ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4,341)
  • Astrophysics  (2,177)
  • Earth Resources and Remote Sensing  (2,164)
  • 2020-2023
  • 2005-2009  (1,520)
  • 2000-2004  (2,821)
  • 1950-1954
  • 1935-1939
Collection
Source
Years
Year
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Jones first suggested that the inverse covariation of initial epsilon (Nd-143) and Sr-87/Sr-86 of the shergottites could be explained by interaction between mantle-derived magmas with another isotopic reservoir(s) (i.e., assimilation or contamination). In that model, magmas were generated in a source region that was isotopically similar to the Nakhla source and the second reservoir(s) was presumed to be crust. The text also permitted the second reservoir to be another type of mantle, but I can confirm that a second mantle reservoir was never seriously considered by that author. Other features of this model were that (i) it occurred at a particular time, 180 m.y. ago, and (ii) the interacting reservoirs had been separated at approximately 4.5 b.y. In a later paper Jones explored this mixing model more quantitatively and concluded that magmas from a Nakhla-like source region at 180 m.y. would fall on or near an isotopic Nd-Sr-Pb hyperplane defined by the shergottites. This criterion was a necessary prerequisite for the parent magma(s) of the shergottites to have initially been Nakhla-like isotopically. At this juncture, it is perhaps worthwhile to note that this mixing model was not presented to explain geochemical variations but as a justification for a 180 m.y. crystallization age for the shergottites and a 1.3 b.y. crystallization age for the nakhlites. In the mid-1980's crystallization ages estimated for Nakhla ranged from approximately 1.3 b.y to 4.5 b.y. Similarly, preferred crystallization ages for the shergottites ranged from 360 m.y., to 1.3 b.y., to 4.5 b.y. In all these models, the 180 m.y. event seen in the shergottites was deemed to be metamorphic. The fit between the Nakhla-like source region and the shergottite hyperplane was a validation both of the 1.3 b.y. igneous age of Nakhla and the 180 m.y. igneous age of the shergottites.
    Keywords: Astrophysics
    Type: Unmixing the SNCs: Chemical, Isotopic, and Petrologic Components of the Martian Meteorites; 27-28; LPI-Contrib-1134
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Radar is a powerful source of information about the physical and dynamical properties of solar system bodies. Radar-detected targets include the Moon, Mercury, Mars, Venus, Phobos, Io, Europa, Ganymede, Callisto, Titan, Iapetus, Saturn's rings, eight comets, and 179 asteroids (75 main-belt and 104 near-Earth). This talk offers a perspective on the disc-integrated radar properties of solar system bodies and then turns to what radar remote sensing can tell us about asteroids using spatially-resolved measurements.
    Keywords: Astrophysics
    Type: Solar System Remote Sensing; 59-60; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The use of hyperspectral data to determine the abundance of constituents in a certain portion of the Earth's surface relies on the capability of imaging spectrometers to provide a large amount of information at each pixel of a certain scene. Today, hyperspectral imaging sensors are capable of generating unprecedented volumes of radiometric data. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), for example, routinely produces image cubes with 224 spectral bands. This undoubtedly opens a wide range of new possibilities, but the analysis of such a massive amount of information is not an easy task. In fact, most of the existing algorithms devoted to analyzing multispectral images are not applicable in the hyperspectral domain, because of the size and high dimensionality of the images. The application of neural networks to perform unsupervised classification of hyperspectral data has been tested by several authors and also by us in some previous work. We have also focused on analyzing the intrinsic capability of neural networks to parallelize the whole hyperspectral unmixing process. The results shown in this work indicate that neural network models are able to find clusters of closely related hyperspectral signatures, and thus can be used as a powerful tool to achieve the desired classification. The present work discusses the possibility of using a Self Organizing neural network to perform unsupervised classification of hyperspectral images. In sections 3 and 4, the topology of the proposed neural network and the training algorithm are respectively described. Section 5 provides the results we have obtained after applying the proposed methodology to real hyperspectral data, described in section 2. Different parameters in the learning stage have been modified in order to obtain a detailed description of their influence on the final results. Finally, in section 6 we provide the conclusions at which we have arrived.
    Keywords: Earth Resources and Remote Sensing
    Type: Proceedings of the Tenth JPL Airborne Earth Science Workshop; 267-274
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: During the last several years, a number of airborne and satellite hyperspectral sensors have been developed or improved for remote sensing applications. Imaging spectrometry allows the detection of materials, objects and regions in a particular scene with a high degree of accuracy. Hyperspectral data typically consist of hundreds of thousands of spectra, so the analysis of this information is a key issue. Mathematical morphology theory is a widely used nonlinear technique for image analysis and pattern recognition. Although it is especially well suited to segment binary or grayscale images with irregular and complex shapes, its application in the classification/segmentation of multispectral or hyperspectral images has been quite rare. In this paper, we discuss a new completely automated methodology to find endmembers in the hyperspectral data cube using mathematical morphology. The extension of classic morphology to the hyperspectral domain allows us to integrate spectral and spatial information in the analysis process. In Section 3, some basic concepts about mathematical morphology and the technical details of our algorithm are provided. In Section 4, the accuracy of the proposed method is tested by its application to real hyperspectral data obtained from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imaging spectrometer. Some details about these data and reference results, obtained by well-known endmember extraction techniques, are provided in Section 2. Finally, in Section 5 we expose the main conclusions at which we have arrived.
    Keywords: Earth Resources and Remote Sensing
    Type: Proceedings of the Tenth JPL Airborne Earth Science Workshop; 309-319
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-09-13
    Description: Previous observations of the luminous Seyfert galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0) which exhibits broad features that can be modelled with the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419- 577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicates the dominant spectral variability occurs via a steep power law component.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: We present the discovery of a 70 kpc X-ray tail behind the small late-type galaxy ESO 137-001, in the nearby, hot (T=6.5 keV) merging cluster A3627, from both Chandra and XMM-Newton observations. The tail has a length-to-width ratio of approx. 10. It is luminous (L(0.5-2keV) approx 1041 ergs/s), with a temperature of approx. 0.7 keV and an X-ray gas mass of approx 10(exp 9) solar masses (approx 10% of the galaxy's stellar mass). We interpret this tail as the stripped interstellar medium of ESO 137-001 mixed with the hot cluster medium, with this blue galaxy being converted into a gas-poor galaxy. Three X-ray point sources are detected in the axis of the tail, which may imply active star formation there. The straightness and narrowness of the tail also imply that the turbulence in the intracluster medium is not strong on scales of 20-70 kpc.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 637; Part 2; L81-L85
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: We observe two near-limb solar filament eruptions, one of 2000 February 26 and the other of 2002 January 4. For both we use 195 A Fe XII images from the Extreme-Ultraviolet Imaging Telescope (EIT) and magnetograms from the Michelson Doppler Imager (MDI), both of which are on the Solar and Heliospheric Observatory (SOHO). For the earlier event we also use soft X-ray telescope (SXT), hard X-ray telescope (HXT), and Bragg Crystal Spectrometer (BCS) data from the Yohkoh satellite, and hard X-ray data from the BATSE experiment on the Compton Gamma Ra.v Observatory (CGRO). Both events occur in quadrupolar magnetic regions, and both have coronal features that we infer belong to the same magnetic cavity structures as the filaments. In both cases, the cavity and filament first rise slowly at approx.10 km/s prior to eruption and then accelerate to approx.100 km/s during the eruption, although the slow-rise movement for the higher altitude cavity elements is clearer in the later event. We estimate that both filaments and both cavities contain masses of approx.10(exp 14)-10(exp 15) and approx.10(exp 15)-10(exp 16) g, respectively. We consider whether two specific magnetic reconnection-based models for eruption onset, the "tether cutting" and the "breakout" models, are consistent with our observations. In the earlier event, soft X-rays from SXT show an intensity increase during the 12 minute interval over which fast eruption begins, which is consistent with tether- cutting-model predictions. Substantial hard X-rays, however, do not occur until after fast eruption is underway, and so this is a constraint the tether-cutting model must satisfy. During the same 12 minute interval over which fast eruption begins, there are brightenings and topological changes in the corona indicative of high-altitude reconnection early in the eruption, and this is consistent with breakout predictions. In both eruptions, the state of the overlying loops at the time of onset of the fast-rise phase of the corresponding filament can be compared with expectations from the breakout model, thereby setting constraints that the breakout model must meet. Our findings are consistent with both runaway tether-cutting-type reconnection and fast breakout-type reconnection, occurring early in the fast phase of the February eruption and with both types of reconnection being important in unleashing the explosion, but we are not able to say which, if either, type of reconnection actually triggered the fast phase. In any case, we have found specific constraints that either model, or any other model, must satisfy if correct.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 612; 1221-1232
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Our ecological footprint analyses of coral reef fish fisheries and, in particular, the live reef fish food trade (FT), indicate many countries' current consumption exceeds estimated sustainable per capita global, regional and local coral reef production levels. Hong Kong appropriates 25% of SE Asia's annual reef fish production of 135 260-286 560 tonnes (t) through its FT demand, exceeding regional biocapacity by 8.3 times; reef fish fisheries demand out-paces sustainable production in the Indo-Pacific and SE Asia by 2.5 and 6 times. In contrast, most Pacific islands live within their own reef fisheries means with local demand at 〈 20% of total capacity in Oceania. The FT annually requisitions up to 40% of SE Asia's estimated reef fish and virtually all of its estimated grouper yields. Our results underscore the unsustainable nature of the FT and the urgent need for regional management and conservation of coral reef fisheries in the Indo-Pacific.
    Keywords: Earth Resources and Remote Sensing
    Type: Ambio (ISSN 0044-7447); Volume 32; 7; 481-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Systeme Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.
    Keywords: Earth Resources and Remote Sensing
    Type: Emerging infectious diseases (ISSN 1080-6040); Volume 6; 3; 217-27
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: The International Celestial Reference Frame (ICRF) could be of significant importance to the astronomy community for observing weak objects angularly close to ICRF sources with the phase-referencing technique. However, the current distribution of the ICRF sources is found to be largely non-uniform, which precludes the wide use of the ICRF as a catalog of calibrators for phase-referencing observations. We show that adding 150 new sources at appropriate sky locations would reduce the distance to the nearest ICRF source for any randomly-chosen location in the northern sky from up to 13 deg to up to 6 deg, close to the requirement of the phase-referencing technique. Accordingly, a set of 150 such sources, selected from the Jodrell Bank-VLA Astrometric Survey and filtered out using the Very Long Baseline Array Calibrator Survey, has been proposed for observation to the European VLBI Network (EVN) extended with additional geodetic stations. The use of the EVN is essential to this project since most of the new sources will be weaker and thus difficult to observe with standard geodetic networks.
    Keywords: Astrophysics
    Type: International VLBI Service for Geodesy and Astrometry: 2000 General Meeting Proceedings; 168-172; NASA/CP-2000-209893
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-12-03
    Description: The ten HED polymict breccias EET82600, EET87503, EET87509, EET87510, EET87512, EET87513, EET87518, EET87528, EET87531, and EET92022 were found over a broad area in the Elephant Moraine collecting region of Antarctica. Locations are scattered among the Main (Elephant Moraine), Meteorite City, and Texas Bowl icefields and the Northern Ice Patch. It was previously suggested that these polymict breccias are paired. However, degree of terrestrial alteration among these meteorites varies from relatively pristine (type A) to extensively altered (type B/C) and there are textural, mineralogical, and compositional differences. This study is a reevaluation of the pairing of these meteorites.
    Keywords: Astrophysics
    Type: Workshop on Extraterrestrial Materials from Cold and Hot Deserts; 21-24; LPI-Contrib-997
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: Geologic data on mass extinctions of life and evidence of large impacts on the Earth are thus far consistent with a quasi-periodic modulation of the flux of Oort cloud comets. Impacts of large comets and asteroids are capable of causing mass extinction of species, and the records of large impact craters and mass show a correlation. Impacts and extinctions display periods in the range of approximately 31 +/- 5 m.y., depending on dating methods, published time scales, length of record, and number of events analyzed. Statistical studies show that observed differences in the formal periodicity of extinctions and craters are to be expected, taking into consideration problems in dating and the likelihood that both records would be mixtures of periodic and random events. These results could be explained by quasi-periodic showers of Oort Cloud comets with a similar cycle. The best candidate for a pacemaker for comet showers is the Sun's vertical oscillation through the plane of the Galaxy, with a half-period over the last 250 million years in the same range. We originally suggested that the probability of encounters with molecular clouds that could perturb the Oort comet cloud and cause comet showers is modulated by the Sun's vertical motion through the galactic disk. Tidal forces produced by the overall gravitational field of the Galaxy can also cause perturbations of cometary orbits. Since these forces vary with the changing position of the solar system in the Galaxy, they provide a mechanism for the periodic variation in the flux of Oort cloud comets into the inner solar system. The cycle time and degree of modulation depend critically on the mass distribution in the galactic disk. Additional information is contained in the original extended abstract.
    Keywords: Astrophysics
    Type: Catastrophic Events and Mass Extinctions: Impacts and Beyond; 175; LPI-Contrib-1053
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: Halide and sulfate efflorescences are common on meteorite finds, especially those from cold deserts. Meanwhile, the late-stage sulfate veins in Orgueil are universally accepted as having originated by the action of late-stage high fO2 aqueous alteration on an asteroid. I suggest here that these phenomena have essentially the same origin.
    Keywords: Astrophysics
    Type: Workshop on Extraterrestrial Materials from Cold and Hot Deserts; 95; LPI-Contrib-997
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.
    Keywords: Astrophysics
    Type: International VLBI Service for Geodesy and Astrometry: 2000 General Meeting Proceedings; 52-56; NASA/CP-2000-209893
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2004-12-03
    Description: Herzog et al. have determined Fe, Ni, and Cr abundances in Type I cosmic spherules recovered from the deep sea, and also the isotopic fractionation of these elements during passage of the spherules through the terrestrial atmosphere. Isotopic fractionation for all three elements is typically large, approx.16%(sigma)/amu, corresponding to evaporative mass losses of approx.80-85%, assuming Rayleigh distillation from an open system. The corrected, pre-atmospheric, Cr/Ni and Fe/Ni ratios are shown in Figure 1, where they are compared to these ratios in bulk chondrites and chondritic metal. Although the calculated pre-atmospheric Fe/Ni ratio for the spherules is relatively constant at 19+/-4 (sigma(sub mean), the calculated pre-atmospheric Cr/Ni ratios vary by about two orders of magnitude. The Cr/Ni ratios are thus powerful discriminators for possible modes of origin of the spherules. For example, iron meteorites typically have low Cr contents and low Cr/Ni ratios,:less than or equal to 3 x 10(exp -4). Thus, Type I spherules do not appear to be ablation products of iron meteorites, in contrast to an earlier suggestion.
    Keywords: Astrophysics
    Type: Workshop on Extraterrestrial Materials from Cold and Hot Deserts; 65-66; LPI-Contrib-997
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-12-03
    Description: Recent activities at the Remote Sensing Program at Stennis Space Center have identified the need to properly verify and validate data provided by the remote sensing community. One important variable, which effects remote sensing data is bi-directional reflectance distribution (BRDF). In order to quantify the effects of BRDF on man-made and natural ground targets, the Stennis Verification & Validation (V&V) team commissioned the Systems Engineering Division at NASA Ames Research Center to develop a Field Goniometer for use at the V&V Large Target Range and for various ground truthing missions. The Swiss Field Goniometer (FIGOS) was used as a benchmark instrument to design the new state of the art Sandmeier Field Goniometer (SGF), named after Stefan Sandmeier, developer of FIGOS. After establishing requirements for the SFG, design efforts began in early May 1998. The design of the SFG was completed in September 1998. Manufacturing, construction, and testing was completed in May 1999. The SFG was shipped to NASA SSC and fully operational by June 1999.
    Keywords: Earth Resources and Remote Sensing
    Type: 34th Aerospace Mechanisms Symposium; 167-174; NASA/CP-2000-209895
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-03
    Description: In the past two decades, photometric models developed by Bruce Hapke have been fit to a wide range of bodies in the Solar System: The Moon, Mercury, several asteroids, and many icy and rocky satellites. These models have enabled comparative descriptions of the physical attributes of planetary surfaces, including macroscopic roughness, particle size and size-distribution, the single scattering albedo, and the compaction state of the optically active portion of the regolith. One challenging type of body to observe and model, a cometary nucleus, awaited the first space based mission to obtain images unobscured by coma. The NASA-JPL Deep Space 1 Mission (DS1) encountered the short-period Jupiter-family comet 19/P Borrelly on September 22, 2001, about 8 days after perihelion. Prior to its closest approach of 2171 km, the remote-sensing package on the spacecraft obtained 25 CCD images of the comet, representing the first closeup, unobscured view of a comet's nucleus. At closest approach, corresponding to a resolution of 47 meters per pixel, the intensity of the coma was less than 1% of that of the nucleus. An unprecedented range of high solar phase angles (52-89 degrees), viewing geometries that are in general attainable only when a comet is active, enabled the first quantitative and disk-resolved modeling of surface photometric physical parameters.
    Keywords: Astrophysics
    Type: Solar System Remote Sensing; 7; LPI-Contrib-1129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2009-05-20
    Description: Two fixed-threshold Canada Centre for Remote Sensing and European Space Agency (CCRS and ESA) and three contextual GIGLIO, International Geosphere and Biosphere Project, and Moderate Resolution Imaging Spectroradiometer (GIGLIO, IGBP, and MODIS) algorithms were used for fire detection with Advanced Very High Resolution Radiometer (AVHRR) data acquired over Canada during the 1995 fire season. The CCRS algorithm was developed for the boreal ecosystem, while the other four are for global application. The MODIS algorithm, although developed specifically for use with the MODIS sensor data, was applied to AVHRR in this study for comparative purposes. Fire detection accuracy assessment for the algorithms was based on comparisons with available 1995 burned area ground survey maps covering five Canadian provinces. Overall accuracy estimations in terms of omission (CCRS=46%, ESA=81%, GIGLIO=75%, IGBP=51%, MODIS=81%) and commission (CCRS=0.35%, ESA=0.08%, GIGLIO=0.56%, IGBP=0.75%, MODIS=0.08%) errors over forested areas revealed large differences in performance between the algorithms, with no relevance to type (fixed-threshold or contextual). CCRS performed best in detecting real forest fires, with the least omission error, while ESA and MODIS produced the highest omission error, probably because of their relatively high threshold values designed for global application. The commission error values appear small because the area of pixels falsely identified by each algorithm was expressed as a ratio of the vast unburned forest area. More detailed study shows that most commission errors in all the algorithms were incurred in nonforest agricultural areas, especially on days with very high surface temperatures. The advantage of the high thresholds in ESA and MODIS was that they incurred the least commission errors.
    Keywords: Earth Resources and Remote Sensing
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2009-05-14
    Description: Recent peer reviews of' NASA's space-based lidar missions and of the technology readiness of lasers appropriate for space-based lidars indicated a critical need for an integrated research and development strategy to move laser transmitter technology from low technical readiness levels to the higher levels required for space missions. This paper presents a multi-Center efforts leading to formulation of an integrated NASA strategy to provide the technology and maturity of systems necessary to make Lidar/Laser systems viable for space-based study and monitoring of the earth's atmosphere.
    Keywords: Earth Resources and Remote Sensing
    Type: International Laser Radar Conference; Quebec City; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-10-05
    Description: We describe a low energy neutral atom imager suitable for composition measurements Europa and other icy Galilean moons in the Jovian magnetosphere. This instrument employs conversion surface technology and is sensitive to either neutrals converted to negative ions, neutrals converted to positive ions and the positive ions themselves depending on the power supply. On a mission such as the Jupiter Icy Moons Orbiter (JIMO), two back-to-back sensors would be flown with separate power supplies fitted to the neutral atom and iodneutral atom sides. This will allow both remote imaging of 1 eV 〈 E 〈 4 keV neutrals from icy moon surfaces and atmospheres, and in situ measurements of ions at similar energies in the moon ionospheres and Jovian magnetospheric plasma. The instrument provides composition measurements of the neutrals and ions that enter the spectrometer with a mass resolution dependent on the time-of-flight subsystem and capable of resolving molecules. The lower energy neutrals, up to tens of eV, arise from atoms and molecules sputtered off the moon surfaces and out of the moon atmospheres by impacts of more energetic (keV to MeV) ions from the magnetosphere. Direct Simulation Monte Carlo (DSMC) models are used to convert measured neutral abundances to compositional distributions of primary and trace species in the sputtered surfaces and atmospheres. The escaping neutrals can also be detected as ions after photo- or plasma-ionization and pickup. Higher energy, keV neutrals come from charge exchange of magnetospheric ions in the moon atmospheres and provide information on atmospheric structure. At the jovicentric orbits of the icy moons the presence of toroidal gas clouds, as detected at Europa's orbit, provide M e r opportunities to analyze both the composition of neutrals and ions originating from the moon surfaces, and the characteristics of magnetospheric ions interacting with neutral cloud material. Charge exchange of low energy ions near the moons, and directional distributions of the resultant neutrals, allow indirect global mapping of magnetic field structures around the moons. Temporal variation of the magnetic structures can be linked to induced magnetic fields associated with subsurface oceans.
    Keywords: Earth Resources and Remote Sensing
    Type: Workshop on Europa's Icy Shell: Past, Present, and Future; 17; LPI-Contrib-1195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-12-03
    Description: Accretion onto black holes is thought to power the relativistic jets and other high-energy phenomena in both active galactic nuclei (AGNs) and the "microquasar" binary systems located in our Galaxy. However, until now there has been insufficient multifrequency monitoring to establish a direct observational link between the black hole and the jet in an AGE. This contrasts with the case of microquasars, in which superluminal features appear and propagate down the radio jet shortly after sudden decreases in the X-ray flux. Such an X-ray dip is most likely caused by the disappearance of a section of the inner accretion disc, part of which falls past the event horizon and the remainder of which is injected into the jet. This infusion of energy generates a disturbance that propagates down the jet, creating the appearance of a superluminal bright spot. Here we report the results of three years of intensive monitoring of the X-ray and radio emission of the Seyfert-like radio galaxy 3C 120. As in the case of microquasars, dips in the X-ray emission are followed by ejections of bright superluminal knots in the radio jet. Comparison of the characteristic length and time scales allows us to infer that the rotational states of the black holes in these two objects are different.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: In late February 1999 the ACE spacecraft observed a coronal mass ejection (CME) at 1 AU, in the ecliptic plane. Thirteen days later, Ulysses observed a CME at 5 AU and 22"s. We present a detailed analysis of the plasma, magnetic field, and composition signatures of these two events. On the basis of this comparison alone, it is not clear that the two spacecraft observed the same solar event. However, using a generic MHD simulation of a fast CME initiated at the Sun by magnetic flux cancellation and propagated out into the solar wind, together with additional evidence, we argue that indeed the same CME was observed by both spacecraft. Although force-free models appear to fit the observed events well, our simulation results suggest that the ejecta underwent significant distortion during its passage through the solar wind, indicating that care should be taken when interpreting the results of force-he models. Comparison of composition measurements at the two spacecraft suggests that significant spatial inhomogeneities can exist within a single CME.
    Keywords: Astrophysics
    Type: Journal of Geophysical Research (ISSN 0148-0227); Volume 108; No. A7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: The human health community has been slow to adopt remote sensing technology for research, surveillance, or control activities. This chapter presents a brief history of the National Aeronautics and Space Administration's experiences in the use of remotely sensed data for health applications, and explores some of the obstacles, both real and perceived, that have slowed the transfer of this technology to the health community. These obstacles include the lack of awareness, which must be overcome through outreach and proper training in remote sensing, and inadequate spatial, spectral and temporal data resolutions, which are being addressed as new sensor systems are launched and currently overlooked (and underutilized) sensors are newly discovered by the health community. A basic training outline is presented, along with general considerations for selecting training candidates. The chapter concludes with a brief discussion of some current and future sensors that show promise for health applications.
    Keywords: Earth Resources and Remote Sensing
    Type: Advances in parasitology (ISSN 0065-308X); Volume 47; 331-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-23
    Description: Several deep PSPC observations of the Coma Cluster reveal a very large scale halo of soft X-ray emission, substantially in excess of the well-known radiation from the hot intracluster medium. The excess emission, previously reported in the central region of the cluster using lower sensitivity Extreme Ultraviolet Explorer (EUVE) and ROSAT data, is now evident out to a radius of 2.6 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The X-ray spectrum at these large radii cannot be modeled nonthermally but is consistent with the original scenario of thermal emission from warm gas at approx. 10(exp 6) K. The mass of the warm gas is on par with that of the hot X-ray-emitting plasma and significantly more massive if the warm gas resides in low-density filamentary structures. Thus, the data lend vital support to current theories of cosmic evolution, which predict that at low redshift approx. 30%-40% of the baryons reside in warm filaments converging at clusters of galaxies.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 585; 722-729
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-23
    Description: We use Monte Carlo methods to simulate impacts of ecliptic comets on the synchronously rotating satellites of giant planets. We reconfirm the long-standing prediction that the cratering rate should be much higher on the leading hemispheres than on the trailing hemisphere; indeed we find that previously published analytical formulations modestly underestimate the degree of apex-antapex asymmetry to be expected. We then compare our results to new mapping of impact craters on Ganymede, Callisto, and Triton. Ganymede reveals a pronounced apex-antapex asymmetry that is nonetheless much less than predicted. All of Triton's confirmed impact craters are clustered toward the apex of motion, far exceeding the predicted asymmetry. No asymmetry is observed on Callisto. In each case at least one of our basic assumptions must be wrong. Likely candidates include the following: (i) the surfaces of all but the most sparsely cratered satellites are saturated or nearly saturated with impact craters; (ii) these satellites have rotated nonsynchronously over geological time; (iii) most of the craters are made not by heliocentric (Sun-orbiting) comets and asteroids but rather by planetocentric (planet-orbiting) debris of indeterminate origin; or (iv) pathological endogenic resurfacing has created illusions of structure. Callisto's surface is readily classified as nearly saturated. Ganymede's bright terrains, although less heavily cratered than those of Callisto, can also be explained by crater densities approaching saturation on a world where endogenic processes were active. The leading alternative is nonsynchronous rotation, an explanation supported by the distribution of catenae (crater chains produced by impact of tidally disrupted comets). Triton's craters can be explained by planetocentric debris or by capricious resurfacing, but both hypotheses are inherently improbable.
    Keywords: Astrophysics
    Type: Icarus (ISSN 0019-1035); Volume 153; 111-129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-23
    Description: The ISO and IUE spectra of the elliptical nebulae NGC 7662 and NGC 6741 are presented. These spectra are combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, .spectrum. The chemical composition of the nebulae is then calculated and compared to previous determinations. The abundances found are compared to determinations made in other nebulae using ISO data. A discussion is given to see if possible evolutionary effects can be found from the abundance differences.
    Keywords: Astrophysics
    Type: Astronomy and Astrophysics (ISSN 0004-6361); Volume 380; 684-694
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-23
    Description: We report the discovery with the Proportional Counter Array on board the Rossi X-Ray Timing Explorer of a 450 Hz quasi-periodic oscillation (QPO) in the hard X-ray flux from the Galactic microquasar GRO J1655-40. This is the highest frequency QPO modulation seen to date from a black hole. The QPO is detected only in the hard X-ray band above approx. 13 keV. It is both strong and narrow, with a typical rms (root mean square) amplitude of 4.5% in the 13-27 keV range and a width of approx. 40 Hz (FWHM). For two observations in which we detect the 450 Hz QPO, a previously known approx. 300 Hz QPO is also observed in the 2-13 keV band. We show that these two QPOs sometimes appear simultaneously, thus demonstrating the first detection of a pair of high-frequency QPOs in a black hole system. Prior to this, pairs of high-frequency QPOs have been detected only in neutron star systems. GRO J1655-40 is one of only a handful of black hole systems with a good dynamical mass constraint. For a nonrotating black hole with mass between 5.5 and 7.9 solar masses, the innermost stable circular orbit (ISCO) ranges from 45 to 70 km. For any mass in this range the radius at which the orbital frequency reaches 450 Hz is less than the ISCO radius, indicating that, if the modulation is caused by Kepler motion, the black hole must have appreciable spin. If the QPO frequency is set by the orbital frequency of matter at the ISCO, then for this mass range the dimensionless angular momentum lies in the range 0.15 〈 j 〈 0.5. Moreover, if the modulation is caused by oscillation modes in the disk or Lense-Thirring precession, then this would also require a rapidly rotating hole. We briefly discuss the implications of our findings for models of X-ray variability in black holes and neutron stars.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 552; L49-L53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-23
    Description: We present our method for solving general relativistic nonideal hydrodynamics. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks which may lead to the study of gamma-ray bursts. Nonideal flows are present where radiation, magnetic forces, viscosities, and turbulence play an important role. Our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flow field-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for computational relativistic astrophysics (CRA) are demonstrated.
    Keywords: Astrophysics
    Type: The Astrophysical Journal Supplement Series; Volume 139; 539-563
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-23
    Description: One signature of expulsion of coronal mass ejections (CMEs) from the solar corona is the appearance of transient intensity dimmings in coronal images. These dimmings have generally been assumed to be due to discharge of CME material from the corona, and thus the 'dimming regions' are thought of as an important signature of the sources of CMEs. We present spectral observations of two dimming regions at the time of expulsion of CMEs, using the Coronal Diagnostic Spectrometer (CDS) on the SOHO satellite. One of the dimming regions is at the solar limb and associated with a CME traveling in the plane of the sky, while the other region is on the solar disk and associated with an Earth-directed 'halo' CME. From the limb event, we see Doppler signatures of approximately 30 km/s in coronal (Fe XVI and Mg IX) emission lines, where the enhanced velocities coincide with the locations of coronal dimming. This provides direct evidence that the dimmings are associated with outflowing material. We also see larger (approximately 100 km/s) Doppler velocities in transition region (O V and He I) emission lines, which are likely to be associated with motions of a prominence and loops at transition region temperatures. An 'EIT wave' accompanies the disk event, and a dimming region behind the wave shows strong blueshifted Doppler signatures of approximately 100 km/s in O V, suggesting that material from the dimming regions behind the wave may be feeding the CME.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 561; L215-L218
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: We discuss the imprints left by a cosmological evolution of the star formation rate (SFR) on the evolution of X-ray luminosities Lx of normal galaxies, using the scheme earlier proposed by us, wherein the evolution of LX of a galaxy is driven by the evolution of its X-ray binary population. As indicated in our earlier work, the profile of Lx with redshift can both serve as a diagnostic probe of the SFR profile and constrain evolutionary models for X-ray binaries. We report here the first calculation of the expected evolution of X-ray luminosities of galaxies, updating our work by using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on Lx evolution are beginning to probe the SFR profile of bright spiral galaxies; the early results are consistent with predictions based on current SFR models. Using these new SFR profiles, the resolution of the "birthrate problem" of low-mass X-ray binaries and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We discuss the possible impact of the variations in the SFR profile of individual galaxies and galaxy types.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 559
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-23
    Description: We have undertaken an investigation of recent flux variability in BL Lac. We present optical observations taken over 22 nights documenting major as well as minor outbursts. This has been combined, for purposes of multifrequency analysis, with published X-ray and T-ray data taken for an additional single night, On two nights in particular, including the night of the X-ray observations, a major outburst of about a full magnitude of variation was recorded. All the data have been analyzed with theoretical models. Attempts were made to use synchrotron self-Compton and external Comptonization models to explain the data; however, both classes of models were found lacking. More satisfactory results were obtained using an analytical model proposed by Wang et al. that involves the evolution of synchrotron spectra in a homogeneous jet due to the injection of relativistic electrons, taking into account radiation losses during the outbursts. It is hoped that the results of this study of BL Lac, an archetype for the class of blazars in general, represent a more generic phenomenon applicable to the entire class.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 537; 638-643
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-23
    Description: A crucial missing ingredient in previous theoretical studies of fragmentation is the inclusion of dynamically important levels of magnetic fields. As a minimal model for a candidate presursor to the formation of binary and multiple stars, we therefore consider the equilibrium configuration of isopedically magnetized, scale-free, singular isothermal disks, without the assumption of axial symmetry. We find that lopsided (M = 1) configurations exist at any dimensionless rotation rate, including zero. Multiple-lobed (M = 2, 3, 4, ...) configurations bifurcate from an underlying axisymmetric sequence at progressively higher dimensionless rates of rotation, but such nonaxisymmetric sequences always terminate in shockwaves before they have a chance to fission into separate bodies. We advance the hypothesis that binary and multiple star-formation from smooth (i.e., not highly turbulent) starting states that are supercritical but in unstable mechanical balance requires the rapid (i.e., dynamical) loss of magnetic flux at some stage of the ensuing gravitational collapse.
    Keywords: Astrophysics
    Type: The Astronomical Society of the Pacific; United States|ASP Conference Series: Euroconference on Stellar Clusters and Associations; Volume 198; 1-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-23
    Description: Synthetic Aperture Radar (SAR) interferometry has become an important tool for measuring the surface deformation and mapping topography. The largest error source of the SAR interferometry measurements is differential atmospheric delay of water vapor. It reflects detailed distribution of water vapor in troposphere at data acquisition. We found phase difference associated with atmospheric waves and severe local atmospheric phenomena in interferograms. To distinguish phase difference associated with surface deformation from tropospheric effect, we need several SAR interferograms including the time period of the deformation. Averaging the interferograms is an effective way to reduce the tropospheric delay from horizontal inhomogeneity of the water vapor distribution. Apart from the tropospheric delay of the horizontal water vapor inhomogeneity, we often find the differential phase correlated to the topography (elevation) in interferograms, which might cause error in interpretation of surface deformation. This phase is due to the differential tropospheric delay caused by the topography and vertical change of water vapor between two images in different atmospheric condition. Theoretical calculation shows that the phase difference can be approximated by linear expression of the elevation. We applied a simple and effective correction method that the error is removed by subtracting the DEM (Digital Elevation Model) multiplied a coefficient.
    Keywords: Earth Resources and Remote Sensing
    Type: Microwave Remote Sensing of the Atmosphere and Environment II; Volume 4152; 190-197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-23
    Description: We have extended a simple model of nonlinear diffusive shock acceleration (Berezhko & Ellison 1999: Ellison &, Berezhko 1999a) to include the injection and acceleration of electrons and the production of photons from bremsstrahlung, synchrotron, inverse Compton, and pion-decay processes. We argue that, the results of this model, which is simpler to use than more elaborate ones, offer a significant improvement, over test-particle, power-law spectra which are often used in astrophysical applications of diffusive shock acceleration. With an evolutionary supernova remnant (SNR) model to obtain shock parameters as functions of ambient interstellar medium parameters and time, we predict broad-band continuum photon emission from supernova remnants in general, and SN1006 in particular, showing that our results compare well with the more complete time-dependent and spherically symmetric nonlinear model of Berezhko, Ksenofontov, & Petukhov (1999a). We discuss the implications nonlinear shock acceleration has for X-ray line emission, and use our model to describe how ambient conditions determine the TeV/radio flux ratio, an important parameter for gamma-ray observations of radio SNRs.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-23
    Description: Ginga and Rossi X-Ray Timing Explorer observations have allowed an unprecedented view of the recurrent systematic pulse shape changes associated with the 35 day cycle of Hercules X-1, a phenomenon currently unique among the known accretion-powered pulsars. We present observations of the pulse shape evolution. An explanation for the pulse evolution in terms of a freely precessing neutron star is reviewed and shown to have several major difficulties in explaining the observed pulse evolution pattern. Instead, we propose a phenomenological model for the pulse evolution based on an occultation of the pulse-emitting region by the tilted, inner edge of a precessing accretion disk. The systematic and repeating pulse shape changes require a resolved occultation of the pulse emission region. The observed pulse profile motivates the need for a pulsar beam consisting of a composite coaxial pencil and fan beam, but the observed evolution pattern requires the fan beam to be focused around the neutron star and beamed in the antipodal direction. The spectral hardness of the pencil beam component suggests an origin at the magnetic polar cap, with the relatively softer fan beam emission produced by backscattering from within the accretion column, qualitatively consistent with several theoretical models for X-ray emission from the accretion column of an accreting neutron star.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 539; No. 1; 392-412
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Astrophysics
    Type: AIP Conference Proceedings; Volume 587; 106
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: The purpose of this grant was to develop and to start to apply new precision methods for measuring the power spectrum and redshift distortions from the anticipated new generation of large redshift surveys. A highlight of work completed during the award period was the application of the new methods developed by the PI to measure the real space power spectrum and redshift distortions of the IRAS PSCz survey, published in January 2000. New features of the measurement include: (1) measurement of power over an unprecedentedly broad range of scales, 4.5 decades in wavenumber, from 0.01 to 300 h/Mpc; (2) at linear scales, not one but three power spectra are measured, the galaxy-galaxy, galaxy-velocity, and velocity-velocity power spectra; (3) at linear scales each of the three power spectra is decorrelated within itself, and disentangled from the other two power spectra (the situation is analogous to disentangling scalar and tensor modes in the Cosmic Microwave Background); and (4) at nonlinear scales the measurement extracts not only the real space power spectrum, but also the full line-of-sight pairwise velocity distribution in redshift space.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-08-31
    Description: For many Earth and Space Science applications, automatic geo-registration at sub-pixel accuracy has become a necessity. In this work, we are focusing on building an operational system, which will provide a sub-pixel accuracy registration of Landsat-5 and Landsat-7 data. The input to our registration method consists of scenes that have been geometrically and radiometrically corrected. Such pre-processed scenes are then geo-registered relative to a database of Landsat chips. The method assumes a transformation composed of a rotation and a translation, and utilizes rotation- and translation-invariant wavelets to extract image features that are matched using statistically robust feature matching and a generalized Hausdorff distance metric. The registration process is described and results on four Landsat input scenes of the Washington, D.C. area are presented.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-08-31
    Description: Disturbance is an important factor in determining the carbon balance and succession of forests. Until the early 1990's researchers have focused on using optical or thermal sensors to detect and map forest disturbances from wild fires, logging or insect outbreaks. As part of a NASA Siberian mapping project, a study evaluated the capability of three different radar sensors (ERS, JERS and Radarsat) and an optical sensor (Landsat 7) to detect fire scars, logging and insect damage in the boreal forest. This paper describes the data sets and techniques used to evaluate the use of remote sensing to detect disturbance in central Siberian forests. Using images from each sensor individually and combined an assessment of the utility of using these sensors was developed. Transformed Divergence analysis and maximum likelihood classification revealed that Landsat data was the single best data type for this purpose. However, the combined use of the three radar and optical sensors did improve the results of discriminating these disturbances.
    Keywords: Earth Resources and Remote Sensing
    Type: Workshop on Use of Synthetic Aperture Radar for Forest Ecosystem Studies; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-08-31
    Description: Using an optically thick inner disk and an extended, optically thin outer disk as described in Mosqueira and Estrada, we compute the torque as a function of position in the subnebula, and show that although the torque exerted on the satellite is generally negative, which leads to inward migration as expected, there are regions of the disk where the torque is positive. For our model these regions of positive torque correspond roughly to the locations of Callisto and Iapetus. Though the outer location of zero torque depends on the (unknown) size of the transition region between the inner and outer disks, the result that Saturn's is found much farther out (at approximately 3r(sub c, sup S) where r(sub c, sup S) is Saturn's centrifugal radius) than Jupiter's (at approximately 2r(sub c, sup J), where r(sub c, sup J) is Jupiter's centrifugal radius) is mostly due to Saturn's less massive outer disk, and larger Hill radius. For a satellite to survive in the disk the timescale of satellite migration must be longer than the timescale for gas dissipation. For large satellites (approximately 1000 km) migration is dominated by the gas torque. We consider the possibility that the feedback reaction of the gas disk caused by the redistribution of gas surface density around satellites with masses larger than the inertial mass causes a large drop in the drift velocity of such objects, thus improving the likelihood that they will be left stranded following gas dissipation. We adapt the inviscid inertial mass criterion to include gas drag, and m-dependent non-local deposition of angular momentum.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-08-31
    Description: Digital topographic data are critical for a variety of civilian, commercial, and military applications. Scientists use Digital Elevation Models (DEM) to map drainage patterns and ecosystems, and to monitor land surface changes over time. The mountain-building effects of tectonics and the climatic effects of erosion can also be modeled with DEW The data's military applications include mission planning and rehearsal, modeling and simulation. Commercial applications include determining locations for cellular phone towers, enhanced ground proximity warning systems for aircraft, and improved maps for backpackers. The Shuttle Radar Topography Mission (SRTM) (Fig. 1), is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense. The mission is designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and south latitude. The DEM will have 30 m pixel spacing and about 15 m vertical errors.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-08-31
    Description: The double-lobed radio galaxy NGC 4261 (3C270) contains a pair of highly symmetric kpc-scale jets, as well as a two-sided morphology on parsec scales. Optical imaging with HST has revealed a large, nearly edge-on nuclear disk of gas and dust. This suggests that the radio axis is close to the plane of the sky and consequently that the relative brightness of the two jets is not significantly affected by relativistic beaming.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-08-29
    Description: An airborne profiling laser is used to monitor multiple resources related to landscape structure, both natural and man-made, across regions encompassing hundreds of thousands of hectares. A small, lightweight, inexpensive airborne profiling laser is used to inventory Delaware forests, to estimate impervious surface area statewide, and to locate potentially Suitable Delmarva Fox Squirrel (Scrotum niger cinereus) habitat. Merchantable volume estimates are within 14% of US Forest Service estimates at the county level and within 4% statewide. Total above-ground dry biomass estimates are within 19% of USES estimates at the county level and within 16% statewide. Mature forest stands suitable for reintroduction of the Delmarva Fox Squirrel, an endangered species historically endemic to the eastern shores of Delaware, Maryland, and Virginia, are identified and mapped along the laser transacts. Intersection lengths with various types of impervious surface (roofs, concrete/asphalt) and open water are tallied to estimate percent and areal coverage statewide, by stratum and county. Laser estimates of open water are within 7% of photointerpreted GIS estimates at the county level and within 3% of the GIS at the state level.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-08-29
    Description: I discuss recent advances being made in the physics and astrophysics of cosmic rays and cosmic gamma-rays at the highest observed energies as well as the related physics and astrophysics of very high energy cosmic neutrinos. I also discuss the connections between these topics.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-08-29
    Description: We report on ASCA observations of the coronally active companion star in the post-common envelope binary V471 Tau. While it would be prudent to check the following results with grating spectroscopy, we find that a single-temperature plasma model does not fit the data. Two temperature models with variable abundances indicate that Fe is underabundant compared to the Hyades photospheric mean, whereas, the high first ionization potential element Ne is overabundant. This is indicative of the inverse first ionization effect, believed to result from the fractionation of ionized material by the magnetic field in the upper atmosphere of the star. Evolutionary calculations indicate that there should be no peculiar abundances on the companion star resulting from the common envelope epoch. Indeed, we find no evidence for peculiar abundances, although uncertainties are high.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-08-29
    Description: The most straightforward manner of determining masses and radii of neutron stars is by measuring the gravitational redshift of spectral lines produced in the neutron star photosphere; such a measurement would provide direct constraints on the mass-to-radius ratio of the neutron star, and therefore on the equation of state for neutron star matter. Using data taken with the Reflection Grating Spectrometer on board the XMM-Newton observatory we identify, for the first time, significant absorption lines in the spectra of 28 bursts of the low-mass X-ray binary EXO 0748-676. The most significant features are consistent with the Fe XXVI and XXV n=2-3 and O VIII n=1-2 transitions, with a redshift of z=0.35, identical within small uncertainties for the different transitions. This constitutes the first direct and unambiguous measurement of the gravitational redshift in a neutron star.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-08-29
    Description: We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (〈 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external check on the UV estimates of the star formation rates, and on the use of X-ray luminosities to infer these rates in rapidly starforming galaxies at high redshift.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-08-29
    Description: Using the exact solution of the axisymmetric pulsar magnetosphere derived in a previous publication and the conservation laws of the associated MHD flow, we show that the Lorentz factor of the outflowing plasma increases linearly with distance from the light cylinder. Therefore, the ratio of the Poynting to particle energy flux, generically referred to as sigma, decreases inversely proportional to distance, from a large value (typically approx. greater than 10(exp 4)) near the light cylinder to sigma approx. = 1 at a transition distance R(sub trans). Beyond this distance the inertial effects of the outflowing plasma become important and the magnetic field geometry must deviate from the almost monopolar form it attains between R(sub lc), and R(sub trans). We anticipate that this is achieved by collimation of the poloidal field lines toward the rotation axis, ensuring that the magnetic field pressure in the equatorial region will fall-off faster than 1/R(sup 2) (R being the cylindrical radius). This leads both to a value sigma = a(sub s) much less than 1 at the nebular reverse shock at distance R(sub s) (R(sub s) much greater than R(sub trans)) and to a component of the flow perpendicular to the equatorial component, as required by observation. The presence of the strong shock at R = R(sub s) allows for the efficient conversion of kinetic energy into radiation. We speculate that the Crab pulsar is unique in requiring sigma(sub s) approx. = 3 x 10(exp -3) because of its small translational velocity, which allowed for the shock distance R(sub s) to grow to values much greater than R(sub trans).
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-08-29
    Description: Asteroid 951 Gaspra appears to be in an obliquity resonance with its spin increasing due to the YORP effect. Gaspra, an asteroid 5.8 km in radius, is a prograde rotator with a rotation period of 7.03 hours. A three million year integration indicates its orbit is stable over at least this time span. From its known shape and spin axis orientation and assuming a uniform density, Gaspra's axial precession period turns out to be nearly commensurate with its orbital precession period, which leads to a resonance condition with consequent huge variations in its obliquity. At the same time its shape is such that the Yarkovsky-O'Keefe-Radzievskii-Paddack effect (YORP effect for short) is increasing its spin rate. The YORP cycle normally leads from spin-up to spin-down and then repeating the cycle; however, it appears possible that resonance trapping can at least temporarily interrupt the YORP cycle, causing spin-up until the resonance is exited. This behavior may partially explain why there is an excess of fast rotators among small asteroids. YORP may also be a reason for small asteroids entering resonances in the first place.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-08-29
    Description: The MODIS sensor, launched on NASA's Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 microns and 400 K at 11 microns, which can only be attained in rare circumstances at the I kin fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. AVHRR and ATSR), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MOMS solar channels, extending from 0.41 microns to 2.1 microns. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 micron channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern United States in the summer of 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-08-29
    Description: The accumulation of presolar dust into increasingly larger aggregates (CAIs and Chondrules, Asteroids, Planets) should result in a very drastic reduction in the numerical spread in oxygen isotopic composition between bodies of similar size, in accord with the Central Limit Theorem. Observed variations in oxygen isotopic composition are many orders of magnitude larger than would be predicted by a simple, random accumulation model that begins in a well-mixed nebula - no matter which size-scale objects are used as the beginning or end points of the calculation. This discrepancy implies either that some as yet unspecified process acted on the solids in the Solar Nebula to increase the spread in oxygen isotopic composition during each and every stage of accumulation or that the nebula was heterogeneous and maintained this heterogeneity throughout most of nebular history. Large-scale nebular heterogeneity would have significant consequences for many areas of cosmochemistry, including the application of some well-known isotopic systems to the dating of nebular events or the prediction of bulk compositions of planetary bodies on the basis of a uniform cosmic abundance.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-08-29
    Description: Seasonal snow cover in South America was examined in this study using passive microwave satellite data from the Special Sensor Microwave Imagers (SSM/I) on board Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1992-1998, both snow cover extent and snow depth (snow mass) were investigated during the winter months (May-August) in the Patagonia region of Argentina. Since above normal temperatures in this region are typically above freezing, the coldest winter month was found to be not only the month having the most extensive snow cover but also the month having the deepest snows. For the seven-year period of this study, the average snow cover extent (May-August) was about 0.46 million sq km and the average monthly snow mass was about 1.18 x 10(exp 13) kg. July 1992 was the month having the greatest snow extent (nearly 0.8 million sq km) and snow mass (approximately 2.6 x 10(exp 13) kg).
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-08-29
    Description: We show that short-term perturbations among massive planets in multiple planet systems can result in radial velocity variations of the central star which differ substantially from velocity variations derived assuming the planets are executing independent Keplerian motions. We discuss two alternate fitting methods which can lead to an improved dynamical description of multiple planet systems. In the first method, the osculating orbital elements are determined via a Levenberg-Marquardt minimization scheme driving an N-body integrator. The second method is an improved analytic model in which orbital elements such as the periods and longitudes of periastron are allowed to vary according to a simple model for resonant interactions between the planets. Both of these methods can potentially determine the true masses for the planets by eliminating the sin(i) degeneracy inherent in fits that assume independent Keplerian motions. As more radial velocity data is accumulated from stars such as GJ876, these methods should allow for unambiguous determination of the planetary masses and relative inclinations.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-08-29
    Description: Time-series of surface elevation change, which are constructed from 7-years (1992-1999) of ERS-1 and 2 satellite radar altimeter data of Antarctica, show significant seasonal, inter-annual, and long-term changes. Elevation time-series are created from altimeter crossovers among 90-day data periods on a 50 km grid to 81.5 degrees S and fit with a multivariate linear/sinusoidal function to give the average rate of elevation change (dH/dt) and account for seasonal changes. On the major Ronne, Filchner, and Ronne ice shelves, the dH/dt are small or near zero. In contrast, the ice shelves of the Antarctic Peninsula and along the West Antarctic coast appear to be thinning significantly, with a 23 +/- 3 cm a(exp -1) surface elevation decrease on the Larsen ice shelf and a 65 +/- 4 cm a(exp -1) decrease on the Dotson ice shelf. Significant elevation decreases are obtained over most of the drainage basins of the Pine Island and Thwaites glaciers. Significant increases are obtained over most of the other grounded ice in Marie Byrd Land, the Antarctic Peninsula, and Coates Land. Over the sector from 85 degrees W to 115 degrees W, which includes the Pine Island and Thwaites basins, the average elevation is significantly decreasing by 8.1 cm a(exp -1). The corresponding ice thickness change is about -11 cm a(exp -1), with a corresponding mass loss of 82 Gt a(exp -1), and a 0.22 mm a(exp -1) contribution to global sea level rise. In terms of elevation change, the decrease in the Pine Island-Thwaites sector is largely balanced by the increase in the Marie Byrd Land, but only balanced by about 1/4 in terms of ice thickness change and contribution to sea level rise. The overall average elevation change for the grounded ice is + 1.2 cm a(exp -1). Using an average bedrock uplift of 2.5 cm a(exp -1), implies an average ice thickness decrease of 1.3 cm a(exp -1), a mass loss of 22 Gt a(exp -1), and a 0.06 mm a(exp -1) contribution to global sea level rise.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-08-29
    Description: The MODerate resolution Imaging Spectroradiometer (MODIS) algorithm for determining aerosol characteristics over ocean is performing with remarkable accuracy. A two-month data set of MODIS retrievals co-located with observations from the AErosol RObotic NETwork (AERONET) ground-based sunphotometer network provides the necessary validation. Spectral radiation measured by MODIS (in the range 550 - 2100 nm) is used to retrieve the aerosol optical thickness, effective particle radius and ratio between the submicron and micron size particles. MODIS-retrieved aerosol optical thickness at 660 nm and 870 nm fall within the expected uncertainty, with the ensemble average at 660 nm differing by only 2% from the AERONET observations and having virtually no offset. MODIS retrievals of aerosol effective radius agree with AERONET retrievals to within +/- 0.10 micrometers, while MODIS-derived ratios between large and small mode aerosol show definite correlation with ratios derived from AERONET data.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-29
    Description: When asked to discuss Cyg XR-1, E. E. Salpeter once concluded, 'A black hole in Cyg X(R)-1 is the most conservative hypothesis.' Recent observations now make it likely that a black hole in Cyg XR-1 is the only hypothesis tenable. Chandrasekhar first showed that compact stars - those with the inward force of gravity on their outer layers balanced by the pressure generated by the Pauli exclusion principle acting on its electrons (in white dwarfs) or nucleons (in neutron stars) - have a maximum mass. Equilibrium is achieved at a minimum of the total energy of the star, which is the sum of the positive Fermi energy and the negative gravitational energy. The maximum mass attainable in equilibrium is found by setting E = 0: M(max) = 1.5 M(Sun). If the mass of the star is larger than this, then E can be decreased without bound by decreasing the star's radius and increasing its (negative) gravitational energy. No equilibrium value of the radius exist, and general relativity predicts that gravitational collapse to a point occurs. This point singularity is a black hole.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-29
    Description: The EOS Data Products Handbook provides brief descriptions of the data products that will be produced from a range of missions of the Earth Observing System (EOS) and associated projects. Volume 1, originally published in 1997, covers the Tropical Rainfall Measuring Mission (TRMM), the Terra mission (formerly named EOS AM-1), and the Data Assimilation System, while this volume, Volume 2, covers the Active Cavity Radiometer Irradiance Monitor Satellite (ACRIMSAT), Aqua, Jason-1, Landsat 7, Meteor 3M/Stratospheric Aerosol and Gas Experiment III (SAGE III). the Quick Scatterometer (QuikScat), the Quick Total Ozone Mapping Spectrometer (Quik-TOMS), and the Vegetation Canopy Lidar (VCL) missions. Volume 2 follows closely the format of Volume 1, providing a list of products and an introduction and overview descriptions of the instruments and data processing, all introductory to the core of the book, which presents the individual data product descriptions, organized into 11 topical chapters. The product descriptions are followed by five appendices, which provide contact information for the EOS data centers that will be archiving and distributing the data sets, contact information for the science points of contact for the data products, references, acronyms and abbreviations, and a data products index.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-08-29
    Description: Repeat surveys by aircraft laser altimeter in 1993/4 and 1998/9 reveal significant thinning along 70% of the coastal parts of the Greenland ice sheet at elevations below about 2000 m. Thinning rates of more than 1 m/yr are common along many outlet glaciers, at all latitudes and, in some cases, at elevations up to 1500 m. Warmer summers along parts of the coast may have caused a few tens of cm/yr additional melting, but most of the observed thinning probably results from increased glacier velocities and associated creep rates. Three glaciers in the northeast all show patterns of thickness change indicative of surging behavior, and one has been independently documented as a surging glacier. There are a few areas of significant thickening (over 1 m/yr), and these are probably related to higher than normal accumulation rates during the observation period.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-08-29
    Description: Pluto may be the only known case of precession-orbit resonance in the solar system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which is 250.8 Earth years. The observed parameters of the system are such that Charon may cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn drives Pluto near its precession period. Volatiles, which are expected to shuttle across Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the planet's dynamical flattening enough so that Pluto crosses the nearby resonance, forcing the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can reach as much as 2 deg after integrating over 5.6 x 10(exp 6) years, depending upon how close Pluto is to the resonance and the supply of volatiles. The second resonance is due to the Sun's traveling above and below Charon's orbital plane; it has a period half that of the eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger but still theoretically possible amount of volatiles. In this case the departure of Charon from an equatorial orbit is about 1 deg after integrating for 5.6 x 10(exp 6) years. The calculations ignore libration and tidal friction. It is not presently known how large the mutual tilt can grow over the age of the solar system, but if it remains only a few degrees, then observing such small angles from a Pluto flyby mission would be difficult. It is not clear why the parameters of the Pluto-Charon system are so close to the eccentricity resonance.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-29
    Description: Three observational constraints can be placed on a warm-hot intergalactic medium (WHIM) using ROSAT Position Sensitive Proportional Counter (PSPC) pointed and survey data, the emission strength, the energy spectrum, and the fluctuation spectrum. The upper limit to the emission strength of the WHIM is 7.5 +/- 1.0 keV/(s*sq cm*sr*keV) in the 3/4 keV band, an unknown portion of which value may be due to our own Galactic halo. The spectral stape of the WHIM emission can be described as thermal emission with logT = 6.42, although the true spectrum is more likely to come from a range of temperatures. The values of emission strength and spectral shape are in reasonable agreement with hydrodynamical cosmological models. The autocorrelation function in the 0.44 keV 〈 E 〈 1.21 keV band range, w(theta), for the extragalactic soft X-ray background (SXRB) which includes both the WHIM and contributions due to point sources, is approx. 〈 0.002 for 10 min 〈 0 〈 20 min in the 3/4 keV band. This value is lower than the Croft et al. (2000) cosmological model by a factor of approx. 5, but is still not inconsistent with cosmological models. It is also found that the normalization of the extragalactic power law component of the soft X-ray background spectrum must be 9.5 +/- 0.9 keV/(s*sq cm*sr*keV) to be consistent with the ROSAT All-Sky Survey.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-08-29
    Description: Surface bidirectional reflectance distribution function (BRDF) influences not only radiance just about the surface, but that emerging from the top of the atmosphere (TOA). In this study we propose a new, fast and accurate, algorithm CASBIR (correction for anisotropic surface bidirectional reflection) to account for such influences on radiance measured above TOA. This new algorithm is based on a 4-stream theory that separates the radiation field into direct and diffuse components in both upwelling and downwelling directions. This is important because the direct component accounts for a substantial portion of incident radiation under a clear sky, and the BRDF effect is strongest in the reflection of the direct radiation reaching the surface. The model is validated by comparison with a full-scale, vector radiation transfer model for the atmosphere-surface system. The result demonstrates that CASBIR performs very well (with overall relative difference of less than one percent) for all solar and viewing zenith and azimuth angles considered in wavelengths from ultraviolet to near-infrared over three typical, but very different surface types. Application of this algorithm includes both accounting for non-Lambertian surface scattering on the emergent radiation above TOA and a potential approach for surface BRDF retrieval from satellite measured radiance.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-29
    Description: In this study, a 1-D steady-state microphysical model which describes the vertical distribution of melting precipitation particles is developed. The model is driven by the ice-phase precipitation distributions just above the freezing level at applicable gridpoints of "parent" 3-D cloud-resolving model (CRM) simulations. It extends these simulations by providing the number density and meltwater fraction of each particle in finely separated size categories through the melting layer. The depth of the modeled melting layer is primarily determined by the initial material density of the ice-phase precipitation. The radiative properties of melting precipitation at microwave frequencies are calculated based upon different methods for describing the dielectric properties of mixed phase particles. Particle absorption and scattering efficiencies at the Tropical Rainfall Measuring Mission Microwave Imager frequencies (10.65 to 85.5 GHz) are enhanced greatly for relatively small (approx. 0.1) meltwater fractions. The relatively large number of partially-melted particles just below the freezing level in stratiform regions leads to significant microwave absorption, well-exceeding the absorption by rain at the base of the melting layer. Calculated precipitation backscatter efficiencies at the Precipitation Radar frequency (13.8 GHz) increase in proportion to the particle meltwater fraction, leading to a "bright-band" of enhanced radar reflectivities in agreement with previous studies. The radiative properties of the melting layer are determined by the choice of dielectric models and the initial water contents and material densities of the "seeding" ice-phase precipitation particles. Simulated melting layer profiles based upon snow described by the Fabry-Szyrmer core-shell dielectric model and graupel described by the Maxwell-Garnett water matrix dielectric model lead to reasonable agreement with radar-derived melting layer optical depth distributions. Moreover, control profiles that do not contain mixed-phase precipitation particles yield optical depths that are systematically lower than those observed. Therefore, the use of the melting layer model to extend 3-D CRM simulations appears justified, at least until more realistic spectral methods for describing melting precipitation in high-resolution, 3-D CRM's are implemented.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-08-29
    Description: A new strategy for modeling the land surface component of the climate system is described. The strategy is motivated by an arguable deficiency in most state-of-the-art land surface models (LSMs), namely the disproportionately higher emphasis given to the formulation of one-dimensional, vertical physics relative to the treatment of horizontal heterogeneity in surface properties -- particularly subgrid soil moisture variability and its effects on runoff generation. The new strategy calls for the partitioning of the continental surface into a mosaic of hydrologic catchments, delineated through analysis of high-resolution surface elevation data. The effective "grid" used for the land surface is therefore not specified by the overlying atmospheric grid. Within each catchment, the variability of soil moisture is related to characteristics of the topography and to three bulk soil moisture variables through a well-established model of catchment processes. This modeled variability allows the partitioning of the catchment into several areas representing distinct hydrological regimes, wherein distinct (regime-specific) evaporation and runoff parameterizations are applied. Care is taken to ensure that the deficiencies of the catchment model in regions of little to moderate topography are minimized.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-29
    Description: The viability of a new catchment-based land surface model (LSM) developed for use with general circulation models is demonstrated. First, simple empirical functions -- tractable enough for operational use in the LSM -- are established that faithfully capture the control of topography on the subgrid variability of soil moisture and the surface water budget, as predicted by theory. Next, the full LSM is evaluated offline. Using forcing and validation datasets developed for PILPS Phase 2c, the minimally calibrated model is shown to reproduce observed evaporation and runoff fluxes successfully in the Red-Arkansas River Basin. A complementary idealized study that employs the range of topographic variability seen over North America demonstrates that the simulated surface water budget does vary strongly with topography, which can, by itself, induce variations in annual evaporation as high as 20%.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-08-29
    Description: The one-dimensional, steady-state melting layer model developed in Part I of this study is used to calculate both the microphysical and radiative properties of melting precipitation, based upon the computed concentrations of snow and graupel just above the freezing level at applicable horizontal gridpoints of 3-dimensional cloud resolving model simulations. The modified 3-dimensional distributions of precipitation properties serve as input to radiative transfer calculations of upwelling radiances and radar extinction/reflectivities at the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) frequencies, respectively. At the resolution of the cloud resolving model grids (approx. 1 km), upwelling radiances generally increase if mixed-phase precipitation is included in the model atmosphere. The magnitude of the increase depends upon the optical thickness of the cloud and precipitation, as well as the scattering characteristics of ice-phase precipitation aloft. Over the set of cloud resolving model simulations utilized in this study, maximum radiance increases of 43, 28, 18, and 10 K are simulated at 10.65, 19.35 GHz, 37.0, and 85.5 GHz, respectively. The impact of melting on TMI-measured radiances is determined not only by the physics of the melting particles but also by the horizontal extent of the melting precipitation, since the lower-frequency channels have footprints that extend over 10''s of kilometers. At TMI resolution, the maximum radiance increases are 16, 15, 12, and 9 K at the same frequencies. Simulated PR extinction and reflectivities in the melting layer can increase dramatically if mixed-phase precipitation is included, a result consistent with previous studies. Maximum increases of 0.46 (-2 dB) in extinction optical depth and 5 dBZ in reflectivity are simulated based upon the set of cloud resolving model simulations.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-08-29
    Description: Data from two different satellites, a digital land cover map, and digital census data were analyzed and combined in a geographic information system to study the effect of urbanization on photosynthetic vegetation productivity in the United States. Results show that urbanization can have a measurable but variable impact on the primary productivity of the land surface. Annual productivity can be reduced by as much as 20 days in some areas, but in resource limited regions, photosynthetic production can be enhanced by human activity. Overall, urban development reduces the productivity of the land surface and those areas with the highest productivity are directly in the path of urban sprawl.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-29
    Description: Dust grains in Herbig Ae/Be stars are continuously replenished by infalling comets. The IR spectra of these cometary grains appear to evolve temporally from initially amorphous astronomical silicates in young protostars to crystalline olivine in much older sources. Crystalline olivine can only be produced from amorphous silicates on a time scale of months-to-years via thermal annealing at temperatures near 1000 K. Since such sustained high temperatures only occur near the central star, dust annealed at 1000 K in inner nebular regions must be continuously transported beyond the nebular snowline to be incorporated into the next generation of cometesimals. The average formation age of a comet can therefore be measured as a ratio of the annealed crystalline olivine dust component to the total dust content of the comet. Comets formed from nearly pristine interstellar materials early in the protostellar nebula stage will contain very little crystalline dust whereas comets formed towards the end of the accretion period will incorporate a much higher percentage of annealed silicate. It is unlikely that only dust grains circulate from the inner to the outer nebula; the gas associated with such dust should also find its way beyond the snowline. Since this gas and dust will have equilibrated in the higher pressure-temperature regime of the inner nebula, it will contain a much higher proportion of hydrocarbons and ammonia than more pristine interstellar ices. Therefore, in addition to a higher fraction of crystalline dust, later forming comets should also contain higher ratios of hydrocarbons to CO and ammonia to N2 than do those formed early in the history of the nebula.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-08-29
    Description: Recent studies have shown that strong correlations are observed between the low frequencies (1-10 Hz) of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources, in low hard states, steep power-law (soft) states and in transition between these states. The observations indicate that the X-ray spectrum of such state (phases) show the presence of a power-law component and are sometimes related to simultaneous radio emission indicated the probable presence of a jet. Strong QPOs (less than 20% rms) are present in the power density spectrum in the spectral range where the power-law component is dominant ( i.e. 60-90% ). This evidence contradicts the dominant long standing interpretation of QPOs as a signature of the thermal accretion disk. We present the data from the literature and our own data to illustrate the dominance of power-law index-QPO frequency correlations. We provide a model, that identifies and explains the origin of the QPOs and how they are imprinted on the properties of power-law flux component. We argue the existence of a bounded compact coronal region which is a natural consequence of the adjustment of Keplerian disk flow to the innermost sub-Keplerian boundary conditions near the central object and that ultimately leads to the formation of a transition layer (TL) between the adjustment radius and the innermost boundary. The model predicts two phases or states dictated by the photon upscattering produced in the TL: (1) hard state, in which the TL is optically thin and very hot (kT approx. greater than 50 keV) producing photon upscattering via thermal Componization; the photon spectrum index Gamma appprox.1.5 for this state is dictated by gravitational energy release and Compton cooling in an optically thin shock near the adjustment radius; (2) a soft state which is optically thick and relatively cold (approx. less than 5 keV); the index for this state, Gamma approx. 2.8 is determined by soft-photon upscattering and photon trapping in converging flow into BH. In the TL model for corona the QPO frequency vnu(sub high) is related to the gravitational (close to Keplerian) frequency nu(sub K) at the outer (adjustment) radius and nu(sub low) is related to the TL s normal mode (magnetoacoustic) oscillation frequency nu(sub MA). The observed correlations between index and low and high QPO frequencies are readily explained in terms of this model. We also suggest a new method for evaluation of the BH mass using the index-frequency correlation.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-29
    Description: We present the results of an investigation of the effects of Far Ultraviolet (FUV) radiation (6.0eV 〈 hv 〈 13.6eV) from hot early type OB stars on clumps in star-forming molecular clouds. Clumps in FUV-illuminated regions (or photodissociation regions or PDRs) undergo external heating and photodissociation as they are exposed to the FUV field, resulting in a loss of cold, molecular lump mass as it is converted to warm atomic gas. The heating, if rapid, creates strong photoevaporative mass flows off the clump surfaces, and drives shocks into the clumps, compressing them to high densities. The clumps lose mass on relatively short timescales. The evolution of an individual clump is found to be sensitive to three dimensionless parameters: Nc0, the ratio of the initial column density of the clump to the column N(0) approx. 10(exp 21) cm(exp -2) of a warm FUV-heated surface region; upsilon, the ratio of the sound speed in the heated surface to that in the cold clump material: and t(FUV)t(c), the ratio of the "turn-on time" t(FUV) of the heating flux on a clump to its initial sound crossing-time t(c). The evolution also depends on whether a confining interclump medium exists, or whether the interclump region has negligible pressure, as is the case for turbulence-generated clumps. In this paper, we use spherical 1-D numerical hydrodynamic models as well as approximate analytical models to study the dependence of clump photoevaporation on the physical parameters of the clump, and to derive the dynamical evolution, mass loss rates and photoevaporative timescales of a clump for a variety of astrophysical situations. Turbulent clumps evolve so that their column densities are equal to a critical value determined by the local FUV field, and typically have short photo evaporation timescales, approx. 10(exp 4-5) years for a 1 M(solar mass) clump in a typical star-forming region (Nc0 = 10, upsilon = 10). Clumps with insufficient magnetic pressure support, and in strong FUV fields may be driven to collapse by the compressional effect of converging shock waves. We also estimate the rocket effect on photoevaporating clumps and find that it is significant only for the smallest clumps, with sizes much less than the extent of the PDR itself. Clumps that are confined by all interclump medium may either get completely photoevaporated, or may preserve a shielded core with a warm, dissociated, protective shell that, absorbs the incident FUV flux. We compare our results with observations of some well studied PDRs: the Orion Bar, M17SW NGC 2023 and the Rosette Nebula. The data are consistent with both interpretations of clump origin. turbulence and pressure confinement, with a slight indication for favouring the turbulent model for clumps over pressure-confined
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-08-29
    Description: The need for accurate geometric and radiometric information over large areas has become increasingly important. Laser altimetry is one of the key technologies for obtaining this geometric information. However, there are important application areas where the observing platform has its orbit constrained by the other instruments it is carrying, and so the spatial resolution that can be recorded by the laser altimeter is limited. In this paper we show how information recorded by one of the other instruments commonly carried, a high-resolution imaging camera, can be combined with the laser altimeter measurements to give a high resolution estimate both of the surface geometry and its reflectance properties. This estimate has an accuracy unavailable from other interpolation methods. We present the results from combining synthetic laser altimeter measurements on a coarse grid with images generated from a surface model to re-create the surface model.
    Keywords: Earth Resources and Remote Sensing
    Type: Annapolis, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-08-29
    Description: We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-08-29
    Description: Aerosol optical depths are derived operationally for the first time over land in the visible wavelengths by MODIS (Moderate Resolution Imaging Spectroradiometer) onboard the EOSTerra spacecraft. More than 300 Sun photometer data points from more than 30 AERONET (Aerosol Robotic Network) sites globally were used in validating the aerosol optical depths obtained during July - September 2000. Excellent agreement is found with retrieval errors within (Delta)tau=+/- 0.05 +/- 0.20 tau, as predicted, over (partially) vegetated surfaces, consistent with pre-launch theoretical analysis and aircraft field experiments. In coastal and semi-arid regions larger errors are caused predominantly by the uncertainty in evaluating the surface reflectance. The excellent fit was achieved despite the ongoing improvements in instrument characterization and calibration. This results show that MODIS-derived aerosol optical depths can be used quantitatively in many applications with cautions for residual clouds, snow/ice, and water contamination.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-08-29
    Description: On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. These products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to the currently available operation products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set is generated for long-term climates studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the product. The snow product suite starts with a 500-m resolution swath snow-cover map which is gridded to the Integerized Sinusoidal Grid to produce daily and eight-day composite tile products. The sequence then proceeds to a climate-modeling grid product at 5-km spatial resolution, with both daily and eight-day composite products. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented. Near-term enhancements include daily snow albedo and fractional snow cover.
    Keywords: Earth Resources and Remote Sensing
    Type: Remote Sensing of Environment; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-08-29
    Description: We report on X-ray sources detected in the Chandra images of the elliptical galaxy NGC 1399 and identified with globular clusters (GCs). The 8'x 8' Chandra image shows that a large fraction of the 2-10 keV X-ray emission is resolved into point sources, with a luminosity threshold of 5 x 10 (exp 37) ergs s-1. These sources are most likely Low Mass X-ray Binaries (LMXBs). More than 70% of the X-ray sources, in a region imaged by Hubble Space Telescope (HST), are located within GCs. Many of these sources have super-Eddington luminosity (for an accreting neutron star) and their average luminosity is higher than the remaining sources. This association suggests that, in giant elliptical galaxies, luminous X-ray binaries preferentially form in GCs. The spectral properties of the GC and non-GC sources are in most cases similar to those of LMXBs in our galaxy. Two of the brightest sources, one of which is in GC, have a much softer spectra as seen in the high state black hole. The "apparent" super-Eddington luminosity in many cases may be due to multiple LMXB systems within individual GC, but with some of the most extreme luminous systems containing massive black holes.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-08-29
    Description: During the Southern Great Plains experiment, the synthetic aperture radiometer, ESTAR, mapped L-band brightness temperature over a swath about 50 km wide and about 300 km long extending west from Oklahoma City to El Reno and north from the Little Washita River watershed to the Kansas border. ESTAR flew on the NASA P-3B Orion aircraft at an altitude of 7.6 km and maps were made on 7 days between July 8-20, 1999. The brightness temperature maps reflect the patterns of soil moisture expected from rainfall and are consistent with values of soil moisture observed at the research sites within the SGP99 study area and with previous measurements in this area. The data add to the resources for hydrologic modeling in this area and are further validation of the technology represented by ESTAR as a potential path to a future mission to map soil moisture globally from space.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-08-29
    Description: We are midway into our 5th consecutive year of nearly continuous, high quality ocean color observations from space. The Ocean Color and Temperature Scanner/Polarization and Directionality of the Earth's Reflectances (OCTS/POLDER: Nov. 1996 - Jun. 1997), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS: Sep. 1997 - present), and now the Moderate Resolution Imaging Spectrometer (MODIS: Sep. 2000 - present) have and are providing unprecedented views of chlorophyll dynamics on global scales. Global synoptic views of ocean chlorophyll were once a fantasy for ocean color scientists. It took nearly the entire 8-year lifetime of limited Coastal Zone Color Scanner (CZCS) observations to compile seasonal climatologies. Now SeaWIFS produces comparably complete fields in about 8 days. For the first time, scientists may observe spatial and temporal variability never before seen in a synoptic context. Even more exciting, we are beginning to plausibly ask questions of interannual variability. We stand at the beginning of long-time time series of ocean color, from which we may begin to ask questions of interdecadal variability and climate change. These are the scientific questions being addressed by users of the 18-year Advanced Very High Resolution Radiometer time series with respect to terrestrial processes and ocean temperatures. The nearly 5-year time series of ocean color observations now being constructed, with possibilities of continued observations, can put us at comparable standing with our terrestrial and physical oceanographic colleagues, and enable us to understand how ocean biological processes contribute to, and are affected by global climate change.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-08-29
    Description: Satellite passive-microwave measurements of sea ice have provided global or near-global sea ice data for most of the period since the launch of the Nimbus 5 satellite in December 1972, and have done so with horizontal resolutions on the order of 25-50 km and a frequency of every few days. These data have been used to calculate sea ice concentrations (percent areal coverages), sea ice extents, the length of the sea ice season, sea ice temperatures, and sea ice velocities, and to determine the timing of the seasonal onset of melt as well as aspects of the ice-type composition of the sea ice cover. In each case, the calculations are based on the microwave emission characteristics of sea ice and the important contrasts between the microwave emissions of sea ice and those of the surrounding liquid-water medium.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-08-29
    Description: Satellite data can be used to observe the sea ice distribution around the continent of Antarctica on a daily basis and hence to determine how many days a year have sea ice at each location. This has been done for each of the 21 years 1979-1999. Mapping the trends in these data over the 21-year period reveals a detailed pattern of changes in the length of the sea ice season around Antarctica. Most of the Ross Sea ice cover has undergone a lengthening of the sea ice season, whereas most of the Amundsen Sea ice cover and almost the entire Bellingshausen Sea ice cover have undergone a shortening of the sea ice season. Results around the rest of the continent, including in the Weddell Sea, are more mixed, but overall, more of the Southern Ocean experienced a lengthening of the sea ice season than a shortening. For instance, the area experiencing a lengthening of the sea ice season by at least 1 day per year is 5.8 x 10(exp 6) sq km, whereas the area experiencing a shortening of the sea ice season by at least 1 day per year is less than half that, at 2.8 x 10(exp 6) sq km. This contrasts sharply with what is happened over the same period in the Arctic, where, overall, there has been some depletion of the ice cover, including shortened sea ice seasons and decreased ice extents.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-08-29
    Description: A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-08-29
    Description: We have obtained 1-2 A resolution optical Echellette spectra of the nuclear star cluster in the nearby starburst galaxy NGC4449. The light is clearly dominated by a very young (6 - 10 Myr) population of stars. For our age dating, we have used recent population synthesis models to interpret the observed equivalent width of stellar absorption features such as the H I Balmer series and the Ca II triplet around 8500 A. We also compare the observed spectrum of the nuclear cluster to synthesized spectra for stellar populations of varying ages. All these approaches yield a consistent cluster age. Metallicity estimates based on the relative intensities of various ionization lines yield no evidence for significant enrichment in the center of this low mass galaxy: the metallicity of the nuclear cluster is about one fourth of the solar value, in agreement with independent estimates for the disk material of NGC4449.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-08-29
    Description: In 1998 and '99, the Arctic Ice Mapping (AIM) program completed resurveys of lines occupied 5 years earlier revealing elevation changes of the Greenland ice sheet and identifying areas of significant thinning, thickening and balance. In planning these surveys, consideration had to be given to the spatial constraints associated with aircraft operation, the spatial nature of ice sheet behavior, and limited resources, as well as temporal issues, such as seasonal and interannual variability in the context of measurement accuracy. This paper examines the extent to which the sampling and survey strategy is valid for drawing conclusions on the current state of balance of the Greenland ice sheet. The surveys covered the entire ice sheet with an average distance of 21.4 km between each location on the ice sheet and the nearest flight line. For most of the ice sheet, the elevation changes show relatively little spatial variability, and their magnitudes are significantly smaller than the observed elevation change signal. As a result, we conclude that the density of the sampling and the accuracy of the measurements are sufficient to draw meaningful conclusions on the state of balance of the entire ice sheet over the five-year survey period. Outlet glaciers, however, show far more spatial and temporal variability, and each of the major ones is likely to require individual surveys in order to determine its balance.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-08-29
    Description: The 3rd EGRET Catalog of High-energy Gamma-ray Sources contains 170 unidentified sources, and there is great interest in the nature of these sources. One means of determining source class is the study of flux variability on time scales of days; pulsars are believed to be stable on these time scales while blazers are known to be highly variable. In addition, previous work has demonstrated that 3EG J0241-6103 and 3EG J1837-0606 are candidates for a new gamma-ray source class. These sources near the Galactic plane display transient behavior but cannot be associated with any known blazers. Although, many instances of flaring AGN have been reported, the EGRET database has not been systematically searched for occurrences of short-timescale (approximately 1 day) variability. These considerations have led us to conduct a systematic search for short-term variability in EGRET data, covering all viewing periods through proposal cycle 4. Six 3EG catalog sources are reported here to display variability on short time scales; four of them are unidentified. In addition, three non-catalog variable sources are discussed.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-08-29
    Description: The primary ultrahigh energy particles which produce giant extensive air showers in the Earth atmosphere present an intriguing mystery from two points of view: (1) How are the base particles produced with such astounding energies, eight orders of magnitude higher than those produced by the best man-made terrestrial accelerators? (2) Since they are most likely extragalactic in origin, how do they reach us from extragalactic distances without suffering the severe losses expected from interactions with the 2.7 K thermal cosmic background photons, the so called GZK effect? The answers to these questions may involve new physics: violations of special relativity, grand unification theories, and quantum gravity theories involving large extra dimensions. They may involve new astrophysical sources, "zevatrons". Or some heretofore totally unknown physics or astrophysics may hold the answer. I will discuss here the mysteries involving the production and extragalactic propagation of ultrahigh energy cosmic rays and some suggested possible solutions.
    Keywords: Astrophysics
    Type: 7th Paris Cosmology Colloquium on High Energy Astrophysics for and from Space; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-08-29
    Description: A pulse timing orbit has been obtained for the X-ray binary XTEJ1855-026 using observations made with the Proportional Counter Array on board the Rossi X-ray Timing Explorer. The mass function obtained of approximately 16 solar mass together with the detection of an extended near-total eclipse confirm that the primary star is supergiant as predicted. The orbital eccentricity is found to be very low with a best fit value of 0.04 +/- 0.02. The orbital period is also refined to be 6.0724 +/- 0.0009 days using an improved and extended light curve obtained with RXTE's All Sky Monitor. Observations with the ASCA satellite provide an improved source location of R.A.= 18 hr 55 min 31.3 sec, decl.= -02 deg 36 min 24.0 sec (2000) with an estimated systematic uncertainty of less than 12 min. A serendipitous new source, AX J1855.4-0232, was also discovered during the ASCA observations.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-08-29
    Description: Ocean Raman scattering significantly contributes to the filling-in of solar Fraunhofer lines measured by satellite backscatter ultraviolet (buy) instruments in the cloudless atmosphere over clear ocean waters. A model accounting for this effect in buy measurements is developed and compared with observations from the Global Ozone Monitoring Experiment (GONE). The model extends existing models for ocean Raman scattering to the UV spectral range. Ocean Raman scattering radiance is propagated through the atmosphere using a concept of the Lambert equivalent reflectively and an accurate radiative transfer model for Rayleigh scattering. The model and observations can be used to evaluate laboratory measurements of pure water absorption in the UV. The good agreement between model and observations suggests that buy instruments may be useful for estimating chlorophyll content.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-08-29
    Description: We report the discovery with the Proportional Counter Array on board the Rossi X-ray Timing Explorer of highly coherent 582 Hz pulsations during the February 22, 2001 (UT) 'superburst' from 4U 1636-53. The pulsations are detected during an 800 s interval spanning the flux maximum of the burst. Within this interval the barycentric oscillation frequency increases in a monotonic fashion from 581.89 to 581.93 Hz. The predicted orbital motion of the neutron star during this interval is consistent with such an increase as long as optical maximum corresponds roughly with superior conjunction of V801 Arae, the optical companion to the neutron star in 4U 1636-53. We show that a range of circular orbits with 90 〈 v(sub ns) sin i 〈 175 km/s and 0.336 〉 phi(sub 0) 〉 0.277 for the neutron star can provide an excellent description of the frequency and phase evolution. The brevity of the observed pulse train with respect to the 3.8 hour orbital period unfortunately does not allow more precise constraints. The average pulse profile is sinusoidal and the time averaged pulsation amplitude, as inferred from the half amplitude of the sinusoid is 1%, smaller than typical for burst oscillations observed in normal thermonuclear bursts. We do not detect any higher harmonics nor the putative subharmonic near 290 Hz. The 90% upper limits on signal amplitude at the subharmonic and first harmonic are 0.1 and 0.06%, respectively. The highly coherent pulsation, with a Q = v(sub 0)/delta-v 〉 4.5 x 10(exp 5) provides compelling evidence for a rapidly rotating neutron star in 4U 1636-53, and further supports the connection of burst oscillation frequencies with the spin frequencies of neutron stars. Our results provide further evidence that some millisecond pulsars are spun up via accretion in LMXBs. We also discuss the implications of our orbital velocity constraint for the masses of the components of 4U 1636-53.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-08-29
    Description: The Yarkovsky effect is a thermal radiation force which causes objects to undergo semimajor axis drift and spin up/down as a function of their spin, orbit, and material properties. This mechanism can be used to (i) deliver asteroids (and meteoroids) with diameter D 〈 20 km from their parent bodies in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits, (ii) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt, and (iii) modify the rotation rates of asteroids a few km in diameter or smaller enough to explain the excessive number of very fast and very slow rotators among the small asteroids. Accordingly, we suggest that nongravitational forces, which produce small but meaningful effects on asteroid orbits and rotation rates over long timescales, should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-08-29
    Description: Metal ions found in the atmosphere above 60 km are the result of incoming meteoroid atmospheric ablation. Layers of metal ions are detected by sounding rocket in situ mass spectrometric sampling in the 80 to 130 km region, which coincides with the altitude region where meteors are observed. Enhancements of metal ion concentrations occur during meteor showers. Even outside of shower periods, the metal ion altitude profiles vary from measurement to measurement. Double layers are frequent at middle latitudes. More than 40 different meteoric atomic and molecular ions, including isotopes, have been detected. Atmospheric metal ions on average have an abundance that matches chrondritic material, the same composition as the early solar system. However there are frequently local departures from this composition due to differential ablation, species dependent chemistry and mass dependent ion transport. Metal ions react with atmospheric O2, O, O3, H2O and H2O2 to form oxygenated and hydrogenated ionic compounds. Metal atomic ions at high altitudes have long lifetimes. As a result, these ions, in the presence of Earth's magnetic field, are transported over long distances by upper atmospheric winds and ionospheric electric fields. Satellite measurements have detected metal ions as high as, approximately 1000 km and have revealed circulation of the ions on a global scale.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-08-29
    Description: This massive reference work (hereafter EAA) summarizes a great deal of what we knew in the astronomical sciences at the most recent Millennium. An associated website may keep much of it up-to-date for years to come. The contents are extensive indeed: the index alone consists of 76 pages, each with three columns of fine-type listings, and there are 'nearly 700 main articles'. The main articles are what make EAA worthwhile. They are generally by experts, who took much care in their preparation. The degree to which the articles are illustrated and referenced, however, seems to depend on the inclination of the individual author. On the other hand, articles on Saturn's rings and on its satellites are heavily illustrated, but with just two or three citations in each. The coverage of solar physics is especially thorough in EAA. There are numerous articles on major topics, notably in the physics and phenomena of the corona and the chromosphere, and some on more specialized areas, such as 'Polar Plumes' and 'Coronal Cavities.'
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-08-29
    Description: The three-layer snow model is coupled to the global catchment-based Land Surface Model (LSM) of the NASA Seasonal to Interannual Prediction Project (NSIPP) project, and the combined models are used to simulate the growth and ablation of snow cover over the North American continent for the period 1987-1988. The various snow processes included in the three-layer model, such as snow melting and re-freezing, dynamic changes in snow density, and snow insulating properties, are shown (through a comparison with the corresponding simulation using a much simpler snow model) to lead to an improved simulation of ground thermodynamics on the continental scale.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-08-29
    Description: Three protoplanetary disks in the giant H II region NGC 3603, originally found by HST (Hubble Space Telescope) + VLT (Very Large Telescope), have been detected with the ATCA (Australia Telescope Compact Array) at 3 and 6 cm. All three ProPlyDs (protoplanetary disks) are clearly resolved, showing a head-tail extent of approx. 4 inches. Proplyd 3 shows the most pronounced head-tail structure with a 3 cm flux density ratio between head and tail of about 10:1. The tail is very well defined and at least 2 inches long, pointing away from the central star cluster. Unfortunately, ProPlyD 3 is rather faint in the low-sensitivity HST broad band image shown by Brandner et al.; it is located outside the region of their high sensitivity HST H(alpha) image.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-29
    Description: The laser radar, or lidar (for light detection and ranging) is an important tool for atmospheric studies. Lidar provides a unique and powerful method for unobtrusively profiling aerosols, wind, water vapor, temperature, and other atmospheric parameters. This brief overview of lidar remote sensing is focused on atmospheric applications involving pulsed lasers. The level of technical detail is aimed at the educated non-lidar expert and references are provided for further investigation of specific topics. The article is divided into three main sections. The first describes atmospheric scattering processes and the physics behind laser-atmosphere interactions. The second section highlights some of the primary lidar applications, with brief descriptions of each measurement capability. The third section describes the practical aspects of lidar operation, including the governing equation and operational considerations.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-08-29
    Description: Chandra observations of the core of the nearby starburst galaxy NGC 253 reveal a heavily absorbed source of hard X-rays embedded within the nuclear starburst region. The source has an unabsorbed, 2 to 10 keV luminosity of greater than or equal to 10(exp 39) erg per s and photoionizes the surrounding gas. We observe this source through a dusty torus with a neutral absorbing column density of N(sub eta) approximately 2 x 10(exp 23)cm (exp -2). The torus is hundreds of pc across and collimates the starburst-driven nuclear outflow. We suggest that the ionizing source is an intermediate-mass black hole or a weakly accreting supermassive black hole, which may signal the beginnings or endings of AGN (active galactic nuclei) activity.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-08-29
    Description: We combine ASCA and RXTE data of V1062 Tau to confirm the presence of a 62-min X-ray pulsation. We show that the pulsation is caused largely by the variation of dense partial absorption, in keeping with current models of accretion onto magnetic white dwarfs. Further parameterisation of the spin pulse is, however, hampered by ambiguities in the models.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-08-29
    Description: X-ray binaries in the Milky Way are among the brightest objects on the X-ray sky. With the increasing sensitivity of recent missions, it is now possible to study X-ray binaries in nearby galaxies. We present data on six ultraluminous binaries in the nearby spiral galaxy, M101, obtained with Chandra ACIS-S. Of these, five appear to be similar to ultraluminous sources in other galaxies, while the brightest source, P098, shows some unique characteristics. We present our interpretation of the data in terms of an optically thick outflow, and discuss implications.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-29
    Description: The burst oscillations seen during Type 1 X-ray bursts from low mass X-ray binaries (LMXB) typically evolve in period towards an asymptotic limit that likely reflects the spin of the underlying neutron star. If the underlying period is stable enough, measurement of it at different orbital phases may allow a detection of the Doppler modulation caused by the motion of the neutron star with respect to the center of mass of the binary system. Testing this hypothesis requires enough X-ray bursts and an accurate optical ephemeris to determine the binary phases at which they occurred. We present here a study of the distribution of asymptotic burst oscillation periods for a sample of 26 bursts from 4U 1636-53 observed with the Rossi X-ray Timing Explorer (RXTE). The burst sample includes both archival and proprietary data and spans more than 4.5 years. We also present new optical light curves of V801 Arae, the optical counterpart of 4U 1636-53, obtained during 1998-2001. We use these optical data to refine the binary period measured by Augusteijn et al. to 3.7931206(152) hours. We show that a subset of approx. 70% of the bursts form a tightly clustered distribution of asymptotic periods consistent with a period stability of approx. 1 x 10(exp -4). The tightness of this distribution, made up of bursts spanning more than 4 years in time, suggests that the underlying period is highly stable, with a time to change the period of approx. 3 x 10(exp 4) yr. This is comparable to similar numbers derived for X-ray pulsars. We investigate the period and orbital phase data for our burst sample and show that it is consistent with binary motion of the neutron star with v(sub ns) sin i 〈 38 and 50 km/s at 90 and 99% confidence, respectively. We use this limit as well as previous radial velocity data to constrain the binary geometry and component masses in 4U 1636-53. Our results suggest that unless the neutron star is significantly more massive than 1.4 solar masses the secondary is unlikely to have a mass as large as 0.36 solar masses, the mass estimated assuming it is a main sequence star which fills its Roche lobe. We show that a factor of 3 increase in the number of bursts with asymptotic period measurements should allow a detection of the neutron star velocity.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-08-29
    Description: Over the past decade NASA has designed, built, evolved, and operated the Earth Observing System Data and Information System (EOSDIS) Information Management System (IMS) in order to provide user access to NASA's Earth Science data holdings. During this time revolutionary advances in technology have driven changes in NASA's approach to providing an IMS service. This paper will describe NASA's strategic planning and approach to build and evolve the EOSDIS IMS and to serve the evolving needs of NASA's Earth Science community. It discusses the original strategic plan and how lessons learned help to form a new plan, a new approach and a new system. It discusses the original technologies and how they have evolved to today.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-08-29
    Description: During spring and summer, the Surface of the Arctic sea ice cover undergoes rapid changes that greatly affect the surface albedo and significantly impact the further decay of the sea ice. These changes are primarily the development of a wet snow cover and the development of melt ponds. As melt pond diameters generally do not exceed a couple of meters, the spatial resolutions of sensors like AVHRR and MODIS are too coarse for their identification. Landsat 7, on the other hand, has a spatial resolution of 30 m (15 m for the pan-chromatic band). The different wavelengths (bands) from blue to near-infrared offer the potential to distinguish among different surface conditions. Landsat 7 data for the Baffin Bay region for June 2000 have been analyzed. The analysis shows that different surface conditions, such as wet snow and meltponded areas, have different signatures in the individual Landsat bands. Consistent with in-situ albedo measurements, melt ponds show up as blueish whereas dry and wet ice have a white to gray appearance in the Landsat true-color image. These spectral differences enable the distinction of melt ponds. The melt pond fraction for the scene studied in this paper was 37%.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-08-29
    Description: The NASA Office of Space Science Structure and Evolution of the Universe (SEU) theme covers a wide variety of scientific investigations, from the nearest bodies to the farthest observable distances just after the time of the Big Bang. SEU supports experiments that sense radiation of all wavelengths, together with particle and gravitational wave detection. Recently completed road mapping and strategic planning exercises have identified a number of near- and medium-term space initiatives for the 2003-2023 time frame. Each of these experiments pushes the state of the art technically, but will return incredible new insights on the formation and evolution of the universe, as well as probe fundamental laws of physics in regimes never before tested. The scientific goals and technological highlights of each mission are described.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-08-31
    Description: We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect a giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet's centrifugal radius (located at r(sub c, sup J) = l5R(sub J) for Jupiter and r(sub c, sup S) = 22R(sub S) for Saturn), and an optically thin, extended outer disk out to a fraction of the planet's Roche lobe, which we choose to be R(sub roche)/5 (located at approximately 150R(sub J) near the inner irregular satellites for Jupiter, and approximately 200R(sub S) near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk results from the solar torque on nebula gas flowing into the protoplanet during the time of giant planet gap opening. For the sake of specificity, we use a cosmic mixture 'minimum mass' model to constrain the gas densities of the inner disks of Jupiter and Saturn (and also Uranus). For the total mass of the outer disk we use the simple scaling M(sub disk) = M(sub P)tau(sub gap)/tau(sub acc), where M(sub P) is the mass of the giant planet, tau(sub gap) is the gap opening timescale, and tau(sub acc) is the giant planet accretion time. This gives a total outer disk mass of approximately 100M(sub Callisto) for Jupiter and possibly approximately 200M(sub Iapetus) for Saturn (which contain enough condensables to form Callisto and Iapetus respectively). Our model has Ganymede at a subnebula temperature of approximately 250 K and Titan at approximately 100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 K and 90 K respectively.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...