ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (914)
  • AGU (American Geophysical Union)  (899)
  • Blackwell Publishing Ltd
  • Institute of Physics
  • 2020-2024  (343)
  • 2005-2009  (331)
  • 2000-2004  (227)
  • 1980-1984  (13)
  • 1925-1929
Collection
Language
Years
Year
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 106 (B3). pp. 3977-3997.
    Publication Date: 2019-04-08
    Description: The morphology and structure of the submarine flanks of the Canary Islands were mapped using the GLORIA long-range side-scan sonar system, bathymetric multibeam systems, and sediment echosounders. Twelve young (〈2 Ma) giant landslides have been identified on the submarine flanks of the Canary Islands up to now. Older landslide events are long buried under a thick sediment cover due to high sedimentation rates around the Canary Islands. Most slides were found on the flanks of the youngest and most active islands of La Palma, El Hierro, and Tenerife, but young giant landslides were also identified on the flanks of the older (15–20 Ma) but still active eastern islands. Large-scale mass wasting is an important process during all periods of major magmatic activity. The long-lived volcanic constructive history of the islands of the Canary Archipelago is balanced by a correspondingly long history of destruction, resulting in a higher landslide frequency for the Canary Islands compared to the Hawaiian Islands, where giant landslides only occur late in the period of active shield growth. The lower stability of the flanks of the Canaries is probably due to the much steeper slopes of the islands, a result of the abundance of highly evolved intrusive and extrusive rocks. Another reason for the enhanced slope instability is the abundance of pyroclastic deposits on Canary Islands resulting from frequent explosive eruptions due to the elevated volatile contents in the highly alkalic magmas. Dike-induced rifting is most likely the main trigger mechanism for destabilization of the flanks. Flank collapses are a major geological hazard for the Canary Islands due to the sector collapses themselves as well as triggering of tsunamis. In at least one case, a giant lateral blast occurred when an active magmatic or hydrothermal system became unroofed during flank collapse.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-07
    Description: The supply of limiting nutrients to the low latitude ocean is controlled by physical processes linked to climate variations, but methods for reconstructing past nutrient concentrations in the surface ocean are few and indirect. Here, we present laser ablation mass spectrometry results that reveal annual cycles of P/Ca in a 4-year record from the scleractinian coral Pavona gigantea (mean P/Ca = 118 μmol mol−1). The P/Ca cycles track variations in past seawater phosphate concentration synchronously with skeletal Sr/Ca-derived temperature variations associated with seasonal upwelling in the Gulf of Panamá. Skeletal P/Ca varies seasonally by 2–3 fold, reflecting the timing and magnitude of dissolved phosphate variations. Solution cleaning experiments on drilled coral powders show that over 60% of skeletal P occurs in intracrystalline organic phases. Coral skeleton P/Ca holds promise as a proxy record of nutrient availability on time scales of decades to millennia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 87 (B13). pp. 10861-10881.
    Publication Date: 2017-01-25
    Description: Samples collected at hourly intervals on May 18–19, 1980, at three sites 200 km downwind from Mount St. Helens, have made possible a detailed reconstruction of the conditions that contribute to the compositional heterogeneity of mineral and glass components observed in distal tephra layers. The air fall tephra deposited at the sites during the first 7 hours of the May 18 eruption is mostly coarse grained, microlite-rich, nonjuvenile glass and feldspar. Grain-size maxima in this initial tephra can be related to the cataclysmic blast at 0832 and a subsequent pulse of the eruption at 1200. Juvenile, microlite-free glass increases in relative abundance at the sampling sites beginning at about 1900. Such a change between nonjuvenile and juvenile tephra can be related to a 5-km increase in column height associated with the last major pulse of the eruption which occurred at 1700 at the volcano. Electron microprobe study of both microlite-rich and microlite-free pumice in the time series samples reveals significant compositional differences. Interstitial glass in nonjuvenile pumice deposited during the first few hours at the sampling sites is enriched in SiO2 and K2O and depleted in TiO2, FeO*, and MgO relative to juvenile glass. By comparison, major element composition of the least evolved juvenile glass sampled during the last several hours of the eruption displays a slight trend toward less evolved composition. Least squares calculations suggest that the more evolved character of the nonjuvenile glass can be explained by greater fractional crystallization brought about by enhanced cooling in a cryptodome prior to eruption, whereas the temporal changes observed in juvenile glass composition during the last several hours of the eruption suggest the presence of a small, slightly zoned magma chamber at depth. Electron microprobe study of glass-coated ilmenites, magnetites, and plagioclases provides the following estimates of the physical conditions in this reservoir: 865°±50°C, PH2O = 2.2 kbar and -log ƒO2 = 11.7. Analyses of bulk pumice, glass and selected mineral phases from May 25, June 12, July 22, and October 16–18 pumices erupted from Mount St. Helens indicate that the bulk pumice (magma) compositions have become slightly more andesitic with time, while mineral and co-existing glass compositions have changed significantly in post-May 18 eruptions with both being more highly evolved than those associated with the May 18 eruption. An application of the magnetite-ilmenite geothermometer to June 12 and July 22 samples indicates temperatures of 919°±30°C and 930°±50°C, respectively. Least squares calculations suggest that such evolved post-May 18 glass and mineral phases can be derived by fractional crystallization of a magma composition like bulk May 18 pumice into approximately 50% crystals and 50% residual liquid. Such partitioning between crystals and residual liquid appears to have occurred on the scale of centimeters and is interpreted as a consequence of accelerated crystallization under reduced water pressure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 89 (B10). pp. 8441-8462.
    Publication Date: 2017-05-04
    Description: The well-known caldera of Thira (Santorini), Greece, was not formed during a single eruption but is composed of two overlapping calderas superimposed upon a complex volcanic field that developed along a NE trending line of vents. Before the Minoan eruption of 1400 B.C., Thira consisted of three Java shields in the northern half of the island and a flooded depression surrounded by tuff deposits in the southern half. Andesitic lavas formed the overlapping shields of the north and were contemporaneous with and, in many places, interbedded with the southern tuff deposits. Although there appears to be little difference between the composition of magmas erupted, differences in eruption style indicate that most of the activity in the northern half of the volcanic field was subaerial, producing lava flows, whereas in the south, eruptions within a flooded depression produced a sequence of mostly phreatomagmatic tuffs. Many of these tuffs are plastered onto the walls of what appears to have been an older caldera, most probably associated with an eruption of rhyodacitic tephra 100,000 years ago. The Minoan eruption of about 1400 B.C. had four distinct phases, each reflecting a different vent geometry and eruption mechanism. The Minoan activity was preceded by minor eruptions of fine ash. (1) The eruption began with a Plinian phase, from subaerial vent(s) located on the easternmost of the lava shields. (2) Vent(s) grew toward the SW into the flooded depression. Subsequent activity deposited large-scale base surge deposits during vent widening by phreatomagmatic activity. (3) The third eruptive phase was also phreatomagmatic and produced 60% of the volume of the Minoan Tuff. This activity was nearly continuous and formed a large featureless tuff ring with poorly defined bedding. This deposit contains 5–40% lithic fragments that are typical of the westernmost lava shield and appears to have been erupted when caldera collapse began. (4) The last phase consisted of eruption of ignimbrites from vent(s) on the eastern shield, not yet involved in collapse. Collapse continued after eruption of the ignimbrites with foundering of the eastern half of the caldera. Total volume of the collapse was about 19 km3, overlapping the older caldera to form the caldera complex visible today. Intracaldera eruptions have formed the Kameni Islands along linear vents concomitant with vents that may have been sources for the Minoan Tuff.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-09
    Description: [1] While recent studies have confirmed the ecological importance of vitamin B12, it is unclear whether the production of this vitamin could be limited by dissolved Co, a trace metal required for B12 biosynthesis, but found at only subnanomolar concentrations in the open ocean. Herein, we demonstrate that the spatial distribution of dissolved B12 (range: 0.13–5 pmol L−1) in the North Atlantic Ocean follows the abundance of total dissolved Co (range: 15–81 pmol L−1). Similar patterns were observed for bacterial productivity (range: 20–103 pmol 3H leucine L−1 hr−1) and algal biomass (range: 0.4–3.9 μg L−1). In contrast, vitamin B1 concentrations (range: 0.7–30 pM) were decoupled from both Co and B12 concentrations. Cobalt amendment experiments carried out in low-dissolved Co waters (∼20 pmol L−1) enhanced B12 production two-fold over unamended controls. This study provides evidence that B12 synthesis could be limited by the availability of Co in some regions of the world ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 113 (D05306).
    Publication Date: 2018-03-09
    Description: We present the first comprehensive investigation of the concentrations, fluxes and sources of aerosol trace elements over the Gulf of Aqaba. We found that the mean atmospheric concentrations of crustally derived elements such as Al, Fe and Mn (1081, 683, and 16.7 ng m�3) are about 2–3 times higher than those reported for the neighboring Mediterranean area. This is indicative of the dominance of the mineral dust component in aerosols over the Gulf. Anthropogenic impact was lower in comparison to the more heavily populated areas of the Mediterranean. During the majority of time (69%) the air masses over the Gulf originated from Europe or Mediterranean Sea areas delivering anthropogenic components such as Cu, Cd, Ni, Zn, and P. Airflows derived from North Africa in contrast contained the highest concentrations of Al, Fe, and Sr but generally lower Cu, Cd, Ni, Zn, and P. Relatively high Pb, Ni, and V were found in the local and Arabian airflows suggesting a greater influence of local emission of fuel burning. We used the data and the measured trace metal seawater concentrations to calculate residence times of dissolved trace elements in the upper 50 m surface water of the Gulf (with respect to atmospheric input) and found that the residence times for most elements are in the range of 5–37 years while Cd and V residence times are longer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-06-28
    Description: Methane (CH4) concentration and stable isotope (δ2H-CH4 and δ13C-CH4) depth distributions show large differences in the water columns of the Earth's largest CH4-containing anoxic basins, the Black Sea and Cariaco Basin. In the deep basins, the between-basin stable isotope differences are large, 83‰ for δ2H-CH4 and 9‰ for δ13C-CH4, and the distributions are mirror images of one another. The major sink in both basins, anaerobic oxidation of CH4, results in such extensive isotope fractionation that little direct information can be obtained regarding sources. Recent measurements of natural 14C-CH4 show that the CH4 geochemistry in both basins is dominated (∼64 to 98%) by inputs of fossil (radiocarbon-free) CH4 from seafloor seeps. We derive open-system kinetic isotope effect equations and use a one-dimensional (vertical) stable isotope box model that, along with isotope budgets developed using radiocarbon, permits a quantitative treatment of the stable isotope differences. We show that two main factors control the CH4 concentration and stable isotope differences: (1) the depth distributions of the input of CH4 from seafloor seeps and (2) anaerobic oxidation of CH4 under open-system steady state conditions in the Black Sea and open-system non-steady-state conditions in the Cariaco Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Coastal Upwelling. , ed. by Richards, F. A. Coastal and estuarine sciences, 1 . AGU (American Geophysical Union), Washington, USA, pp. 348-356.
    Publication Date: 2017-08-10
    Description: During a 10-year study more than 2,000 phytoplankton samples were collected from the entire coast of Peru and analyzed. In general, diatoms were the most abundant group of organisms in all seasons. Predominant species were Rhizosolenia delicatula, Skeletonema costatum Thalassiosira subtilis, Thalassionema nitzschioides and several species of the genus Chaetooeros. Dinoflagellates and flagellates were observed frequently during summer. The mean distribution of the phytoplankton concentration during the 10 years shows the existence of several centers with higher cell densities along the coast, coinciding with the areas of more intense and persistent upwelling. Four major centers have been identified: Pimentel (˜6°S), Chimbote (˜9°S), Callao (˜12°S), and Tambo de Mora-Pisco (˜15°S); and two minor centers, Talara (˜4°S) and Ilo (˜17°S). The relative importance of each center seems to change according to the season. The highest phytoplankton concentration tended to be in the northern part of the coast during fall and winter and in the south through spring and summer.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-06
    Description: Lake Superior has exhibited a continuous, century-long increase in nitrate whereas phosphate remains at very low levels. Increasing nitrate and low phosphate has led to a present-day severe stoichiometric imbalance; Lake Superior's deepwater NO3−:PO43− molar ratio is 10,000, more than 600 times the mean requirement ratio for primary producers. We examine the rate of [NO3−] increase relative to budgets for NO3− and fixed N. Nitrate in Lake Superior has continued to rise since 1980, though possibly at a reduced rate. We constructed whole-lake NO3− and N budgets and found that NO3− must be generated in the lake at significant rates. Stable O isotope results indicate that most NO3− in the lake originated by in-lake oxidation. Nitrate in the lake is responding not just to NO3− loading but also to oxidation of reduced forms of nitrogen delivered to the lake. The increasing [NO3−]:[PO43−] stoichiometric imbalance in this large lake is largely determined by these in-situ processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 108 (B4). p. 2182.
    Publication Date: 2018-04-11
    Description: Methane clathrate hydrate (structure I) is found to be very strong, based on laboratory triaxial deformation experiments we have carried out on samples of synthetic, high‐purity, polycrystalline material. Samples were deformed in compressional creep tests (i.e., constant applied stress, σ), at conditions of confining pressure P = 50 and 100 MPa, strain rate 4.5 × 10−8 ≤ equation image ≤ 4.3 × 10−4 s−1, temperature 260 ≤ T ≤ 287 K, and internal methane pressure 10 ≤ PCH4 ≤ 15 MPa. At steady state, typically reached in a few percent strain, methane hydrate exhibited strength that was far higher than expected on the basis of published work. In terms of the standard high‐temperature creep law, equation image = Aσne−(E*+PV*)/RT the rheology is described by the constants A = 108.55 MPa−n s−1, n = 2.2, E* = 90,000 J mol−1, and V* = 19 cm3 mol−1. For comparison, at temperatures just below the ice point, methane hydrate at a given strain rate is over 20 times stronger than ice, and the contrast increases at lower temperatures. The possible occurrence of syntectonic dissociation of methane hydrate to methane plus free water in these experiments suggests that the high strength measured here may be only a lower bound. On Earth, high strength in hydrate‐bearing formations implies higher energy release upon decomposition and subsequent failure. In the outer solar system, if Titan has a 100‐km‐thick near‐surface layer of high‐strength, low‐thermal conductivity methane hydrate as has been suggested, its interior is likely to be considerably warmer than previously expected.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Inside the Subduction Factory. , ed. by Eiler, J. Geophysical Monograph, 138 . AGU (American Geophysical Union), Boulder, pp. 153-174.
    Publication Date: 2017-03-01
    Description: Most Central American volcanoes occur in an impressive volcanic front that trends parallel to the strike of the subducting Cocos Plate. The volcanic front is a chain, made of right-stepping, linear segments, 100 to 300 Km in length. Volcanoes cluster into centers, whose spacing is random but averages about 27 Km. These closely spaced, easily accessible volcanic centers allow mapping of geochemical variations along the volcanic front. Abundant back-arc volcanoes in southeast Guatemala and central Honduras allow two cross-arc transects. Several element and isotope ratios (e.g. BalLa, Uffh, B/La, IOBe/9Be, 87Sr/86Sr) that are thought to signal subducted marine sediments or altered MORB consistently define a chevron pattern along the arc, with its maximum in Nicaragua. BalLa, a particularly sensitive signal, is 130 at the maximum in Nicaragua but decreases out on the limbs to 40 in Guatemala and 20 in Costa Rica, which is just above the nominal mantle value of 15. This high amplitude regional variation, roughly symmetrical about Nicaragua, contrasts with the near constancy, or small gradient, in several plate tectonic parameters such as convergence rate, age of the subducting Cocos Plate, and thickness and type of subducted sediment. The large geochemical changes over relatively short distances make Central America an important margin for seeking the tectonic causes of geochemical variations; the regional variation has both a high amplitude and structure, including flat areas and gradients. The geochemical database continues to improve and is already adequate to compare to tectonic models with length scales of 100 Km or longer.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Institute of Physics
    In:  Journal of Physics - Condensed Matter, 18 (38). S2919-S2934.
    Publication Date: 2020-07-20
    Description: Loss processes in magnetic nanoparticles are discussed with respect to optimization of the specific loss power (SLP) for application in tumour hyperthermia. Several types of magnetic iron oxide nanoparticles representative for different preparation methods (wet chemical precipitation, grinding, bacterial synthesis, magnetic size fractionation) are the subject of a comparative study of structural and magnetic properties. Since the specific loss power useful for hyperthermia is restricted by serious limitations of the alternating field amplitude and frequency, the effects of the latter are investigated experimentally in detail. The dependence of the SLP on the mean particle size is studied over a broad size range from superparamagnetic up to multidomain particles, and guidelines for achieving large SLP under the constraints valid for the field parameters are derived. Particles with the mean size of 18 nm having a narrow size distribution proved particularly useful. In particular, very high heating power may be delivered by bacterial magnetosomes, the best sample of which showed nearly 1 kW g−1 at 410 kHz and 10 kA m−1. This value may even be exceeded by metallic magnetic particles, as indicated by measurements on cobalt particles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 35 (L10607).
    Publication Date: 2017-11-08
    Description: A new version of SODA, which covers the time period 1958–2005, is used to analyze decadal variability of the Pacific Subtropical Cell (STC) circulation. The analysis is based on transport time series across 9°S and 9°N. At the interannual time scale, STC convergence anomalies decrease during El Niños and increase during La Niñas through Sverdrup transport convergence changes. At decadal time scales, the assimilation shows a reduction of interior STC convergence of about 8 Sv from the 1960s to the 1990s and a subsequent rebound into the early 2000s by a similar amount, in agreement with the STC tendencies reported earlier from geostrophic section analysis, and associated with the occurrence and intensity of ENSO events among the decades analyzed. The results are compared with, and differ significantly from, those obtained by the German ECCO (GECCO) assimilation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 113 . C06009.
    Publication Date: 2018-04-19
    Description: Laboratory experiments were carried out in a seawater mesocosm tank to investigate the influence of marine phytoplankton growth on air bubble residence time (BRT). Air bubbles of 10–1000 μm in diameter were injected by flushing a water jet into the top of the tank and BRT was determined acoustically. The tank was filled with seawater containing a natural phytoplankton population and growth stimulated by irradiating with artificial fluorescent light. A second experiment was conducted using a monoculture of the diatom Cylindrotheca closterium. BRT and several phytoplankton growth-related parameters (chlorophyll concentration, dissolved inorganic nutrients, dissolved organic carbon (DOC), oxygen saturation and bacteria numbers) as well as the water viscosity were monitored over periods of up to 24 days. BRT showed a statistically significant covariation with oxygen saturation (r = 0.69, α = 0.01 for natural phytoplankton; r = 0.93, α = 0.01 for the Cylindrotheca closterium) and chlorophyll concentration (r = 0.69, α = 0.05 natural phytoplankton; r = 0.76, α = 0.01 Cylindrotheca closterium) during phytoplankton growth periods. Increases in BRT of a factor 〉2 were found during the chlorophyll maximum, when the water was sufficiently supersaturated with oxygen (~〉110%). No clear relationship was evident between BRT and measurements of DOC or water viscosity. Model experiments with highly oxygen-supersaturated water and artificial polysaccharide compounds indicated that oxygen supersaturation alone is not the main factor causing increased BRT during phytoplankton growth, but it is most likely a combination of the degree of gas saturation and the composition of the organic exudates derived from the microalgal population.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 33 (16). L16708.
    Publication Date: 2018-03-28
    Description: A series of 500 years long coupled general circulation model simulations has been performed, in which the sea surface temperatures (SSTs) in different tropical oceans have been prescribed from climatology. A statistically significant reduction by about one Sverdrup of the meridional overturning circulation (MOC) in the North Atlantic was found when the tropical Pacific SSTs do not vary interannually. Anomalously low salinities originating in the tropical Atlantic due to increased precipitation drive the reduction of the MOC. Climatological SSTs in the tropical Pacific lead to a “La Niña”-like state due to the nonlinear response of the atmosphere to SST anomalies. The shift of the mean atmospheric circulation in the tropical Pacific leads to a cyclonic anomaly over the eastern tropical Atlantic with a corresponding precipitation increase. The results suggest that changes in the SST variability of the tropical Pacific can drive changes in the mean state of remote regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  , ed. by Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M. Geophysical Monograph Series, 134 . AGU (American Geophysical Union), Washington, DC, 279 pp.
    Publication Date: 2012-03-13
    Type: Book , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 34 (L05604).
    Publication Date: 2018-02-15
    Description: The Pacific Subtropical Cell (STC) circulation is being analyzed from transport time series across 9°S and 9°N, obtained from the German ECCO (GECCO) assimilation results for the period 1952–2002. In this estimate, the interior Pacific STC convergence shows significantly less decadal slowdown from the 1960's to the 1990's (∼5Sv), than in previous estimates based on hydrographic sections. In the GECCO results, about half of this STC convergence decrease is compensated by an increase in the equatorward transport of the western boundary currents. Overall, the STC varies primarily on interannual time scale, with relatively short time lags between STC convergence and transport variations of the Equatorial Undercurrent at 140°W.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 34 . L24702.
    Publication Date: 2018-02-15
    Description: A Holocene Gulf of Guinea record of riverine runoff, based on Ba/Ca in tests of a shallow-dwelling planktic foraminifer, and sea surface temperature (SST), based on Mg/Ca, reveals centennial-scale instabilities in West African monsoon (WAM) precipitation and eastern equatorial Atlantic (EEA) thermal conditions. The long-term Holocene climate trend is characterized by a warm and wet early-mid Holocene and gradual drying and cooling during the late Holocene. Superimposed on this trend are numerous centennial scale drops in precipitation during the early-mid Holocene. The greatest declines in early Holocene monsoon precipitation were accompanied by significant SST cooling in the EEA and correlate with drops in air temperature over Greenland and fresh water outbursts into the North Atlantic (NA). This observation suggests that early Holocene climate instabilities in the NA were closely linked to changes in the WAM. The strong imprint of NA events in summer monsoon precipitation suggests that these events were not confined to winter-time. The late Holocene does not show large amplitude changes in riverine runoff at the centennial level. The relatively stable late Holocene conditions likely reflect a weakening and stabilization of the monsoon system, probably due to diminished influence of the NA region due to a reduction in ice sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 109 . B06102.
    Publication Date: 2018-04-25
    Description: We report measurements made with an ocean bottom array which was operated for 10 days on the Mid-Atlantic Ridge just south of the 5°S transform fault/fracture zone. A total of 148 locatable earthquakes with magnitudes ∼0.5–2.8 were recorded; seismic activity appears to be concentrated within the western half of the median valley. The median valley seismic zone is bounded in along-axis direction by the transform fault to the north and the tip of the axial volcanic ridge to the south. A few scattered events occurred within the inside corner high, on the transform fault, and in the western sidewall close to the segment center. Earthquakes reach a maximum depth of 8 km below the median valley floor and appear to be predominantly in the mantle, although a few crustal earthquakes also occurred. The presence of earthquakes in the mantle indicates that it is not strongly serpentinized. We infer the median valley seismic activity to primarily arise from normal faulting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 5 (1). Q06004.
    Publication Date: 2019-09-23
    Description: [1] A new model is developed and applied to simulate the Phanerozoic evolution of seawater composition (dissolved Ca, Sr, dissolved inorganic carbon, alkalinity, pH, δ18O), marine carbonates (Sr/Ca, 87Sr/86Sr, δ13C, δ18O), atmospheric CO2 and surface temperature. The marine carbonate records (Sr/Ca, 87Sr/86Sr, δ13C) are used to reconstruct changes in volcanic/tectonic activity and organic carbon burial over the Phanerozoic. Seawater pH is calculated assuming saturation with respect to calcite and considering the changing concentration of dissolved Ca documented by brine inclusion data. The depth of calcite saturation is allowed to vary through time and the effects of changing temperature and pressure on the stability constants of the carbonate system are considered. Surface temperatures are calculated using the GEOCARB III approach considering also the changing flux of galactic cosmic radiation (GCR). It is assumed that GCR cools the surface of the Earth via enhanced cloud formation at low altitudes. The δ18O of marine carbonates is calculated considering the changing isotopic composition of seawater, the prevailing surface temperatures and seawater pH. Repeated model runs showed that the trends observed in the marine δ18O record can only be reproduced by the model if GCR is allowed to have a strong effect on surface temperature. The climate evolution predicted by the model is consistent with the geological record. Warm periods (Cambrian, Devonian, Triassic, Cretaceous) are characterized by low GCR levels. Cold periods during the late Carboniferous to early Permian and the late Cenozoic are marked by high GCR fluxes and low pCO2 values. The major glaciations occurring during these periods are the result of carbon cycling processes causing a draw-down of atmospheric CO2 and a coevally prevailing dense cloud cover at low-altitudes induced by strong GCR fluxes. The two moderately cool periods during the Ordovician - Silurian and Jurassic - early Cretaceous are characterized by both high pCO2 and GCR levels so that greenhouse warming compensated for the cooling effect of low-altitude clouds. The very high Jurassic δ18O values observed in the geological record are caused by low pH values in surface waters rather than cold surface conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 34 . L18803.
    Publication Date: 2018-02-15
    Description: We present a new dust source area map for the Sahara and Sahel region, derived from the spatiotemporal variability of composite images of Meteosat Second Generation (MSG) using the 8.7, 10.8 and 12.0 μm wavelength channels for March 2006–February 2007. Detected dust events have been compared to measured aerosol optical thickness (AOT) and horizontal visibility observations. Furthermore the monthly source area map has been compared with the Ozone Monitoring Instrument aerosol index (AI). A spatial shift of the derived frequency patterns and the local maxima of AI-values can be explained by wind-transport of airborne dust implicitly included in the AI signal. To illustrate the sensitivity of a regional model using the new dust source mask, we present a case study analysis that shows an improvement in reproducing aerosol optical thickness in comparison to the original dust source parameterization.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-05-10
    Description: The intratest variation in the chemical composition of Globorotalia scitula and G. inflata recovered from a sediment trap sample collected at 3000 m in the North Atlantic in early spring has been investigated using laser ablation inductively coupled plasma–mass spectrometry and electron microprobe. Mg/Ca, Li/Ca, B/Ca, Mn/Ca, and Ba/Ca vary by up to a factor of 10 through the test walls. Water column properties, including temperature and salinity, are well documented at the trap site, and the observed variations are too large to be explained by vertical migration of the foraminifera. However, changes in calcite precipitation rate, crystal structure, or the chemical composition of the internal calcification reservoir also cannot, by themselves, fully account for the pattern of intratest variability. Nevertheless, the average Mg/Ca for each chamber generally produces a Mg/Ca temperature that matches that measured in the water column. The exception is small, morphologically distinct G. inflata tests that have anomalously high Mg/Ca.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 32 . L09602.
    Publication Date: 2018-03-28
    Description: Changes of the meridional overturning circulation (MOC) due to surface heat flux variability related to the North Atlantic Oscillation (NAO) are analyzed in various ocean models, i.e., eddying and non‐eddying cases. A prime signature of the forcing is variability of the winter‐time convection in the Labrador Sea. The associated changes in the strength of the MOC near the subpolar front (45°N) are closely related to the NAO‐index, leading MOC anomalies by about 2–3 years in both the eddying and non‐eddying simulation. Further south the speed of the meridional signal propagation depends on model resolution. With lower resolution (non‐eddying case, 4/3° resolution) the MOC signal propagates equatorward with a mean speed of about 0.6 cm/s, similar as spreading rates of passive tracer anomalies. Eddy‐permitting experiments (1/3°) show a significantly faster propagation, with speeds corresponding to boundary waves, thus leading to an almost in‐phase variation of the MOC transport over the subtropical to subpolar North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Oceans, 110 (C10). pp. 1978-2012.
    Publication Date: 2016-03-03
    Description: The long-term data sets of total alkalinity (TA) (1929–2002 A.D.) and δ18O (1966–2002 A.D.) are used to investigate freshwater and brine distributions in the Arctic Ocean. Fractions of sea ice meltwater and other freshwaters (OF) (precipitation, river runoff, and freshwater carried by Pacific water implied as salinity deficit) are calculated on the basis of salinity-TA and salinity-δ18O relationships. Rejected brine during sea ice growth resides in surface water in the central Arctic Ocean, while net melting is found along the surface flow of water from the Pacific and Atlantic oceans. Distribution of OF at 10 m water depth suggests that Russian runoff leaves the shelf mainly west of the Mendeleyev Ridge, enters into the deep basin, and exits from the ocean through the western part of Fram Strait. The influence of Mackenzie River water is limited in the region and in depth. Accumulation of freshwater in the Canadian Basin is caused by deep penetration of OF with brine, indicating the transport of freshwater by shelf-derived water. The major origin of shelf-derived water entering into the upper halocline layer in the Canadian Basin should be the Chukchi and East Siberian Sea shelves, and the main freshwater sources are the salinity deficit of Pacific water and/or Russian runoff. An increase in OF inventory accompanied by an increase in brine content may suggest an increase of the shelf-derived water supply into the western Canadian Basin in anticyclonic years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-04-04
    Description: We use traveltime data of local earthquakes and controlled sources observed by a large, temporary, amphibious seismic network to reveal the anatomy of the southcentral Chilean subduction zone (37–39°S) between the trench and the magmatic arc. At this location the giant 1960 earthquake (M = 9.5) nucleated and ruptured almost 1000 km of the subduction megathrust. For the three-dimensional tomographic inversion we used 17,148 P wave and 10,049 S wave arrival time readings from 439 local earthquakes and 94 shots. The resolution of the tomographic images was explored by analyzing the model resolution matrix and conducting extensive numerical tests. The downgoing lithosphere is delineated by high seismic P wave velocities. High vp/vs ratio in the subducting slab reflects hydrated oceanic crust and serpentinized uppermost oceanic mantle. The subducting oceanic crust can be traced down to a depth of 80 km, as indicated by a low velocity channel. The continental crust extends to approximately a 50-km depth near the intersection with the subducting plate. This suggests a wide contact zone between continental and oceanic crust of about 150 km, potentially supporting the development of large asperities. Eastward the crustal thickness decreases again to a minimum of about a 30-km depth. Relatively low vp/vs at the base of the forearc does not support a large-scale serpentinization of the mantle wedge. Offshore, low vp and high vp/vs reflect young, fluid-saturated sediments of forearc basins and the accretionary prism.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Dynamics of Passive Margins. , ed. by Scrutton, R. A. Geodynamics series, 6 . AGU (American Geophysical Union), Washington, DC, pp. 59-71.
    Publication Date: 2016-04-11
    Description: Sedimentation rates (corrected for compaction) from along the passive continental margin of Africa between the Equatorial Fracture Zone and Somalia are used to compare the rates of subsidence of the continental crust since early Mesozoic time. Three distinctive subsidence histories can be identified which correspond with basinal areas that have different structural styles: rifted (west coast), sheared (Equatorial and Agulhas fracture zones) and sunk (zones of vertical tectonics in eastern Africa). A comparison of subsidence rates with other tensional margins (NE USA and the North Sea) and a consideration of the plate tectonic history of the African margins leads to the proposal of a geo and thermodynamic model that takes cognizance of the worldwide mid-Cretaceous rheological discontinuity between taphrogenic and epeirogenic basin formation recognized by Kent, and the more generally accepted, purely plate tectonic driven model of margin subsidence. The new suggestion involves a lower Mesozoic worldwide rise in the geothermal gradient in the lithosphere which produces metamorphism of the base of the continental crust and initiates taphrogenesis along lineaments throughout Gondwanaland. A lowering of the geothermal gradient in the lower Cretaceous produces a switch to epeirogenic subsidence, driven solely by sediment loading and thermal contraction, by Aptian/Albian times. The thermal event facilitated continental separation, and sea floor spreading commenced locally at various times along the active taphrogenic belts. Local thermal and tectonic aberrations associated with this phenomenon over print onto the worldwide pattern of marginal basin subsidence. A further rise in the geothermal gradient may have been responsible for renewed taphrogenesis in eastern Africa in Tertiary times.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-04-15
    Description: High-resolution sediment cores from the Vøring Plateau, the North Iceland shelf, and the East Greenland shelf have been studied to investigate the stability of major surface currents in the Nordic Seas during the Holocene. Results from diatom assemblages and reconstructed sea-surface temperatures (SSTs) indicate a division of the Holocene into three periods: the Holocene Climate Optimum (9500–6500 calendar (cal) years BP), the Holocene Transition Period (6500–3000 cal years BP) and the Cool Late Holocene Period (3000–0 cal years BP). The overall climate development is in step with the decreasing insolation on the Northern Hemisphere, but regional differences occur regarding both timing and magnitude of SST changes. Sites under the direct influence of the Norwegian Atlantic Current and the Irminger Current indicate SST cooling of 4–5°C from early Holocene to present, compared to 2°C recorded under the East Greenland Current. Superimposed on the general Holocene cooling trend, there is a high-frequency SST variability, which is in the order of 1–1.5°C for the Vøring Plateau and the East Greenland shelf and 2.5–3°C on the North Iceland shelf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 88 (B11). p. 9475.
    Publication Date: 2016-03-02
    Description: We have compiled both laboratory and worldwide field data on electrical conductivity to help understand the physical implications of deep crustal electrical profiles. Regional heat flow was used to assign temperatures to each layer in regional electrical conductivity models; we avoided those data where purely conductive heat flow suggested temperatures more than about 1000°C, substantially higher than solidus temperatures and outside the range of validity of heat flow models. The resulting plots of log conductivity σ versus 1/T demonstrate that even low-conductivity layers (LCL) have conductivities several orders of magnitude higher than dry laboratory samples and that the data can be represented by straight line fits. In addition, technically active regions show systematically higher conductivities than do shield areas. Because volatiles are usually lost in laboratory measurements and their absence is a principal difference between laboratory and field conditions, these materials probably account for the relatively higher conductivities of rocks in situ in the crust; free water in amounts of 0.01–0.1% in fracture porosity could explain crustal conductivities. Other possibilities are graphite, hydrated minerals in rare instances, and sulfur in combination with other volatiles. As most of the temperatures are less than 700°C, partial melting seems likely only in regions of highest heat flow where the conductive temperature profiles are inappropriate. Another result is that at a given temperature, crustal high-conductivity layers (HCL) are more conductive by another order of magnitude and show more scatter than do LCL's. Because the differences between HCL's and LCL's are independent of temperature, we must invoke more than temperature increases as a cause for large conductivity increases; increased fluid concentration in situ seems a probable cause for enhanced conductivities in HCL's. From the point of view of these observations, it does not matter whether the fluids are in communication with the surface or trapped at lithostatic pressures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 32 (L14613).
    Publication Date: 2016-04-05
    Description: High interannual variability of summer surface salinity over the Laptev and East Siberian Sea shelves derived from historical records of the 1950s–2000s is attributed to atmospheric vorticity variations. In the cyclonic regime (positive vorticity) the eastward diversion of the Laptev Sea riverine water results in a negative salinity anomaly to the east of the Lena Delta and farther to the East Siberian Sea, and a positive anomaly to the north of the Lena Delta. Anticyclonic (negative) vorticity results in negative salinity anomalies northward from the Lena Delta due to freshwater advection toward the north, and a corresponding salinity increase eastward.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 8 (6). Q06018.
    Publication Date: 2018-03-01
    Description: [1] On the basis of the detailed sedimentological record of the key-core PS66/309-1 and a review of open literature, we present an assessment of the paleoenvironmental conditions as well as trigger mechanism of the Hinlopen/Yermak Megaslide north of Spitsbergen. The Svalbard archipelago is characterized by strong inflow of Atlantic water accompanied by rapidly falling sea level, rapidly growing Svalbard-Barents Sea-Ice Sheet, and associated increasing glaciotectonic activity during the time window around 30 calendar kyr B. P. of this catastrophic failure event. Thus the potential trigger mechanisms include sediment buoyancy and excess pore pressure, hydrate stability, and tectonic/glaciotectonic processes. While the common scenarios seem to fail to explain this unique submarine megaslide, we focus on glacial processes and their consequences for the regional tectonic framework. We conclude that the Hinlopen/Yermak Megaslide has been the consequence of the rapid onset of Late Weichselian glaciation resulting in a drastic sea level drop, asymmetrical ice loading, and a forebulge development leading to enhanced tectonic movements along the Hinlopen fault zone. As the final trigger we assume a strong earthquake positioned below or close to the SE Sophia Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-04-26
    Description: Submersible dives on 22 active submarine volcanoes on the Mariana and Tonga-Kermadec arcs have discovered systems on six of these volcanoes that, in addition to discharging hot vent fluid, are also venting a separate CO2-rich phase either in the form of gas bubbles or liquid CO2 droplets. One of the most impressive is the Champagne vent site on NW Eifuku in the northern Mariana Arc, which is discharging cold droplets of liquid CO2 at an estimated rate of 23 mol CO2/s, about 0.1% of the global mid-ocean ridge (MOR) carbon flux. Three other Mariana Arc submarine volcanoes (NW Rota-1, Nikko, and Daikoku), and two volcanoes on the Tonga-Kermadec Arc (Giggenbach and Volcano-1) also have vent fields discharging CO2-rich gas bubbles. The vent fluids at these volcanoes have very high CO2 concentrations and elevated C/3He and δ 13C (CO2) ratios compared to MOR systems, indicating a contribution to the carbon flux from subducted marine carbonates and organic material. Analysis of the CO2 concentrations shows that most of the fluids are undersaturated with CO2. This deviation from equilibrium would not be expected for pressure release degassing of an ascending fluid saturated with CO2. Mechanisms to produce a separate CO2-rich gas phase at the seafloor require direct injection of magmatic CO2-rich gas. The ascending CO2-rich gas could then partially dissolve into seawater circulating within the volcano edifice without reaching equilibrium. Alternatively, an ascending high-temperature, CO2-rich aqueous fluid could boil to produce a CO2-rich gas phase and a CO2-depleted liquid. These findings indicate that carbon fluxes from submarine arcs may be higher than previously estimated, and that experiments to estimate carbon fluxes at submarine arc volcanoes are merited. Hydrothermal sites such as these with a separate gas phase are valuable natural laboratories for studying the effects of high CO2 concentrations on marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-03-19
    Description: In our analysis [Rahmstorf et al., 2004], we arrived at two main conclusions: the data of Shaviv and Veizer [2003] do not show a significant correlation of cosmic ray flux (CRF) and climate, and the authors' estimate of climate sensitivity to CO2 based on a simple regression analysis is questionable. After careful consideration of Shaviv and Veizer's comment, we want to uphold and reaffirm these conclusions. Concerning the question of correlation, we pointed out that a correlation arose only after several adjustments to the data, including shifting one of the four CRF peaks and stretching the time scale. To calculate statistical significance, we first need to compute the number of independent data points in the CRF and temperature curves being correlated, accounting for their autocorrelation. A standard estimate [Quenouille, 1952] of the number of effective data points is urn:x-wiley:00963941:media:eost14930:eost14930-math-0001 where N is the total number of data points and r1, r2 are the autocorrelations of the two series. For the curves of Shaviv and Veizer [2003], the result is NEFF = 4.8. This is consistent with the fact that these are smooth curves with four humps, and with the fact that for CRF the position of the four peaks is determined by four spiral arm crossings or four meteorite clusters, respectively; that is, by four independent data points. The number of points that enter the calculation of statistical significance of a linear correlation is (NEFF− 2), since any curves based on only two points show perfect correlation; at least three independent points are needed for a meaningful result.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 85 (4). pp. 38-41.
    Publication Date: 2017-02-10
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 8 (6). Q06004.
    Publication Date: 2017-11-07
    Description: Multibeam sonar surveys have been conducted since their invention in the 1970s; however, mainly reflections from the seafloor were considered so far. More recently, water column imaging with multibeam is becoming of increasing interest for fisheries, buoy, mooring, or gas detection in the water column. Using ELAC SEABEAM 1000 data, we propose a technique to detect gas bubbles (flares) although this system is originally not designed to record water column data. The described data processing represents a case study and can be easily adapted to other multibeam systems. Multibeam data sets from the Black Sea and the North Sea show reflections of gas bubbles that form flares in the water column. At least for reasonably intense gas escape the detection of bubbles is feasible. The multibeam technique yields exact determination of the source position and information about the dimension of the gas cloud in the water. Compared to conventional flare imaging by single-beam echo sounders, the wide swath angle of multibeam systems allows the mapping of large areas in much shorter time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 18 (2). GB2012.
    Publication Date: 2018-03-16
    Description: The physical, chemical/biological processes that control the methane dynamics in the Weddell Sea are revealed by the distributions of methane (CH4), its stable carbon isotope ratio, δ13C-CH4, and the conservative transient tracer, chlorofluorocarbon-11 (CFC-11, CCl3F). In general, a nearly linear correlation between CH4 and CFC-11 concentrations was observed. Air-sea exchange is the major source of methane to this region, and the distribution of methane is controlled mainly by mixing between surface water and methane-poor Warm Deep Water. A significant influence of methane oxidation over the predominant two end-member mixing was only found in the Weddell Sea Bottom Water (WSBW) of the deep central Weddell Basin, where the turnover time of methane appears to be about 20 years. Mixing also controls most of the δ13C-CH4 distribution, but lighter than expected carbon isotopic ratios occur in the deep WSBW of the basin. From box model simulations, it appears that this “anomaly” is due to methane oxidation with a low kinetic isotope fractionation of about 1.004. The surface waters in the Weddell Sea and the Antarctic Circumpolar Current showed a general methane undersaturation of 6 to 25% with respect to the atmospheric mixing ratio. From this undersaturation and model-derived air-sea exchange rates, we estimate a net uptake of CH4 of roughly −0.5 μmol m−2 d−1 during austral autumn.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 35 . L02706.
    Publication Date: 2017-11-08
    Description: It is shown that some important aspects of the space-time structure of multidecadal sea surface temperature (SST) variability can be explained by local air-sea interactions. A concept for “Global Hyper Climate Modes” is formulated: surface heat flux variability associated with regional atmospheric variability patterns is integrated by the large heat capacity of the extra-tropical oceans, leading to a continuous increase of SST variance towards longer timescales. Atmospheric teleconnections spread the extra-tropical signal to the tropical regions. Once SST anomalies have developed in the Tropics, global atmospheric teleconnections spread the signal around the world creating a global hyper climate mode. A simple model suggests that hyper climate modes can vary on timescales longer than 1,000 years. Ocean dynamics may amplify theses modes and influence the regional expression of the variability, but are not at the heart of the mechanism which produces the hyper modes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 36 . L00D07.
    Publication Date: 2017-10-13
    Description: Multi-Channel Seismic method (MCS), with its ability to image events down to a lateral resolution of 10 m has been successfully applied to address questions in physical oceanography. However, to date, these analyses have overlooked an important detail; the imaged boundaries are dynamic and move on a timescale that can be resolved by the MCS method. An important step in understanding the effect of the movement is calibration against constrained models. We demonstrate in this paper that it is possible using careful interpolation to take high resolution models of dynamic water (160 m x 2 m spatial resolution and 15 min temporal resolution) and generate models for synthetic seismic simulations (20 m x 4 m spatial resolution and 20 sec temporal resolution). We show that moving water, when ignored, will distort analyses of wavenumber spectra estimated from seismic data since the relative movement of water masses and the seismic acquisition vessel will change the apparent slope of spectra. Citation: Vsemirnova, E., R. Hobbs, N. Serra, D. Klaeschen, and E. Quentel (2009), Estimating internal wave spectra using constrained models of the dynamic ocean, Geophys. Res. Lett., 36, L00D07, doi: 10.1029/2009GL039598.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 2 (7).
    Publication Date: 2018-01-30
    Description: [1] The structural and chemical evolution of palagonite was studied as a function of glass composition, alteration environment, and time by applying a range of analytical methods (electron microprobe, infrared photometry, atomic force microscopy, X-ray fluorescence, and X-ray diffraction). Palagonitization of volcanic glass is a continuous process of glass dissolution, palagonite formation, and palagonite evolution, which can be subdivided into two different reaction stages with changing element mobilities. The first stage is characterized by congruent dissolution of glass and contemporaneous precipitation of “fresh,” gel-like, amorphous, optically isotropic, mainly yellowish palagonite. This stage is accompanied by loss of Si, Al, Mg, Ca, Na, and K, active enrichment of H2O, and the passive enrichment of Ti and Fe. The second stage is an aging process during which the thermodynamically unstable palagonite reacts with the surrounding fluid and crystallizes to smectite. This stage is accompanied by uptake of Si, Al, Mg, and K from solution and the loss of Ti and H2O. Ca and Na are still showing losses, whereas Fe reacts less consistently, remaining either unchanged or showing losses. The degree and direction of element mobility during palagonitization was found to vary mainly with palagonite aging, as soon as the first precipitation of palagonite occurs. This is indicated by the contrasting major element signatures of palagonites of different aging steps, by the changes in the direction of element mobility with palagonite aging, and by the general decrease of element loss with increasing formation of crystalline substances in the palagonite. Considering the overall element budget of a water-rock system, the conversion of glass to palagonite is accompanied by much larger element losses than the overall alteration process, which includes the formation of secondary phases and palagonite aging. The least evolved palagonitized mafic glass studied has undergone as much as 65 wt% loss of elements during palagonite formation, compared to ∼28 wt% element loss during bulk alteration. ABout 33 wt% element loss was calculated for one of the more evolved, in terms of the aging degree, rocks studied, compared to almost no loss for bulk alteration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2017-02-14
    Description: The southern central Chilean margin at the site of the largest historically recorded earthquake in the Valdivia region, in 1960 (Mw = 9.5), is part of the 5000-km-long active subduction system whose geodynamic evolution is controversially debated and poorly understood. Covering the area between 36° and 40°S, the oceanic crust is segmented by prominent fracture zones. The offshore forearc and its onshore continuation show a complex image with segments of varying geophysical character, and several fault systems active during the past 24 m.y. In autumn 2001, the project SPOC was organized to study the Subduction Processes Off Chile, with a focus on the seismogenic coupling zone and the forearc. The acquired seismic data crossing the Chilean subduction system were gathered in a combined offshore-onshore survey and provide new insights into the lithospheric structure and evolution of active margins with insignificant frontal accretion.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 7 (9). Q09006.
    Publication Date: 2019-09-23
    Description: Uptake of half of the fossil fuel CO2 into the ocean causes gradual seawater acidification. This has been shown to slow down calcification of major calcifying groups, such as corals, foraminifera, and coccolithophores. Here we show that two of the most productive marine calcifying species, the coccolithophores Coccolithus pelagicus and Calcidiscus leptoporus, do not follow the CO2-related calcification response previously found. In batch culture experiments, particulate inorganic carbon (PIC) of C. leptoporus changes with increasing CO2 concentration in a nonlinear relationship. A PIC optimum curve is obtained, with a maximum value at present-day surface ocean pCO2 levels (∼360 ppm CO2). With particulate organic carbon (POC) remaining constant over the range of CO2 concentrations, the PIC/POC ratio also shows an optimum curve. In the C. pelagicus cultures, neither PIC nor POC changes significantly over the CO2 range tested, yielding a stable PIC/POC ratio. Since growth rate in both species did not change with pCO2, POC and PIC production show the same pattern as POC and PIC. The two investigated species respond differently to changes in the seawater carbonate chemistry, highlighting the need to consider species-specific effects when evaluating whole ecosystem responses. Changes of calcification rate (PIC production) were highly correlated to changes in coccolith morphology. Since our experimental results suggest altered coccolith morphology (at least in the case of C. leptoporus) in the geological past, coccoliths originating from sedimentary records of periods with different CO2 levels were analyzed. Analysis of sediment samples was performed on six cores obtained from locations well above the lysocline and covering a range of latitudes throughout the Atlantic Ocean. Scanning electron micrograph analysis of coccolith morphologies did not reveal any evidence for significant numbers of incomplete or malformed coccoliths of C. pelagicus and C. leptoporus in last glacial maximum and Holocene sediments. The discrepancy between experimental and geological results might be explained by adaptation to changing carbonate chemistry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 105 (C6). pp. 14197-14213.
    Publication Date: 2018-04-17
    Description: From October 1995 to April 1996, three mooring lines were deployed at the eastern entrance of the Strait of Gibraltar. The spatial coverage of the mooring array allows for a good description of the tides. They exhibit a dominant semidiurnal nature and a noticeable baroclinic structure that matches the one of the mean exchange. Tidal currents in the upper layer are irregular and usually too weak to reverse the mean upper layer how that keeps on flowing east. Lower layer flow reverses with semidiurnal periodicity because of the smallness of the mean flow and the appreciable amplitude of the regular semidiurnal oscillation of tidal currents in this layer. Tidal transports can be satisfactorily compared with previous estimates of Bryden et al. [1994] if we allow for strong internal divergences associated with the internal tide. No significant eddy flux of water transport (tidal rectification) is observed at the eastern section, contrary to the almost 50% of the total layer transport found by Bryden et al. [1994] in Camarinal Sill section. Time-dependent hydraulic theory provides a good scenario for interpreting these two independent sets of observations despite the fact that the composite Froude number does not reach the critical values predicted in the hydraulic models most of the time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 9 (Q02007).
    Publication Date: 2018-03-08
    Description: Time series of lead (Pb) and neodymium (Nd) isotope compositions were measured on three ferromanganese crusts recording the evolution of NE Atlantic water masses over the past 15 Ma. The crusts are distributed along a depth profile (∼700–4600 m) comprising the present-day depths of Mediterranean Outflow Water and North East Atlantic Deep Water. A pronounced increase of the 206Pb/204Pb in the two deeper crusts starting at ∼4 Ma and a decrease in 143Nd/144Nd in all three crusts took place between ∼6–4 Ma and the present. These patterns are similar to isotope time series in the western North Atlantic basin and are consistent with efficient mixing between the two basins. However, the changes occurred 1–3 Ma earlier in the eastern basin indicating that the northeastern Atlantic led the major change in Pb and Nd isotope composition, probably due to a direct supply of Labrador Seawater via a northern route. The Pb isotope evolution during the Pliocene-Pleistocene can generally be explained by mixing between two end-members corresponding to Mediterranean Outflow Water and North East Atlantic Deep Water, but external sources such as Saharan dust are likely to have played a role as well. The Pb isotope composition of the shallowest crust that grew within the present-day Mediterranean Outflow Water does not show significant Pb isotope changes indicating that it was controlled by the same Pb sources throughout the past 15 Ma.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-02-06
    Description: Microwave Limb Sounder and Sounding of the Atmosphere with Broadband Emission Radiometry data provide the first opportunity to characterize the four-dimensional stratopause evolution throughout the life-cycle of a major stratospheric sudden warming (SSW). The polar stratopause, usually higher than that at midlatitudes, dropped by ∼30 km and warmed during development of a major “wave 1” SSW in January 2006, with accompanying mesospheric cooling. When the polar vortex broke down, the stratopause cooled and became ill-defined, with a nearly isothermal stratosphere. After the polar vortex started to recover in the upper stratosphere/lower mesosphere (USLM), a cool stratopause reformed above 75 km, then dropped and warmed; both the mesosphere above and the stratosphere below cooled at this time. The polar stratopause remained separated from that at midlatitudes across the core of the polar night jet. In the early stages of the SSW, the strongly tilted (westward with increasing altitude) polar vortex extended into the mesosphere, and enclosed a secondary temperature maximum extending westward and slightly equatorward from the highest altitude part of the polar stratopause over the cool stratopause near the vortex edge. The temperature evolution in the USLM resulted in strongly enhanced radiative cooling in the mesosphere during the recovery from the SSW, but significantly reduced radiative cooling in the upper stratosphere. Assimilated meteorological analyses from the European Centre for Medium-Range weather Forecasts (ECMWF) and Goddard Earth Observing System Version 5.0.1 (GEOS-5), which are not constrained by data at polar stratopause altitudes and have model tops near 80 km, could not capture the secondary temperature maximum or the high stratopause after the SSW; they also misrepresent polar temperature structure during and after the stratopause breakdown, leading to large biases in their radiative heating rates. ECMWF analyses represent the stratospheric temperature structure more accurately, suggesting a better representation of vertical motion; GEOS-5 analyses more faithfully describe stratopause level wind and wave amplitudes. The high-quality satellite temperature data used here provide the first daily, global, multiannual data sets suitable for assessing and, eventually, improving representation of the USLM in models and assimilation systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Reviews of Geophysics, 47 (RG1002).
    Publication Date: 2016-09-14
    Description: In recent years, the Indian Ocean (IO) has been discovered to have a much larger impact on climate variability than previously thought. This paper reviews climate phenomena and processes in which the IO is, or appears to be, actively involved. We begin with an update of the IO mean circulation and monsoon system. It is followed by reviews of ocean/atmosphere phenomenon at intraseasonal, interannual, and longer time scales. Much of our review addresses the two important types of interannual variability in the IO, El Niño–Southern Oscillation (ENSO) and the recently identified Indian Ocean Dipole (IOD). IOD events are often triggered by ENSO but can also occur independently, subject to eastern tropical preconditioning. Over the past decades, IO sea surface temperatures and heat content have been increasing, and model studies suggest significant roles of decadal trends in both the Walker circulation and the Southern Annular Mode. Prediction of IO climate variability is still at the experimental stage, with varied success. Essential requirements for better predictions are improved models and enhanced observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 105 (C3). pp. 6307-6326.
    Publication Date: 2017-06-06
    Description: We investigate the seasonal sea surface height (SSH) variability on large spatial scales in the North Atlantic by using both a numerical simulation and in situ data. First, an ocean general circulation model is run with daily forcing from the European Centre for Medium-Range Weather Forecasts reanalysis. We evaluate the different contributions to the seasonal SSH variability resulting from the surface heat fluxes, advection, salt content variability, deep ocean steric changes, and bottom pressure variability. These terms are compared with estimates from in situ data. North of 20°N, there is an approximate balance between hQ, the air-sea heat flux induced changes in steric height, and SSH variability. The next important component is the advection (its contribution to the annual amplitude is of the order of 1 cm except near the western boundary); other contributions are found to be smaller. Between 10°N and 10°S the advection variability induced by the seasonal wind stress cycle is the primary source of SSH variability. We then compare the sea surface height annual harmonic from TOPEX/Poseidon altimetry with the steric effect from the heat flux and with model and/or in situ estimates of the other terms. In many areas north of 20°N the balance between hQ and the altimetric SSH seasonal cycle is closed within the uncertainty limit of each of the terms of the SSH budget. However, hQ and the SSH do not balance each other in the eastern North Atlantic, and the results are sensitive to the choice of the heat flux product, suggesting that significant errors, typically 20–40 W m−2 for the seasonal cycle amplitude, are present in the meteorological model heat fluxes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-01-31
    Description: [1] Very rare, halogen-rich andesite melt inclusions (HRA) in bytownitic plagioclase phenocrysts (An89–90) from tephra fallout of the Izu arc volcanic front (Izu VF) provide new insights into the processes of fluid release from slab trenchward to the volcanic front in a cool subduction zone. These HRA are markedly enriched in Cl, F and Li - by factors of up to 8 (Cl, F) and 1.5 (Li) - but indistinguishable with respect to the fluid-mobile large-ion lithophile elements (LILE; K, Sr, Rb, Cs, Ba, Pb, U), rare earths (REE) or high field strength elements (HFSE) from the low-K tholeiitic magmas of the Izu VF. We suggest that the chemical signature of the HRA reflects the presence of a fluid in the mantle source that originated from the serpentinized mantle peridotite above the metacrust. This “wedge serpentinite” presumably formed by fluid infiltration beneath the forearc and was subsequently down-dragged with the slab to arc front depths. The combined evidence from the Izu VF (∼110 km above slab) and the outer forearc serpentinite seamounts (∼25 to 30 km above slab) suggests that the slab flux of B and Cl is highest beneath the forearc, and decreases with increasing slab depths. In contrast, the slab flux of Li is minor beneath the forearc, but increases with depth. Fluorine may behave similarly to Li, whereas the fluid-mobile LILE appear to be largely retained in the slab trenchward from the Izu VF. Consequently, the chemical signatures of both Izu trench sediments and basaltic rocks appear preserved until arc front depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 35 . L19606.
    Publication Date: 2019-09-23
    Description: Investigations into Fe(II) cycling during two Southern Ocean mesoscale iron enrichment experiments, SOFeX and EIFeX, clearly show the importance of Fe(II) to iron speciation during these experiments. In both cases the added Fe(II) persisted significantly longer than its expected oxidation time indicating a significant Fe reduction process at work. During EIFeX diel studies showed a strong photochemically induced cycle in Fe(II) production in sunlit surface waters. Our results suggest that the photochemical cycling of iron may also be important in unfertilized waters of the Southern Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2017-01-26
    Description: The application of radiogenic isotopes to the study of Cenozoic circulation patterns in the South Pacific Ocean has been hampered by the fact that records from only equatorial Pacific deep water have been available. We present new Pb and Nd isotope time series for two ferromanganese crusts that grew from equatorial Pacific bottom water (D137-01, “Nova,” 7219 m water depth) and southwest Pacific deep water (63KD, “Tasman,” 1700 m water depth). The crusts were dated using 10Be/9Be ratios combined with constant Co-flux dating and yield time series for the past 38 and 23 Myr, respectively. The surface Nd and Pb isotope distributions are consistent with the present-day circulation pattern, and therefore the new records are considered suitable to reconstruct Eocene through Miocene paleoceanography for the South Pacific. The isotope time series of crusts Nova and Tasman suggest that equatorial Pacific deep water and waters from the Southern Ocean supplied the dissolved trace metals to both sites over the past 38 Myr. Changes in the isotopic composition of crust Nova are interpreted to reflect development of the Antarctic Circumpolar Current and changes in Pacific deep water circulation caused by the build up of the East Antarctic Ice Sheet. The Nd isotopic composition of the shallower water site in the southwest Pacific appears to have been more sensitive to circulation changes resulting from closure of the Indonesian seaway.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 31 (23). L23S05.
    Publication Date: 2018-02-27
    Description: Oceanic bromoform (CHBr3) is the major source of organic Br to the atmosphere and may be significant for ozone depletion through the contribution of reactive bromine to the upper troposphere and lower stratosphere of the midlatitudes and tropics. We report the first analyses of boundary layer air, surface and deep ocean waters from the tropical Atlantic. The data provide evidence of a source of CHBr3 throughout the tropical open ocean associated with the deep chlorophyll maximum within the tropical thermocline. Equatorial upwelling carries the CHBr3 to the surface, adding to increased concentrations in the equatorial mixed layer and driving oceanic emissions that support locally elevated atmospheric concentrations. In air masses that had crossed the coastal upwelling region off NW Africa even higher atmospheric mixing ratios were measured. The observations suggest a link between climate, wind-driven upwelling, and the supply of Br to the upper atmosphere of the tropics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 8 . Q04003.
    Publication Date: 2019-09-23
    Description: Measurements of CH4 concentrations in the bottom water during two discrete sampling periods in subsequent years above different cold seeps at the Pacific margin off Costa Rica indicate large-scale variations of CH4 release. CH4 is emitted from mud extrusions and a slide scar at 1000–2300 m water depth. Maximum CH4 concentrations were found to be lower above all investigated sites in autumn 2003 than in autumn 2002 although seep sites are up to 300 km apart. Tidal and current changes were observed but found to apply only to individual seep sites. Increased seismic activity connected to the moment magnitude (M W ) 6.4 earthquake offshore Costa Rica in June 2002 could have had an impact on all seep sites and thereby caused an increase in CH4 emission. This is supported by the largest variations of CH4 concentration found above mud extrusions located above faults likely more strongly affected by tectonic movements. Even though our data indicate a relation between seismicity and CH4 seepage, the relation is not proven, and future work is needed to comprehensively test this hypothesis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 36 . L00D03.
    Publication Date: 2017-07-27
    Description: The observation of spatial and temporal dynamics of the ocean is fundamental to understand global and regional aspects of water mixing. Physical oceanography has traditionally observed ocean structures with in situ measurements, often limited in temporal and/or spatial resolution. In exploration seismology a set of techniques has been developed over the last decades to image and characterize the physical properties of sub-seafloor structures by inversion methods at high horizontal resolution. The two different fields have made contact in seismic oceanography where the well developed methods of marine reflection seismology have been applied to the dynamic ocean. However, one aspect, so far ignored in seismic oceanography, is the dynamical, temporally varying nature of water structures. Here we show that it is possible to estimate temporal variations of reflectors in water structures as an inversion parameter. The new dynamic property reflector movement velocity gives an additional parameter to characterize ocean water dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-05-10
    Description: Diagenetic processes are known to modify sedimentary records, but they can also reveal important paleoenvironmental changes. Here we investigate variations in sedimentary iron diagenesis and depositional environments for the last 35 ka by analyzing the rock magnetic and geochemical properties of two sediment cores collected in the Santa Barbara Basin (California). In organic-rich sediments, early diagenesis often leads to partial dissolution of detrital iron oxides and stepwise formation of authigenic pyrite (FeS2). The pyritization process takes place following several geochemical pathways, sometimes involving intermediate iron sulfide species such as greigite (Fe3S4). Sedimentary conditions in the basin appear to have recurrently favored preservation of greigite (identified by its magnetic properties) and inhibited its complete transformation into pyrite. The Holocene interval contains a series of centimeter-thick greigite-bearing layers that are associated with large flood deposits, which are known in the basin as ‘‘gray layers.’’ We propose that greigite preservation was enabled in these sediments by their relative enrichment in reactive iron over organic matter and/or hydrogen sulfide (because of their high ratio of terrigenous over organic material), which limited pyritization reactions. Within the glacial deposits, formation and preservation of meter-thick greigite layers occurred in terrigenous-rich and organic-poor sedimentary layers and is proposed to result from a similar diagenetic process to that in the Holocene greigite-bearing layers (dominance of reactive iron over organic matter and/or HS�). The terrigenous enrichments in the glacial greigite-bearing layers are probably related to climatic or sea level changes because they occur at times of massive iceberg releases in the North Atlantic, the so-called Heinrich events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 34 (L04608).
    Publication Date: 2018-02-15
    Description: We assessed interrelations between climatic, meteorological and hydrological factors in the Balearic Sea, and identified drivers of the abundance variability of planktonic copepods over the period 1994–2003. Temporal variability in the total abundance of copepods appears to be indicative of the southern spreading of the Northern Current, and therefore of meridional transport of water masses in the Balearic Sea. The results show that the large-scale atmospheric variability in the North Atlantic Ocean acts as a main driver of regional meteorological variations and hydrographic patterns in the Balearic Sea area. The clearly most novel insight from this study is that the effects of the North Atlantic climate on hydrographic variability and the abundance of copepods in the studied area are noticeable at monthly scales. Thus, the North Atlantic climate influence on the structure and biogeochemical fluxes in the Western Mediterranean pelagic ecosystems deserve more attention that they have been received so far.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 31 . L15308.
    Publication Date: 2018-03-21
    Description: The Galápagos Islands provide a topographic barrier for the Southern Equatorial Current (SEC) and the Equatorial Undercurrent (EUC). An island wake effect can be diagnosed from the difference of an ocean general circulation model simulation which includes the Galápagos Islands and one which ignores their presence. Cold thermocline water upwells on the western side of the islands, and only during boreal winter season these cold waters can linger around the Islands at a depth of about 80 m and affect the far eastern equatorial Pacific surface waters. This effect is partly offset by the westward transport of cold surface waters by the SEC which creates a wake on the western side of the Islands. It is furthermore shown that changes in horizontal current shear, induced by the presence of the Galápagos Islands modify the generation of tropical instability waves and lead to a basin scale SST anomaly pattern.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2017-01-18
    Description: The intensity of North Atlantic Deep Water (NADW) production has been one of the most important parameters controlling the global thermohaline ocean circulation system and climate. Here we present a new approach to reconstruct the overall strength of NADW export from the North Atlantic to the Southern Ocean over the past 14 Myr applying the deep water Nd and Pb isotope composition as recorded by ferromanganese crusts and nodules. We present the first long-term Nd and Pb isotope time series for deep Southern Ocean water masses, which are compared with previously published time series for NADW from the NW Atlantic Ocean. These data suggest a continuous and strong export of NADW, or a precursor of it, into the Southern Ocean between 14 and 3 Ma. An increasing difference in Nd and Pb isotope compositions between the NW Atlantic and the Southern Ocean over the past 3 Myr gives evidence for a progressive overall reduction of NADW export since the onset of Northern Hemisphere glaciation (NHG). The Nd isotope data allow us to assess at least semiquantitatively that the amount of this reduction has been in the range between 14 and 37% depending on location.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-04-25
    Description: Valu Fa Ridge is an intraoceanic back-arc spreading center located at the southern prolongation of the Lau basin. Bathymetric observations as well as detailed sampling have been carried out along the spreading axis in order to trace hydrothermal and volcanic activity and to study magma generation processes. The survey shows that widespread lava flows from recent volcanic eruptions covered most of the Vai Lili hydrothermal vent field; only diffuse low-temperature discharge and the formation of thin layers of siliceous precipitates have been observed. Evidence of present-day hydrothermal activity at the Hine Hina site is indicated by a thermal anomaly in the overlying water column. Our studies did not reveal any signs of hydrothermal activity either above the seismically imaged magma chamber at 22°25′S or across the southern rift fault zone (22°51′S). Lavas recovered along the Valu Fa Ridge range from basaltic andesites to rhyolites with SiO2 contents higher than reported from any other intraoceanic back-arc basin. On the basis of the highly variable degrees of crystal fractionation along axis, the development of small disconnected magma bodies is suggested. In addition, the geochemical character of the volcanic rocks shows that the transition zone from oceanic spreading to propagating rifting is located south of the Hine Hina vent field in the vicinity of 22°35′S.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 28 . pp. 2064-2066.
    Publication Date: 2018-02-14
    Description: Based on a Coupled General Circulation Model (CGCM) simulation we study the influence of anthropogenic greenhouse warming on the stability of the El Niño-Southern Oscillation phenomenon (ENSO). The linear stability of such a complex model cannot be assessed directly, hence we will derive empirical low order models for ENSO from the CGCM simulation under consideration. These models capture essential features of ENSO and are sensitive also to temporal changes in ENSO statistics. An eigenvalue analysis of these reduced models reveals that as greenhouse warming progresses a transition takes place from a stable oscillatory behavior to an unstable oscillation. This transition coincides with an abrupt change in simulated ENSO activity and can be explained in terms of changing ocean dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 107 (C1). 10.1029-10.1040.
    Publication Date: 2018-04-18
    Description: Three deep anticyclonic eddies of a species only reported once before [ Gordon and Greengrove, 1986 ] were intersected by hydrographic lines of the World Ocean Circulation Experiment (WOCE) and South Atlantic Ventilation Experiment (SAVE) programs in the Argentine Basin. The vortices are centered near 3500 m depth at the interface between North Atlantic Deep Water and Bottom Water. They have ∼1500-m-thick cores containing Lower Circumpolar Deep Water and a dynamic influence that may span up to two thirds of the water column. As one eddy was observed just downstream of the western termination of the Falkland Escarpment, a destabilization of the deep boundary current by the sudden slope relaxation is suggested as a potential cause of eddy formation. Besides isopycnal interleaving at the eddy perimeters, strongly eroded core properties in the upper parts of the lenses, associated with low density ratios, hint at double diffusion at the top of the structures as another major decay mechanism. The presence of an eddy in the northern Argentine Basin shows the possibility for a northward drift of the vortices, in this basin at least. Deep events in recent current measurements from the Vema Channel are presented that raise the question of further equatorward motion to the Brazil Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-04-25
    Description: Here we present the results of local source tomographic inversion beneath central Java. The data set was collected by a temporary seismic network. More than 100 stations were operated for almost half a year. About 13,000 P and S arrival times from 292 events were used to obtain three-dimensional (3-D) Vp, Vs, and Vp/Vs models of the crust and the mantle wedge beneath central Java. Source location and determination of the 3-D velocity models were performed simultaneously based on a new iterative tomographic algorithm, LOTOS-06. Final event locations clearly image the shape of the subduction zone beneath central Java. The dipping angle of the slab increases gradually from almost horizontal to about 70°. A double seismic zone is observed in the slab between 80 and 150 km depth. The most striking feature of the resulting P and S models is a pronounced low-velocity anomaly in the crust, just north of the volcanic arc (Merapi-Lawu anomaly (MLA)). An algorithm for estimation of the amplitude value, which is presented in the paper, shows that the difference between the fore arc and MLA velocities at a depth of 10 km reaches 30% and 36% in P and S models, respectively. The value of the Vp/Vs ratio inside the MLA is more than 1.9. This shows a probable high content of fluids and partial melts within the crust. In the upper mantle we observe an inclined low-velocity anomaly which links the cluster of seismicity at 100 km depth with MLA. This anomaly might reflect ascending paths of fluids released from the slab. The reliability of all these patterns was tested thoroughly.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Tectonics, 22 (6). p. 1072.
    Publication Date: 2017-06-28
    Description: The convergent Sunda margin off Indonesia displays all geological features characteristic of an accretion-dominated subduction zone. A combined interpretation of prestack depth-migrated seismic reflection data and velocity information gained from refraction studies is supplemented by high-resolution bathymetric data and for the first time allows the exact mapping of backstop regimes. Initially, the outer high evolved as material was pushed against a static rigid arc framework backstop underlying a forearc basin. Increasing material strength of the outer high due to lithification formed a dynamic backstop, which controls accretion today. An out-of-sequence thrust marks the transition from the recent active frontal accretionary prism to the outer high and may be traced in the seismic and bathymetric data over the whole extent of the study area. The existence of a static as well as a dynamic backstop controls the forearc geometry and is associated with the segmentation of the forearc, which is observed in regimes of frontal as well as of oblique subduction. Mass balance calculations, which account for porosity changes and metamorphism, indicate a subduction history dominated by accretionary processes since the late Eocene. Accretion is associated with the low values of basal friction inferred for the Sunda margin. Structural investigations of conjugate fault planes indicate a very weak basal detachment. Effective stress analyses reveal that intrinsically weak material causes the high strength ratio of the detachment to the overlying sediments, whereas overpressuring within the frontal accretionary prism is negligible.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-03-07
    Description: Quantification of fluid fluxes from cold seeps depends on accurate estimates of the spatial validity of flux measurements. These estimates are strongly influenced by the choice of geoacoustic mapping tools. Multibeam bathymetry, side-scan sonar, and Chirp subbottom profiler data of several mound-shaped cold seeps offshore central Costa Rica show great variety in morphology and structure although the features are only a few kilometers apart. Mound 11 (a 35 m high and 1000 m in diameter structure), situated in the SE of the study area, has an irregular morphology but a smooth surface on side-scan sonar data, while mound 12 (30 m high, 600 m across) is a cone of more regular outline but with a rough surface, and mound Grillo (5 m high, 500 m across) shows the same rough surface as mound 12 but without relief. Video observations and sediment cores indicate that the structures are formed by the precipitation of authigenic carbonates and indications for extensive mud extrusion are absent, except for one possible mudflow at mound 11. Different sonar frequencies result in variable estimates of the extent of these mounds with low frequencies suggesting much wider cold seeps, consequently overestimating fluid fluxes. The absence of mud volcanism compared to accretionary prisms where mud volcanism occurs is related to different tectonic styles: strong sediment overpressure and thrust faulting in typical accretionary prisms can generate mud volcanism, while subduction erosion and normal faulting (extension) of the overriding plate at the Costa Rican margin result in fluid venting driven by only slight fluid overpressures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-02-15
    Description: In 2005 an amphibious seismic network was deployed on the Chilean forearc between 41.75°S and 43.25°S. 364 local events were observed in a 11-month period. A subset of the P and S arrival times were inverted for hypocentral coordinates, 1-D velocity structure and station delays. Main seismic activity occurred predominantly in a belt parallel to the coast of Chiloé Island in a depth range of 12–30 km presumably related to the plate interface. The 30° inclination of the shallow part of the Wadati-Benioff zone is similar to observations further north indicating that oceanic plate age is not controlling the subduction angle of the shallower part for the Chilean subduction zone. The down-dip termination of abundant intermediate depth seismicity at approximately 70 km depth seems to be related to the young age (and high temperature) of the oceanic plate. Crustal seismicity is associated with the Liquiñe-Ofqui fault zone and active volcanoes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-03-07
    Description: We constructed a high-resolution Mg/Ca record on the planktonic foraminifer Globigerinoides sacculifer in order to explore the change in sea surface temperature (SST) due to the shoaling of the Isthmus of Panama as well as the impact of secondary factors like diagenesis and large salinity fluctuations. The study covers the latest Miocene and the early Pliocene (5.6–3.9 Ma) and was combined with δ18O to isolate changes in sea surface salinity (SSS). Before 4.5 Ma, SSTMg/Ca and SSS show moderate fluctuations, indicating a free exchange of surface ocean water masses between the Pacific and the Atlantic. The increase in δ18O after 4.5 Ma represents increasing salinities in the Caribbean due to the progressive closure of the Panamanian Gateway. The increase in Mg/Ca toward values of maximum 7 mmol/mol suggests that secondary influences have played a significant role. Evidence of crystalline overgrowths on the foraminiferal tests in correlation with aragonite, Sr/Ca, and productivity cyclicities indicates a diagenetic overprint on the foraminiferal tests. Laser ablation inductively coupled plasma–mass spectrometry analyses, however, do not show significantly increased Mg/Ca ratios in the crystalline overgrowths, and neither do calculations based on pore water data conclusively result in significantly elevated Mg/Ca ratios in the crystalline overgrowths. Alternatively, the elevated Mg/Ca ratios might have been caused by salinity as the δ18O record of Site 1000 has been interpreted to represent large fluctuations in SSS, and cultivating experiments have shown an increase in Mg/Ca with increasing salinity. We conclude that the Mg/Ca record 〈4.5 Ma can only reliably be considered for paleoceanographical purposes when the minimum values, not showing any evidence of secondary influences, are used, resulting in a warming of central Caribbean surface water masses after 4.5 Ma of ∼2°C.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-03-08
    Description: New 3-D seismic investigations carried out across the Sevastopol mud volcano in the Sorokin Trough present 3-D seismic data of a mud volcano in the Black Sea for the first time. The studies allow us to image the complex three-dimensional morphology of a collapse structured mud volcano and to propose an evolution model. The Sevastopol mud volcano is located above a buried diapiric structure with two ridges and controlled by fluid migration along a deep fault system, which developed during the growth of the diapirs in a compressional tectonic system. Overpressured fluids initiated an explosive eruption generating the collapse depression of the Sevastopol mud volcano. Several cones were formed within the depression by subsequent quiet mud extrusions. Although gas hydrates have been recovered at various mud volcanoes in the Sorokin Trough, no gas hydrates were sampled at the Sevastopol mud volcano. A BSR (bottom-simulating reflector) is missing in the seismic data; however, high-amplitude reflections (bright spots) observed above the diapiric ridge near the mud volcano at a relatively constant depth correspond to the approximate depth of the base of the gas hydrate stability zone (BGHSZ). Thus we suggest that gas hydrates are present locally where gas/fluid flow occurs related to mud volcanism, i.e., above the diapir and close to the feeder channel of the mud volcano. Depth variations of the bright spots of up to 200 ms TWT might be caused by temperature variations produced by variable fluid flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 36 . L03601.
    Publication Date: 2019-09-23
    Description: Time series of transports in the Agulhas region have been constructed by simulating Lagrangian drifter trajectories in a 1/10 degree two-way nested ocean model. Using these 34 year long time series it is shown that smaller (larger) Agulhas Current transport leads to larger (smaller) Indian-Atlantic inter-ocean exchange. When transport is low, the Agulhas Current detaches farther downstream from the African continental slope. Moreover, the lower inertia suppresses generation of anti-cyclonic vorticity. These two effects cause the Agulhas retroflection to move westward and enhance Agulhas leakage. In the model a 1 Sv decrease in Agulhas Current transport at 32 degrees S results in a 0.7 +/- 0.2 Sv increase in Agulhas leakage
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 108 (D19). Art.No. 4599.
    Publication Date: 2018-02-06
    Description: Simplified representations of spatially inhomogeneous (three-dimensional (3-D)) clouds in radiative transfer models provide systematic errors when calculating solar broadband radiative fluxes. An example is the neglect of horizontal photon transports as it is the case for the independent column approximation (ICA). The present work tries to quantify and interpret these errors on the basis of a large set of 3-D mixed phase cloud scenarios with 3-D varying extinction coefficients, scattering phase functions, and single-scattering albedos. The cloud cases result from a mesoscale atmospheric circulation model with detailed cloud microphysics. Domain-averaged cloud radiative fluxes are calculated by means of a Monte Carlo radiative transfer model. Depending on cloud type and solar zenith angle (SZA) the differences between 3-D and ICA results range from +20 W m−2 to −30 W m−2 for the upward reflected fluxes and from +10 W m−2 to −7 W m−2 for the absorbed fluxes. The mean (averaged over all cloud realizations) errors of the ICA-based upward fluxes vary between 5 W m−2 overestimation at 15°SZA and 6 W m−2 underestimation at 75°SZA. The ICA underestimates the absorbed flux by ∼1–2 W m−2 for most SZA except for 75°. It is found that neglecting the horizontal variability of the absorption and scattering properties of the cloud hydrometeors leads to a general underestimation of solar broadband absorption by as much as 15 W m−2 with average values between 4 W m−2 at small SZA and 1 W m−2 at large SZA.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2018-01-31
    Description: Between 1996 and 1998, a concerted effort was made to study the deep open ocean convection in the Labrador Sea. Both in situ observations and numerical models were employed with close collaboration between the researchers in the fields of physical oceanography, boundary layer meteorology, and climate. A multitude of different methods were used to observe the state of ocean and atmosphere and determine the exchange between them over the experiment's period. The Labrador Sea Deep Convection Experiment data collection aims to assemble the observational data sets in order to facilitate the exchange and collaboration between the various projects and new projects for an overall synthesis. A common file format and a browsable inventory have been used so as to simplify the access to the data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2017-11-08
    Description: While recent changes in subarctic North Pacific climate had dramatic effects on ecosystems and fishery yields, past climate dynamics and teleconnection patterns are poorly understood due to the absence of century-long high-resolution marine records. We present the first 117-year long annually resolved marine climate history from the western Bering Sea/Aleutian Island region using information contained in the calcitic skeleton of the long-lived crustose coralline red alga Clathromorphum nereostratum, a previously unused climate archive. The skeletal δ18O-time series indicates significant warming and/or freshening of surface waters after the middle of the 20th century. Furthermore, the time series is spatiotemporally correlated with Pacific Decadal Oscillation (PDO) and tropical El Niño-Southern Oscillation (ENSO) indices. Even though the western Bering Sea/Aleutian Island region is believed to be outside the area of significant marine response to ENSO, we propose that an ENSO signal is transmitted via the Alaskan Stream from the Eastern North Pacific, a region of known ENSO teleconnections.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 106 . 26,899-26,916.
    Publication Date: 2018-04-18
    Description: Aspects of the dynamics of internal solitary waves evolving in a three-layer ocean are investigated using a new numerical multilayer model that solves the nonlinear, weakly nonhydrostatic Boussinesq equations and uses high-resolution in situ data. The model applications refer to two different phenomena frequently observed in the real ocean, which can be described using a three-layer model rather than a two-layer model. In the first application the influence of the strength of a shallow seasonal thermocline superimposed on a two-layer permanent stratification on the structure of internal solitary waves is studied. It is found that while for small to medium wave amplitudes a decrease in the strength of the thermocline yields an increase in the simulated wavelengths, for large wave amplitudes this dependence is no longer monotonic. In particular, in the limiting case of a vanishing thermocline, first-mode internal solitary wave solutions of the three-layer numerical model tend to the analytical internal solitary wave solutions of the Miyata equations, a two-layer model, in which the full nonlinearity of the shallow-water theory up to first-order phase dispersion is retained. In the second application that refers particularly to high-resolution observations made north and south of the Strait of Messina in the Eurafrican Mediterranean basin the generation of internal solitary waves by the evolution of surface and subsurface water jets is investigated. The analysis of the in situ data shows in fact that from very energetic surface and subsurface jet-like disturbances subject to strong turbulent mixing internal solitary waves emerge as robust, quasi-nondissipative oceanic features. Idealized flow conditions aimed at approximating possible initial stages of the observed water jets are imposed to force our numerical model. In general, good agreement is found between characteristics of observed and simulated wave fields. Our investigation identifies the observed water jets as peculiar features of the complex ocean dynamics and suggests that layered numerical models can represent helpful tools in understanding fundamental processes inherent in their intricate dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 114 . C01005.
    Publication Date: 2019-09-23
    Description: Data sets from satellite observations and a nested high-resolution model are used to study a source region of the Agulhas Current. Altimeter-derived geostrophic surface currents are averaged over varying periods, providing evidence of the persistence of flow patterns in the extension of the southern branch of the East Madagascar Current (SEMC). South of Madagascar, the SEMC separates into one branch toward the Agulhas Current and into a second branch retroflecting and connecting to the Subtropical Indian Ocean Countercurrent (SICC). Good agreement is found between long-term mean patterns of observational and model dynamic heights. Two basic modes are identified in the SEMC extension, with anticyclonic motion favoring retroflection in the northern Mozambique Basin when the extension is in a southwestward direction and cyclonic motion occurring in the case of the SEMC flowing westward along the southern Madagascar slope. A cross-correlation sequence between model SEMC transports and the modal changes in the extension region displays a correlation at about 1-month lag which agrees with eddy propagation time from the SEMC to the outflow region. Mean model SEMC transports are determined using floats released at 21 degrees S, and the contribution of the SEMC to the SICC is obtained using floats injected at 55 degrees E with the model running backward. Almost half of the SEMC volume transport contributes to the Agulhas system, and about 40% of SICC water originates from the SEMC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 16 (3). p. 1081.
    Publication Date: 2018-03-15
    Description: Methane in surface waters and marine air off Oregon (44°24′N–44°54′N, 124°36′W–125°24′W) was continuously surveyed in July 1999. During a high-resolution survey after a period of steady winds from the north, CH4 concentrations were high in the northeastern region, near the shelf edge. The highest CH4 concentrations were 2.5 times higher than equilibrium with the atmospheric partial pressure. In contrast, concentrations were near equilibrium in the western part of the survey area, the Hydrate Ridge. The increase in CH4 from southwest to northeast correlates with a drop in sea surface temperature (SST), from 16.5°C to 〈13.5°C, toward the shelf edge. The observed SST pattern was caused by summer upwelling off Oregon. The results suggest that CH4 derived from bottom sources near the shelf/slope break and methane found in connection with shallow (100–300 m) turbidity layers is transported to the surface by coastal upwelling, which causes an enhanced net flux of CH4 to the atmosphere. Vertical profiles of the methane distribution on the shelf in October demonstrate the accumulation of methane introduced by shelf sources. Surface concentrations at these stations in October (during nonupwelling conditions) were lower than in July (during upwelling) and were only slightly oversaturated with respect to the atmosphere. An acoustic Doppler current profiler survey indicates that the observed trend cannot be attributed to a surface flow reversal in the area. The low-salinity waters in the core of the Columbia River plume (S 〈 31) showed no enhanced CH4 concentrations. The trend of higher CH4 concentrations at lower temperatures existed over the whole 17-day survey, but large spatial and temporal variations existed. The presence of methane sources in regions of coastal upwelling worldwide, such as shallow seeps, gas hydrates, and intermediate nepheloid layers, suggests that the enhancement of CH4 fluxes to the atmosphere by coastal upwelling occurs on a global scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2017-02-10
    Description: Deep marine currents are strongly influenced by climatic changes. They also deposit, rework, and sort sediment, and can generate kilometer-scale sedimentary bodies (drifts). These drifts are made of thoroughly bioturbated, stacked sedimentary sequences called contourites [Gonthier et al., 1984]. As a consequence, change in the direction or intensity of currents can be recorded in the sediments
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 23 (PA4219).
    Publication Date: 2019-09-23
    Description: The initiation of Northern Hemisphere glaciation in the subarctic North Pacific at ∼2.73 Ma was marked by an abrupt cessation of high opaline accumulation, considered to result from an increased stratification of the water column that should have led to higher utilization of nutrients in the surface ocean. We present a new stable Si isotope-based record of Si utilization that is hard to reconcile with this model. A drop in 30Si/28Si by 0.4‰ at 2.73 Ma is coincident with an increase in bulk N isotope composition. The contrasting utilization records cannot have been both caused by a hydrographic change alone. Excluding a change in the Si:N export ratio, these results either imply a relative increase in silicic acid supplied to the surface waters or a change in its Si isotope composition. While it is impossible to distinguish between these two possibilities, both imply a regional or global change in the Si biogeochemical cycle, potentially caused by an enhanced storage of Si in the underlying deep waters of the Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2017-11-08
    Description: The seasonal hydrographic cycle explains about 25–75% of the entire salinity variability spectrum of the Siberian shelf hydrography. Quasi-decadal variations in the seasonal salinity difference over the Laptev and East Siberian sea shelves derived from continuous summer-to-winter historical records from the 1960s–1990s are attributed to atmospheric vorticity quasi-decadal variations. Summer cyclonic vorticity results in riverine water accumulation on the shelf, increasing the salinity summer-to-winter difference. Summer anticyclonic wind pattern enhances fresh water movement from the shelf towards the Arctic Ocean that tends to weaken the seasonal salinity amplitude.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 106 (C12). 31,033-31,044.
    Publication Date: 2018-04-18
    Description: To estimate the volume transport through the Strait of Gibraltar and to study the spatial structure of the time-variable flow, a varying number of current meter moorings were maintained at the eastern entrance of the strait between October 1994 and April 1998, and was complemented with intensive shipboard measurements during the European Union project Canary Island Azores Gibraltar Experiment (CANIGO). A tidal inverse model is used to merge these data sets in order to investigate the flow at the eastern entrance of the strait. The two-dimensional structure of the tidal flow was described by simple analytical functions. Harmonics with the seven most important tidal frequencies were used as temporal functions. With this model, the tidal currents can be predicted for any time and location at the eastern entrance of the strait, and more than 92% of the variance of the lower layer flow is explained. It was used to remove the tidal currents from the individual measurements and to calculate the mean flow through the strait from the residuals. Combined with a similar inverse model for determining the depth of the interface between Mediterranean and Atlantic water, the volume transport was estimated to be 0.81 ± 0.07 Sv for the upper layer and −0.76 ± 0.07 Sv for the lower layer. The correlation of the tidal currents and the fluctuations of the interface accounts for ∼7% of the transport at the eastern entrance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 34 (15).
    Publication Date: 2019-09-23
    Description: Total alkalinity (AT) was measured during the Meteor 51/2 cruise, crossing the Mediterranean Sea from west to east. AT concentrations were high (∼2600 μmol kg−1) and alkalinity-salinity-correlations had negative intercepts. These results are explained by evaporation coupled with high freshwater AT inputs into coastal areas. Salinity adjustment of AT revealed excess alkalinity throughout the water column compared to mid-basin surface waters. Since Mediterranean waters are supersaturated with respect to calcite and aragonite, the excess alkalinity likely reflects alkalinity inputs to coastal areas close to regions of deep and intermediate water formation. An alkalinity budget shows that main alkalinity inputs come from the Black Sea and from rivers, whereas the Strait of Gibraltar is a net sink. The major sink appears to be carbonate sedimentation. The basin-average net calcification rate and CaCO3 sedimentation was estimated to be 0.38 mol m−2 yr−1. The estimated residence time of AT is ∼160 yr.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 30 (7). p. 1314.
    Publication Date: 2018-02-20
    Description: Current hydrographic data can provide snapshots but no continuous timeseries of the meridional overturning circulation (MOC). Using output from two eddy-permitting numerical ocean models we test the feasibility of a monitoring system for the MOC in the North Atlantic. The results suggest that a relatively simple arrangement, using moorings placed across a longitude-depth section and the zonal wind stress, is able to capture most of the MOC strength and vertical structure as a function of time. Being closely related to the transport of energy to the North Atlantic, measuring the MOC would open the prospect of having continuous information about a key element of northern hemisphere climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 90 (19). p. 158.
    Publication Date: 2017-03-06
    Description: Eighty-five young researchers from 20 countries met in Russia to learn about the latest techniques in polar ocean observation and monitoring and to discuss the advantages and limits of various techniques, methods of data transmission, and joint research projects. IMPETUS 2008, the largest workshop ever held for early career scientists in polar marine research, was organized by the Otto Schmidt Laboratory for Polar and Marine Research at the Arctic and Antarctic Research Institute, in Saint Petersburg; the Association of Polar Early Career Scientists; and the Permafrost Young Researchers Network.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 19 . GB1010.
    Publication Date: 2018-03-16
    Description: In this study we present a global distribution pattern and budget of the minimum flux of particulate organic carbon to the sea floor (JPOCα). The estimations are based on regionally specific correlations between the diffusive oxygen flux across the sediment-water interface, the total organic carbon content in surface sediments, and the oxygen concentration in bottom waters. For this, we modified the principal equation of Cai and Reimers [1995] as a basic monod reaction rate, applied within 11 regions where in situ measurements of diffusive oxygen uptake exist. By application of the resulting transfer functions to other regions with similar sedimentary conditions and areal interpolation, we calculated a minimum global budget of particulate organic carbon that actually reaches the sea floor of ∼0.5 GtC yr−1 (〉1000 m water depth (wd)), whereas approximately 0.002–0.12 GtC yr−1 is buried in the sediments (0.01–0.4% of surface primary production). Despite the fact that our global budget is in good agreement with previous studies, we found conspicuous differences among the distribution patterns of primary production, calculations based on particle trap collections of the POC flux, and JPOCα of this study. These deviations, especially located at the southeastern and southwestern Atlantic Ocean, the Greenland and Norwegian Sea and the entire equatorial Pacific Ocean, strongly indicate a considerable influence of lateral particle transport on the vertical link between surface waters and underlying sediments. This observation is supported by sediment trap data. Furthermore, local differences in the availability and quality of the organic matter as well as different transport mechanisms through the water column are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 33 (L11701).
    Publication Date: 2018-02-19
    Description: The impacts of the tropical Indian and Atlantic Oceans on ENSO are studied using a series of 500 years long GCM simulations, in which the tropical Indian and/or Atlantic Ocean SSTs are fixed. The results indicate that the tropical Indian and/or Atlantic Oceans SST anomalies substantially influence the coupling over the equatorial Pacific. In the absence of SST variability in the tropical Indian and/or Atlantic Ocean, the main ENSO period is shifted by almost one year. The total SST variance in the equatorial Pacific region is reduced if either Indian or Atlantic Ocean variability is present. At the same time the atmospheric ENSO teleconnections are damped more strongly than the SST. The results can be understood in the context of the recharge oscillator model. However, it is difficult to verify the feedback of the Indian and/or Atlantic Oceans onto ENSO only with statistical analyses of the coupled model control integration or observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2018-03-16
    Description: The contribution of the marine biota to air-sea fluxes of CO2 and O2 is often described in terms of biological production concepts, such as new production, export production, and net community production. We evaluate these three quantities using a basin-scale ecosystem-circulation model of the North Atlantic Ocean based on Redfield stoichiometry into which we introduce an artificial tracer which records the biotic contribution to air-sea exchange of gases like O2 and CO2. It is found that on average the biological production rates overestimate the biotically effected air-sea flux by some 20% and, in some regions, even predict the wrong direction. With primary production restricted to the euphotic zone, but respiration extending to farther below, the discrepancy can largely be attributed to the different integration depths used in the different concepts (euphotic zone, surface mixed layer), and on annual and longer timescales, all rates converge when using the base of the winter mixed layer rather than that of the euphotic zone as the reference depth. For the surface carbon budget, which ultimately controls air-sea exchange of CO2, it is irrelevant whether carbon atoms cross this boundary in organic or inorganic speciation. Hence the transports of biotically generated surpluses or deficits of dissolved inorganic matter must also be accounted for. While their contribution amounts to only a few percent on the basin scale, the subduction of newly remineralized inorganic matter can locally account for about half of the biotically effected air-sea flux, for example, in regions of mode-water formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 106 . pp. 9005-9017.
    Publication Date: 2018-04-18
    Description: An extensive set of conductivity-temperature-depth (CTD)/lowered acoustic Doppler current profiler (LADCP) data obtained within the northwestern Weddell Sea in August 1997 characterizes the dense water outflow from the Weddell Sea and overflow into the Scotia Sea. Along the outer rim of the Weddell Gyre, there is a stream of relatively low salinity, high oxygen Weddell Sea Deep Water (defined as water between 0° and −0.7°C), constituting a more ventilated form of this water mass than that found farther within the gyre. Its enhanced ventilation is due to injection of relatively low salinity shelf water found near the northern extreme of Antarctic Peninsula's Weddell Sea shelf, shelf water too buoyant to descend to the deep-sea floor. The more ventilated form of Weddell Sea Deep Water flows northward along the eastern side of the South Orkney Plateau, passing into the Scotia Sea rather than continuing along an eastward path in the northern Weddell Sea. Weddell Sea Bottom Water also exhibits two forms: a low-salinity, better oxygenated component confined to the outer rim of the Weddell Gyre, and a more saline, less oxygenated component observed farther into the gyre. The more saline Weddell Sea Bottom Water is derived from the southwestern Weddell Sea, where high-salinity shelf water is abundant. The less saline Weddell Sea Bottom Water, like the more ventilated Weddell Sea Deep Water, is derived from lower-salinity shelf water at a point farther north along the Antarctic Peninsula. Transports of Weddell Sea Deep and Bottom Water masses crossing 44°W estimated from one LADCP survey are 25 × 106 and 5 × 106 m3 s−1, respectively. The low-salinity, better ventilated forms of Weddell Sea Deep and Bottom Water flowing along the outer rim of the Weddell Gyre have the position and depth range that would lead to overflow of the topographic confines of the Weddell Basin, whereas the more saline forms may be forced to recirculate within the Weddell Gyre.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2018-04-25
    Description: New seismic and geodetic data from Costa Rica provide insight into seismogenic zone processes in Central America, where the Cocos and Caribbean plates converge. Seismic data are from combined land and ocean bottom deployments in the Nicoya peninsula in northern Costa Rica and near the Osa peninsula in southern Costa Rica. In Nicoya, inversion of GPS data suggests two locked patches centered at 14 ± 2 and 39 ± 6 km depth. Interplate microseismicity is concentrated in the more freely slipping intermediate zone, suggesting that small interseismic earthquakes may not accurately outline the updip limit of the seismogenic zone, the rupture zone for future large earthquakes, at least over the short (∼1 year) observation period. We also estimate northwest motion of a coastal “sliver block” at 8 ± 3 mm/yr, probably related to oblique convergence. In the Osa region to the south, convergence is orthogonal to the trench. Cocos-Caribbean relative motion is partitioned here, with ∼8 cm/yr on the Cocos-Panama block boundary (including a component of permanent shortening across the Fila Costeña fold and thrust belt) and ∼1 cm/yr on the Panama block–Caribbean boundary. The GPS data suggest that the Cocos plate–Panama block boundary is completely locked from ∼10–50 km depth. This large locked zone, as well as associated forearc and back-arc deformation, may be related to subduction of the shallow Cocos Ridge and/or younger lithosphere compared to Nicoya, with consequent higher coupling and compressive stress in the direction of plate convergence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 33 (L24609).
    Publication Date: 2018-02-19
    Description: The structure of the subtropical South Indian Ocean Countercurrent (SICC) is revealed by altimeter-derived absolute geostrophic surface velocities. It is a narrow, eastward-flowing current between 22° and 26°S confined to planetary wave trains which propagate westward through the Indian Ocean. Multi-year averaging identifies it as a well-defined current between Madagascar and 80°E, continuing with lower intensity between 90° and 100°E. It virtually coincides with the northern limit of Subtropical Underwater subduction. Geostrophic currents from hydrographic sections closely correspond to these surface patterns. Volume transports of the countercurrent down to 800 dbar are of order (107 m3 s−1). Evidence is provided for a narrow branch of the South Equatorial Current (SEC) approaching Madagascar near 18°S and feeding the southern East Madagascar Current (EMC) which appears to continue westward around the southern tip of Madagascar. It then partially retroflects and nourishes the SICC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 110 . C07022.
    Publication Date: 2018-04-19
    Description: Time series of hydrographic and transient tracer measurements were used to study the variability of Greenland Sea water mass transformation between 1991 and 2000. Increases in tracer inventories indicate active renewal of Greenland Sea Intermediate Water (GSIW) at a rate of 0.1 to 0.2 Sv (1 Sv = 1 × 106 m3 s−1) (10-year average). A temperature maximum (Tmax) was established at the base of the upper layer (500 m) as a consequence of anomalously strong freshwater input into the near-surface layer at the beginning of the 1990s. Tmax rapidly descended to 1500 m by 1995 followed by a much slower rate of descent. GSIW became warmer and less saline compared to the 1980s. During the deepening phase of Tmax, atmospheric data revealed above-average wind stress curl and oceanic heat loss. In addition, high Arctic Ocean sea-ice export and lack of local sea-ice formation have been documented for that period. A combination of all these factors may have evoked the renewal of GSIW with anomalously freshwater from the upper layers. The Tmax layer established a stability maximum that inhibits vertical exchange between intermediate and deeper waters. Temperature and salinity of deep waters continued to increase at rates of 0.01°C yr−1 and 0.001 yr−1, respectively. However, since 1993, decrease in and homogenization of deep water transient tracer concentrations indicate that renewal occurred predominantly by addition of Arctic Ocean waters. In 2000 the water column (500 m to 3400 m) required an additional 60 W m−2 (110 W m−2) over the annual mean heat loss to restore its heat content to 1989 (1971) values.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2017-05-10
    Description: GLAMAP 2000 presents new reconstructions of the Atlantic's sea surface temperatures (SST) at the Last Glacial Maximum (LGM), defined at both 21,500–18,000 years B.P. (“Last Isotope Maximum”) and 23,000–19,000 years B.P. (maximum glacial sea level low stand and orbital minimum of solar insolation; EPILOG working group; see Mix et al. [2001]). These reconstructions use 275 sediment cores between the North Pole and 60°S with carefully defined chronostratigraphies. Four categories of core quality are distinguished. More than 100 core sections provide a glacial record with subcentennial- to multicentennial-scale resolution. SST estimates are based on a new set of almost 1000 reference samples of modern planktic foraminifera and on improved transfer-function techniques to deduce SST from census counts of microfossils, including radiolarians and diatoms. New proxies also serve to deduce sea ice boundaries. The GLAMAP 2000 SST patterns differ significantly in crucial regions from the CLIMAP [1981] reconstruction and thus are important in providing updated boundary conditions to initiate and validate computational models for climate prediction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2017-05-10
    Description: An 8 million year record of subtropical and midlatitude shelf-sea temperatures, derived from oxygen isotopes of well-preserved brachiopods from a variety of European sections, demonstrates a long-term Cenomanian temperature rise (16–20°C, midlatitudes) that reached its maximum early in the late Turonian (23°C, midlatitudes). Superimposed on the long-term trend, shelf-sea temperatures vary at shorter timescales in relation to global carbon cycle perturbations. In the mid-Cenomanian and the late Turonian, two minor shelf-sea cooling events (2–3°C) coincide with carbon cycle perturbations and times of high-amplitude sea level falls. Although this evidence supports the hypothesis of potential glacioeustatic effects on Cretaceous sea level, the occurrence of minimum shelf-sea temperatures within transgressive beds argues for regional changes in shelf-sea circulation as the most plausible mechanism. The major carbon cycle event in the latest Cenomanian (oceanic anoxic event 2) is accompanied by a substantial increase in shelf-sea temperatures (4–5°C) that occurred ∼150 kyr after the commencement of the δ13C excursion and is related to the spread of oceanic conditions in western European shelf-sea basins. Our oxygen isotope record and published δ18O data of pristinely preserved foraminifera allow the consideration of North Atlantic surface water properties in the Cenomanian along a transect from the tropics to the midlatitudes. On the basis of fossil-derived δ18O, estimated δw ranges, and modeled salinities, temperature-salinity-density ranges were estimated for tropical, subtropical, and midlatitude surface waters. Accordingly, the Cenomanian temperate shelf-seas waters have potentially the highest surface water density and could have contributed to North Atlantic intermediate to deep waters in the preopening stage of the equatorial Atlantic gateway.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 35 . L20817.
    Publication Date: 2017-11-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2017-05-10
    Description: This paper presents data to support the presence of (1) intra-annual signals in the chemical composition (δ18O and Sr/Ca) of the skeletons of sclerosponges from the Bahamas and (2) variable rates of skeletal accretion. These conclusions are based on data obtained by using a microsampling method for the stable oxygen and carbon isotopes in which material was extracted at a resolution of one sample every 34 μm and a laser microprobe which obtained trace element data every 20 μm (Sr, Mg, and Pb). An age model was established using a combination of changes in the concentration of Pb, the change in the δ13C of the skeleton of the sclerosponges, and U/Th isotopic measurements. These methods yield a mean growth rate of 220 μm/yr but suggest that the growth rate in this particular sclerosponge was not constant. The calculated growth rate is within error identical to that determined by U/Th methods. The variable growth rate was confirmed through spectral analysis of the δ18O and Sr/Ca data that showed peaks corresponding to the annual cycle in these parameters as well as peaks corresponding to growth rates of approximately 128, 212, 270, and 400 μm/yr. The presence of these additional frequencies suggests a growth rate between approximately 100 and 300 μm/yr. These conclusions were supported by modeling of oxygen isotopic data measured on a scleractinian coral as well as model isotope data generated on synthetic time series. These findings have important implications for the use of sclerosponges as proxies of paleoclimate because they emphasize the need for a precise yearly chronology in order that proxy data can be compared with climatic variables.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 31 (21). L21502.
    Publication Date: 2015-01-26
    Description: The consistency of long-term yearly precipitation and runoff trends over the largest Arctic watersheds (Ob, Yenisei and Lena Rivers) is examined. Three gridded precipitation datasets (Climatic Research Unit, University of Delaware, NCEP) are used for comparative analyses with runoff data collected at basin outlets. The results generally demonstrate inconsistency in long-term changes of basin precipitation and runoff. The Yenisei River runoff increases significantly, while precipitation data show mostly negative trends. The Ob River does not show any significant trend either in precipitation or runoff. Positive trend in the Lena River runoff is accompanied by a weak precipitation increase; however, the precipitation increase is not strong enough to support the observed runoff change. The inconsistency identified in basin precipitation and runoff trends suggests uncertainty in both the quality of basin precipitation and runoff datasets, as well as the perceived hydrologic factors impacting runoff change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 30 (6). GRL-1298.
    Publication Date: 2015-03-06
    Description: This study has been motivated by reports of extraordinary change in the Arctic Ocean observed in recent decades. Most of these observations are based on synoptic measurements, while evaluation of anomalies requires an understanding of the underlying long-term variability. Historical climatologies give reference means, and while these datasets are a reliable source of the mean Atlantic Layer temperature, they significantly underestimate variability. Using historical data, we calculated statistical parameters for selected Arctic Ocean regions. They demonstrate a high level of Atlantic Layer temperature variability in the Nansen Basin and sea-surface salinity fluctuations on the Siberian shelf and the Amundsen Basin. These estimates suggest strong limitations on our ability to define amplitudes of anomalies by comparing recent synoptic measurements with climatologies, especially for regions characterized by strong variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-03-10
    Description: This study was motivated by a strong warming signal seen in mooring-based and oceanographic survey data collected in 2004 in the Eurasian Basin of the Arctic Ocean. The source of this and earlier Arctic Ocean changes lies in interactions between polar and sub-polar basins. Evidence suggests such changes are abrupt, or pulse-like, taking the form of propagating anomalies that can be traced to higher-latitudes. For example, an anomaly found in 2004 in the eastern Eurasian Basin took ∼1.5 years to propagate from the Norwegian Sea to the Fram Strait region, and additional ∼4.5–5 years to reach the Laptev Sea slope. While the causes of the observed changes will require further investigation, our conclusions are consistent with prevailing ideas suggesting the Arctic Ocean is in transition towards a new, warmer state.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 81 (32). 361, 366-367.
    Publication Date: 2019-09-23
    Description: The fifth Laptev Sea System Project Workshop was held November 25-29,1999, at the State Research Center-Arctic and Antarctic Research Institute in St. Petersburg, Russia.The abstracts of the workshop have been published in Terra Nostra,Vol. 99 (11) by the Alfred Wegener Foundation, Cologne, Germany.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 88 (22). pp. 237-241.
    Publication Date: 2015-04-16
    Description: The annual onset of snowmelt on sea ice is essential for climate monitoring since it triggers a decrease in surface albedo that feeds back into a stronger absorption of shortwave radiation—a process known as the snowmelt-albedo feedback—and thus strongly modifies the surface energy balance during summer [Curry et al., 1995]. Algorithms designed for the detection of snowmelt on Arctic sea ice and based on longterm passive-microwave data [Anderson, 1997; Drobot and Anderson, 2001] revealed the melt season in the Arctic from 1979 to 1998 to be significantly elongated and the onset of melt to be shifted toward earlier dates [Drobot and Anderson, 2001; Belchansky et al., 2004]. In the Antarctic, however, little effort has been made so far in detecting the length of the summer melt season on sea ice by means of satellite microwave data. This results from the fact that surface melting in the Antarctic differs significantly from corresponding processes in the Arctic [Nicolaus et al., 2006]. The hemispheric differences are supported by extensive field measurements [Massom et al., 2001; Haas et al., 2001 ] and find expression in a reversal of the general surface radar backscatter and brightness temperature (TB) tendencies during summer [Haas, 2001; Kern and Heygster, 2001] : In the Antarctic, sea ice backscatter increases and TB decreases when summer approaches, contrary to the Arctic. Hence, algorithms developed for Arctic sea ice are not applicable on its southern counterpart. As summer air temperatures in the Antarctic rarely rise above 0°C, classical surface melt ponds have never been observed to the extent they appear in the Arctic and the sea ice surface typically remains snow-covered year-round. Drinkwater and Liu [2000] investigate snowmelt on Antarctic sea ice based on a method that identifies a decrease in surface radar backscatter. However, they detect melt to be lasting for only some days and exclusively on first-year ice. Presumably, the backscatter decrease they observe is due to flooding of the snow before the ice underneath finally deteriorates.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-04-14
    Description: This study aims at the determination of a Fram Strait cyclone track and of the cyclone's impact on ice edge, drift, divergence, and concentration. A 24 h period on 13–14 March 2002 framed by two RADARSAT images is analyzed. Data are included from autonomous ice buoys, a research vessel, Special Sensor Microwave Imager (SSM/I) and QuikSCAT satellite, and the operational European Centre for Medium-Range Weather Forecasts (ECMWF) model. During this 24 h period the cyclone moved northward along the western ice edge in the Fram Strait, crossed the northern ice edge, made a left-turn loop with 150 km diameter over the sea ice, and returned to the northern ice edge. The ECMWF analysis places the cyclone track 100 km too far west over the sea ice, a deviation which is too large for representative sea ice simulations. On the east side of the northward moving cyclone, the ice edge was pushed northward by 55 km because of strong winds. On the rear side, the ice edge advanced toward the open water but by a smaller distance because of weaker winds there. The ice drift pattern as calculated from the ice buoys and the two RADARSAT images is cyclonically curved around the center of the cyclone loop. Ice drift divergence shows a spatial pattern with divergence in the loop center and a zone of convergence around. Ice concentration changes as retrieved from SSM/I data follow the divergence pattern such that sea ice concentration increased in areas of divergence and decreased in areas of convergence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Atmospheres, 114 (D17). D17109.
    Publication Date: 2015-04-15
    Description: Observations of snow properties, superimposed ice, and atmospheric heat fluxes have been performed on first-year and second-year sea ice in the western Weddell Sea, Antarctica. Snow in this region is particular as it does usually survive summer ablation. Measurements were performed during Ice Station Polarstern (ISPOL), a 5-week drift station of the German icebreaker RV Polarstern. Net heat flux to the snowpack was 8 W m−2, causing only 0.1 to 0.2 m of thinning of both snow cover types, thinner first-year and thicker second-year snow. Snow thinning was dominated by compaction and evaporation, whereas melt was of minor importance and occurred only internally at or close to the surface. Characteristic differences between snow on first-year and second-year ice were found in snow thickness, temperature, and stratigraphy. Snow on second-year ice was thicker, colder, denser, and more layered than on first-year ice. Metamorphism and ablation, and thus mass balance, were similar between both regimes, because they depend more on surface heat fluxes and less on underground properties. Ice freeboard was mostly negative, but flooding occurred mainly on first-year ice. Snow and ice interface temperature did not reach the melting point during the observation period. Nevertheless, formation of discontinuous superimposed ice was observed. Color tracer experiments suggest considerable meltwater percolation within the snow, despite below-melting temperatures of lower layers. Strong meridional gradients of snow and sea-ice properties were found in this region. They suggest similar gradients in atmospheric and oceanographic conditions and implicate their importance for melt processes and the location of the summer ice edge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 34 (14). L14502.
    Publication Date: 2015-05-18
    Description: The impact of extreme sea ice initial conditions on modelled climate is analysed for a fully coupled atmosphere ocean sea ice general circulation model, the Hadley Centre climate model HadCM3. A control run is chosen as reference experiment with greenhouse gas concentration fixed at pre-industrial conditions. Sensitivity experiments show an almost complete recovery from total removal or strong increase of sea ice after four years. Thus, uncertainties in initial sea ice conditions seem to be unimportant for climate modelling on decadal or longer time scales. When the initial conditions of the ocean mixed layer were adjusted to ice-free conditions, a few substantial differences remained for more than 15 model years. But these differences are clearly smaller than the uncertainty of the HadCM3 run and all the other 19 IPCC fourth assessment report climate model pre-industrial runs. It is an important task to improve climate models in simulating the past sea ice variability to enable them to make reliable projections for the 21st century.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. AGU (American Geophysical Union), Washington, DC, pp. 1-9. ISBN 0-87590-296-0
    Publication Date: 2015-09-09
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 15 (1). pp. 95-109.
    Publication Date: 2017-01-18
    Description: The southwest Pacific Ocean covers a broad range of surface-water conditions ranging from warm, salty water in the subtropical East Australian Current to fresher, cold water in the Circumpolar Current. Using a new database of planktonic foraminifera assemblages (AUSMAT-F2), we demonstrate that the modern analog technique can be used to accurately reconstruct the magnitude of sea-surfacetemperature (SST) in this region. We apply this technique to data from 29 deep-sea cores along a meridional transect of the southwest Pacific Ocean to estimate the magnitude of SST cooling during the Last Glacial Maximum. We find minimal cooling in the tropics (0°–2°C), moderate cooling in the subtropical midlatitudes (2°–6°C), and maximum cooling to the southeast of New Zealand (6°–10°C). The magnitude of cooling at the sea surface from the tropics to the temperate latitudes is found to generally be less than cooling at the surface of adjacent land masses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 113 . B04102.
    Publication Date: 2015-02-11
    Description: While planning the COAST Expedition to the Siberian Laptev Sea in 2005, the question of how to make a short equilibrium temperature measurement in a dry borehole arose. As a result, an infrared borehole tool was developed and used in three dry boreholes (up to 60.2 m deep) in the coastal transition zone from terrestrial to sub-sea permafrost near Mamontovy Klyk in the western Laptev Sea. A depth versus temperature profile was acquired with equilibration times of 50 × 10−3 s at each depth interval. Comparison with a common resistor string revealed an offset due to limitations of accuracy of the infrared technique and the influence of the probe's massive steel housing. Therefore it was necessary to calibrate the infrared sensor with a high precision temperature logger in each borehole. The results of the temperature measurements show a highly dynamic transition zone with temperature gradients up to −0.092°C/m and heat flow of −218 mW/m. A period of submergence of only 600 years the drilled sub-sea permafrost is approaching the overlying seawater temperature at −1.61°C with a temperature gradient of 0.021°C/m and heat flow of 49 mW/m. Further offshore, 11 km from the coastline, a temperature gradient of 0.006°C/m and heat flow of 14 mW/m occur. Thus the sub-sea permafrost in the Mamontovy Klyk region has reached a critical temperature for the presence of interstitial ice. The aim of this article is to give a brief feasibility study of infrared downhole temperature measurements and to present experiences and results of its successful application.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...