ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry  (4)
  • 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring  (3)
  • Geological Society of America  (4)
  • American Association for the Advancement of Science
  • Copernicus
  • 2015-2019  (1)
  • 2010-2014  (4)
  • 1980-1984
  • 1965-1969
  • 1925-1929
Collection
  • Articles  (5)
Years
  • 2015-2019  (1)
  • 2010-2014  (4)
  • 1980-1984
  • 1965-1969
  • 1925-1929
  • +
Year
  • 1
    Publication Date: 2021-03-11
    Description: Two approaches to the challenging aim of forecasting impending eruptions are searching for empirical precursors and developing suitable interpretative models. Here we present high-resolution time series of 3He/4He ratios measured in gases emitted from peripheral vents around Mount Etna volcano (Italy), which revealed variations with strong correlations over both time and a broad spatial scale. The main eruptive episodes are preceded by increases in 3He/4He, making this ratio a unique tracer for monitoring volcanic activity. These features strongly reflect pressurization beneath the volcano due to deep magma influx. We propose a pioneering model that relates the changes in 3He/4He to the time-dependent outflow of volatiles from a magmatic chamber subjected to evolution of its internal pressure due to magma injection. At Mount Etna, the model makes it possible to estimate in near real time key parameters such as the rate of magma input and volume change in deep chamber preceding eruptions, and to compare them with geodetic estimations. This represents an unprecedented use of 3He/4He to obtain quantitative information on the physics of magmatic systems. Volcanoes showing changes of 3He/4He ratio in discharged gases due to unrest episodes are widespread in the world, and therefore we envisage extensive future applications of this approach.
    Description: Published
    Description: 499-502
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: volcanic gas geochemistry ; physical modeling ; helium isotopes ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Etna volcano, Italy, hosts one of the major groundwater systems of the island of Sicily. Waters circulate within highly permeable fractured, mainly hawaiitic, volcanic rocks. Aquifers are limited downwards by the underlying impermeable sedimentary terrains. Thickness of the volcanic rocks generally does not exceed some 300 m, preventing the waters to reach great depths. This is faced by short travel times (years to tens of years) and low thermalisation of the Etnean groundwaters. Measured temperatures are, in fact, generally lower than 25 °C. But the huge annual meteoric recharge (about 0.97 kmˆ3) with a high actual infiltration coefficient (0.75) implies a great underground circulation. During their travel from the summit area to the periphery of the volcano, waters acquire magmatic heat together with volcanic gases and solutes through water-rock interaction processes. In the last 20 years the Etnean aquifers has been extensively studied. Their waters were analysed for dissolved major, minor and trace element, O, H, C, S, B, Sr and He isotopes, and dissolved gas composition. These data have been published in several articles. Here, after a summary of the obtained results, the estimation of the magmatic heat flux through the aquifer will be discussed. To calculate heat uptake during subsurface circulation, for each sampling point (spring, well or drainage gallery) the following data have been considered: flow rate, water temperature, and oxygen isotopic composition. The latter was used to calculate the mean recharge altitude through the measured local isotopic lapse rate. Mean recharge temperatures, weighted for rain amount throughout the year, were obtained from the local weather station network. Calculations were made for a representative number of sampling points (216) including all major issues and corresponding to a total water flow of about 0.315 kmˆ3/a, which is 40% of the effective meteoric recharge. Results gave a total energy output of about 140 MW/a the half of which is ascribable to only 13 sampling points. These correspond to the highest flow drainage galleries with fluxes ranging from 50 to 1000 l/s and wells with pumping rates from 70 to 250 l/s. Geographical distribution indicates that, like magmatic gas leakage, heat flow is influenced by structural features of the volcanic edifice. The major heat discharge through groundwater are all tightly connected either to the major regional tectonic systems or to the major volcanic rift zones along which the most important flank eruptions take place. But rift zones are much more important for heat upraise due to the frequent dikes injection than for gas escape because generally when dikes have been emplaced the structure is no more permeable to gases because it becomes sealed by the cooling magma.
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: groundwaters ; volcanic surveillance ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: For the fi rst time a physical model, constrained by monitoring data, is used to derive a quantitative estimate of the evolution in time of magmatic gases that enter a hydrothermal system of an active volcano. The site is Campi Flegrei (west of Naples, in Italy), a caldera that had a large ground infl ation in 1982–1984 followed by 20 yr of subsidence. More recently the behavior of the system has changed: the magmatic component of fumaroles has increased, swarms of earthquakes are more frequent, and the ground has started a general uplifting trend, indicating that the hydrothermal system undergoes repeated injections of magmatic fl uid. Physical simulations of the process show that total injected fl uid masses are the same order of magnitude as those emitted during small to medium size volcanic eruptions, and their cumulative curve highlights a current period of increasing activity. Gas emission studies coupled with physical modeling can be extremely effective in predicting magmatic evolution and eruptive activity at volcanoes.
    Description: Published
    Description: 943-946
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera ; geochemical data ; physical simulations ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Apennines belt of Italy undergoes a northeast-trending extension at a rate of a few millimeters per year that generates moderate to large normal-faulting earthquakes. In this paper, we show that seismicity, large earthquakes, strong gas emission, and belt topography all correlate with a broad, low Vp anomaly in the uppermost mantle. We propose that a thermal/fl uid anomaly in the mantle, associated with sub-lithospheric mantle replacement after delamination of the Adria lithosphere, supports the topography of the belt and drives the extensional tectonics. The mantle anomaly is likely caused by deep fl uids coming from the dehydration of the material subducted during the Europe-Adria collision and the delamination of Adria. Beneath the belt, CO2-rich fl uids are accumulated and occasionally discharged during large normal faulting earthquakes. After the replacement of sub-lithospheric mantle, the temperature at the base of the crust increases causing crustal stretching, anatexis, and strong degassing.
    Description: Published
    Description: 715-718
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: mantle anomaly ; Continental delamination ; the Apennines ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The origins of granites and intrusive rocks have been widely discussed for a couple of centuries, and the way volcanoes work and their magma forms have attracted scientists, naturalists, and laymen since the dawn of humankind. However, shallow igneous intrusions, representing the obvious link between the hidden kingdom of Pluto and the fiery realm of Vulcanus, have been partly overlooked, leading to some lack of communication between “plutonic” and “volcanic” researchers. An effort devoted to heal this breach has been contributed to by the establishment of the LASI conferences (named after laccolith and sill, the main types of shallow igneous intrusions).
    Description: Published
    Description: 161-162
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: upper crustal level intrusions ; emplacement of magma ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...