean convection. In particular, the statistically steady state that is established when lateral buoyancy transfer, effected by baroclinic instability, offsets the localized surface buoyancy loss is investigated. Properties of the steady state, such as the statistically steady density anomaly of the convection region, are predicted using the hypothesis of a balance between baroclinic eddy transfer and the localized surface buoyancy loss. These predictions compare favorably with the values obtained through numerical integration of the heton model. The steady state of the heron model can be related to that in other convection scenarios considered in several recent studies by means of a generalized description of the localized convection. This leads to predictions of the equilibrium density anomalies in these scenarios, which concur with those obtained by other authors. Advantages of the heton model include its inviscid nature, emphasizing the independence of the fluxes affected by the baroclinic eddies from molecular processes, and its extreme economy, allowing a very large parameter space to be covered. This economy allows us to examine more complicated forcing scenarios: for example, forcing regions of varying shape. By increasing the ellipticity of the forcing region, the instability is modified by the shape and, as a result, no increase in lateral fluxes occurs despite the increased perimeter length. The parameterization of convective mixing by a redistribution of potential vorticity, implicit in the heton model, is corroborated; the heton model equilibrium state has analogous quantitative scaling behavior to that in models or laboratory experiments that resolve the vertical motions. The simplified dynamics of the heton model therefore allows the adiabatic advection resulting from baroclinic instability to be examined in isolation from vertical mixing and diffusive processes. These results demonstrate the importance of baroclinic instability in controlling the properties of a water mass generated by localized ocean convection. A complete parameterization of this process must therefore account for the fluxes induced by horizontal variations in surface buoyancy loss and affected by baroclinic instability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 31 . pp. 3030-3044.
    Publication Date: 2018-04-06
    Description: The dynamics of the Rhine outflow plume in the proximity of the river mouth is investigated by using remote sensing data and numerical simulations. The remote sensing data consist of 41 synthetic aperture radar (SAR) images acquired by the First and Second European Remote Sensing satellites ERS-1 and ERS-2 over the outflow region of the river Rhine. Most of them show sea surface signatures of oceanic phenomena, for example, surface current and wind variations, ship wakes, and oil slicks. In particular, in 36 of these images pronounced frontal features are visible as narrow zones of mainly enhanced, sometimes enhanced/reduced radar backscatter that can be associated with the Rhine surface front. Within the area enclosed by the frontal line, large zones characterized by a lower radar backscatter than in the outer area are often visible. The analysis of the ERS SAR images suggests that the form and the location of the frontal features are mainly linked to the semidiurnal tidal phase in the outflow region, although their variability suggests also that they weakly depend on river discharge, residual currents, and neap-spring tidal cycle. In order to test this observational hypothesis, the results obtained from the analysis of the ERS SAR images are compared with the results obtained from the numerical simulation of the hydrodynamics of the Rhine outflow region carried out using a two-layer, frontal model, which is based on the nonlinear, hydrostatic shallow-water equations on an f plane. The model is forced by prescribing tidal and residual currents and river discharge at the open boundaries. Several simulations are performed by varying the values of these forcing parameters. The numerical results corroborate the observational conjecture: It is found that the form and the location of the simulated interface outcropping lines in the proximity of the river mouth are mainly determined by the semidiurnal tidal phase in the outflow region and that river discharge, residual currents, and neap-spring tidal cycle contribute only secondarily to their determination. Inserting the simulated surface velocity field into a simple radar-imaging model that relates the modulation of the backscattered radar power to the surface velocity convergence in radar look direction, narrow, elongated bands of enhanced radar backscatter emerge near the model frontal line while patches of low radar backscatter appear within the simulated Rhine plume area. The consistency of the model results with the results obtained from the analysis of the SAR images enables one to infer a mean spatial and temporal evolution of the Rhine outflow plume over a semidiurnal tidal cycle from the analysis of spaceborne SAR images acquired during different tidal cycles over the Rhine outflow area and suggests the possibility of using numerical modeling, in conjunction with the analysis of spaceborne measurements, for monitoring the oceanic variability in the Rhine outflow area
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2018-04-10
    Description: Comparisons are made between a time series of meteorological surface layer observational data taken on board the R/V Knorr, and model analysis data from the European Centre for Medium-Range Weather Forecasting (ECMWF) and the National Centers for Environmental Prediction (NCEP). The observational data were gathered during a winter cruise of the R/V Knorr, from 6 February to 13 March 1997, as part of the Labrador Sea Deep Convection Experiment. The surface layer observations generally compare well with both model representations of the wintertime atmosphere. The biases that exist are mainly related to discrepancies in the sea surface temperature or the relative humidity of the analyses. The surface layer observations are used to generate bulk estimates of the surface momentum flux, and the surface sensible and latent heat fluxes. These are then compared with the model-generated turbulent surface fluxes. The ECMWF surface sensible and latent heat flux time series compare reasonably well, with overestimates of only 13% and 10%, respectively. In contrast, the NCEP model overestimates the bulk fluxes by 51% and 27%, respectively. The differences between the bulk estimates and those of the two models are due to different surface heat flux algorithms. It is shown that the roughness length formula used in the NCEP reanalysis project is inappropriate for moderate to high wind speeds. Its failings are acute for situations of large air–sea temperature difference and high wind speed, that is, for areas of high sensible heat fluxes such as the Labrador Sea, the Norwegian Sea, the Gulf Stream, and the Kuroshio. The new operational NCEP bulk algorithm is found to be more appropriate for such areas. It is concluded that surface turbulent flux fields from the ECMWF are within the bounds of observational uncertainty and therefore suitable for driving ocean models. This is in contrast to the surface flux fields from the NCEP reanalysis project, where the application of a more suitable algorithm to the model surface-layer meteorological data is recommended
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 28 . pp. 1107-1129.
    Publication Date: 2020-08-04
    Description: On the basis of the collection of individual marine observations available from the Comprehensive Ocean–Atmosphere Data Set, major parameters of the sea state were evaluated. Climatological fields of wind waves and swell height and period, as well as significant wave height and resultant period are obtained for the North Atlantic Ocean for the period from 1964 to 1993. Validation of the results against instrumental records from National Data Buoy Center buoys and ocean weather station measurements indicate relatively good agreement for wave height and systematic biases in the visually estimated periods that were corrected. Wave age, which is important for wind stress estimates, was evaluated form wave and wind observations. The climatology of wave age indicates younger waves in winter in the North Atlantic midlatitudes and Tropics. Wave age estimates were applied to the calculations of the wind stress using parameterizations from field experiments. Differences between wave-age-based and traditional estimates are not negligible in wintertime in midlatitudes and Tropics where wave-induced stress contributes from 5% to 15% to the total stress estimates. Importance of the obtained effects for ocean circulation and climate variability is discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-08-04
    Description: Aspects of the sea level changes in the western Mediterranean Sea are investigated using a numerical tidal model of the Strait of Gibraltar. As a prerequisite, the performance of this model, that is, a two-dimensional, nonlinear, two-layer, boundary-fitted coordinate numerical model based on the hydrostatic approximation on an f plane, is assessed in the simulation of mean and tidal circulation of the Strait of Gibraltar. The model is forced by imposing mean interface and surface displacements as well as M2, S2, O1, and K1 tidal components along the Atlantic and Mediterranean model open boundaries. Model results are compared with observations and with results obtained from a tidal inverse model for the eastern entrance of the Strait of Gibraltar. In general, good agreement is found. A sensitivity study performed by varying different model parameters shows that the model behaves reasonably well in the simulation of the averaged circulation. The model is then used to investigate the climatological sensitivity of the simulated dynamics in the Strait of Gibraltar to changes in the density difference between Atlantic and Mediterranean waters. For this purpose, given a certain density difference between Atlantic and Mediterranean waters, the authors iteratively searched for that sea level drop between the Atlantic and the Mediterranean that fulfills the mass balance of the Mediterranean. It is found that an increase of the density difference leads to an increase of the exchange flow and to an increase of the sea level drop between the two basins. A trend in the sea level drop of O(1 cm yr−1), such as the one observed between 1994 and 1997, is explained by the model as the result of a trend of O(10−4 yr−1) in the relative density difference between the Mediterranean and Atlantic waters. The observed north–south asymmetry in this trend is also captured by the model, and it is found to arise from changes in the along-strait velocity. Results suggest that the dynamics within the Strait of Gibraltar cannot be neglected when sea level changes in the western Mediterranean basin are investigated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...