ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-08-02
    Description: Predicting the onset, style and duration of explosive volcanic eruptions remains a great challenge. While the fundamental underlying processes are thought to be known, a clear correlation between eruptive features observable above Earth’s surface and conditions and properties in the immediate subsurface is far from complete. Furthermore, the highly dynamic nature and inaccessibility of explosive events means that progress in the field investigation of such events remains slow. Scaled experimental investigations represent an opportunity to study individual volcanic processes separately and, despite their highly dynamic nature, to quantify them systematically. Here, impulsively generated vertical gas-particle jets were generated using rapid decompression shock-tube experiments. The angular deviation from the vertical, defined as the “spreading angle”, has been quantified for gas and particles on both sides of the jets at different time steps using high-speed video analysis. The experimental variables investigated are 1) vent geometry, 2) tube length, 3) particle load, 4) particle size, and 5) temperature. Immediately prior to the first above-vent observations, gas expansion accommodates the initial gas overpressure. All experimental jets inevitably start with a particle-free gas phase (gas-only), which is typically clearly visible due to expansion-induced cooling and condensation. We record that the gas spreading angle is directly influenced by 1) vent geometry and 2) the duration of the initial gas-only phase. After some delay, whose length depends on the experimental conditions, the jet incorporates particles becoming a gas-particle jet. Below we quantify how our experimental conditions affect the temporal evolution of these two phases (gas-only and gas-particle) of each jet. As expected, the gas spreading angle is always at least as large as the particle spreading angle. The latter is positively correlated with particle load and negatively correlated with particle size. Such empirical experimentally derived relationships between the observable features of the gas-particle jets and known initial conditions can serve as input for the parameterisation of equivalent observations at active volcanoes, alleviating the circumstances where an a priori knowledge of magma textures and ascent rate, temperature and gas overpressure and/or the geometry of the shallow plumbing system is typically chronically lacking. The generation of experimental parameterisations raises the possibility that detailed field investigations on gas-particle jets at frequently erupting volcanoes might be used for elucidating subsurface parameters and their temporal variability, with all the implications that may have for better defining hazard assessment.
    Description: Seventh Framework Programme http://dx.doi.org/10.13039/501100004963
    Description: Deutsche Forschungsgemeinschaft
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: https://doi.org/10.5880/fidgeo.2020.030
    Keywords: ddc:550.78 ; Explosive volcanism, ; Experimental volcanology, ; Spreading angle, ; Shock-tube
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-23
    Description: Many explosive volcanic eruptions produce underexpanded starting gas-particle jets. The dynamics of the accompanying pyroclast ejection can be affected by several parameters, including magma texture, gas overpressure, erupted volume and geometry. With respect to the latter, volcanic craters and vents are often highly asymmetrical. Here, we experimentally evaluate the effect of vent asymmetry on gas expansion behaviour and gas jet dynamics directly above the vent. The vent geometries chosen for this study are based on field observations. The novel element of the vent geometry investigated herein is an inclined exit plane (5, 15, 30° slant angle) in combination with cylindrical and diverging inner geometries. In a vertical setup, these modifications yield both laterally variable spreading angles as well as a diversion of the jets, where inner geometry (cylindrical/diverging) controls the direction of the inclination. Both the spreading angle and the inclination of the jet are highly sensitive to reservoir (conduit) pressure and slant angle. Increasing starting reservoir pressure and slant angle yield (1) a maximum spreading angle (up to 62°) and (2) a maximum jet inclination for cylindrical vents (up to 13°). Our experiments thus constrain geometric contributions to the mechanisms controlling eruption jet dynamics with implications for the generation of asymmetrical distributions of proximal hazards around volcanic vents.
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Keywords: ddc:550.78 ; Explosive eruptions ; Crater asymmetry ; Vent asymmetry ; Gas jets ; Inclined jets ; Tilted eruptions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2020-10-02
    Description: Many explosive volcanic eruptions produce underexpanded starting gas-particle jets. The dynamics of the accompanying pyroclast ejection can be affected by several parameters, including magma texture, gas overpressure, erupted volume and geometry. With respect to the latter, volcanic craters and vents are often highly asymmetrical. Here, we experimentally evaluate the effect of vent asymmetry on gas expansion behaviour and gas jet dynamics directly above the vent. The vent geometries chosen for this study are based on field observations. The novel element of the vent geometry investigated herein is an inclined exit plane (5, 15, 30° slant angle) in combination with cylindrical and diverging inner geometries. In a vertical setup, these modifications yield both laterally variable spreading angles as well as a diversion of the jets, where inner geometry (cylindrical/diverging) controls the direction of the inclination. Both the spreading angle and the inclination of the jet are highly sensitive to reservoir (conduit) pressure and slant angle. Increasing starting reservoir pressure and slant angle yield (1) a maximum spreading angle (up to 62°) and (2) a maximum jet inclination for cylindrical vents (up to 13°). Our experiments thus constrain geometric contributions to the mechanisms controlling eruption jet dynamics with implications for the generation of asymmetrical distributions of proximal hazards around volcanic vents.
    Print ISSN: 0258-8900
    Electronic ISSN: 1432-0819
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-20
    Description: The products of explosive volcanic eruptions, in particular, volcanic ash, can pose a severe hazard to, for example, international aviation. Detecting volcanic clouds and monitoring their dispersal is hence, the subject of intensive current research. However, the discrepancies between the different available methods lead to detected cloud altitude with significant uncertainties. Here we show the results of an algorithm developed explicitly for high vertical resolution detection of volcanic cloud altitude by using the Global Navigation Satellite System radio occultation (RO) observations. Analyzing the energetic Kasatochi eruption of August 2008 in a case study, we find the volcanic cloud altitudes detected with RO in good agreement (within ~1 km) with cloud altitude estimations from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar backscatter images in the 4 h range between RO and CALIOP acquisitions. The tracking by combined RO and imaging of the volcanic cloud evolution during the weeks after the eruption indicates a promising potential for operational global cloud altitude monitoring.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-03
    Description: We present a multi-sensor archive collecting spatial and temporal information about volcanic SO2 clouds generated by the 11 largest eruptions of this century. The detection and monitoring of volcanic clouds are an important topic for aviation management, climate issues and weather forecasts. Several studies focusing on single eruptive events exist, but no archive available at the moment combines quantitative data from as many instruments. We archived and collocated the SO2 vertical column density estimations from three different satellite instruments (AIRS, IASI and GOME-2), atmospheric parameters as vertical profiles from the Global Navigation Satellite Systems (GNSS) Radio Occultations (RO), and the cloud-top height and aerosol type from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Additionally, we provide information about the cloud-top height from three different algorithms and the atmospheric anomaly due to the presence of the cloud. The dataset is gathering 206 d of SO2 data, collocated with 44 180 backscatter profiles and 64 764 radio occultation profiles. The modular structure of the archive allows an easy collocation of the datasets according to the users' needs, and the cross-comparison of the datasets shows different consistency of the parameters estimated with different sensors and algorithms, according to the sensitivity and resolution of the instruments. The data described here are published with a DOI at https://doi.org/10.5880/fidgeo.2020.016 (Tournigand et al., 2020a).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2022-09-29
    Description: Abstract
    Description: This data publication provides data from 96 experiments from 2020 to 2022 in the gas-mixing lab at the Ludwig-Maximilians-Universität München (Germany). The experiments were conducted to investigate the influence of grain size distribution, especially the influence of very fines [〈10 µm] on the generation of experimental volcanic lightning (VL). The influence of grain size distribution was tested for three different materials. Experimental discharges during rapid decompression were evaluated by their number and their total magnitude. The three materials used in this study are a tholeiitic basalt (TB), industrial manufactured soda-lime glass beads (GB) and a phonolitic pumice from the lower Laacher See unit (LSB). The samples were sieved into several grain size fractions, and coarse and fines were mixed to test the influence of the added fines on the discharge behaviour. For the tholeiitic basalt, the coarse grain size fraction is 180-250 µm, for the glass beads 150-250 µm and for the phonolitic pumice, two coarse grain size fractions, 180-250 µm and 90-300 µm were tested. The experiments were carried out in a new experimental setup, a modification of the shock tube experiments first described by Alidibirov and Dingwell (1996) and its further modifications (Cimarelli et al., 2014; Gaudin & Cimarelli, 2019; Stern et al., 2019). A mixture of coarse and fine sample material is placed into an autoclave and continuously set under pressure with argon gas up to the desired decompression pressure (⁓10 MPa). Then, rapid decompression is initialized, and the sample material is ejected from the autoclave through a nozzle into a gas-tight particle collector tank. The particle collector tank is insulated from the nozzle and the ground and serves as a Faraday cage (FC). All discharges going from the erupting gas-particle mixture, the jet, to the nozzle will be recorded by a datalogger. All the discharges measured during the first 5 ms of ejection were taken into the evaluation of the discharge behaviour. The raw signals of the experiments were evaluated by a processing code developed by Gaudin and Cimarelli (2019). Additionally, the jet behaviour was recorded by a high-speed camera: the gas-exit angle and the exit angle of the gas-particle mixture were determined. The background of the high-speed video was divided into a black side and a white side. The gas-exit angle and the exit angle gas-particle-mixture were determined as the mean of the deviation angle of a straight trajectory angle of both sides.
    Keywords: ash ; electric charge ; Faraday cage ; shock-tube ; jet ; rapid decompression ; phonolite ; tholeiite ; glass beads ; EPOS ; multi-scale laboratories ; rock and melt physical properties ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC ELECTRICITY 〉 LIGHTNING ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC PHENOMENA 〉 LIGHTNING ; EARTH SCIENCE 〉 HUMAN DIMENSIONS 〉 NATURAL HAZARDS 〉 VOLCANIC ERUPTIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY 〉 ERUPTION DYNAMICS 〉 ASH/DUST DISPERSION ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY 〉 ERUPTION DYNAMICS 〉 VOLCANIC EXPLOSIVITY ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 GEOLOGICAL ADVISORIES 〉 VOLCANIC ACTIVITY ; EARTH SCIENCE SERVICES 〉 ENVIRONMENTAL ADVISORIES 〉 WEATHER/CLIMATE ADVISORIES 〉 DUST/ASH ADVISORIES
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-25
    Description: In a Strombolian volcanic eruption, bursting of a pressurized gas pocket produces and accelerates a mixture of gas and pyroclasts along a conduit and out of a vent. While mixture ejection at the vent is the subject of direct geophysical measurements, and a key to eruption understanding, the dynamics of how the mixture moves in the conduit are not observable and only partly understood. Here, we use analog, transparent shock tube experiments to study the dynamics of gas and particles under fast gas decompression in a vertical tube. Maximum particle exit velocity increases linearly with increasing energy (pressure times volume) of the pressurized gas, and, subordinately, with decreasing particle size and depth in the tube. Particles, initially at rest, are at first accelerated and dispersed in the conduit by the expanding gas. When the gas decelerates or even reverts its motion due to pressure changes in the tube, the particles, moving under their inertia, are then decelerated by the gas drag. Deceleration lasts longer for lower initial gas energy and for deeper particle starting position. Experiments and eruptions share two key vent ejection dynamics: 1) particles exit the vent already decelerating, and 2) the exit velocity of the particles decays over time following the same non-linear law. Friction with slower, or even back-flowing gas likely causes pyroclast deceleration in volcanic conduits during Strombolian explosions. Pyroclast deceleration, in turn, affects their exit velocity at the vent, as well as current estimates of the source depth of the explosions.
    Description: Published
    Description: e2019JB019182
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Strombolian explosion ; volcanic conduit ; shock tube ; pyroclast ejection ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-11-25
    Description: By injecting a mixture of gas and pyroclasts into the atmosphere, explosive volcanic eruptions frequently generate vortex rings, which are toroidal vortices formed by the jet's initial momentum. Here, we report high-speed imaging and acoustic measurements of vortex rings sourcing from gas-rich eruptive jets at Stromboli volcano (Italy). Volcanic vortex rings (VVRs) form at the vent together with an initial compression acoustic wave, VVRs maximum rise velocity being directly proportional to the amplitude and inversely proportional to the duration of the compression wave. The axial rise and acoustic signature of VVRs match well those predicted by recent fluid-dynamic experiments. This good match allows using the high-frequency (80-1,000 Hz) component of the jet sound and the time-dependent rise of VVRs to retrieve two key eruption parameters: the Mach number of the eruptive jets (〈1.5) and vent diameter (∼0.7 m), respectively, the latter being confirmed independently by direct Uncrewed Aerial Vehicle observations.
    Description: Published
    Description: e2021GL092899
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Stromboli; Strombolian; jet noise; vent diameter; vortex ring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...