ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS  (17)
  • EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY  (16)
  • GFZ Data Services  (33)
  • American Physical Society (APS)
  • Institute of Physics
  • 2020-2024  (33)
  • 1
    Publication Date: 2023-01-20
    Description: Abstract
    Description: The geoid for Costa Rica GCR-RSH-2020 (Geoide-Costarricense-Regional Calculado con el Método de Stokes-Helmert) is a 1 arc minute grid computed from terrestrial, marine and satellite gravity data. It is remarkable the comprehensive data cleaning and the use of new terrestrial gravity values which were not included in any other geoid determinations. The GECO global geopotential model was used for the data gap filling. The GCR-RSH-2020 computation was based on the Stokes-Helmert approach developed by the University of New Brunswick, using GOCO05s as background global geopotential model. The resulting geoid is distributed in the WGS84 system (note that between WGS84 and WRS80, there is a shift of approximately 93 cm for Costa Rica). The GCR-RSH-2020 accuracy was assessed by comparing it with GNSS/levelling values on 25 selected benchmarks of the Costa Rica vertical reference system, showing differences with a standard deviation of 0.207 m. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; UNB Stokes-Helmert approach ; Costa Rica ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-04
    Description: Abstract
    Description: GRACE monthly gravity field solutions starting from April 2002 to June 2017 up to degree and order 90 computed with the Celestial Mechanics Approach at AIUB. The time series is an updated of AIUB-RL02 GRACE monthly gravity field time series using Level-1B GRACE data and updated background models. The dataset is created within the framework of the G3P - Global Gravity-based Groundwater Product project (https://www.g3p.eu/), this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870353.
    Description: Other
    Description: Parameters: product_type = gravity_field earth_gravity_constant = 3.986004415000e+14 radius = 6.378137000000e+06 max_degree = 90 norm = fully_normalized tide_system = tide_free errors = formal
    Keywords: International Center for Global Earth Models ; ICGEM ; Gravity Recovery And Climate Experiment ; GRACE ; GRACE-FO ; Level-2 ; SHM ; Spherical Harmonic Model ; Gravitational Field ; Geopotential ; Gravity Field ; Time variable Gravity Field ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-21
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. The Walferdange Underground Laboratory for Geodynamics (WULG) is located at the middle of a long labyrinth of galleries which originally have been established for the commercial extraction of gypsum. Exceptional temperature and humidity stability, the absence of water and human perturbations, distance from the ocean and easy access, were some of the motivations for initially choosing this site for instrumentation and Earth tide research. Instruments to measure the micro deformations produced by the tidal forces have been developed and tested in the Laboratory for more than 30 years. Ground deformations and earthquakes are or have been recorded continuously by means of spring gravimeters, vertical and horizontal pendulums, long base water tube tiltmeters, vertical and horizontal strain meters, short period and broad band seismometers. Meteorological parameters (temperature, humidity and atmospheric pressure), as well as radon gas emissions, are also continuously monitored in various locations within the mine. In 2000, the Minister of Research of the Grand-Duchy of Luxembourg decided to establish a new International Reference Station for Intercomparisons of Absolute Gravimeters (ISIAG). The instrumentation to support the project includes a superconducting gravimeter OSG-CT040, an absolute gravimeter FG5X-216, and other ancillary equipment necessary to support research. In January 2002, a first superconducting gravimeter was installed. The instrument was then stopped in March 2003 due to an abnormally large instrumental drift. In December 2003, it was replaced by a brand-new gravimeter with the same name and which continuously operates since that date. Absolute gravity measurements have been performed on a regular time base to calibrate the superconducting gravimeter and to estimate its instrumental drift. Since 2003, the WULG hosted three European Comparisons and one International Comparison of Absolute Gravimeters. It was the first international comparison outside the walls of the BIPM (Bureau International des Poids et Mesures) in Sèvres (France) where it had traditionally been organized for 30 years.
    Keywords: Superconducting gravimetry ; Earth tides ; Geodynamics ; geophysics ; geodesy ; hydrology ; Absolute gravimetry ; Metrology ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History: 15 June 2020: Initial release of the data. Note that the initial version number is 0002 in order to reflect the consistent data processing of this data set and Version 0002 of the data set Dahle & Murböck (2019, http://doi.org/10.5880/GFZ.GRAVIS_06_L2B). --------------------------------------------------------------------------------------------- Post-processed GRACE/GRACE-FO spherical harmonic coefficients of COST-G RL01 Level-2 GSM products representing an estimate of Earth's gravity field variations during the specified timespan. Post-processing steps comprise: (1) subtraction of a long-term mean field; (2) optionally, decorrelation and smoothing with VDK filter (anisotropic filter taking the actual error covariance information of the underlying GSM coefficients into account, see Horvath et al. (2018)); (3) replacement of coefficients C20, C30 (only for the months starting from 2016/11 and later), C21 and S21 and its formal standard deviations by values estimated from a combination of GRACE/GRACE-FO and Satellite Laser Ranging (SLR); (4) subtraction of linear trend caused by Glacial Isostatic Adjustment (GIA) as provided by a numerical model; (5) insertion of geocenter coefficients (C10, C11, S11); and (6) removal of estimated aliased signal of the S2 tide (161 days period). These coefficients represent signals caused by water mass redistribution over the continents and in the oceans. These post-processed GRACE/GRACE-FO GSM products are denoted as Level-2B products. There are multiple variants of Level-2B products available that differ by the characteristics of the anisotropic filter applied. These variants are distinguishable by the following strings in the product file names: - 'NFIL': Level-2B product is not filtered - 'VDK1': Level-2B product is filtered with VDK1 - 'VDK2': Level-2B product is filtered with VDK2 - 'VDK3': Level-2B product is filtered with VDK3 - 'VDK4': Level-2B product is filtered with VDK4 - 'VDK5': Level-2B product is filtered with VDK5 - 'VDK6': Level-2B product is filtered with VDK6 - 'VDK7': Level-2B product is filtered with VDK7 - 'VDK8': Level-2B product is filtered with VDK8 The individual auxiliary data sets and models used during the post-processing steps mentioned above are provided as well (in the aux_data folder): - 'GRAVIS-2B_2002095-2020091_GFZOP_0600_NFIL_0002.gz': Long-term mean field calculated as unweighted average of the 183 available GFZ RL06 GSM products in the period from 2002/04 up to and including 2020/03. - 'GRAVIS-2B_COSTG_GRACE+SLR_LOW_DEGREES_0002.dat': time series of coefficients C20, C30, C21 and S21 estimated from a combination of GRACE/GRACE-FO and SLR - 'GRAVIS-2B_GIA_ICE-6G_D_VM5a_0002.gz': Model from Peltier et al. (2018) for subtraction of linear trend caused by GIA - 'GRAVIS-2B_COSTG_GEOCENTER_0002.dat': Time series with geocenter coefficients estimated from COST-G RL01 Further information about the Level-2B products and the auxiliary data is provided in the header of the corresponding data files.
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-2 ; Level-2B ; SHM ; Spherical Harmonic Model ; Gravitational Field ; GSM ; Geopotential ; Gravity Field ; Mass ; Mass Transport ; Total Water Storage ; Time Variable Gravity ; Mass Balance ; Gravity Anomaly ; Satellite Geodesy ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2023-04-25
    Description: Abstract
    Description: The META-WT project was designed to perform a 4-weeks seismic experiment in Germany with a dense seismic array of ~400 three-component geophones that covered (1) a 2.5km x 2.5km wind farm area in Brandenburg, Germany, with almost 200 wind turbines (WTs) and a well-studied subsurface structure and (2) a 20-km long radial line from the center of the wind farm with one geophone every half-kilometer. The objective was to capture the spatio-temporal seismic wave-field signature of the wind farm from continuous recordings of ambient noise. Due to the dense interstation distance and proposed geometry the experiment allowed for analyzing both small-scale wave field characteristics at an unprecedented spatial resolution and the longer distance radiation pattern of the wind farm. Waveform data is available from the GEOFON data centre, under network code XF, and is embargoed until Jan 2025.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~400G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-05-11
    Description: Abstract
    Description: The Illgraben is a 10 km² steep side valley located in Switzerland. This active debris flow catchment supplies 5-15% of the total sediment load of the Rhône River upstream of Lake Geneva. The 30-80° steep catchment slopes host frequent rock falls and slides. From 2012 to 2014, a network of up to ten Nanometrics Trillium Compact 120s broadband seismometers, sampled by Digos DataCube³ext loggers at 200 Hz (and later by centaur), was deployed in and around the catchment to monitor distributed geomorphic activity. Waveform data is available from the GEOFON data centre, under network code 9J, and is fully open.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~100G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-12
    Description: Abstract
    Description: During the 2018 “Mackenzie Delta Permafrost Field Campaign” (mCan2018), a test campaign within the “Modular Observation solutions for Earth Systems” (MOSES) program, ambient seismic noise recordings at the sea bottom were acquired along two 300 m long transects from the shoreline to shallow marine area close to Tuktoyaktuk Island (Canada). In total, 21 measurements were taken. Raw data is provided in proprietary “Cube” format and standard mseed format.
    Keywords: MOSES ; Modular Observation solutions for Earth Systems ; submarine permafrost ; ambient seismic noise ; H/V measurements ; Mackenzie Delta ; PASSIVE_SEISMIC 〉 STATIONS ; SENSOR 〉 OCEAN_BOTTOM_SEISMOMETER ; SENSOR 〉 3-C ; MARINE ; MINISEED_DATA_FORMAT ; SEISMIC_WAVEFORM_DATA ; EARTH SCIENCE 〉 CRYOSPHERE 〉 FROZEN GROUND 〉 PERMAFROST ; EARTH SCIENCE 〉 OCEANS 〉 MARINE GEOPHYSICS ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-10-12
    Description: Abstract
    Description: The Atmosphere and Ocean non-tidal De-aliasing Level-1B (AOD1B) product is widely used in satellite gravimetry to correct for transient effects of atmosphere-ocean mass variability that would otherwise alias into monthly-mean global gravity fields. The most recent release is based on the global ERA5 reanalysis and ECMWF operational data together with simulations from the general ocean circulation model MPIOM consistently forced with fields of the same atmospheric data-set. As background models are inevitably imperfect, residual errors due to aliasing remain. Accounting for the uncertainties of the background model data has, however, proven to be a useful approach to mitigate the impact of residual aliasing. In light of the changes made in the new release of AOD1B, previous uncertainty assessments are deemed too pessimistic and have been revised in the new time-series of true errors: AOe07. One possible way to include the uncertainty information of background models in gravity field estimation or simulation studies is through the computation and application of a variance-covariance matrix that describes the spatio-temporal error characteristics of the background model. The AOe07 variance-covariance-matrix provides this information through (1) a fully populated matrix up to degree and order 40 as well as (2) a diagonal matrix up to degree and order 180.
    Keywords: Satellite Gravimetry ; De-Aliasing ; Mass Variability ; Error Estimation ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; EARTH SCIENCE SERVICES 〉 MODELS 〉 ATMOSPHERIC GENERAL CIRCULATION MODELS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 OCEAN GENERAL CIRCULATION MODELS (OGCM)/REGIONAL OCEAN MODELS ; Models/Analyses 〉 REANALYSIS MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-10-30
    Description: Abstract
    Description: This data set contains measurements of an underground hydraulic fracture experiment at Äspö Hard Rock Laboratory in May and June 2015. The experiment tested various injection schemes for rock fracture stimulation and monitored the resulting seismicity. The primary purpose of the experiment is to identify injection schemes that provide rock fracturing while reducing seismicity or at least mitigate larger seismic events. In total, six tests with three different injection schemes were performed in various igneous rock types. Both the injection process and the accompanied seismicity were monitored. For injection monitoring, the water flow and pressure are provided and additional tests for rock permeability. The seismicity was monitored in both triggered and continuous mode during the tests by high-resolution acoustic emission sensors, accelerometers and broadband seismometers. Both waveform data and seismicity catalogs are provided.
    Keywords: hydraulic experiments ; broadband seismic data ; acoustic emissions ; Äspö Hard Rock Laboratory ; borehole images ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 ROCKS/MINERALS/CRYSTALS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-12-01
    Description: Abstract
    Description: Operationally combined monthly gravity fields of the GRACE-FO satellite mission in spherical harmonic representation (Level-2 product) generated by the Combination Service for Time-variable Gravity Fields (COST-G; Jäggi et al. (2020):http://dx.doi.org/10.1007/1345_2020_109), a product center for time-variable gravity fields of IAG's International Gravity Field Service (IGFS). COST-G_GRACE-FO_RL01_OP is a combination of AIUB-GRACE-FO_op, GFZ-RL06 (GFO), GRGS-RL05 (unconstrained solution), ITSG-Grace_op, LUH-GRACE-FO, CSR-RL06 (GFO) and JPL-RL06 (GFO). The original time-series were provided by the analysis centers (ACs) and partner analysis centers (PCs) of COST-G.
    Description: Methods
    Description: COST-G performs a harmonization and quality control of the individual input solutions of the COST-G ACs and PCs. The combination of COST-G_GRACE-FO_RL01_OP is then performed applying variance component estimation on the solution level (Jean et al., 2018): https://doi.org/10.1007/s00190-018-1123-5). The resulting COST-G combined gravity fields are validated assessing their signal and noise content in the spectral and spatial domain (Meyer et al., 2019: https://doi.org/10.1007/s00190-019-01274-6) and by the COST-G Product Evaluation Group (PEG).
    Keywords: COST-G ; IGFS Product Center ; Combined solutions ; Time variable gravity ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-12-01
    Description: Abstract
    Description: Combined monthly gravity fields of the GRACE satellite mission in spherical harmonic representation (Level-2 product) generated by the Combination Service for Time-variable Gravity Fields (COST-G; Jäggi et al. (2020):http://dx.doi.org/10.1007/1345_2020_109), a product center for time-variable gravity fields of IAG's International Gravity Field Service (IGFS). COST-G GRACE RL01 is a combination of AIUB-RL02, GFZ-RL06, GRGS-RL04 (unconstrained solution), ITSG-GRACE2018, and CSR-RL06. The original time-series were provided by the analysis centers (ACs) and partner analysis centers (PCs) of COST-G.
    Description: Methods
    Description: COST-G performs a harmonization and quality control of the individual input solutions of the COST-G ACs and PCs. The combination of COST-G GRACE RL01 is then performed applying variance component estimation on the solution level (Jean et al., 2018): https://doi.org/10.1007/s00190-018-1123-5). The resulting COST-G combined gravity fields are validated assessing their signal and noise content in the spectral and spatial domain (Meyer et al., 2019: https://doi.org/10.1007/s00190-019-01274-6) and by the COST-G Product Evaluation Group (PEG).
    Keywords: COST-G ; IGFS Product Center ; Combined solutions ; Time variable gravity ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Language: English
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-12-06
    Description: Abstract
    Description: The Northeast Atlantic (NEA) region has long been a subject of interest due to its complex geological history, particularly regarding the interaction between the Iceland plume and the lithospheric plates. In this data publication, we present a comprehensive three-dimensional structural and density model of the NEA crust and uppermost mantle, consolidating and integrating a wide range of previously fragmented data sets. Our model highlights the influence of the Iceland plume on the region's geological evolution, shedding light on the mechanisms that facilitated the continental breakup between Europe and Laurentia during the earliest Eocene period. The whole workflow and methods are described in Gomez Dacal et al. (2023) and its Supplementary Information.
    Description: TechnicalInfo
    Description: Model coordinates: Model coordinates are given in Equidistant Conic North Atlantic (ECNA): • Projection: Equidistant conic • 1st Standard parallel: 80 • 2st Standard parallel: 70 • Central meridian: -9 • Origin Latitude: 90 • False easting: 805000 • False northing: 3140000 Model dimensions: The horizontal dimensions of the model are 2000 km x 2500 km. The total depth of the model is 300 km. Model bounds in ECNA: Easting: from 0 m to 2000000 m Northing: from 0 m to 2500000 m Model bounds in longitude/latitude (WGS 84): Longitude: from -61° to 54° Latitude: from 60° to 84° Extended model bounds in ECNA: Easting: from -500000 m to 2500000 m Northing: from -500000 m to 3000000 m File description: We provide a set of grid files that collectively allow recreating the 3D geological model which covers the North East Atlantic Ocean and its adjacent areas, including the easternmost area of Greenland, the western coast of Norway, Iceland and Svalbard. The provided structural model consists of 11 units including: (i) sea water and ice; (ii) two layers of sedimentary cover: a shallow and a deep unit; (iii) five crystalline crust units composed of an upper and a lower continental crustal, an oceanic crust and two units of lower crustal bodies (LCB); (iv) two lithospheric mantle units: a continental and an oceanic layer. The structural model has a dimension of 2000 km x 2500 km x 300 km and is provided in regularly spaced grids of 10 km, which are identical for all model units. For the gravity modelling the model limits have been extended by 500 km horizontally in all directions including constraining information for the extended region. The extended model horizons are represented in the density model. Additionally, we provide gravity data, density voxel cube and related tomography data. Files are subdivided into five categories: 1. Structural interface 2. Density model horizon 3. Gravity data 4. Density voxel cube 5. Tomography data
    Keywords: North East Atlantic ; 3D structural model ; georeferenced grids ; crustal structure ; subsurface geology ; layer thickness ; crystalline crust ; lithospheric mantle ; gravity ; tomography ; density ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ANOMALIES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 SEISMIC PROFILE 〉 SEISMIC BODY WAVES ; EARTH SCIENCE SERVICES 〉 MODELS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-01-09
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. Raw gravity and local atmospheric pressure records sampled at second and the same records decimated at 1‐minute samples are provided as Level 1 products of the IGETS network for the Pecný station (https://doi.org/10.5880/igets.pe.l1.001). The corrected 1-minute samples have been prepared by operators of the station, from raw decimated 1-minute samples, by following steps: 1) The 1-minute samples have been used to compute residual gravity signal by using the SG calibration factor and applying corrections from tides, atmosphere and polar motion. 2) These data have been associated with auxiliary data from the SG (Dewar Pressure, Tx/Ty balance, Neck temperature etc.) and information from LOG files. 3) Gaps have been created in the residual gravity signal according to auxiliary data and log files. Moreover, gaps were created also for large disturbances, where the residual signal exceeding 20 nm/s^2. 4) Gaps up to 24 hours were filled by a linear fit. 5) Spikes exceeding 5 nm/s^2 were removed by using TSOFT. 6) Steps were applied only in exceptional cases in accordance with LOG files. 7) The cleaned residual signal was converted to corrected 1-minute samples by using the same corrections and the calibration factor as used in 1). Therefore, the corrected 1-minute signal is again in units as the raw data (Volt). Note, since 31 October 2017, the OSG-050 is running at new site (NGL - new gravimetric laboratory at Pecný) according to https://doi.org/10.5880/igets.pe.l1.001.
    Keywords: Superconducting gravimetry ; Earth tides ; Geodynamics ; IGETS ; International Geodynamics and Earth Tide Service ; geophysics ; geodesy ; hydrology ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; environment 〉 geophysical environment ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 GRAVITY STATIONS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SGO ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Gravimeters 〉 SUPERCONDUCTING GRAVIMETER ; science 〉 geography 〉 geodesy
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-06
    Description: Abstract
    Description: Operational GRACE Follow-On monthly gravity field solutions starting from June 2018 up to degree and order 96 computed with the Celestial Mechanics Approach at AIUB (release 02). The time series is a loose continuation of AIUB-RL02 GRACE monthly gravity field time series and is an update of the operational GRACE Follow-On monthly gravity field time series (https://doi.org/10.5880/ICGEM.2020.001) using Level-1B GRACE Follow-On data and operational accelerometer transplant data from TUG (Institute of Geodesy, TU Graz, Working Group Theoretical Geodesy and Satellite Geodesy) and updated modelling strategies concerning data screening and weighting. The time series is reprocessed starting with June 2018. The dataset is created within the framework of the G3P project (https://www.g3p.eu/), this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870353. The operational solution of release 02 provides a complete time series of GRACE Follow-on data derived monthly gravity field solutions, is regularly updated with new monthly solutions and features a consistent processing with an advanced noise modelling of GRACE Follow-On data. It is recommened for usage. It is strongly recommended to use release 02 and discontinue using release 01.
    Keywords: Gravity Recovery And Climate Experiment Follow-On (GRACE-FO) ; Level-2 ; SHM ; Spherical Harmonic Model ; Gravitational Field ; Geopotential ; Gravity Field ; Time variable Gravity Field ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-06
    Description: Abstract
    Description: Operational GRACE Follow-On monthly gravity field solutions starting from June 2018 up to degree and order 96 computed with the Celestial Mechanics Approach at AIUB. The time series is a loose continuation of AIUB-RL02 GRACE monthly gravity field time series using Level-1B GRACE Follow-On data and operational accelerometer transplant data from IfG (Institute of Geodesy, TU Graz, Working Group Theoretical Geodesy and Satellite Geodesy) and updated background models. The dataset is created within the framework of the G3P project (https://www.g3p.eu/), this project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 870353.
    Keywords: Gravity Recovery And Climate Experiment Follow-On (GRACE-FO) ; Level-2 ; SHM ; Spherical Harmonic Model ; Gravitational Field ; Geopotential ; Gravity Field ; Time variable Gravity Field ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The main aim of this project is to investigate the crustal and mantle structure beneath the Longmenshan fault zone in China, based on a very dense passive seismology profile. The Longmenshan fault zone hosted the Wenchuan earthquake of May 2008 with a magnitude (Mw) of 7.9 and the Lushan earthquake of June 2013 with a magnitude (Mw) of 6.6. It is planned to mainly use the receiver-function method, to investigate the crustal and mantle structure beneath the Longmenshan fault zone. Waveform data are available from the GEOFON data center, under network code 4O, and are embargoed until February 2024.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Earthquake ; Receiver functions ; Crustal and mantle structure ; China ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-02-23
    Description: Abstract
    Description: Deployment of 10 seismometers for monitoring the induced seismicity of the Lacq gas field, France. This project focus on the analysis of the seismicity induced by anthropogenic activities (gas extraction and wastewater injection) related to the gas field, located in Lacq, France. We aim to answer the following questions: which part of the Lacq induced seismicity is generated by wastewater injection? by the mechanical evolution of the reservoir depletion? Is the seismicity confined to the (minor) faults of the reservoir or can regional tectonic faults be activated, generating large earthquakes? What scenarios of ground shaking and damages could be expected in case of a major event in the area? What is the associated seismic hazard and risk?
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; induced seismicity ; Lacq gas field ; waste water injection ; temporary seismological network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The network consists of a vertical borehole array equipped with 3C sensors (geophones) for the analysis of swarm earthquakes in the Western Bohemia / Vogtland area located in the German/Czech border region. A surface array is completing the 3D observation of the wave field with 3C sensors (geophones). Waveform data is available from the GEOFON data centre, under network code 6A, and is embargoed until FEB 2035.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; Germany ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~15T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The PESO array provides two weeks of local seismological observation in the vicinity of the IPOC (Plate Boundary Observatory Network Northern Chile) station Patache (CX.PATCX) to investigate the subsurface structure and the ambient seismic field. Waveform data is available from the GEOFON data centre, under network code 7F, and is fully open.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~100G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-02-22
    Description: Abstract
    Description: This field campaign aimed at densifying the station coverage on the Armutlu Peninsula in the eastern Sea of Marmara. The Armutlu peninsula is directly crossed by the Armutlu fault, located roughly ~50 km away from the Istanbul metropolitan region. The main objective of this experiment is to characterize the seismic and aseismic deformation of this region. Waveform data are available from the GEOFON data centre, under network code 9P.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~600G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2024-03-21
    Description: Abstract
    Description: To seismically monitor the GEOREAL hydraulic stimulation experiment, that took place during the period 6-15 November 2023, a station network was set up in the vicinity of the Kontinentale Tiefbohrung/ KTB deep crustal lab near Windischeschenbach, Germany. The network comprised both surface stations, shallow borehole (25-150 m deep) stations as well as a borehole chain at 2000 m depth in the main borehole, ca. 200m apart from the pilot borehole. First stations were installed in early 2022 and removed in mid-2024. A total of 600 m³ of water was injected into the 4 km deep pilot borehole (KTB-VB, 12° 7.16' E, 49° 48.98' N, 513.418 m above NN ). This volume was injected through a stuck packer in the cased borehole into the open borehole section a depth of 3.85-4 km. No induced seismicity was observed during the injection experiment. Waveform data is available from the GEOFON data centre, under network code 4R, and is fully open.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; MiniSEED ; Seismometers ; GIPP ; Local network
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-03-25
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. The SG site “Serrahn” is located in the TERENO Observatory in the nort-eastern German lowlands. The observatory contributes to investigating the regional impact of climate and land use change. At the IGETS site Serrahn, the mean annual temperature is 8.8 °C and mean annual precipitation is 591 mm. The land cover is mainly characterized as a mixed forest, dominated by European beech and Scots pine. Influenced by the last glaciation in an outwash close to the terminal morraine, the uppermost soil layer of the site consists of aeolian sands up to a depth of 450 cm, followed by coarser sandy material with intercalated till layers. The unconfined groundwater level is at about 14 m below surface. There is hardly any human activity (e.g., traffic) at this quiet forest site. The nearest town is Neustrelitz at a distance of 5 km. Since December 2017, the superconducting gravimeter iGrav-033 is operated outdoors at this forest location (Latitude: 53.3392 N, Longitude: 13.17413 E, Elevation: 79.60 m). The gravimeter is installed in a dedicated field enclosure on top of a concrete pillar with an area of 1.1 m x 1.1 m at an elevation of 0.80 m above the terrain surface. The pillar has been build to a depth of 2.00 m below the surface. One additional pillar (also 1.1 m x 1.1 m, at surface level) is located right next to the iGrav installation and is used for repeated observations with absolute gravimeters (AG). At the site, meteorological (precipitation, air temperature, humidity, air pressure) and hydrological (groundwater, soil moisture, sapflow, throughfall) parameters are monitored by different sensors. Raw gravity and local atmospheric pressure records sampled at second intervals and the same records decimated at 1‐minute samples are provided as Level 1 products to the IGETS network.
    Keywords: Superconducting gravimetry ; Earth tides ; Geodynamics ; IGETS ; International Geodynamics and Earth Tide Service ; geophysics ; geodesy ; hydrology ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; environment 〉 geophysical environment ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 GRAVITY STATIONS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SGO ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Gravimeters 〉 SUPERCONDUCTING GRAVIMETER ; science 〉 geography 〉 geodesy
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-04-11
    Description: Abstract
    Description: The Eifel Large-N Seismic Network is a concentric network of about 80km aperture around the Laacher See. Instrumentation consists of broad band seismometers, short period instruments (1Hz eigenfrequency) and 4.5Hz geophones. While the broadband and short period stations cover the area rather homogeneously for about 12 month, the geophone stations were moved after 6 month from a layout focussed on the closer vicinity of the Laacher See onto a line crossing the network from south-west to north-east with a dense station spacing. The goal of the experiment is the structural investigation of the feeding system of the East Eifel and a detailed study of the tectonic and volcanic seismic activity in this area. Waveform data is available from the GEOFON data centre, under network code 6E.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Local network ; Temporary ; Large-N ; Volcano ; Velocity ; Seismometers ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-04-26
    Description: Abstract
    Description: A network of 210 continuously running, digital seismic stations equipped with short-period sensors (200 stations) and broadband sensors (10 stations) was deployed in an area of ~8 x ~6 km in the Irish Midlands (north of Collinstown) for a time period of ~6 weeks. The network was part of the EU project VECTOR (https://vectorproject.eu) aiming to investigate – among others – possible solutions for least invasive forms of exploration for mineral resources. In this context the collected data was mainly used to derive a 3D model of the subsurface (seismic shear wave velocity) using ambient noise tomography (down to ~1.5km depth). We thank all field crews for their excellent work rendered to the project. Waveform data is available from the GEOFON data centre, under network code 7W, and is embargoed until Feb 2025.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Seismometers ; Geophone[g] ; Velocity ; MiniSEED ; Passive seismic ; GIPP ; MESI ; Raw[g] ; Local network ; Vertical component[g] ; Three-component[g] ; Land[g] ; Geophysics ; Natural
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-04-30
    Description: Abstract
    Description: The model named EHFM_Earth_7200 was derived by layer-based forward modeling technique in ellipsoidal harmonics, the maximum degree of this model reaches 7200. The relief information was provided by Earth2014 relief model. EHFM_Earth_7200 provides very detailed (~3 km) information for the Earth’s short-scale gravity field, and it is expected to be able to augment or refine existing global gravity models. To meet the existing standard, here we provide spherical harmonic coefficients, which are transformed from original ellipsoidal harmonic coefficients. The maximum degree of the spherical harmonic coefficients is 7300.
    Description: Methods
    Description: - Compute global equiangular reduced latitude grids from degree 10800 Earth2014 SHCs and expanded these grids into EHCs. The grids are band-limited in spherical harmonics instead of in ellipsoidal harmonics so extra degrees beyond the truncation degree are also calculated. We obtained surface EHCs up to degree and order (d/o) 11000 but truncated them to d/o 7200. - Calculate potential models of three layers (crust, water and ice) separately from Earth2014 reliefs by new developed ellipsoidal harmonic forward modeling formulas. The densities of the three layers are 2670, 1030, and 917 kg/m^3. - Sum up results from the three layers and obtain EHFM_Earth_7200 ellipsoidal harmonic coefficients. - Convert ellipsoidal harmonic coefficients to spherical harmonic coefficients. The maximum degree of the spherical harmonic coefficients is 7300.
    Keywords: Gravity forward modeling ; Ellipsoidal topographic potential ; Spectral domain ; Layer concept ; ICGEM ; geodesy ; topographic gravity field model ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-05-02
    Description: Abstract
    Description: The Uruguayan gravimetric quasi-geoid model UruQGeoide110 was calculated by the Military Geographic Institute (IGM) in 2023. The extent is from 29.5° S to 35.5° S in latitude, and 52.5° W to 59.5° W in longitude, covering parts of Argentina and Brazil, with a grid resolution of 1´ x 1´. The geodetic reference system is SIRGAS ROU-98 (the reference ellipsoid is GRS80). The model is a combination of the EIGEN-6C4 geopotential model up to degree and order of 720, 10,429 land gravimetric stations plus 10,089 free air gravity anomalies in marine areas, based on the DTU13 model. The terrain data at the final 90 m resolution was taken from a 2017 Lidar survey in Uruguay with a 2.5 m initial resolution and SRTM (V2) for the external terrestrial data. The DT18 bathymetry model was used for the marine areas. Due to the total terrain data points (about 104 million), the overall area was divided into 4 overlapped blocks in the framework of the remove-compute-restore procedure. The reduced height anomalies were computed from the reduced gravity anomalies with Stokes 1D FFT and Wong Gore´s kernel modification (170-180 degrees) and the quasi-geoid model was finally obtained by adding back the residual terrain model effects and the contribution of the global geopotential model. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; Wong-Gore Stokes kernel modification ; Uruguay ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-05-02
    Description: Abstract
    Description: The official Uruguayan geoid model, called IGM110, was calculated by the Military Geographic Institute (IGM) in 2023 and consists of a grid of 1´ x 1´ geoidal undulations with a total of 151,981 points. The geodetic reference system is SIRGAS ROU-98 (the reference ellipsoid is GRS80). The extent is from 29.5° S to 35.5° S in latitude, and 52.5° W to 59.5° W in longitude, covering parts of Argentina and Brazil. The model is a combination of the EIGEN-6C4 geopotential model up to degree and order of 720, 10,429 land gravimetric stations plus 10,089 free air gravity anomalies in marine areas, based on the DTU13 model. The terrain data at the final 90 m resolution was taken from a 2017 Lidar survey in Uruguay with a 2.5 m initial resolution and SRTM (V2) for the external terrestrial data. The DT18 bathymetry model was used for the marine areas. Due to the total terrain data points (about 104 million), the overall area was divided into 4 overlapped blocks in the framework of the remove-compute-restore procedure. The reduced height anomalies were computed from the reduced gravity anomalies with Stokes 1D FFT and Wong Gore´s kernel modification (170-180 degrees). After adding back the residual terrain model effects and the contribution of the global geopotential model, the obtained quasi-geoid was transformed into a geoid model via Bouguer anomalies, even if the difference between the two models is just a few mm. A comparison with 51 GNSS/levelling stations shows a standard deviation of 10 cm. The resulting geoid was also adapted by a bias and a tilt to the national vertical system, Cabildo 1948, by fitting GNSS/levelling observations, with a mean of 1 cm and a standard deviation of 7 cm. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; Wong-Gore Stokes kernel modification ; Uruguay ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-05-02
    Description: Abstract
    Description: The Uruguayan gravimetric geoid model UruGeoide110 was calculated by the Military Geographic Institute (IGM) in 2023. The extent is from 29.5° S to 35.5° S in latitude, and 52.5° W to 59.5° W in longitude, covering parts of Argentina and Brazil, with a grid resolution of 1´ x 1´. The geodetic reference system is SIRGAS ROU-98 (the reference ellipsoid is GRS80). The model is a combination of the EIGEN-6C4 geopotential model up to degree and order of 720, 10,429 land gravimetric stations plus 10,089 free air gravity anomalies in marine areas, based on the DTU13 model. The terrain data at the final 90 m resolution was taken from a 2017 Lidar survey in Uruguay with a 2.5 m initial resolution and SRTM (V2) for the external terrestrial data. The DT18 bathymetry model was used for the marine areas. Due to the total terrain data points (about 104 million), the overall area was divided into 4 overlapped blocks in the framework of the remove-compute-restore procedure. The reduced height anomalies were computed from the reduced gravity anomalies with Stokes 1D FFT and Wong Gore´s kernel modification (170-180 degrees). After adding back the residual terrain model effects and the contribution of the global geopotential model, the obtained quasi-geoid was transformed into a geoid model via Bouguer anomalies, even if the difference between the two models is just a few mm. A comparison with 51 GNSS/levelling stations shows a standard deviation of 10 cm. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Fast Fourier Transform ; Wong-Gore Stokes kernel modification ; Uruguay ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-05-21
    Description: Abstract
    Description: 15 station seismological network spanning the North Anatolian Fault Zone (NAFZ) toward the east of Ismetpasa to detect possible microseismicity and slow slip events in the creeping section of the NAFZ. The network consists of 10 three component 4.5 Hz geophone sensors in combination with DATACUBE3 recorders and five Trillium Horizon 120 broadband seismometers connected to Centaur data loggers. Geophone stations are buried at shallow depths while two of the broadband seismometers are installed in-house at basement level. The other three Trillium sensors are posthole installations in the field. The seismic network spans the same part of the NAFZ that is also monitored by a GNSS network installed by École Normale Supérieure (ENS) with two broadband seismometers being co-located with GNSS sensors. In addition, a set of creepmeters is installed close to Ismetpasa at the western end of the seismological network. The aim of the seismological study is twofold: a) Finding possible seismological expressions of the slow slip transients visible in the GNSS data and b) detecting microseismicity that is not listed in the regional Turkish earthquake catalogs based on seismological networks with much larger station spacing in the study area. The obtained results will hopefully give new insights into the seismological characteristics of a segment of a major continental transform fault capable of hosting M7 events but showing at the same time transient slow slip events and seismic creep.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: ~307GB(still growing)
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-05-21
    Description: Abstract
    Description: Continuous passive seismic monitoring is carried out between September 2017 and December 2021 around the Theistareykir geothermal area located at the intersection between the active Northern Rift Zone and the active Tjörnes Fracture Zone in NE Iceland. This experiment, in addition to an extensive gravimetric monitoring survey, was conducted in the framework of the MicroGraviMoTiS project for a better understanding of the structures and behavior of the local geothermal system under exploitation and for further development of local and regional geothermal resources. 14 broadband stations (Trillium C-120s) recording at 200 Hz comprise the temporary network, that is installed to complement stations of the national seismological network of IMO and stations of Landsvirkjun, the National Power Company of Iceland. The stations were placed in and around the producing zone to primarily retrieve local natural and/or induced seismicity associated to the injection and production operations. The retrieved seismic data is also used for obtaining a representative 1D velocity model of the region, for computing a seismic ambient noise tomography, and for monitoring the system using coda wave interferometry techniques. Funding for this project is provided by the German Federal Ministry for Education and Research (MicroGraviMoTiS , BMBF, grant: 03G0858A), the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences and Landsvirkjun. Waveform data are available from the GEOFON data center, under network code 3P, and are embargoed until December 2025.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI ; Volcano
    Type: Dataset , Seismic Network
    Format: 783GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-05-28
    Description: Abstract
    Description: From June to August 2021 the DEEPEN project deployed a dense seismic network across the Hengill geothermal area in southwest Iceland to image and characterize faults and high-temperature zones at high resolution. The nodal network comprised 498 geophone nodes spread across the northern Nesjavellir and southern Hverahlíð geothermal fields and was complemented by an existing permanent and temporary backbone seismic network of a total of 44 short-period and broadband stations. In addition, two fiber optic telecommunication cables near the Nesjavellir geothermal power plant were interrogated with commercial DAS-interrogators. The here published dataset contains a subset of the downsampled DAS-recordings from the western fiber optic array. The original data were downsampled from 2000Hz to 250 Hz using the das-convert tool (https://doi.org/10.5880/GFZ.2.1.2021.005). Note that there was a problem with the GNSS timing in the original recorded data which caused significant temporal drift. This has mostly been corrected in the downsampled data, but some residual timing error may exist. Waveform data is available from the GEOFON data centre, under network code 1D, and is fully open.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; DAS
    Type: Dataset , Seismic Network
    Format: 1700GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2024-06-21
    Description: Abstract
    Description: This data repository contains electrical and seismic tremor measurements, thermal infrared imagery, atmospheric conditions and information on plume heights that were recorded and collected during the 2021 Tajogaite eruption on La Palma, Canary Islands, Spain. The 2021 Tajogaite eruption lasted from 19 September until 13 December 2021. The "data description" file provides more detailed information on each dataset and the way the data is formatted. The electrical data was recorded using a Biral Thunderstorm Detector BTD-200. This sensor was installed at two consecutive locations: BTD1 (28.635°N, 17.876389°W) recorded from 11-26 October 2021 and BTD2 (28.602365°N, 17.880475°W) recorded from 27 October 2021 until the end of the eruption. The volcanic tremor measurements were recorded at seismic station PLPI (28.5722°N, 17.8654°W), which was operated by the Instituto Volcanológico de Canarias. Here we provide the seismic tremor amplitudes within the Very Long Period (0.4-0.6 Hz) and the Long Period (1-5 Hz) frequency bands between 10 September and 20 December 2021. Thermal infrared videography of the explosive volcanic activity was done using an InfraTec HD thermal infrared (TIR) video camera. This camera was installed in El Paso (28.649361°N, 17.882279°W) and recorded almost continuously between 3-8 November 2021. Here we provide individual thermal infrared frames. Atmospheric conditions were obtained from weather balloon measurements at Güímar (station nr. 60018) on Tenerife, which were provided by the University of Wyoming, Department of Atmospheric Science (http://weather.uwyo.edu/). In addition, atmospheric data was collected from ground-based weather stations at El Paso and Roque de los Muchachos, which were operated by the State Meteorological Agency (AEMET) of Spain on La Palma. Information on the volcanic plume heights was obtained from both the Toulouse Volcanic Ash Advisory Center (https://vaac.meteo.fr/volcanoes/la-palma/) as well as the Plan de Emergencias Volcánicas de Canarias.
    Keywords: Volcanic lightning ; Volcanic ash ; Biral Thunderstorm Detector ; Electrostatic measurements ; 2021 Tajogaite eruption ; Cumbre Vieja volcanic ridge ; La Palma ; Canary Islands ; Movement of charge ; Volcanic plume height ; Ice nucleation ; Lava fountaining ; Strombolian activity ; Ash emission ; Gas jetting ; Explosive volcanic activity ; Seismic tremor ; Thermal infrared rise diagram ; Isotherms ; Principal Component Analysis (PCA) ; Very Long Period (VLP) ; Long Period (LP) ; Balloons/Rockets 〉 RADIOSONDES ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC ELECTRICITY 〉 ELECTRIC FIELD ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC ELECTRICITY 〉 LIGHTNING ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE MAGNITUDE/INTENSITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY 〉 ERUPTION DYNAMICS 〉 ASH/DUST DISPERSION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY 〉 ERUPTION DYNAMICS 〉 VOLCANIC EXPLOSIVITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY 〉 VOLCANO MAGNITUDE/INTENSITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY 〉 VOLCANO PREDICTIONS ; EARTH SCIENCE 〉 SPECTRAL/ENGINEERING 〉 INFRARED WAVELENGTHS 〉 THERMAL INFRARED ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 GEOLOGICAL ADVISORIES 〉 VOLCANIC ACTIVITY ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 WEATHER/CLIMATE ADVISORIES 〉 DUST/ASH ADVISORIES ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 WEATHER/CLIMATE ADVISORIES 〉 PRESENT WEATHER ; geological process 〉 volcanism 〉 volcanic eruption ; hazard 〉 natural hazard ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 VOLCANO OBSERVATORY ; In Situ Land-based Platforms 〉 WEATHER STATIONS/NETWORKS 〉 METEOROLOGICAL STATIONS ; In Situ Land-based Platforms 〉 WEATHER STATIONS/NETWORKS 〉 WWLLN ; In Situ/Laboratory Instruments 〉 Electrical Meters ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers 〉 SEISMOMETERS ; monitoring 〉 seismic monitoring ; physical process 〉 transport (physics) 〉 mass transport (physics) ; physical property 〉 electricity ; science 〉 natural science 〉 earth science 〉 geology 〉 volcanology ; science 〉 natural science 〉 earth science 〉 geophysics ; science 〉 physical science 〉 physics 〉 atmospheric physics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2024-07-01
    Description: Abstract
    Description: The ability to use geothermal resources to generate heat in urban areas where the demand is greatest has the potential to significantly reduce our reliance on fossil fuels, and to support sustainable energy policies. Potential deep geothermal resources in challenging, lower-enthalpy EU settings remain poorly understood and largely untapped. The GEO-URBAN project aims to explore the potential for low enthalpy geothermal in urban environments. The project will focus on two target locations – Dublin, Ireland and Vallès, Spain – and will provide a feasibility analysis for the commercial development of deep geothermal resources in these regions. The overall objective of GEO-URBAN is to identify the geothermal resources available in two challenging urban locations and to demonstrate a commercialisation strategy that has the potential to be adapted in other similar locations. Waveform data is available from the GEOFON data centre, under network code 1V, and is {fully open.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED
    Type: Dataset , Seismic Network
    Format: 114.4GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...