ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (30)
  • Ocean circulation  (20)
  • Internal waves  (10)
  • American Meteorological Society  (24)
  • American Geophysical Union  (6)
  • Blackwell Publishing Ltd
  • International Union of Crystallography
  • Springer Nature
  • Springer Science + Business Media
  • 2020-2023  (30)
  • 1980-1984
  • 1960-1964
  • 1950-1954
Collection
  • Articles  (30)
Source
Publisher
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(9), (2020): 3845-3862, doi:10.1175/JCLI-D-19-0215.1.
    Description: The latitudinal structure of the Atlantic meridional overturning circulation (AMOC) variability in the North Atlantic is investigated using numerical results from three ocean circulation simulations over the past four to five decades. We show that AMOC variability south of the Labrador Sea (53°N) to 25°N can be decomposed into a latitudinally coherent component and a gyre-opposing component. The latitudinally coherent component contains both decadal and interannual variabilities. The coherent decadal AMOC variability originates in the subpolar region and is reflected by the zonal density gradient in that basin. It is further shown to be linked to persistent North Atlantic Oscillation (NAO) conditions in all three models. The interannual AMOC variability contained in the latitudinally coherent component is shown to be driven by westerlies in the transition region between the subpolar and the subtropical gyre (40°–50°N), through significant responses in Ekman transport. Finally, the gyre-opposing component principally varies on interannual time scales and responds to local wind variability related to the annual NAO. The contribution of these components to the total AMOC variability is latitude-dependent: 1) in the subpolar region, all models show that the latitudinally coherent component dominates AMOC variability on interannual to decadal time scales, with little contribution from the gyre-opposing component, and 2) in the subtropical region, the gyre-opposing component explains a majority of the interannual AMOC variability in two models, while in the other model, the contributions from the coherent and the gyre-opposing components are comparable. These results provide a quantitative decomposition of AMOC variability across latitudes and shed light on the linkage between different AMOC variability components and atmospheric forcing mechanisms.
    Description: The authors gratefully acknowledge support from the Physical Oceanography Program of the U.S. National Science Foundation (Awards OCE-1756143 and OCE-1537136) and the Climate Program Office of the National Oceanic and Atmospheric Administration (Award NA15OAR4310088). Gratitude is extended to Claus Böning and Arne Biastoch who shared ORCA025 output. S. Zou thanks F. Li, M. Buckley, and L. Li for helpful discussions. We also thank three anonymous reviewers for helpful suggestions.
    Keywords: Deep convection ; Ocean circulation ; Thermocline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3), (2020): 679-694, doi:10.1175/JPO-D-19-0218.1.
    Description: The zonally integrated flow in a basin can be separated into the divergent/nondivergent parts, and a uniquely defined meridional overturning circulation (MOC) can be calculated. For a basin with significant volume exchange at zonal open boundaries, this method is competent in removing the components associated with the nonzero source terms due to zonal transports at open boundaries. This method was applied to the zonally integrated flow in the Indian Ocean basin extended all the way to the Antarctic by virtue of the ECCO dataset. The contributions due to two major zonal flow systems at open boundaries, the Indonesian Throughflow (ITF) and the Antarctic Circumpolar Current (ACC), were well separated from the rotational flow component, and a nondivergent overturning circulation pattern was identified. Comparisons with previous studies on the MOC of the Indian Ocean in different seasons showed overall consistency but with refinements in details to the south of the entry of the ITF, reflecting the influence of ITF on the MOC pattern in the domain. Other options of decomposition are also examined.
    Description: LH was supported by the National Basic Research Program of China through Grant 2019YFA0606703 and “The Fundamental Research Funds of Shandong University” (2019GN051). The authors thank the anonymous reviewers and the editor for their constructive comments. Code availability: The Matlab code that performs the decomposition and produces some figures in this paper is available at https://github.com/lei-han-SDU/IMOC/.
    Description: 2020-09-02
    Keywords: Meridional overturning circulation ; Ocean circulation ; Streamfunction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(9), (2020): 2491-2506, doi:10.1175/JPO-D-20-0056.1.
    Description: An idealized two-layer shallow water model is applied to the study of the dynamics of the Arctic Ocean halocline. The model is forced by a surface stress distribution reflective of the observed wind stress pattern and ice motion and by an inflow representing the flow of Pacific Water through Bering Strait. The model reproduces the main elements of the halocline circulation: an anticyclonic Beaufort Gyre in the western basin (representing the Canada Basin), a cyclonic circulation in the eastern basin (representing the Eurasian Basin), and a Transpolar Drift between the two gyres directed from the upwind side of the basin to the downwind side of the basin. Analysis of the potential vorticity budget shows a basin-averaged balance primarily between potential vorticity input at the surface and dissipation at the lateral boundaries. However, advection is a leading-order term not only within the anticyclonic and cyclonic gyres but also between the gyres. This means that the eastern and western basins are dynamically connected through the advection of potential vorticity. Both eddy and mean fluxes play a role in connecting the regions of potential vorticity input at the surface with the opposite gyre and with the viscous boundary layers. These conclusions are based on a series of model runs in which forcing, topography, straits, and the Coriolis parameter were varied.
    Description: This study was supported by National Science Foundation Grant OPP-1822334. Comments and suggestions from two anonymous referees greatly helped to improve the paper.
    Description: 2021-02-17
    Keywords: Eddies ; Ekman pumping/transport ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Shallow-water equations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 1045-1064, doi:10.1175/JPO-D-19-0137.1.
    Description: Three simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (〉1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.
    Description: This work was supported by the Gulf Research Program of the National Academy of Sciences under Awards 2000006422 and 2000009966. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf Research Program or the National Academy of Sciences. The authors acknowledge the GLORYS project for providing the ocean reanalysis data used in the ROMS simulation. GLORYS is jointly conducted by MERCATOR OCEAN, CORIOLIS, and CNRS/INSU. Installation, recovery, data acquisition, and processing of the CANEK group current-meter moorings were possible because of CICESE-PetróleosMexicanos Grant PEP-CICESE 428229851 and the dedicated work of the crew of the B/O Justo Sierra and scientists of the CANEK group. The authors thank Dr. Aljaz Maslo, CICESE, for assistance with analysis of model data. The Bureau of Ocean Energy Management (BOEM), U.S. Dept. of the Interior, provided funding for the Lagrangian Study of the Deep Circulation in the Gulf of Mexico and the Observations and Dynamics of the Loop Current study. HYCOM simulation data are available from the HYCOM data server (https://www.hycom.org/data/goml0pt04/expt-02pt2), MITgcm data are available from the ECCO data server (http://ecco.ucsd.edu/gom_results2.html), and the ROMS simulation data are available from GRIIDC (NA.x837.000:0001).
    Keywords: Ocean circulation ; Abyssal circulation ; Bottom currents/bottom water ; Eddies ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Spooner, P. T., Thornalley, D. J. R., Oppo, D. W., Fox, A. D., Radionovskaya, S., Rose, N. L., Mallett, R., Cooper, E., & Roberts, J. M. Exceptional 20th century ocean circulation in the Northeast Atlantic. Geophysical Research Letters, 47(10), (2020): e2020GL087577, doi:10.1029/2020GL087577.
    Description: The North Atlantic subpolar gyre (SPG) connects tropical and high‐latitude waters, playing a leading role in deep‐water formation, propagation of Atlantic water into the Arctic, and as habitat for many ecosystems. Instrumental records spanning recent decades document significant decadal variability in SPG circulation, with associated hydrographic and ecological changes. Emerging longer‐term records provide circumstantial evidence that the North Atlantic also experienced centennial trends during the 20th century. Here, we use marine sediment records to show that there has been a long‐term change in SPG circulation during the industrial era, largely during the 20th century. Moreover, we show that the shift and late 20th century SPG configuration were unprecedented in the last 10,000 years. Recent SPG dynamics resulted in an expansion of subtropical ecosystems into new habitats and likely also altered the transport of heat to high latitudes.
    Description: We thank Janet Hope and UCL laboratory staff, colleagues who sailed on EN539, Kathryn Pietro‐Rose, Sean O'Keefe and Henry Abrams, Sara Chipperton, Tanya Monica, Laura Thrower and Kitty Green for sediment processing, Miles Irving for artwork assistance, James Rolfe for nitrogen isotope measurement, Maryline Vautravers and Michael Kucera for guidance, Arne Biastoch and Christian Mohn for discussion of VIKING20, and Chris Brierley, Meric Srokosz, and Jon Robson for comments. Funding was provided by National Science Foundation (NSF) grant OCE‐1304291 to D.W.O. and D.J.R.T., the Leverhulme Trust, National Environment Research Council (NERC) grant NE/S009736/1, and the ATLAS project to D.J.R.T. This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement 678760 (ATLAS). This paper reflects only the authors views and the European Union cannot be held responsible for any use that may be made of the information contained herein.
    Keywords: Foraminifera ; Subpolar gyre ; North Atlantic ; Ocean circulation ; Industrial era
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015377, doi:10.1029/2019JC015377.
    Description: Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a narrow shelf slope region in the South China Sea. The spatially continuous view of temperature fields provides a perspective of physical processes commonly available only in laboratory settings or numerical models, including internal wave reflection off a natural slope, shoreward transport of dense fluid within trapped cores, and observations of internal rundown (near‐bed, offshore‐directed jets of water preceding a breaking internal wave). Analysis shows that the fate of internal waves on this shelf—whether transmitted into shallow waters or reflected back offshore—is mediated by local water column density structure and background currents set by the previous shoaling internal waves, highlighting the importance of wave‐wave interactions in nearshore internal wave dynamics.
    Description: We are grateful for the support of the Dongsha Atoll Research Station (DARS) and the Dongsha Atoll Marine National Park, whose efforts made this research possible. The authors would also like to thank A. Hall, S. Tyler, and J. Selker from the Center for Transformative Environmental Monitoring Programs (CTEMPs) funded by the National Science Foundation (EAR awards 1440596 and 1440506), G. Lohmann from WHOI, A. Safaie from UC Irvine, G. Wong, L. Hou, F. Shiah, and K. Lee from Academia Sinica for providing logistical and field support, as well as E. Pawlak, S. Lentz, B. Sanders, and S. Grant for equipment, and B. Raubenheimer, S. Elgar, R. Walter and D. Lucas for informative discussions that improved this work. We acknowledge the US Army Research Laboratory DoD Supercomputing Resource Center for computer time on Excalibur, which was used for the numerical simulations in this work. Funding for this work supported by Academia Sinica and for K.D. and E.R. from NSF‐OCE 1753317 and for O.F., J.R., and R.A. from ONR Grant 1182789‐1‐TDZZM. A portion of this work (R.A.) was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE‐AC52‐07NA27344.
    Description: 2020-10-21
    Keywords: Internal waves ; Distributed temperature sensing ; Coral reef ; Internal wave reflection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Janout, M. A., Hellmer, H. H., Hattermann, T., Huhn, O., Sueltenfuss, J., Osterhus, S., Stulic, L., Ryan, S., Schroeder, M., & Kanzow, T. FRIS revisited in 2018: on the circulation and water masses at the Filchner and Ronne Ice Shelves in the Southern Weddell Sea. Journal of Geophysical Research: Oceans, 126(6), (2021): e2021JC017269, https://doi.org/10.1029/2021JC017269.
    Description: The Filchner-Ronne Ice Shelf (FRIS) is characterized by moderate basal melt rates due to the near-freezing waters that dominate the wide southern Weddell Sea continental shelf. We revisited the region in austral summer 2018 with detailed hydrographic and noble gas surveys along FRIS. The FRIS front was characterized by High Salinity Shelf Water (HSSW) in Ronne Depression, Ice Shelf Water (ISW) on its eastern flank, and an inflow of modified Warm Deep Water (mWDW) entering through Central Trough. Filchner Trough was dominated by Ronne HSSW-sourced ISW, likely forced by a recently intensified circulation beneath FRIS due to enhanced sea ice production in the Ronne polynya since 2015. Glacial meltwater fractions and tracer-based water mass dating indicate two separate ISW outflow cores, one hugging the Berkner slope after a two-year travel time, and the other located in the central Filchner Trough following a ∼six year-long transit through the FRIS cavity. Historical measurements indicate the presence of two distinct modes, in which water masses in Filchner Trough were dominated by either Ronne HSSW-derived ISW (Ronne-mode) or more locally derived Berkner-HSSW (Berkner-mode). While the dominance of these modes has alternated on interannual time scales, ocean densities in Filchner Trough have remained remarkably stable since the first surveys in 1980. Indeed, geostrophic velocities indicated outflowing ISW-cores along the trough's western flank and onto Berkner Bank, which suggests that Ronne-ISW preconditions Berkner-HSSW production. The negligible density difference between Berkner- and Ronne-mode waters indicates that each contributes cold dense shelf waters to protect FRIS against inflowing mWDW.
    Description: This study used samples and data provided by the Alfred Wegener Institute Helmholtz-Center for Polar- and Marine Research in Bremerhaven (Grant No. AWI-PS111_01). The authors thank Captain Schwarze and the crew of RV Polarstern for a very successful expedition. We acknowledge support from the EU Horizon 2020 grants 820575 (HHH, SØ) and 821001 (TK, SØ).
    Keywords: Ocean circulation ; Ocean-ice shelf interaction ; Water masses ; Weddell Sea ; Filcher and Ronne shelves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(8), (2021): e2020GL089471, https://doi.org/10.1029/2020GL089471.
    Description: Major gaps exist in our understanding of the pathways between internal wave generation and breaking in the Southern Ocean, with important implications for the distribution of internal wave-driven mixing, the sensitivity of ocean mixing rates and patterns to changes in the ocean environment, and the necessary ingredients of mixing parameterizations. Here we assess the dominant processes in internal wave evolution by characterizing wave and mesoscale flow scales based on full-depth in situ measurements in a Southern Ocean mixing hot spot and a ray tracing calculation. The exercise highlights the importance of Antarctic Circumpolar Current jets as a dominant influence on internal wave life cycles through advection, the modification of wave characteristics via wave-mean flow interactions, and the set-up of critical layers for both upward- and downward-propagating waves. Our findings suggest that it is important to represent mesoscale flow impacts in parameterizations of internal wave-driven mixing in the Southern Ocean.
    Description: The SOFine project was funded by the UK Natural Environmental Research Council (NERC) (grant NE/G001510/1). S. Waterman is currently supported by the National Science and Engineering Research Council of Canada (NSERC) Discovery Grant Program (NSERC-2020-05799). A. Meyer acknowledges current support from the ARC Centre of Excellence for Climate Extremes (CE170100023) and previous support from the joint CSIRO-University of Tasmania Quantitative Marine Science (QMS) program. A. N. Garabato acknowledges the support of the Royal Society and the Wolfson Foundation.
    Keywords: Internal waves ; Internal wave-driven turbulent mixing ; Internal wave-mesoscale flow interactions ; Southern Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(5), (2022): e2021JC018056, https://doi.org/10.1029/2021jc018056.
    Description: As Arctic sea ice declines, wind energy has increasing access to the upper ocean, with potential consequences for ocean mixing, stratification, and turbulent heat fluxes. Here, we investigate the relationships between internal wave energy, turbulent dissipation, and ice concentration and draft using mooring data collected in the Beaufort Sea during 2003–2018. We focus on the 50–300 m depth range, using velocity and CTD records to estimate near-inertial shear and energy, a finescale parameterization to infer turbulent dissipation rates, and ice draft observations to characterize the ice cover. All quantities varied widely on monthly and interannual timescales. Seasonally, near-inertial energy increased when ice concentration and ice draft were low, but shear and dissipation did not. We show that this apparent contradiction occurred due to the vertical scales of internal wave energy, with open water associated with larger vertical scales. These larger vertical scale motions are associated with less shear, and tend to result in less dissipation. This relationship led to a seasonality in the correlation between shear and energy. This correlation was largest in the spring beneath full ice cover and smallest in the summer and fall when the ice had deteriorated. When considering interannually averaged properties, the year-to-year variability and the short ice-free season currently obscure any potential trend. Implications for the future seasonal and interannual evolution of the Arctic Ocean and sea ice cover are discussed.
    Description: This work was supported by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. S. T. Cole was supported by Office of Naval Research grant N00014-16-1-2381.
    Description: 2022-10-14
    Keywords: Arctic ; Internal waves ; Mixing ; Sea ice ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 19-35, https://doi.org/10.1175/JPO-D-19-0233.1.
    Description: In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35′N, 145°1′W. Microstructure measurements from a free-falling profiler survey showed very low [O(10−10) W kg−1] turbulent kinetic energy dissipation rates ε. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.
    Description: This work was supported by NSF Grants PLR 14-56705 and PLR-1303791 and by NSF Graduate Research Fellowship Grant DGE-1650112.
    Keywords: Ocean ; Arctic ; Internal waves ; Turbulence ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...