ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (15)
  • 04.08. Volcanology  (15)
  • Wiley-AGU  (9)
  • Springer  (6)
  • American Physical Society (APS)
  • Institute of Physics
  • 2020-2024  (15)
  • 1960-1964
  • 1
    Publication Date: 2023-01-19
    Description: 1) We model the chemical kinetics of high-temperature volcanic gas emissions within the first seconds of mixing with atmospheric air 2)We identify key chemical processes within the magma-atmosphere interface and quantify influences on the volcanic plume composition 3)Our results question common assumptions prevailing in volcanic gas geochemistry and refine interpretations of gas emissions from open vents
    Description: Volatiles released from magma can form bubbles and leave the magma body to eventually mix with atmospheric air. The composition of those volatiles, as derived from measurements made after their emission, is used to draw conclusions on processes in the Earth's interior or their influences on Earth's atmosphere. So far, the discussion of the influence of high-temperature mixing with atmospheric air (in particular oxygen) on the measured volcanic gas composition is almost exclusively based on thermodynamic equilibrium (TE) considerations. By modeling the combined effects of C-H-O-S reaction kinetics, turbulent mixing, and associated cooling during the first seconds after magmatic gas release into the atmosphere we show that the resulting gas compositions generally do not represent TE states, with individual species (e.g., CO, H2, H2S, OCS, SO3, HO2, H2O2) deviating by orders of magnitude from equilibrium levels. Besides revealing the chemical details of high-temperature emission processes, our results question common interpretations of volcanic gas studies, particularly affecting the present understanding of auto-catalytic conversion of volcanic halogen species in the atmosphere and redox state determination from volcanic plume gas measurements.
    Description: Published
    Description: e2022GC010671
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-30
    Description: Deception Island is one of the most active and best-documented volcanoes in Antarctica. Since its last eruption in 1970, several geophysical surveys have targeted reconstructing its magmatic systems. However, geophysics fails to reconstruct the pathways magma and fluids follow from depth to erupt at the surface. Here, novel data selection strategies and multi-frequency absorption inversions have been framed in a Geographical Information System, using all available geological (vents and faults distribution), geochemical and geophysical knowledge of the volcano. The result is the detection of these eruptive pathways. The model offers the first image of the magma and associated fluids pathways feed the 1967, 1969, and 1970 eruptions. Results suggest that future ascending paths might lead to active research bases and zones of planned helicopter rescue. The connection between seismic absorption, temperature, and fluid content makes it a promising attribute for detecting and monitoring eruptions at active calderas.
    Description: Published
    Description: e2022GL099540
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: 04.02. Exploration geophysics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-01
    Description: © 2022 The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made
    Description: Cava dei Selci (CdS) is the main degassing site of the Colli Albani quiescent volcano and since 20 years it is the site of geochemical volcano monitoring. Emitted gas consists mostly of CO2 (≥98 vol.%) with minor H2S, and helium isotopes suggest it has a significant magmatic component. The diffuse soil CO2 flux was monitored in the period 2000–2020, with 55 surveys on a target area. The total CO2 output fluctuates from 5.6 to 24.8 t d −1. The soil CO2 flux per unit surface (average 2.323 kg m −2 d −1) is the highest of 15 Italian actively degassing volcanic and geothermal areas. Soil CO2 flux and environmental parameter data collected over 4-year of continuous monitoring (2004–2008) were analyzed by stochastic Gradient Boosting Trees regression (sGBT), Multiple Linear Regression, and Principal Component Regression. Only sGBT predicts the entire data set and effectively identifies the relationship between soil CO2 flux and environmental parameters. Residuals indicate two anomalous degassing periods (March-2005, summer-2007). Colli Albani area is affected by moderate seismicity (Md ≤ 4). 575 earthquakes occurring from 2009 to 2021 were analyzed determining their location, hypocenter depth, and focal mechanism (of 43 selected events). Evaluation of seismic events occurred across geochemical surveys within 30 km from CdS shows that there is a relationship between CO2 flux, earthquake focal mechanism and depth: shallow strike-slip hypocenters are associated to low fluxes, deep normal-faulting hypocenters to high CO2 output.
    Description: Published
    Description: e2021EA001936
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-05-25
    Description: Numerical simulations show that the positive correlation observed in laboratory experiments by Li et al. (2022) between an increase of grain size and particle agitation, on the one hand, and an increase of granular flow mobility, on the other hand, is not a valid cause-and-effect relationship. In other words, their mobility differential is not caused by a different energy dissipation rate that results from a different grain size content. Instead, the flows stop because of a head-on collision with the horizontal flume at the bottom of a steep 40º incline. Essentially, the slope-break jams the granular movement. Indeed, a combination of laboratory experiments and numerical simulations demonstrated that the mobility of unhindered dense granular flows increases as grain size and clast agitation decrease. Consequently, there is no evidence that the high mobility of large natural rock avalanches is due to an increase of particle agitation.
    Description: Published
    Description: e2022JB024799
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Pyroclastic Flows ; Mobility ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-05-25
    Description: Natural gas hazard was assessed at Cava dei Selci, a residential neighbourhood of Marino (Rome) by a joint study of gas emissions and related health problems. Here a densely urbanized zone with 4000 residents surrounds a dangerous natural gas discharge where, along the years, dozens of animals were killed by the gas. Gas originates from Colli Albani volcano and consists mostly of CO2 with ~1 vol.% of H2S. In recent years, several gas-related accidents occurred in the urbanized zone (gas blowouts and road collapses). Some houses were evacuated because of hazardous indoor air gas concentration. Gas hazard was assessed by soil CO2 flux and concentration surveys and indoor and outdoor air CO2 and H2S concentration measurements. Open fields and house gardens release a high quantity of CO2 (32.23 tonnes*day-1). Inside most houses, CO2 air concentration exceeds 0.1 vol.%, the acceptable long-term exposure range. In several houses both CO2 and H2S exceed the IDLH level (Immediately Dangerous to Life and Health). An epidemiological cohort study was carried out on the residents of two Cava dei Selci zones with high (ZoneA) and medium (ZoneB) gas hazard exposure, using the rest of Marino as reference zone. We found excess mortality and Emergency Room Visits (ERV) related to high exposure to CO2 and H2S; in particular , an increased risk of mortality and ERV for diseases of central nervous system (HR 1.57, 95% CI 0.76-3.25 and HR 5.82, 95% CI 1.27-26.56 respectively) was found among men living in Zone A.
    Description: Published
    Description: 707–729
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Cava dei Selci (Rome) · Gas hazard assessment ; Soil CO2 flux surveys ; Indoor concentration of CO2 and H2S ; Gas-related health problems ; Epidemiologic study on mortality and ERV ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-09-07
    Description: Ground deformation in volcanic areas induced by geothermal fluid circulation can reveal useful information about the dynamical processes occurring in the subsurface hydrothermal system. In the present work, we investigate tiltmeter time-series recorded at Aso Volcano during 2011–2016, a time interval during which different phases of volcanic activity occurred. We performed polarization analysis of the data and identified peculiar long-lasting (hours) transients, defined as Very-Long-period Tilt Pulses. The transients were further characterized in terms of waveform cross-correlation, particle tilt pattern, energy, and time distributions. The analyses indicate that such signals, which appear like deflation–inflation (DI) events, are associated with a Poissonian process whose underlying dynamics evolves over time always driven by a Poissonian mechanism. The obtained results have been interpreted in light of the available geophysical, geochemical and volcanological information. In this framework, the Very-Long-period Tilt Pulses may be ascribed to the depressurization/pressurization of the shallow hydrothermal system according to a fault-valve mechanism, which was active with different efficiency throughout eruptive and inter-eruptive phases.
    Description: Published
    Description: 132
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Aso Volcano ; Tiltmeter data ; Polarization analysis ; Clusters ; Inflation ; Deflation ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-08-29
    Description: Injecting volcanic gas into the air leads to an increase in carbon dioxide (CO2) levels compared with background concentrations and may establish gas hazard conditions. This study reports the results of five stable isotope (i.e., δ13C-CO2 and δ18O-CO2) surveys of airborne CO2 on Vulcano from August 2020 to November 2021. To measure CO2 in the air, a mobile laboratory was equipped with a laser-based spectrophotometer that can selectively detect different CO2 isotopologues. Volcanic CO2 has a different isotopic signature than atmospheric CO2 and both δ13C-CO2 and δ18O-CO2 can help trace the injections of volcanic gases into the air. An isotopic mass balance model was developed for partitions CO2 between atmospheric background and volcanic CO2. The results of these studies show that volcanic CO2 emissions and atmospheric circulation deeply affected the concentration of CO2 in the air at Vulcano Porto. Studies of δ13C-CO2 and δ18O-CO2 provide an estimate of volcanic CO2 in the air. These results help identify spatially some points of interest for mitigating volcanic gas emission-related hazards on Vulcano.
    Description: Istituto Nazionale di Geofisica e Vulcanologia
    Description: Published
    Description: e2022JD037706
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: stable isotopes ; atmospheric carbon dioxide ; gas hazard ; geochemical modeling ; volcanic degassing ; volcanic crisis ; Vulcano, isole Eolie ; carbon dioxide ; volcanic gas emissions ; oxygen isotopes ; carbon isotopes ; CO2 ; air CO2 ; Spatial isotope monitoring enables the identification of the origin of CO2 in the air ; Calculating the stable isotope balances enables quantify the volcanic CO2 in the total CO2 in the air ; Significant changes in volcanic degassing increased air CO2 concentration and gas hazard on Vulcano – Italy – in 2021 ; 01.01. Atmosphere ; 04.08. Volcanology ; 03.04. Chemical and biological ; 05.03. Educational, History of Science, Public Issues ; 05.02. Data dissemination
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-10-03
    Description: Bearing in mind the destructive potential of tsunamis induced by volcanic landslides, the tsunamigenic event occurring at Stromboli volcano in Italy on 30 December 2002 has been reexamined here, by means of visible images and slope stability analysis. This was one of the few examples in the world of a flank collapse occurring at a volcano that was directly observed. We present the results of stability analyses, together with a sequence of photos collected from a helicopter a few minutes before the collapse. The result of this study is that the sequence of landslides triggering the 2002 Stromboli tsunami can be defined as the final stage of a lateral magma intrusion that exerted a high thrust at high altitude, destabilizing the entire slope. This study allows a more complete understanding of the event that took place on Stromboli on 30 December 2002. Furthermore, the approach used here, if appropriately modified, can be used in other contexts, contributing to the understanding of the condition that leads to tsunamigenic landslides
    Description: Open access funding provided by Istituto Nazionale di Geofisica e Vulcanologia within the CRUI-CARE Agreement. This research was funded by the “Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile”, through the UniFi-DPC 2019–2021 agreement (Scientific Responsibility: N.C.). The contents of this paper represent the authors’ ideas and do not necessarily correspond to the official opinion and policies of the “Presidenza del Consiglio dei Ministri–Dipartimento della Protezione Civile”. This research was also funded by the Project FIRST-ForecastIng eRuptive activity at Stromboli volcano: Timing, eruptive style, size, intensity, and duration, INGV-Progetto Strategico Dipartimento Vulcani 2019 (Delibera n. 144/2020; Scientific Responsibility: S.C.). The SSAP software research and development was funded by CONACYT (Mexico): Proyectos Ciencia Basica: CB-2016/286764.
    Description: Published
    Description: 1363–1380
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Tsunamigenic landslides ; Stromboli volcano ; Aeolian Archipelago ; Limit equilibrium methods ; Slope stability analysis ; Volcano slope instability ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-25
    Description: We investigate the 19 September 2021 eruption of the Cumbre Vieja volcano (La Palma, Canary Islands, Spain). In particular, we analyze the Differential Interferometric Synthetic Aperture Radar (DInSAR) measurements obtained by processing Sentinel-1 images acquired from both ascending and descending orbits. First, we show the importance, for oceanic islands like La Palma, of investigating DInSAR products retrieved from time series, instead of single interferograms, to effectively remove possible atmospheric artifacts within the displacement measurements. Subsequently, we invert the retrieved data through analytical modeling. Our results highlight that a sill–like source was active in the pre–eruptive phase (8–16 September), whereas the action of two dikes prevailed during the co-eruptive phase (17–22 September). This evolution suggests a process of magma rising through a network of interconnected sills and dikes. The seismicity, that preceded and accompanied the onset of the eruption, is consistent with our findings.
    Description: Published
    Description: e2021GL097293
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: La Palma ; La Palma 2021 eruption ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-31
    Description: We analyze Global Navigation Satellite System (GNSS) and tilt data from the permanent monitoring networks of Etna volcano starting just after the 24 December 2018 eruption to an unusual two-month period of deflation in February–March, 2021, which coincided with the occurrence of 17 lava fountain episodes. Based on changes in slope in the GNSS displacement time series, we divide the period starting 7 months after the eruption into five phases, spanning the continued inflation of the edifice punctuated by short periods of effusive and strombolian activity (four phases) and a 2-month phase of intensive deflation. Our model indicates a progressive deepening of the internal pressure sources followed by a fast ascending source starting two-months before the first 2021 paroxysms. We explain these results in light of a recent volcanological model on the nature and behavior of magma ascending through the Etnean feeding system.
    Description: Open Access Funding provided by Istituto Nazionale di Geofisica e Vulcanologia within the CRUI-CARE Agreement.
    Description: Published
    Description: e2021GL095195
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-01-17
    Description: A noticeable increase in volcanic outgassing occurred at Vulcano, Italy, in 2021. Although the volcano has not achieved critical conditions to produce an eruption, the soil CO2 emissions have prevented access into some zones of the island, due to the volcanic risk known as the gas hazard. Specialised instruments such as fluxmeters and spectrophotometers were used to measure the soil CO2 flux and the carbon isotopes of CO2 during four soil gas surveys. To understand why the volcanic system evolved towards a period of unrest, we modelled our measurements using mass balance calculations. We find that the CO2 increase, almost ten times its baseline, was most likely due to the instability of a magmatic body within the mantle to crustal boundary known as the Moho discontinuity. Because of this magmatic instability, the volcanic CO2 emissions resumed in some zones of the island where volcanic activity had been dormant for decades. The resumption of volcanic degassing in a short period had not been recorded before at Vulcano, and it is important to understand its cause because future changes in magmatic activity might produce larger CO2 emissions that will have the added risk of gas hazards as well as that of an explosion.
    Description: The La Fossa volcano on the Island of Vulcano, Italy, showed signs of more energetic fumarolic–solfataric activity during 2021. Several increases in volcanic gas emissions and seismicity, namely “crisis”, punctuated the passive degassing at Vulcano that had ensued after the last 1888–1890 vulcanian eruption. Most of the gases (i.e., up to 90%) were emitted at the crater cone while the diffuse degassing of CO2 at Vulcano Porto accounted for more than 10% of the volcanic emissions. Two anomalous degassing zones at the base of the volcanic cone (i.e., Palizzi and Faraglione) showed notable changes in the gas output during the volcanic crisis. In these zones, increases of soil CO2 flux (φCO2) had several practical implications other than of volcanological interest, owing to the risk related to people’s exposure to volcanic gas emissions. The results of this study reveal variations of the average φCO2 from 74 g m-2 d-1 during September 2021 to 370 g m-2 d-1 in November 2021, which were 27% and 538% higher than the statistical background since 1988 (φCO2 ≈ 58 g m-2 d-1), respectively. These observations helped in volcanic surveillance at Vulcano. The soil CO2 partitioning determined using both φCO2 and carbon isotope measurements, helped track changes in the volcanic CO2 output from 9.97 · 104 kg d-1 to 101.15 · 104 kg d-1. Estimates for volcanic CO2 suggest that the instability of a magmatic body caused a transition from background fumarolic–solfataric activity toward an unrest event after September 2021.
    Description: Published
    Description: e2022JB024516
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: Diffuse degassing ; Soil CO2 flux ; Carbon isotopes ; Volcanic unrest ; Volcanic degassing ; Gas Hazard ; Vulcano, isole Eolie ; Vulcano ; Geochemistry ; Natural hazard ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-03-13
    Description: In this study, we apply a two-dimensional, transient depth-averaged model to simulate the inertial flow dynamics of caldera-forming pyroclastic currents, using the available data about the Pozzolane Rosse ignimbrite (Colli Albani, Italy) eruption (460 ka, 63 km3 DRE). By performing an extensive set of numerical simulations, we test the effects of the initial parameters of the pyroclastic current (Richardson number, mass flow rate, initial flow density) on simulated deposit characteristics which can be compared with selected ignimbrite field observables, including the deposit dispersal along topography, the maximum distance from source, the deposit thickness, the grain size distribution at different distances, and the emplacement temperature. Results permit us to quantify the first-order dependency of the flow runout on the mass flow rate, and of the deposit thickness decay pattern on the initial mixture density. By using the results of the parametric study we reconstruct the source parameters of the Pozzolane Rosse ignimbrite constrained by the ignimbrite depositional characteristics, including the mass partition into the co-ignimbrite cloud. Despite uncertainties associated with the complex, non-linear interplay between the flow variables, the single-layer, depth-averaged model demonstrates to be suitable for simulating inertial pyroclastic currents, such as those generating large-scale caldera-forming ignimbrites, providing a tool for reconstructing the eruption source parameters from deposits characteristics, and to assess pyroclastic currents' hazard for future eruptions.
    Description: Published
    Description: e2021JB023637
    Description: 1V. Storia eruttiva
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: numerical modeling, ignimbrites ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-03-14
    Description: New textural and petrological data are presented on products from five paroxysms at Stromboli (Aeolian Islands, Italy) including the two from 2019 and three historical (1930, undated, sixteenth century) eruptions. The data are used to con- strain timescales associated with the initiation of paroxysms and to examine current models for their triggering. Samples were collected from the deposits and a subset selected for mineral separation and petrological and textural characterization. Minerals and glass were imaged by scanning electron microscopy (SEM), and chemical composition and zonation were analysed by electron microprobe. Trace elements in olivine were also determined. Vesicle number densities, vesicularities and vesicle diameters were measured by X-ray microCT techniques. The data were systematically compared with results of experiments simulating, on the one hand, ascent, vesiculation, degassing and crystallization of LP (low-porphyricity) magma and, on the other hand, interaction between LP and HP (high-porphyricity) magma. Paroxysm samples are mixed and include portions representative of both LP and HP magma. They host in variable proportions minerals and glass textur- ally and compositionally typical of these two magma types. Small but systematic variations in matrix glass compositions are found between each of the five eruptions considered. All samples host a population of vesicles ranging from 〈 15 to 〉 1000 μm in diameter and whose size distributions follow mixed exponential to power law distributions. Vesicularities are high (75% on average) and vesicle number densities range from 102-103 to 103-104 mm-3. Using experimental calibrations, the vesicle textural data suggest average LP magma ascent rates of 1–2 m/s (i.e. ~1.5 hours from depths between 7 and 1.5 km). The correlation between ascent rate and textures demonstrates systematic variations between eruptions, the most ener- getic (i.e. that of 1930) being associated with the highest ascent rate (~2 m/s). Widths of plagioclase reaction zones indicate that LP and HP magmas interacted for a maximum a few hours before eruption. Olivine reaction also implies durations of a few hours for LP-HP interaction and is followed by crystallization for 20 hours in the HP magma. Our results stress the fast ascent of LP magma from their storage region and their short residence times at shallow levels before being erupted. They clarify the respective roles of the deep and shallow feeding systems. An integrated phenomenological model for paroxysm initiation at Stromboli is outlined. Keywords
    Description: This study was supported by the Labex Vol- taire (ANR-10-LABX-100-01), by INGV Progetti Ricerca Libera (timescale of magma transfer within the Stromboli plumbing sys- tem) and by the “DisEqm” (quantifying disequilibrium processes in basaltic volcanism) and “Shedding new light on volcanoes: real-time synchrotron X-ray tomography of magmatic phenomena” projects funded by NERC (NE/N018575/1 and NE/M013561/1).
    Description: Published
    Description: 36
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Stromboli ; Paroxysms ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-03-20
    Description: In a volcanic crisis, authorized decision-makers must balance the social and economic costs of mitigating actions, such as evacuation, against the potential human losses if such actions are insufficient. In making their decisions, advice is needed from volcanologists on the eruption probability. Therefore, there should be a clear separation in the roles of volcanologists and decision-makers; the volcanologists should advise on the volcano hazard and alternative potential scenarios but refrain from involvement in making decisions. Currently, volcanologists are responsible for setting volcano alert levels. Given the small handful of distinct alert levels, there is inherent ambiguity and substantial uncertainty in the interpretation of individual levels. Furthermore, changing an alert level may automatically trigger actions by decision-makers. This would violate the principle of separation of responsibility and may result in unwelcome pressure being applied to volcanologists. Just as physicians can invoke medical ethics in resisting pressure to alter their advice, so volcanologists can invoke geoethics. Freedom to abide by their scientific beliefs is a basic tenet of geoethics.
    Description: Published
    Description: 19-23
    Description: Terceira Island, Azores (Portugal)
    Description: 4SR TERREMOTI - Preparazione alla comunicazione in emergenza
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 1TM. Formazione
    Description: 3TM. Comunicazione
    Keywords: volcano ; crisis ; evacuation ; geoethics ; responsibility ; 05.03. Educational, History of Science, Public Issues ; 05.09. Miscellaneous ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-05-16
    Description: This review summarizes what the volcanology community has learned thus far from studying the deposits of pyroclastic currents (PCs) from the 1980 eruption sequence at Mount St. Helens. The review includes mass flow events during the May 18 eruption, including the lateral blast, the afternoon column collapse and boil-over PC activity, and some aspects of the debris avalanche. We also include a summary of PCs generated in the smaller eruptions following the climactic May 18 event. Our objective is to summarize the state of our understanding of PC transport and emplacement mechanisms from the combination of field and laboratory observations, granular flow experiments, and numerical modeling techniques. Specifically, we couple deposit characteristics, experiments, and numerical modeling techniques to critically address the problems of (1) constraining conditions in the flow boundary zone at the time of deposition; (2) the influence of substrate roughness and topography on PC behavior; (3) the prevalence, causes, and consequences of substrate erosion by PCs; and (4) the reconstruction of PC transportation and sedimentation processes from a combination of geophysical and sedimentological observations. We conclude by providing opportunities for future research as our field, experimental, and numerical research techniques advance.
    Description: Published
    Description: 24
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: numerical modeling, mount St. Helens, physical volcanology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...