ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (15)
  • 04.08. Volcanology  (14)
  • Etna Volcano  (2)
  • MDPI  (15)
  • American Chemical Society
  • American Physical Society (APS)
  • 2020-2024  (15)
  • 1
    Publication Date: 2023-02-28
    Description: The Sciara del Fuoco (SdF) collapse scar at Stromboli is an active volcanic area affected by rapid morphological changes due to explosive/effusive eruptions and mass-wasting processes. The aim of this paper is to demonstrate the importance of an integrated analysis of multi-temporal remote sensing (photogrammetry, COSMO-SkyMed Synthetic Aperture Radar amplitude image) and marine geophysical data (multibeam and side scan sonar data) to characterize the main morphological, textural, and volumetric changes that occurred along the SdF slope in the 2020–2021 period. The analysis showed the marked erosive potential of the 19 May 2021 pyroclastic density current generated by a crater rim collapse, which mobilized a minimum volume of 44,000 m^3 in the upper Sciara del Fuoco slope and eroded 350,000–400,000 m^3 of material just considering the shallow-water setting. The analysis allowed us also to constrain the main factors controlling the emplacement of different lava flows and overflows during the monitored period. Despite the morphological continuity between the subaerial and submarine slope, textural variations in the SdF primarily depend on different processes and characteristics of the subaerial slope, the coastal area, the nearshore, and “deeper” marine areas.
    Description: Published
    Description: 4605
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Stromboli ; hazard ; active volcano ; morphological changes ; UAV flight ; remote sensing ; multibeam bathymetry ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-16
    Description: During the last two decades, the Etna volcano has undergone several sequences of lava fountaining (LF) events that have had a major impact on road conditions, infrastructure and the local population. In this paper, we consider the LF episodes occurring between 2011 and 2022, calculating their erupted volumes using the images recorded by the monitoring thermal cameras and applying a manual procedure and a dedicated software to determine the lava fountain height over time, which is necessary to obtain the erupted volume. The comparison between the results indicates the two procedures match quite well, the main differences occurring when the visibility is poor and data are interpolated. With the aim of providing insights for hazard assessment, we have fitted some probabilistic models of both the LF inter-event times and the erupted volumes of pyroclastic material. In more detail, we have tested power-law distributions against log-normal, Weibull, generalised Pareto and log-logistic. Results show that the power-law distribution is the most likely among the alternatives. This implies the lack of characteristic scales for both the inter-event time and the pyroclastic volume, which means that we have no indication as to when a new episode of LF will occur and/or how much material will be erupted. What we can reasonably say is only that short inter-event times are more frequent than long inter-event times, and that LF characterised by small volumes are more frequent than LF with high volumes. However, if the hypothesis that magma accumulates on Etna at a rate of about 0.8 m3 s −1 holds, the material accumulated in the source region from the beginning of the observation period (2011) to the present (2022) has already been ejected. In simple terms, there is no accumulated magma in the shallow storage that is prone to be erupted in the near future.
    Description: This research was funded by Project FIRST—ForecastIng eRuptive activity at Stromboli volcano: timing, eruptive style, size, intensity, and duration, INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020; Scientific Responsibility: S.C.).
    Description: Published
    Description: 6183
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: lava fountains ; automatic detection ; Etna ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-01
    Description: Offshore data in the western Ionian Sea indicate that the NW–SE-trending dextral shear zone of the Alfeo–Etna Fault System turns to the N–S direction near the Ionian coastline, where the extensional Timpe Fault System is located. Morpho-structural data show that NW–SE-trending right-lateral strikeslip faults connect the Timpe Fault System with the upper slope of the volcano, where the eruptive activity mainly occurs along the N–S to NE–SW-trending fissures. Fault systems are related to the ~E–Wtrending extension and they are seismically active having given rise to shallow and low-moderate magnitude earthquakes in the last 150 years. As a whole, morpho-structural, geodetic and seismological data, seismic profiles and bathymetric maps suggest that similar geometric and kinematic features characterize the shear zone both on the eastern flank of the volcano and in the Ionian offshore. The Alfeo– Etna Fault System probably represents a major kinematic boundary in the western Ionian Sea associated with the Africa–Europe plate convergence since it accommodates, by right-lateral kinematics, the differential motion of adjacent western Ionian compartments. Along this major tectonic alignment, crustal structures such as releasing bends, pull-apart basins and extensional horsetails occur both offshore and on-land, where they probably represent the pathway for magma uprising from depth
    Description: This research was funded by the Catania University PIA.CE.RI. Project (linea 2) “Interaction between volcanic activity and active tectonic processes in the Mt. Etna area (InvultEtna). The research has moreover benefited from funding provided by the agreement between Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile
    Description: Published
    Description: 128
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Ionian Sea ; Mt. Etna ; seismic reflection data ; GNSS data ; tectonic-driven volcanism ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-02
    Description: The re-mobilization of volcaniclastic material poses a hazard factor which, although it decreases with time since the last eruption, remains present in the hydrographic basins of volcanic areas. Herein, we present the results of the numerical modelling of erosive phenomena of volcanic deposits, as well as of flooding in the volcanic area. The proposed approach includes runoff estimation, land use analysis, and the application of hydraulic and erosion modelling. It exploits the Iber software, a widely used and validated model for rainfall-runoff, river flooding, and erosion and sediment transport modelling. The methodology was applied to the Island of Vulcano (Italy), known for the erosion phenomena that affect the slopes of one of its volcanic cones (La Fossa cone). The rainfall excess was calculated using a 19-year dataset of hourly precipitations, and the curve number expressed by the information on soil cover in the area, derived from the land cover and land use analysis. The erosion and flow models were performed considering different rainfall scenarios. Results show a particularly strong erosion, with thicknesses greater than 0.4 m. This is consistent with field observations, in particular with some detailed data collected both after intense events and by long-term observation. Results of the hydraulic simulations show that moderate and torrential rainfall scenarios can lead to flood levels between 0.2 and 0.6 m, which mostly affect the harbours located in the island’s inhabited area.
    Description: This project was partially funded by the “Fondi di Ateneo 2022 (ex 60%)” by the Università degli Studi di Firenze (project “VOLFLANK—Use of remote sensing data for the stability analysis of active volcanoes”; P.I.: F.D.T.). A.F. and M.F. carried out this work in the frame of INGV Progetti Ricerca Libera 2022 (project “VOLF—VOlcaniclastic debris flows at La Fossa cone (Volcano Island): evolution and hazard implication”).
    Description: Published
    Description: 16549
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: erosion modelling ; floods modelling ; numerical models ; Iber software ; volcaniclastic deposits ; floods hazard ; Island of Vulcano ; Aeolian Archipelago ; geomorphological hazards ; 04.08. Volcanology ; 05.08. Risk ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-06
    Description: Numerical modelling of tephra fallout is a fast-developing research area in volcanology. Several models are currently available both to forecast the dispersion of volcanic particles in the atmosphere and to calculate the particles deposited at different locations on the ground. Data from these simulations can then be used both to manage volcanic crises (e.g., protect air traffic) or perform long-term hazard assessment studies (e.g., through hazard maps). Given the importance of these tasks, it is important that each model is thoroughly tested in order to assess advantages and limitations, and to provide useful information for quantifying the model uncertainty. In this study we tested the coupled PLUME-MoM/HYSPLIT models by applying them to the Puyehue–Cordon Caulle 2011 sub-Plinian eruption. More specifically, we tested new features recently introduced in these well-established models (ash aggregation, external water addition, and settling velocity models), we implemented a new inversion procedure, and we performed a parametric analysis. Our main results reaffirm the pivotal role played by mass eruption rate on the final deposit and show that some choices for the input parameters of the model can lead to the large overestimation in total deposited mass (which can be reduced with our inversion procedure). The parametric analysis suggests a most likely value of the mass eruption rate in the range 2.0–6.3 × 106 kg/s. More studies with a similar approach would be advisable in order to provide final users with useful indications about the parameters that should be carefully evaluated before being used as input for this kind of model.
    Description: Published
    Description: 784
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: tephra fallout ; numerical model ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-22
    Description: Between December 2020 and February 2022, the South East Crater of Etna has been the source of numerous eruptions, mostly characterized by the emission of lava fountains, pyroclastic material and short-lasting lava flows. Here we estimate the volume and distribution of the lava deposits by elaborating multi-source satellite imagery. SEVIRI data have been elaborated using CL-HOTSAT to estimate the lava volume emitted during each event and calculate the cumulative volume; Pléiades and WorldView-1 data have been used to derive Digital Surface Models, whose differences provide thickness distributions and hence volumes of the volcanic deposits. We find a good agreement, with the total average lava volume obtained by SEVIRI reaching 73.2 × 106 m3 and the one from optical data amounting to 67.7 × 106 m3. This proves the robustness of both techniques and the accuracy of the volume estimates, which provide important information on the lava flooding history and evolution of the volcano.
    Description: This work was supported by the INGV project Pianeta Dinamico (CUP D53J19000170001) funded by MIUR (“Fondo finalizzato al rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese,” legge 145/2018), Tema 8—PANACEA, Scientific Responsibility: A.C.). The research was also funded by “TUNE—Effusion rate estimates at Etna and Stromboli: constraints imposed by a variety of satellite remote sensing data” (Bando di Ricerca Libera 2019 of INGV; Scientific Responsibility: G.G.). This research was also supported by the Project FIRST—ForecastIng eRuptive activity at Stromboli volcano: timing, eruptive style, size, intensity, and duration, INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020; Scientific Responsibility: S.C.).
    Description: Published
    Description: 916
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: thermal infrared satellite imagery ; photogrammetry ; effusion rate curves ; volcanic hazards ; Etna volcano ; Lava Fountaining ; Remote sensing ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-19
    Description: The volatiles released by the volcanic structures of the world contribute to natural environmental pollution both during the passive and active degassing stages. The Island of Vulcano is characterized by solfataric degassing mainly localized in the summit part (Fossa crater) and in the peripheral part in the Levante Bay. The normal solfataric degassing (high-temperature fumarolic area of the summit and boiling fluids emitted in the Levante Bay area), established after the last explosive eruption of 1888–90, is periodically interrupted by geochemical crises characterized by anomalous degassing that are attributable to increased volcanic inputs, which determine a sharp increase in the degassing rate. In this work, we have used the data acquired from the INGV (Istituto Nazionale di Geofisica e Vulcanologia) geochemical monitoring networks to identify, evaluate, and monitor the geochemical variations of the extensive parameters, such as the SO2 flux from the volcanic plume (solfataric cloud) and the CO2 flux from the soil in the summit area outside the fumaroles areas. The increase in the flux of volatiles started in June–July 2021 and reached its maximum in November of the same year. In particular, the mean monthly flux of SO2 plume of 22 tons day−1 (t d−1) and of CO2 from the soil of 1570 grams per square meter per day (g m2 d −1) increased during this event up to 89 t d−1 and 11,596 g m2 d −1, respectively, in November 2021. The average annual baseline value of SO2 output was estimated at 7700 t d−1 during normal solfataric activity. Instead, this outgassing increased to 18,000 and 24,000 t d−1 in 2021 and 2022, respectively, indicating that the system is still in an anomalous phase of outgassing and shows no signs of returning to the pre-crisis baseline values. In fact, in the first quarter of 2023, the SO2 output shows average values comparable to those emitted in 2022. Finally, the dispersion maps of SO2 on the island of Vulcano have been produced and have indicated that the areas close to the fumarolic source are characterized by concentrations of SO2 in the atmosphere higher than those permitted by European legislation (40 µg m−3 for 24 h of exposition) on human health.
    Description: This research was funded by the INGV-DPCN (Italian National Institute of Geophysics and Volcanology-Italian National Department for Civil Protection) volcanic surveillance program of Vulcano island, ObFu 0304.010. Moreover, this investigation was partially funded by TORS project in the framework of institutional INGV projects (“Ricerca Libera”, ObFu 9999.549 and Pianeta Dinamico Task V2, ObFu 1020.010).
    Description: Published
    Description: 3086
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: SO2 output ; Soil CO2 fluxes ; Air pollutant ; Vulcano Island ; Geochemical crisis ; Summit degassing ; SO2 map dispersion ; Extensive parameters ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-09-13
    Description: The 2021 eruption at Tajogaite (Cumbre Vieja) volcano (La Palma, Spain) was characterized by Strombolian eruptions, Hawaiian fountaining, white gasdominated and grey ash-rich plumes, and lava effusion from multiple vents. The variety of eruptive styles displayed simultaneously and throughout the eruption presents an opportunity to explore controls on explosivity and the relationship between explosive and effusive activity. Explosive eruption dynamics were recorded using ground-based thermal photography and videography. We show results from the analysis of short (〈5 min) near-daily thermal videos taken throughout the eruption from multiple ground-based locations and continuous time-lapse thermal photos over the period November 16 to November 26. We measure the apparent radius, velocity, and volume flux of the high-temperature gas-and-ash jet and lava fountaining behaviors to investigate the evolution of the explosive activity over multiple time scales (seconds-minutes, hours, and daysweeks). We find fluctuations in volume flux of explosive material that correlate with changes in volcanic tremor and hours-long increases in explosive flux that are immediately preceded by increases in lava effusion rate. Correlated behavior at multiple vents suggests dynamic magma ascent pathways connected in the shallow (tens to hundreds of meters) sub-surface. We interpret the changes in explosivity and the relative amounts of effusive and explosivity to be the result of changes in gas flux and the degree of gas coupling.
    Description: Authors from INVOLCAN and ITER acknowledge support under projects VOLRISKMAC (MAC/3.5b/124) and VOLRISKMAC II (MAC2/3.5b/328), financed by the Program INTERREG V-A Spain-Portugal MAC 2014–2020 of the European Commission; Cumbre Vieja Emergencia, financed by the Science and Innovation Ministry, Spanish Government; TFassistance, financed by the Cabildo Insular de Tenerife; and LPvolcano, financed by the Cabildo Insular de La Palma. We are grateful to Antoni Álvarez for his logistical support. Authors from LDEO acknowledge support from the Gordon and Betty Moore Foundation under grant GBMF8995 for the AVERT project, and from NSF under EAR-1654588.
    Description: Published
    Description: 1193436
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Explosive activity ; Strombolian explosions ; lava fountains ; Thermal imagering ; Cumbre Vieja ; La Palma, ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-10-12
    Description: Stromboli is an open-conduit active volcano located in the southern Tyrrhenian Sea and is the easternmost island of the Aeolian Archipelago. It is known as “the lighthouse of the Mediterranean” for its continuous and mild Strombolian-type explosive activity, occurring at the summit craters. Sometimes the volcano undergoes more intense explosions, called “major explosions” if they affect just the summit above 500 m a.s.l. or “paroxysms” if the whole island is threatened. Effusive eruptions are less frequent, normally occurring every 3–5 years, and may be accompanied or preceded by landslides, crater collapses and tsunamis. Given the small size of the island (maximum diameter of 5 km, NE–SW) and the consequent proximity of the inhabited areas to the active craters (maximum distance 2.5 km), it is of paramount importance to use all available information to forecast the volcano’s eruptive activity. The availability of a detailed record of the volcano’s eruptive activity spanning some centuries has prompted evaluations on its possible short-term evolution. The aim of this paper is to present some statistical insights on the eruptive activity at Stromboli using a catalogue dating back to 1879 and reviewed for the events during the last two decades. Our results confirm the recent trend of a significant increase in major explosions, small lava flows and summit crater collapses at the volcano, and might help monitoring research institutions and stakeholders to evaluate volcanic hazards from eruptive activity at this and possibly other open-vent active basaltic volcanoes.
    Description: This research was funded by Project FIRST—ForecastIng eRuptive activity at Stromboli volcano: timing, eruptive style, size, intensity, and duration, INGV–Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020; Scientific Responsibility: S.C.).
    Description: Published
    Description: 4822
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: Stromboli catalogue ; Stromboli volcano ; effusive eruptions ; explosive eruptions ; crater collapse ; tsunami ; pyroclastic density current ; hot avalanche ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-10-18
    Description: Data availability: The source data (ground temperature measurements recorded -hourly- from 2009 to 2012) are submitted to PANGAEA — PDI31617.
    Description: Mild thermal anomalies are sensitive to changes in the advection processes in a volcanic system. A mild thermal anomaly, near the top of the North-East Rift of Mt. Etna (Italy), has been monitored from January 2010 to September 2012 by means of four temperature sensors buried in the shallow ground. The pulses of the convective circulation have been tracked and the diffuse heat flux has been evaluated. The positive pulses of the convective front reflected the local increases of volcanic degassing; conversely, the negative pulses showed the contraction of the convective front emerging through the North-East Rift. The steam condensation depth fluctuated below the monitoring site, from depths of a couple of meters to more than 30 meters, while the New South-East crater was erupting. The data hourly recorded, relative to the 2012 eruptive period, were compared to the radiant energy released by the paroxysms. We registered a dramatic decrease in the diffuse heat flux several hours before the onset of the two most energetic paroxysms (12 and 23 April). Thereafter, the convective front (the steam condensation depth) showed many negative pulses, reaching the deepest recorded levels. Thermal transients could be one of the early signals, possibly heralding transitions in the dynamic equilibrium conditions.
    Description: Published
    Description: 4471
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: 6IT. Osservatori non satellitari
    Description: JCR Journal
    Keywords: thermal monitoring ; diffuse outgassing ; volcanic activity ; transition periods ; steam convection ; energy release ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-01-23
    Description: Volcano ground deformation is a tricky puzzle in which different phenomena contribute to the surface displacements with different spatial–temporal patterns. We documented some high variable deformation patterns in response to the different volcanic and seismic activities occurring at Mt. Etna through the January 2015–March 2021 period by exploiting an extensive dataset of GNSS and InSAR observations. The most spectacular pattern is the superfast seaward motion of the eastern flank. We also observed that rare flank motion reversal indicates that the short‐term contraction of the volcano occasionally overcomes the gravity‐controlled sliding of the eastern flank. Conversely, fast dike intrusion led to the acceleration of the sliding flank, which could potentially evolve into sudden collapses, fault creep, and seismic release, increasing the hazard. A better comprehension of these interactions can be of relevance for addressing short‐term scenarios, yielding a tentative forecasting of the quantity of magma accumulating within the plumbing system.
    Description: Published
    Description: 847
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Etna Volcano ; SAR interferometry ; GNSS ; flank collapse ; magma intrusion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-03-29
    Description: The geochemical monitoring of volcanic activity today relies largely on remote sensing, but the combination of this approach together with soil gas monitoring, using the appropriate parameters, is still not widely used. The main purpose of this study was to correlate data from crater gas emissions with flank emissions of soil gases at Mt. Etna volcano from June 2006 to December 2020. Crater SO2 fluxes were measured from fixed stations around the volcano using the DOAS technique and applying a modeled clear-sky spectrum. The SO2/HCl ratio in the crater plume was measured with the OP-FTIR technique from a transportable instrument, using the sun as an IR source. Soil CO2 efflux coupled with the 220Rn/222Rn activity ratio in soil gases (named SGDI) were measured at a fixed monitoring site on the east flank of Etna. All signals acquired were subject both to spectral analysis and to filtering of the periodic signals discovered. All filtered signals revealed changes that were nicely correlated both with other geophysical signals and with volcanic eruptions during the study period. Time lags between parameters were explained in terms of different modes of magma migration and storage inside the volcano before eruptions. A comprehensive dynamic degassing model is presented that allows for a better understanding of magma dynamics in an open-conduit volcano.
    Description: Published
    Description: 1122
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Mt. Etna crater ; SO2 flux ; halogen fluxes ; soil radon ; soil CO2 flux ; eruptive activity ; magma degassing ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-03-19
    Description: In recent decades, the Campi Flegrei caldera (Italy) showed unrest characterized by in- creases in seismicity, ground uplift, and hydrothermal activity. Currently, the seismic and hydrother- mal phenomena are mostly concentrated in the Solfatara–Pisciarelli area, which presents a wide fumarolic field and mud emissions. The main fumarole in Pisciarelli is associated with a boiling mud pool. Recently, episodes of a sudden increase in hydrothermal activity and expansion of mud and gas emissions occurred in this area. During these episodes, which occurred in December 2018 and September 2020, Short Duration Events (SDEs), related to the intensity of mud pool boiling, were recorded in the fumarolic seismic tremor. We applied a Self-Organizing Map (SOM) neural network to recognize the occurrence of SDEs in the fumarolic tremor of Campi Flegrei, which provides important information on the state of activity of the hydrothermal system and about the possible phreatic activity. Our method, based on an ad hoc feature extraction procedure, effectively clustered the seismic signals containing SDEs and separated them from those representing the normal fumarolic tremor. This result is useful for improving the monitoring of the Solfatara–Pisciarelli hydrothermal area which is a high-risk zone in Campi Flegrei.
    Description: Published
    Description: 5505
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-04-15
    Description: This paper addresses the classification of images depicting the eruptive activity of Mount Etna, captured by a network of ground-based thermal cameras. The proposed approach utilizes Convolutional Neural Networks (CNNs), focusing on pretrained models. Eight popular pretrained neural networks underwent systematic evaluation, revealing their effectiveness in addressing the classification problem. The experimental results demonstrated that, following a retraining phase with a limited dataset, specific networks such as VGG-16 and AlexNet, achieved an impressive total accuracy of approximately 90%. Notably, VGG-16 and AlexNet emerged as practical choices, exhibiting individual class accuracies exceeding 90%. The case study emphasized the pivotal role of transfer learning, as attempts to solve the classification problem without pretrained networks resulted in unsatisfactory outcomes.
    Description: Supported by Italian Research Center on High Performance Computing Big Data and Quantum Computing (ICSC), project funded by European Union—NextGenerationEU—and National Recovery and Resilience Plan (NRRP)—Mission 4 Component 2 within the activities of Spoke 3 (Astrophysics and Cosmos Observations). Sonia Calvari also acknowledges the financial support of the Project FIRST ForecastIng eRuptive activity at Stromboli volcano (Delibera n. 144/2020; Scientific Responsibility: S.C.) Vulcani 2019.
    Description: Published
    Description: 124-137
    Description: OSV3: Sviluppo di nuovi sistemi osservazionali e di analisi ad alta sensibilità
    Description: JCR Journal
    Keywords: Etna Volcano ; Lava Fountains ; classification of events ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-05-17
    Description: On 21 May 2023, a hidden eruption occurred at the Southeast Crater (SEC) of Etna (Italy); indeed, bad weather prevented its direct and remote observation. Tephra fell toward the southwest, and two lava flows propagated along the SEC’s southern and eastern flanks. The monitoring system of the Istituto Nazionale di Geofisica e Vulcanologia testified to its occurrence. We analyzed the seismic and infrasound signals to constrain the temporal evolution of the fountain, which lasted about 5 h. We finally reached Etna’s summit two weeks later and found an unexpected pyroclastic density current (PDC) deposit covering the southern lava flow at its middle portion. We performed unoccupied aerial system and field surveys to reconstruct in 3D the SEC, lava flows, and PDC deposits and to collect some samples. The data allowed for detailed mapping, quantification, and characterization of the products. The resulting lava flows and PDC deposit volumes were (1.54 ± 0.47) × 106 m3 and (1.30 ± 0.26) × 105 m3, respectively. We also analyzed ground-radar and satellite data to evaluate that the plume height ranges between 10 and 15 km. This work is a comprehensive analysis of the fieldwork, UAS, volcanic tremor, infrasound, radar, and satellite data. Our results increase awareness of the volcanic activity and potential dangers for visitors to Etna’s summit area.
    Description: Published
    Description: 1555
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: remote sensing monitoring system ; Etna paroxysm ; pyroclastic density current ; UAS survey ; fieldwork ; volcanic tremor ; infrasound ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...