ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Isotopes  (9)
  • Submarine geology  (8)
  • Fisheries
  • Industrial Chemistry
  • Inorganic Chemistry
  • Polymer and Materials Science
  • Seismology
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (20)
  • 2020-2023
  • 2005-2009  (20)
  • 1950-1954
Collection
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2009
    Description: The application of elemental and isotopic metal palaeoredox tracers to the geologic past rests on an understanding of modern metal cycles. This study reevaluates the surface-cycling of Mo and Re in near-surface reservoirs. Revised river averages of Mo and Re are 1.8- and 7.9-fold larger than previous estimates. The river concentrations of 8.0 nmol Mo kg−1 and 11.2 pmol Re kg−1 (pre-anthropogenic), result in shorter seawater response times of 4.4×105 yr (τMo) and 1.3×105 yr (τRe pre-anthropogenic). These metals, especially Re, are more sensitive to changing source and sink fluxes than previously thought. Evaluation of Mo and Re concentrations in high temperature fluids from the Manus Basin indicate that Re is essentially absent from the hydrothermal end member and Mo is present at concentrations considerably lower than ambient seawater. The sink fluxes represented by hydrothermal circulation are negligible in comparison to the revised river source fluxes. Anthropogenic contributions to the Re flux to seawater are seen in the high concentrations of certain impacted water samples such as those associated with mining sites. It may also be seen in a significant, variable, Re enrichment feature in the Hudson River estuary. This Re enrichment feature is not the result of estuarine mixing or the remobilization of sediment-hosted Re. On the basis of a Re - SO2− 4 correlation we are able to quantify and correct for the anthropogenic Re, which corresponds to ~33% of the modern river average. This study documents the development of an analytical method for stable Re isotopes. Though complicated by analyte requirements and 187Re – 187Os decay, Re isotope measurements have a reproducibility of ±0.05h for analyte concentrations of 20 ng Re mL−1. Total Re isotopic variability to date is 0.9h. This includes 0.3h across five commercially available Re products, and 0.5h across a black shale weathering profile. δ187Re variability across the weathering profile was systematic with the most weathered samples showing the most significant 187Re depletions. The Re isotopic weathering profile is well described by both two-component mixing and Rayleigh fractionation. There are currently insufficient data to discriminate between the two models.
    Description: We would like to acknowledge financial support from NSF-EAR grant 0519387 and from the WHOI Academic Programs Office as well as support for the WHOI Plasma Mass Spectrometry Facility from NSF-EAR/IF grants 0318137 and 0651366.
    Keywords: Rhenium ; Isotopes ; Geochemistry ; Ian Fletcher (Ship) Cruise ; Tioga (Ship) Cruise ; Melville (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009.
    Description: The radionuclides 231Pa and 230Th, produced in the water column and removed from the ocean by particle scavenging and burial in sediments, offer a means for paleoceanographers to examine past dynamics of both water column and sedimentary processes. I show for the first time that a state of balance exists between 230Th production and burial in the Central Arctic basins, based on measured sedimentary 230Thxs inventories in box cores, establishing this nuclide’s utility as a paleoceanographic indicator of sedimentary processes and as a normalization tool. I present the first 230Th-normalized particle fluxes calculated for the central Arctic: vertical particle fluxes were extremely low during the late glacial, rose during the deglaciation due to particle inputs from shelf inundation, increased productivity and ice-rafted debris, and fell again following the establishment of interglacial conditions. A major event of lateral sediment redistribution, inferred from surplus 230Thxs inventories, occurred in the Makarov Basin during the deglaciation and may have been due to destabilization of slope and shelf sediments as sea level rose. I present the first high-resolution, radiocarbon-dated downcore records of sedimentary 231Pa/230Th from the Arctic Ocean. Low ratios indicate that 231Pa was exported from all sites during the late glacial period, with export decreasing during the deglaciation and Holocene. 231Pa/230Th measurements in cores from three continental slope sites show no evidence for a 231Pa sink related to boundary scavenging on the continental slopes. Holocene 231Pa/230Th ratios show a very significant variation by depth, with strong export of 231Pa at deep sites but little or no export at shallow sites, a result which echoes findings for the South Atlantic and the Pacific. The Arctic thus appears fundamentally similar to other ocean basins in its 231Pa and 230Th dynamics, despite its peculiar qualities of sea ice cover, low particle flux, and relatively isolated deep waters.
    Description: My graduate work has been funded by NSF grants OCE-0402565 and OCE- 0550637 to Jerry McManus, ARC-0520073 to Bill Curry, and OCE-0118126 to Daniel McCorkle. My graduate education was also supported by an IODP Schlanger Ocean Drilling Fellowship, WHOI Fellowships from the WHOI Academic Programs Office, and an MIT Presidential Fellowship.
    Keywords: Submarine geology ; Paleoceanography ; Polar Sea (Ship) Cruise PL-94-AR
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2003
    Description: The cosmogenic radionuclide 10Be is a unique tracer of shallow sediment subduction in volcanic arcs. The range in 10Be enrichment in the Central American Volcanic Arc between Guatemala and Costa Rica is not controlled by variations in 10Be concentrations in subducting sediment seaward of the Middle America Trench. Sedimentary 10Be is correlated negatively with 143Nd/144Nd, illustrating that 10Be concentrations varied both between and within cores due to mixing between terrigenous clay and volcanic ash endmember components. This mixing behavior was determined to be a function of grain size controls on 10Be concentrations. A negative correlation of bulk sedimentary 10Be concentrations with median grain size and a positive correlation with the proportion of the sediment grains that were 〈32 μm in diameter demonstrated that high concentrations of 10Be in fine-grained, terrigenous sediments were diluted by larger grained volcanogenic material. The sharp decrease in 10Be enrichment in the Central American Volcanic Arc between southeastern Nicaragua and northwestern Costa Rica correlates with changes in fault structure in the subducting Cocos plate. Offshore of Nicaragua, extensional faults associated with plate bending have throw equal to or greater than the overlying subducting sediment thickness. These faults enable efficient subduction of the entire sediment package by preventing relocation of the décollement within the downgoing sediments. Offshore of Costa Rica, the reduction of fault relief results in basement faults that do not penetrate the overlying sediment. A conceptual model is proposed in which the absence of significant basement roughness allows the décollement to descend into the subducting sediment column, leading to subsequent underplating and therefore removal of the bulk of the sediment layer that contains 10Be. Basement fault relief was linearly related to plate curvature and trench depth. The systematic shoaling of the plate from southeastern Nicaragua to northwestern Costa Rica is not explained by changes in plate age for this region. Instead, it is hypothesized that the flexural shape of the plate offshore of southeastern Nicaragua and northwestern Costa Rica represents a lateral response to a buoyant load caused by the thick crust and elevated thermal regime in the Cocos plate offshore of southeastern Costa Rica.
    Description: Funding for this work was provided by the National Science Foundation Graduate Research Fellowship, the WHOI Ocean Ventures Fund, the WHOI Deep Ocean Institute Graduate Fellowship, and Geological Society of America Graduate Research Grant #7179-02.
    Keywords: Subduction zones ; Seismic prospecting ; Marine sediments ; Beryllium ; Isotopes ; Radioisotopes in oceanography ; Maurice Ewing (Ship) Cruise EW0005 ; Maurice Ewing (Ship) Cruise EW0104 ; Sonne (Ship) CruiseSO76 ; Fred H. Moore (Ship) Cruise FM3502 ; Ida Green (Ship) Cruise IG2402
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August 2002
    Description: We have investigated the near liquidus phase relations of a primitive absarokite from the Mascota region in Western Mexico. Sample M.102 was chosen because it has high MgO contents, a high Mg# and F090 olivine phenocrysts, indicating it is primitive mantle melt. High-pressure experiments on a synthetic analogue of the absarokite composition with a H2O content of either -1 7 wt% or -5.1 wt% were cared out in a piston cylinder apparatus. The composition with -1.7 wt% H2O is multiply saturated with olivine and orthopyroxene as liquidus phases at 1.6 GPa and 1400°C. At the same pressure clinopyroxene appears 30°C below the liquidus. With a H2O content of -5.1 wt% composition M.102 is multiply saturated with olivine and orthopyroxene on the liquidus at 1.7 GPa and 1300°C. Assuming batch melting, we suggest that absarokite M.102 segregated from a depleted lherzolite or harburgite residue at depth -50 km depth in the mantle wedge. Unlike most lavas in the region, the absarokite has not ponded and fractionated at the crust mantle interface (-35-40 km), and the temperatures of multiple saturation indicate that the mantle wedge beneath the Jalisco block is hotter than previously thought. The low degree batch melting of an original metasomatised harzburgite source, can produce the observed trace element abundances. The liquidus phase relations are not consistent with the presence of non-peridotitic veins at the depth of last equilibration. Therefore, we propose that the Mascota absarokites segregated at an apparent melt fraction of less than 5% from a depleted peridotitic source. They initially formed by a small degree of melting of a metasomatised original source at greater depth.
    Keywords: Volcanism ; Submarine geology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008
    Description: Chapter 1 presents the first published measurements of Sr-isotope variability in olivine-hosted melt inclusions. Melt inclusions in just two Samoan basalt hand samples exhibit most of the total Sr-isotope variability observed in Samoan lavas. Chapter 3 deals with the largest possible scales of mantle heterogeneity, and presents the highest magmatic 3He/4He (33.8 times atmospheric) discovered in Samoa and the southern hemisphere. Along with Samoa, the highest 3He/4He sample from each southern hemisphere high 3He/4He hotspot exhibits lower 143Nd/144Nd ratios than their counterparts in the northern hemisphere. Chapter 2 presents geochemical data for a suite of unusually enriched Samoan lavas. These highly enriched Samoan lavas have the highest 87Sr/86Sr values (0.72163) measured in oceanic hotspot lavas to date, and along with trace element ratios (low Ce/Pb and Nb/U ratios), provide a strong case for ancient recycled sediment in the Samoan mantle. Chapter 4 explores whether the eclogitic and peridotitic portions of ancient subducted oceanic plates can explain the anomalous titanium, tantalum and niobium (TITAN) enrichment in high 3He/4He ocean island basalts (OIBs). The peridotitic portion of ancient subducted plates can contribute high 3He/4He and, after processing in subduction zones, a refractory, rutile-bearing eclogite may contribute the positive TITAN anomalies.
    Description: Funding was provided by a National Science Foundation Graduate Research Fellowship, the National Science Foundation grants EAR- 0509891 and EAR-0652707 to Stanley R. Hart, the Woods Hole Oceanographic Institution Academic Programs Office, the Woods Hole Oceanographic Institution Deep Ocean Exploration Institute, the Woods Hole Oceanographic Institution Coastal Ocean Institute, and the Ocean Ventures Fund.
    Keywords: Submarine geology ; Ophiolites
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1978
    Description: This thesis consists of three papers examining problems related to the crustal structure, isostasy and subsidence history of aseismic ridges and mid-plate island chains. Analysis of gravity and bathymetry data across the Ninetyeast and eastern Walvis Ridges indicates these features are locally compensated by an over thickening of the oceanic crust. Maximum crustal thicknesses are 15-30 km. The western Walvis Ridge is also compensated by crustal thickening; however, the isostasy of this part of the ridge is best explained by a plate model of compensation with elastic plate thicknesses of 5-8 km. These results are consistent with the formation of the Ninetyeast and Walvis Ridges near spreading centers on young lithosphere with flexural rigidities at least an order of magnitude less than those typically determined from flexural studies in older parts of the ocean basins. As the lithosphere cools and thickens, its rigidity increases, explaining the differences in isostasy between aseismic ridges and mid-plate island chains. The long-term subsidence of aseismic ridges and island/ seamount chains can also be explained entirely by lithospheric cooling. Aseismic ridges form near ridge crests and subside at nearly the same rate as normal oceanic crust Mid-plate island chains subside at slower rates because they are built on older crust. However, some island chains have subsided faster than expected based on the age of the surrounding sea floor, probably because of lithospheric thinning over midplate hot spots, like Hawaii. This lithospheric thinning model has major implications both for lithospheric and mantle convection studies as well as the origin of continental rift systems.
    Keywords: Coral reefs and islands ; Sea-floor spreading ; Plate tectonics ; Ocean bottom ; Submarine geology ; Marine geophysics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2003
    Description: Pathways of exchange between the shelf and slope in the Mid-Atlantic Bight were investigated using a combination of radiochemical tracer and hydrographic measurements. The motivation was to provide evidence of transport routes for shelfwater that could be important to the balance of shelf-slope exchange, as well as to the biogeochemical fluxes across this crucial ocean boundary. The four radium isotopes, with half-lives of 4 days to 1600 years, a coastal source, and conservative properties in seawater, were used as coastal water mass tracers. The final study was comprised of data from 5 cruises, with a total of 8 cross-shelfbreak transects. Two areas were studied, a northern Mid-Atlantic Bight transect south of Nantucket Shoals, and a southern Mid-Atlantic Bight series of transects off the coast of Delaware. In addition, data were collected from the shelfbreak at Cape Hatteras crossing the western wall of the Gulf Stream to help determine sources of anomalous 224Ra enrichment which was observed on several of the shelfbreak transects. Combined with the hydrographic data, radium measurements suggested a pathway for exchange in the Mid- Atlantic Bight that was not a direct advection of shelf water toward the slope. Rather, the evidence suggested limited direct exchange of surface shelf water across the shelfbreak front. This provides observational evidence that is consistent with models (e.g., Gawarkiewicz and Chapman, 1991) which predict the shelfbreak front will impede exchange. Furthermore, 224Ra activity on the upper slope points to a rapid transport pathway for bottom water from the Cape Hatteras shelf via the Gulf Stream onto the Mid-Atlantic Bight slope. The radiochemical and hydrographic evidence suggests that recirculation around the slope sea gyre may be a more important pathway than direct cross-shelf transport.
    Description: This work was supported by funding from the Woods Hole Oceanographic Institution Academic Programs office, the Woods Hole Oceanographic Institution Ocean Ventues Fund, National Science Foundation grant OCE-0097232, and Civilian Research and Development Foundation grant UGI-2432-SE-02.
    Keywords: Mid-Atlantic Bight ; Ocean circulation ; Radium ; Isotopes ; Radioactive tracers in oceanography ; Cape Hatteras (Ship) Cruise CH2300 ; Oceanus (Ship : 1975-) Cruise OC349 ; Endeavor (Ship: 1976-) Cruise EN335 ; Endeavor (Ship: 1976-) Cruise EN348 ; Knorr (Ship : 1970-) Cruise KN164
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January 1983
    Description: Isotope studies of nitrogen and carbon were undertaken to investigate the fate of particulate organic matter (POM) during its residence in the water column and after deposition on the seafloor. The processes focused on were water-column transformations and sedimentary diagenesis. Sampling sites were chosen to provide POM subject to different specific mineralization processes (nitrification, denitrification, and sulfate reduction), different lengths of water column (duration of the mineralization process), and differences in the size of the organic-matter flux. The δl5N and δ13C of plankton, POM, and sediments from several oceanic sites were related to biological and hydrographic processes identified from nutrient, temperature, and salinity profiles. This was done to determine what effect these processes have on the δ15N of POM. Four stations were studied in the upwelling area off the coast of Peru and one station was studied in the Gulf of Maine. Important factors controlling the δ15N of plankton appear to be the concentration and δl5N of nitrate in the surface waters, and the relative zooplankton and phytoplankton abundances. Plankton from the Peru Upwelling Area are enriched in 15N as compared to plankton from other parts of the world's oceans where denitrification is absent. This enrichment may be due to the assimilation of 15N-enriched nitrate, produced by the selective reduction of 14N during denitrification. Zooplankton are 3 to 4% enriched in 15N as compared with phytoplankton. Production of 14N -enriched fecal pellets is suggested as a mechanism for this trophic enrichment. In the surface waters, the δl5N of POM is similar to that of plankton. In the Peru Upwelling Area, the δ15N of POM from the oxygen-deficient waters decreases with increasing depth. In the Gulf of Maine, below the euphotic zone in the oxic deep waters, the δ15N of POM increases with increasing depth. The difference in isotopic alteration may be due to the effect of different redox conditions on the mechanism and sequence by which specific organic nitrogen compounds, variably enriched in 15M, undergo degradation. Furthermore, bacterial growth on nitrogen-poor particles in the deep waters of the Peru Upwelling Area may contribute to the low δ15N of POM. In contrast to the large range in δ15N (-2 to +17%) of the POM, the range of δ15N in the sediments is small (+5 to +9%). Within a core, the average variation in δ15N was only 1.8%. Temporal variability in the δ15N of sedimenting POM and benthic activity appear to be important in determining the δ15N of the sediments. The large changes in POM concentration and isotope content at the sediment/water interface as compared with the more constant values found down-core, suggest that processes occuring at the sediment/water interface are critical, although bioturbation may also be important in determining the δ15N of oxic sediments. If diagenesis causes a significant loss of organic matter, profiles of organic carbon and nitrogen contents should show decreases with increasing depth and C/N ratios should increase with increasing depth (Reimers, 1981). Since none of the sedimentary profiles exhibited such trends, it is concluded that diagenesis was insufficient to erase the percent carbon, nitrogen and C/N ratio signatures generated by the POM flux and alterations at the sediment/water interface. Temporal variability in the δ15N of bottom-water POM may be caused by changes in deep-water currents which transport POM horizontally and to changes in bacterial and possibly other biological activity in the water column. This thesis work suggests that δ15N may be a useful tool in studying the geochemistry of POM in the marine environment. In addition, this research has shown that interpretation of the sedimentary 15N record must include consideration of isotopic alteration associated with bacterial remineralization of POM and benthic activity.
    Description: Funds for this research were provided by the Massachusetts Institute of Technology / Woods Hole Oceanographic Institution Joint Program in Oceanography, the National Science Foundation under Grant No. OCE-8024442, and the Andrew W. Mellon Foundation through the Center for Coastal Research of the Woods Hole Oceanographic Institution.
    Keywords: Nitrogen ; Isotopes ; Marine sediments ; Chemical oceanography ; Isotope geology ; Geochemistry ; Atlantis II (Ship : 1963-) Cruise AII108-3 ; Atlantis II (Ship : 1963-) Cruise AII108-4
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2004
    Description: Relatively little is known about the role of eddies in controlling subduction in the eastern half of the subtropical gyre. Here, a new tool to study the eastern North Atlantic Ocean is created by combining a regional, eddy-resolving numerical model with observations to produce a state estimate of the ocean circulation. The estimate is a synthesis of a variety of in-situ observations from the Subduction Experiment, TOPEX/POSEIDON altimetry, and the MIT General Circulation Model. A novel aspect of this work is the search for an initial eddy field and eddy-scale open boundary conditions by the use of an adjoint model. The adjoint model for this region of the ocean is stable and yields useful information despite concerns about the chaotic nature of eddy-resolving models. The method is successful because the dynamics are only weakly nonlinear in the eastern region of the subtropical gyre. Therefore, no fundamental obstacle exists to constraining the model to both the large scale circulation and the eddy scale in this region of the ocean. Individual eddy trajectories can also be determined. The state estimate is consistent with observations, self-consistent with the equations of motion, and it explicitly resolves eddy-scale motions with a 1/6º grid. Therefore, subduction rates, volume budgets, and buoyancy budgets are readily diagnosed in a physically interpretable context. Estimates of eddy subduction for the eastern subtropical gyre of the North Atlantic are larger than previously calculated from parameterizations in coarse-resolution models. Eddies contribute up to 40 m/yr of subduction locally. Furthermore, eddy subduction rates have typical magnitudes of 15% of the total subduction rate. To evaluate the net effect of eddies on an individual density class, volume budgets are diagnosed. Eddies contribute as much as 1 Sv to diapycnal flux, and hence subduction, in the density range 25.5 〈 σ 〈 26.5. Eddies have a integrated impact which is sizable relative to the 2.5 Sv of diapycnal flux by the mean circulation. A combination of Eulerian and isopycnal maps suggest that the North Equatorial Current and the Azores Current are the geographical centers of eddy subduction. The findings of this thesis imply that the inability to resolve or accurately parameterize eddy subduction in climate models would lead to an accumulation of error in the structure of the main thermocline, even in the eastern subtropical gyre, which is a region of comparatively weak eddy motions.
    Description: This thesis has received support through grants, fellowships, and computer allocations. A NASA Earth System Science Fellowship has been my primary source of funding. In addition, computer time at the University of Texas has been provided by a NPACI PRAC grant, "State Estimates of the Time-Evolving Three-dimensional Ocean Circulation with Eddy Resolution." Grant #6857100 through CalTech and the Jet Propulsion Laboratory, as well as Grant #6892952 through NASA-Goddard Flight Center for the synthesis of the World Ocean Circulation Experiment.
    Keywords: Subduction zones ; Seismic prospecting ; Marine sediments ; Beryllium ; Isotopes ; Radioisotopes in oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2007
    Description: Zinc (Zn) stable isotopes can record information about important oceanographic processes. This thesis presents data on Zn isotopes in anthropogenic materials, hydrothermal fluids and minerals, cultured marine phytoplankton, natural plankton, and seawater. By measuring Zn isotopes in a diverse array of marine samples, we hope to understand how Zn isotopes are fractionated in the oceans and how Zn isotopes may be used as tracers of marine biogeochemical processes. Common forms of anthropogenic Zn had δ66Zn from +0.08‰ to +0.32‰, a range similar to Zn ores and terrigenous materials. Larger variations were discovered in hydrothermal fluids and minerals, with hydrothermal fluids ranging in δ66Zn from 0.02‰ to +0.93‰, and chimney minerals ranging from -0.09‰ to +1.17‰. Lower-temperature vent systems had higher δ66Zn values, suggesting that precipitation of isotopically light Zn sulfides drives much of the Zn isotope fractionation in hydrothermal systems. In cultured diatoms, a relationship was discovered between Zn transport by either high-affinity or low-affinity uptake pathways, and the magnitude of Zn isotope fractionation. We established isotope effects of δ66Zn = -0.2‰ for high-affinity uptake and δ66Zn = -0.8‰ for low-affinity uptake. This work is the first to describe the molecular basis for biological fractionation of transition metals. Biological fractionation of Zn isotopes under natural conditions was investigated by measuring Zn isotopes in plankton collected in the Peru Upwelling Region and around the world. Seawater dissolved Zn isotopes also reflect the chemical and biological cycling of Zn. The δ66Zn of deep seawater in the North Pacific and North Atlantic is about 0.5‰, and the dissolved δ66Zn gets lighter in the upper water column. This is unexpected based our observations of a biological preference for uptake of light Zn isotopes, and suggests that Zn transport to deep waters may occur by Zn adsorption to sinking particles rather than as primary biological Zn. The thesis, by presenting data on several important aspects of Zn isotope cycling in the oceans, lays the groundwork for further use of Zn isotopes as a marine biogeochemical tracer.
    Description: This research was funded by NSF Research Grants OCE-0002273 and OCE-0326689, the Martin Family Society Fellowship for Sustainability, the Woods Hole Ocean Ventures Fund, and Arunas and Pam Chesonis through an MIT Earth Systems Initiative Ignition Grant.
    Keywords: Zinc ; Isotopes ; Biogeochemical cycles ; Atlantis (Ship : 1996-) Cruise AT11-2
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2007
    Description: Oceanic spreading centers are sites of magmatic, tectonic, and hydrothermal processes. In this thesis I present experimental and seismological constraints on the evolution of these complex regions of focused crustal accretion and extension. Experimental results from drained, triaxial deformation experiments on partially molten olivine reveal that melt extraction rates are linearly dependent on effective mean stress when the effective mean stress is low and non-linearly dependent on effective mean stress when it is high. Microearthquakes recorded above an inferred magma reservoir along the TAG segment of the Mid-Atlantic Ridge delineate for the first time the arcuate, subsurface structure of a long-lived, active detachment fault. This fault penetrates the entire oceanic crust and forms the high-permeability pathway necessary to sustain long-lived, high-temperature hydrothermal venting in this region. Long-lived detachment faulting exhumes lower crustal and mantle rocks. Residual stresses generated by thermal expansion anisotropy and mismatch in the uplifting, cooling rock trigger grain boundary microfractures if stress intensities at the tips of naturally occurring flaws exceed a critical stress intensity factor. Experimental results coupled with geomechanical models indicate that pervasive grain boundary cracking occurs in mantle peridotite when it is uplifted to within 4 km of the seafloor. Whereas faults provide the high-permeability pathways necessary to sustain high-temperature fluid circulation, grain boundary cracks form the interconnected network required for pervasive alteration of the oceanic lithosphere. This thesis provides fundamental constraints on the rheology, evolution, and alteration of the lithosphere at oceanic spreading centers.
    Description: Research was funded by a MIT Presidential Fellowship and NSF grants OCE-0095936, OCE-9907224, OCE-0137329, OCE-6892222, and OCE-6897400.
    Keywords: Seismology ; Sea-floor spreading
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in the partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution August, 1996
    Description: Two-thirds of the Earth's surface is oceanic crust formed by magmatic and tectonic processes along mid-ocean ridges. Slow-spreading ridges, such as the Mid-Atlantic Ridge, are discontinuous and composed of ridge segments. Segments are thus fundamental units of magmatic accretion and tectonic deformation that control the evolution of the crust. The objective of this Thesis is to constrain the tectonic processes that occur at the scale of slowspreading segments, to identify the factors controlling segment propagation, and to provide constraints on lithospheric strength with laboratory deformation experiments. In chapter 2, bathymetry and gravity from various areas along the global mid-ocean ridge system are analyzed to quantify systematic variations at the scale of individual segments. There is a marked asymmetry in bathymetry and gravity in the vicinity of segment offsets. We develop a model of faulting to explain these observations. Low-angle faults appear to accommodate tectonic extension at the inside corners of ridge-offset intersections, and result in substantially uplifted terrain with thin crust with respect to that at the outside corners or centers of segments. Results from Chapter 3 indicate that the crust magmatically emplaced on axis is not maintained off-axis. This transition is revealed by both statistical and spectral analyses of bathymetry and gravity. Tectonic extension varies along the length of a segment, resulting in thinning and uplift of the crust at ridge-offset inside corners, and a decorrelation between bathymetry and gravity patterns. Tectonic deformation substantially reshapes the oceanic crust that is magmatically emplaced on-axis, and strongly controls the crustal structure and seafloor morphology off-axis. Satellite gravity data over the Atlantic shown in Chapter 4 reveal a complex history of ridge segmentation, and provides constraints on the processes driving the propagation of segments. The pattern of segmentation is controlled mainly by the geometry of the ridge axis, and secondarily by hot spots. Segments migrate primarily down regional gradients associated with hot spot swells. However, the lack of correlation between gradients and propagation rate, and the propagation up gradient of some offsets, suggest that additional factors control propagation (e.g., variations in lithospheric strength). Most non-transform offsets are short-lived and migrating, while transform offsets are long-lived and stable. Both the propagation of segments (Chapter 4) tectonism along a segment (Chapters 2 and 3) are controlled by the lithospheric rheology. In Chapter 5 I present results from laboratory deformation experiments on serpentinite. These experiments demonstrate that serpentinites are considerably weaker than peridotites or gabbros, display a non-dilatant style of brittle deformation, and strain is accommodated by shear cracking. Serpentinites may weaken the lithosphere, enhance strain localization along faults, and control the style of faulting.
    Description: A fellowship from Caixa de Pensions "La Caixa" in Barcelona provided me with all the required financial support to come to WHOI. The work presented in this thesis was also supported by the National Science Foundation grants OCE-90l2576, OCE-930078, OCE-9313812, and Office of Naval Research grant N00014-9l-J-1433.
    Keywords: Sea-floor spreading ; Plate tectonics ; Structural geology ; Mid-ocean ridges ; Plumes ; Submarine geology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution December 1997
    Description: A new tomographic technique is employed to investigate the structure and dynamics of the Pacific upper mantle. We invert band-center travel times of ScS reverberations and frequency-dependent travel times of direct S phases, upper-mantle guided waves such as SS and SSS, and the R1 and G1 surface waves for the 2D composite structure in the plane of two Pacific corridors. The frequency-dependent travel times of the turning and surface waves are measured from all three components of ground motion as phase delays relative to a radially-anisotropic, spherically-symmetric oceanic mantle model, and their 2D Fréchet kernels are constructed by a coupled-mode algorithm. The travel times of the primary ScSn and sScSn phases and their first-order reverberations from the 410 and 660 discontinuities are measured as individual phases and the 2D Fréchet kernels for these band-limited signals are calculated using the paraxial ray approximation. The model parameters include shear-speed variations throughout the mantle, perturbations to radial shear-wave anisotropy in the uppermost mantle, and the topography of the 410 and 660 discontinuities. We construct vertical tomograms through two mantle corridors: one between the Tonga subduction zone and Oahu, Hawaii, which traverses the central Pacific Ocean; and the other between the Ryukyu subduction zone and Oahu, which samples the northern Philippine Sea, the western Pacific, and the entire Hawaiian swell. Tests demonstrate that the data sets for the two corridors resolve the lateral structure in the upper mantle with a scale length of a few hundreds kilometers and greater but that the resolving power decreases rapidly in the lower mantle. The model for the Tonga-Hawaii corridor reveals several interesting features, the most significant being a regular pattern of high and low shear velocities in the upper mantle between Tonga and Hawaii. These variations, which are well resolved by the data set, have a horizontal wavelength of 1500 km, a vertical dimension of 700 km, and an amplitude of about 3%, and they show a strong positive correlation with seafloor topography and geoid-height variations along this corridor. The geoid highs correspond to a series of northwest-trending swells associated with the major hotspots of the Society, Marquesas, and Hawaiian Islands. Where these swells cross the corridor, they are underlain by high shear velocities throughout the uppermost mantle, so it is unlikely that their topography is supported by thermal buoyancy. This result is substantiated by the model from the Ryukyu-Hawaii corridor, which exhibits a prominent, fast region that extends beneath the entire Hawaiian swell. This anomaly, which resides in the uppermost 200-300 km of the mantle, is also positively correlated with the undulations of the Hawaiian-swell height. The other dominant features in the Ryukyu-Hawaii model include the high-velocity subducting slabs beneath the Ryukyu and Izu-Bonin seismic zones, which extend throughout the entire upper mantle; a very low-velocity in the uppermost 160 km of the mantle beneath the northern Philippine Sea, which is ascribed to the presence of extra water in this region; and a pronounced minimum in the amount of radial anisotropy near Hawaii, which is also seen along the Tonga-Hawaii corridor. A joint inversion of the data from the two corridors reveals the same anomaly pattern and clearly demonstrates that the swells in the Central Pacific are underlain by fast velocities. It is therefore implied that the topography of the swells in the central Pacific is supported by a chemical buoyancy mechanism which is generated by basaltic volcanism and the formation of its low-density peridotitic residuum. While the basaltic depletion mechanism can produce high shear velocities in the uppermost 200 km, it cannot explain the depth extent of the fast anomalies beneath the swells which, along Tonga-Hawaii corridor, extend well into the transition zone. It is therefore hypothesized that the central Pacific is underlain by a system of convective rolls that are confined above the 660-km discontinuity. It is likely that these rolls are predominantly oriented in the direction of plate motion (like "Richter rolls ") but the limited depth of the fast anomaly beneath the Hawaiian swell (200-300 km) suggests that their pattern is probably more complicated. Nevertheless, this convection pattern appears to be strongly correlated with the locations of the Tahitian, Marquesan, and Hawaiian hotspots, which raises interesting questions for Morgan's hypothesis that these hotspots are the surface manifestations of deep-mantle plumes.
    Description: This research was supported by the National Science Foundation under grant EAR- 9628351 and by the Defense Special Weapons Agency under grant DSW A-F49620-95-1- 0051.
    Keywords: Seismic tomography ; Seismology ; Upwelling ; Ocean waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements of the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2004
    Description: Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colvile Basin, North Slope of Alaska. Using public domain 2-D seismic data, well logs, core photographs, and grain size data, depositional geometries within the Nanushuk and Torok formations were interpreted in order to constrain the transport conditions associated with progradation of the shoreline and construction of the continental margin out of detritus shed from the ancestral Brooks Range. Using STRATA, a synthetic stratigraphic modeling package, constructional clinoform geometries similar to those preserved in the North Slope clinoform volume (32,400 km3) were simulated. Sediment flux, marine and nonmarine diffusivities, and basin subsidence were systematically varied until a match was found for the foreset and topset slopes, as well as progradation rates over a 6 milion year period. The ability of STRATA to match the seismically interpreted geometries allows us to constrain measures of possible water and sediment discharges consistent with the observed development of the Early Cretaceous c1inoform suite. Simulations indicate that, in order to reproduce observed geometries and trends using constant input parameters, the subsidence rate must be very small, only a fraction of the most likely rate calculated from the seismic data. Constant sediment transport parameters can successfully describe the evolution of the prograding margin only in the absence of tectonic subsidence. However, further work is needed to constrain the absolute magnitude of these values and determine a unique solution for the NPR-A clinoforms.
    Keywords: Sediment transport ; Seismology ; Drill cores
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution June 2004
    Description: This study is a geochemical investigation into the accretion of lower oceanic crust and processes of shallow melt-rock reaction at mid-ocean ridges. Major-, trace-elements, and isotopes from whole-rocks and minerals from the Lyngen Gabbro, a 480-My old dismembered ophiolite from the Scandinavian Caledonides, indicate that this igneous complex was produced from hydrous supra-subduction zone magmas, a remnant of an incipient ocean-arc. Such ophiolites are better models for the structural evolution than the geochemical evolution of the lower oceanic crust at mid-ocean ridges. Minerals in gabbros from Atlantis Bank, Southwest Indian Ridge, a modern, insitu example of lower ocean-crust, were analyzed for major and trace-elements. The MELTS algorithm indicates that these gabbros formed by near-fractional crystallzation at mid-crustal pressures. The gabbroic crust is more evolved than the lavas and represents melts fractionated 50-95% relative to a mantle-derived melt-composition, supported by trace-element models. This argues against the often-cited gabbro-glacier accretion model, where mantle-derived melts are transported to a shallow melt-lens and fractionates there before eruption. There remain 〉 770-m of additional primitive cumulates below 1500-m deep Hole 735B or within the underlying mantle. Thus, the seismic Moho, beneath Hole 735B, could be the crust-mantle boundary, rather than an alteration front as suggested elsewhere. The Atlantis Bank gabbros have augites that are more primitive than plagioclases and olivines with which they coexist. Melt-rock interaction, where ascending melts dissolve the pre-existing gabbroic rocks and create hybrid magma may have caused this. Dissolution-experiments for plagioclase-olivine and plagioclase-augite mineral pairs were performed at 1180°-1330°C and 20-min - 24hrs. Dissolution occurs rapidly and out of equilibrium, with the dissolution rates dependent on the ΔT above the solidus. Rocks with small grain-boundary areas (coarse grained or nearly mono-mineralic) heat internally when enclosed in hot magma, causing xenoliths or wall-rock to melt and disaggregate. The dissolution-derived magma crystallizes minerals more refractory-looking than the melts that precipitated the original gabbroic rocks. Assimilation of gabbroic rocks increases the Na content and decreases the Fe content of the melt that digests it, thus basaltic glasses formed after this hybridization will falsely reflect a lower degree and pressure of mantle melting.
    Description: This research was supported by the Charles D. Hollister Endowed Fund, the NSF Plutonic Foundation Grant #OCE-9618442 to Henry Dick, and NSF grant #OCE-9907630, SW Indian Ridge to Henry Dick, and by the Academic Programs Office General Fellowship Funds.
    Keywords: Mid-ocean ridges ; Submarine geology ; James Clark Ross (Ship) Cruise JR31 ; Kairei (Ship) Cruise MODE 98 ; Yokosuka (Ship) Cruise ABCDE
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2004
    Description: The most ubiquitous source of polycyclic aromatic hydrocarbons (PAHs) to the environment is incomplete combustion. This study generated a high-resolution historical record of pyrogenic PAH emissions since pre-industrial times from anoxic aquatic sediments, allowing for detailed comparison with energy consumption data. We show that an increase in PAH concentrations over the last decade may be due to a rise in emissions from diesel-powered vehicles. Compound-specific radiocarbon measurements demonstrated unequivocally that the proportion of PAHs derived from fossil fuel combustion has increased substantially during the 20th century. δ13C and Δ14C measurements were also used to constrain the relative importance of combustion versus in situ production as sources of perylene. In addition, a comparison of the down-core concentration and isotopic profiles of black carbon (BC) generated by a combination of chemical and/or thermal oxidation methods highlighted the limitations of these methods when applied to sedimentary matrices. Finally, parallel lead and cesium isotopic records revealed two new potential stratigraphic markers in North American sedimentary records. 206Pb/207Pb profiles show a distinct peak in the mid-19th century, while a 137Cs peak was found to coincide with the 1986 Chernobyl accident.
    Description: Funding for this research was provided by the National Science Foundation (OCE-9708478 and CHE-0089172). The author also acknowledges support from the Brazilian Council for Research (CNPq).
    Keywords: Carbon ; Isotopes ; Combustion
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February, 2005
    Description: The goal of this thesis is to investigate three different areas relating to the characterization of dissolved organic matter (DOM): further determination of the chemical compounds present in high molecular weight DOM (HMWDOM), the cycling of individual compounds within the HMWDOM pool, and the biological controls on DOM release. The first section of this thesis provided additional molecular level characterization of HMWDOM. While some individual components have been identified, the total yield of compounds isolated is much smaller than the amount expected by spectroscopic analysis by nuclear magnetic resonance (NMR) spectroscopy. Since the majority of the as yet unidentified carbon was inferred to be carbohydrate, periodate over-oxidation was used to analyze this fraction. Analysis of both surface and deep water HMWDOM samples indicated that the majority of the carbon present was periodate over-oxidizable, including 70% of the aliphatic NMR signal. Comparison of the periodate demand for HMWDOM versus that for linear glucopolysaccharide standards indicated that HMWDOM had a greater degree of branching. Based on the changes in the 'H NMR spectra during the reaction, it was concluded that 6-deoxysugars were the primary compounds in the unidentified fraction of HMWDOM. Compound specific radiocarbon analysis can provide information about the cycling and relative ages for individual HMWDOM components. In the second section of this thesis, a new method was presented for the purification of individual underivatized amino acids hydrolyzed from HMWDOM. This new separation protocol utilized various chromatographic techniques, including cation exchange chromatography and high-pressure liquid chromatography (HPLC) using C18 and strong cation exchange (SCX) columns. Six amino acids were isolated from a HMWDOM sample with sufficient purity and quantity for radiocarbon analysis. These amino acids had a range of Δ14C values, from 121% to 454%. The final section investigates biological controls on the dissolved organic nitrogen (DON) pool. Total hydrolyzable amino acids (THAA), and nucleic acids were measured for four incubations: a control incubation, a grazer added incubation, a zero virus incubation, and a 10 times virus incubation. Comparison to the control showed THAA and nucleic acid release were influenced by viruses but not grazers.
    Description: Funding for this research was provided by the National Science Foundation (OCE-981 8654) and the Department of Energy (DEFG0200ERG62999). Student support was also provided by a National Science Foundation Graduate Student Fellowship.
    Keywords: Seawater ; Organic compound content ; Carbon ; Isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2004
    Description: This thesis addressed questions about the Fe cycle by measuring detailed profiles and transects of Fe species in the ocean and also by exploring the use of a new tracer of Fe, Fe isotopic fractionation. In the subtropical and tropical Atlantic Ocean, transects and profiles are presented for dissolved Fe (〈0.4 μm), soluble Fe (〈0.02 μm), and colloidal Fe (0.02 to 0.4 μm). Surface dissolved Fe distributions reflect atmospheric deposition trends with colloidal Fe following dust deposition more strongly than the soluble fraction of Fe. Observed surface maxima and shallow minima in dissolved Fe were always due to variations in the colloidal Fe fraction. Deep-water dissolved and colloidal Fe concentrations vary with water mass source, age, and transport path. Elevated dissolved Fe concentrations (〉1 nmol/kg) were associated with an oxygen minimum zone in the tropical Atlantic at 10°N, 45°W. Fractionation of iron isotopes could be an effective tool to investigate the geochemistr of iron. Trace metal clean plankton tows, river samples, aerosol leachates, and porewater samples were measured for their iron isotopic composition using a GV Instruments IsoProbe Multi-collector ICPMS. The Fe isotopic composition of plankton tow samples vared by over 4% (in 56Fe/54Fe). North Pacific plankton tow samples had isotopically lighter Fe isotopic compositions than samples from the Atlantic. The overall isotopic range observed in the Amazon River system was 1.5%, with variability observed for different types of tributaries. The main channel river dissolved Fe samples and suspended loads were isotopically similar (≈ -0.2 to -0.45% relative to igneous rocks). The isotopically heaviest sample collected was dissolved Fe from an organic rich tributary, the Negro River (+0.16%). In contrast, the suspended load from the Negro River was isotopically light (-1 %). The isotopically lightest sample from the Amazon region was shelf porewater (-1.4%). In river water-seawater mixing experiments, the Fe isotopic signal of dissolved Fe of river water was modified by flocculation of isotopically heavy Fe. The observed range in the Fe isotopic composition of the natural samples including biological and aqueous samples demonstrates that significant and useful fractionation is associated with Fe biogeochemistry in the environment.
    Description: This research was supported by NSF grants OCE-0002273 and OCE-99871442. The Amazon field trip was partially funded by the Houghton Fund at MIT. I was funded by the National Physical Science Foundation, Lawrence Livermore National Laboratory, and the Education Office of Woods Hole Oceanographic Institution.
    Keywords: Seawater ; Iron content ; Isotopes ; Seward Johnson (Ship) Cruise SJ0101 ; Knorr (Ship : 1970-) Cruise KN162 ; Endeavor (Ship: 1976-) Cruise EN367
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Woods Hole Oceanographic Institution and the Massachusetts Institute of Technology October 1979
    Description: An investigation was carried out to observe the geologic effects of steady bottom currents on sediments of East Katla Ridge on the southern insular rise of Iceland. Near-bottom southwest to west-flowing currents exceeded 20 cm sec-1 for two weeks over a 25-kilometer wide section of the ridge flank between approximately 1400 and 1800 meters water depth; maximum density and minimum temperature were observed at 1800 meters. Total transport of Iceland-Scotland Overflow Water was calculated to be 5.0 x 106 m3 sec-1; suspended sediment transport is approximately 0.4 x 106 grams sec-1, with a net deposition of 10 to 15 cm/1000 years estimated from the flux difference in and out of the station array. Sediment distribution patterns indicate that the current axis, where flow exceeds approximately 15 cm sec-1, is a site of erosion and winnowing (sand layer formation) while the current margin is a site of rapid accumulation (from observed Holocene rates of 25 to 35 cm per 1000 yr to estimated rates of greater than 100 cm/1000 yr based on 3.5 kHz echo-sounder records). Holocene silty turbidites are locally thick in a sub-marine channel; sandy turbidites and current-winnowed 'sandy contourites' are present in the axis of the major submarine canyon. ‘ Sandy contourite' deposits beneath the axis of the Iceland-Scotland Overflow Current are very poorly sorted muddy sands lacking primary sedimentary structures. Bioturbation is inferred to cause the unique characteristics of these deposits, as well as the absence of fine silt laminae in 'muddy contourites' at the current margin.
    Description: Financial support for shipboard operations and most of the post-cruise data analysis was provided by NSF Grant OCE76-Sl49l to Dr. Charles Hollister. Sediment trap and hydrocast operations received partial support under ONR Contract N00014-74-C-0262.
    Keywords: Marine sediments ; Sedimentation and deposition ; Ocean currents ; Submarine geology ; Ocean circulation ; Atlantis II (Ship : 1963-) Cruise AII94-1
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 1975
    Description: The Mid-Atlantic Ridge is one of the most well known and yet poorly understood spreading centers in the world. A detailed investigation of the Mid-Atlantic Ridge crest near 37°N (FAMOUS) was conducted using a deeply towed instrument package. The objective was to study the detailed structure and spreading history of the Mid-Atlantic Ridge median valley, to explore the roles of volcanism and faulting in the evolution of oceanic crust, and to study the morphologic expression and structural history of the zone of crustal accretion. In addition, microearthquake surveys were conducted using arrays of free-floating hydrophones. The most recent expression of the accreting plate boundary in the Famous Rift is an alternating series of linear central volcanoes and depressions 1.5 km wide which lie within the inner floor. This lineament is marked by a sharp maximum in crustal magnetization only 2-3 km wide. Magnetic studies indicate that over 90% of the extrusive volcanism occurs within the rift inner floor, a zone 1 to 12 km wide, while volcanism is extremely rare in the rift mountains. Volcanoes created in the inner floor are transported out on, block faults, becoming a lasting part of the topography. Magnetic anomaly transition widths vary from 1 km to 8 km with time and appear to reflect a bi-stable median valley structure. The valley has either a wide inner floor and narrow terraces, in which case the volcanic zone is wide and magnetic anomalies are poorly recorded (wide transition widths); or it has a narrow inner floor and wide terraces, the volcanic zone is then narrow and anomalies are clearly recorded (narrow transition widths). The median valley of any ridge segment varies between these two structures with time. At present the. Famous Rift has a narrow inner floor and volcanic zone (1-3 km) while the south Famous Rift is at the opposite end of the cycle with a wide inner floor and volcanic zone (10-12 km). Over 95% of the large scale (〉2 km) relief of the median valley is accounted for by normal faults dipping toward the valley axis. Normal faulting along fault planes dipping away from the valley begins just past the outer walls of the valley. Outward facing normal faulting accounts for most of the decay of median valley relief in the rift mountains while crustal tilting accounts for less than 20%. The pattern of normal faulting creates a broad, undulating horst and graben relief. Volcanic features contribute little to the large scale relief, but contribute to the short wavelength (〈2km) roughness of the topography. Spreading in the Famous area is highly asymmetric with rates twice as high to the east as to the west. At 1.7 m.y.b.p. the sense of asymmetry reverses in direction with spreading faster to the west, resulting in a gross symmetry when averaged through time. The change in spreading asymmetry occurred in less than 0.15 m.y. Structural studies indicate that the asymmetric spreading is accomplished through asymmetric crustal extension as well as asymmetric crustal accretion. Spreading in the Famous area is 17° oblique. Even on a fine scale there is no indication of readjustment to an orthogonal plate boundary system. Spreading has been stably oblique for at least 6 m.y., even through a change in spreading direction. Magnetic studies reveal that the deep DSDP hole at site 332 was drilled into a magnetic polarity transition, and may have sampled rocks which recorded the earth i s field behavior during a reversal. The presence of negative polarity crust within the Brunhes normal epoch in the inner floor has been determined, and may be due to old crust left behind or recording of a geomagnetic field event. Crustal magnetization decays to lie of its initial value in less than 0.6 m.y. The rapid decay may be facillitated by very intense crustal fracturing observed in the inner floor. Microearthquake, magnetic and structural studies indicate that both the spreading and transform plate boundaries are very narrow (1-2 km) and well-defined for short periods, but migrate over zones 10-20 km wide through time.
    Keywords: Submarine geology ; Geophysics ; Geomorphology ; Plate tectonics ; Knorr (Ship : 1970-) Cruise KN31
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 10114098 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...