ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (90,826)
  • Molecular Diversity Preservation International  (90,826)
  • 2020-2022  (90,826)
  • 1945-1949
  • Chemistry and Pharmacology  (63,525)
  • Natural Sciences in General  (13,983)
  • Architecture, Civil Engineering, Surveying  (8,565)
  • Geosciences  (5,867)
Collection
  • Articles  (90,826)
Years
Year
Journal
  • 1
    Publication Date: 2020-08-27
    Description: The aerosol size distribution and cloud condensation nuclei (CCN) number concentration were measured using a wide-range particle spectrometer (WPS) and a cloud condensation nuclei counter (CCNC) on Mt. Tian from 31 July to 9 September, 2019. Combined with meteorological data, distribution characteristics of aerosol size and CCN and their influencing factors were analyzed. The results indicated that the mean aerosol number concentration was 5475.6 ± 5636.5 cm−3. The mean CCN concentrations were 183.7 ± 114.5 cm−3, 729.8 ± 376.1 cm−3, 1630.5 ± 980.5 cm−3, 2162.5 ± 1345.3 cm−3, and 2575.7 ± 1632.9 cm−3 at supersaturation levels of 0.1%, 0.2%, 0.4%, 0.6%, and 0.8%, respectively. The aerosol number size distribution is unimodal, and the dominant particle size is 30–60 nm. Affected by the height of the boundary layer and the valley wind, the diurnal variation in aerosol number concentration shows a unimodal distribution with a peak at 17:00, and the CCN number concentration showed a bimodal distribution with peaks at 18:00 and 21:00. The particle size distribution and supersaturation have a major impact on the activation of the aerosol into CCN. At 0.1% supersaturation (S), the 300–500 nm particles are most likely to activate to CCN. Particles of 100–300 nm are most easily activated at 0.2% (S), while particles of 60–80 nm are most likely activated at high supersaturation (≥0.4%). The concentrations of aerosol and CCN are higher in the northerly wind. Ambient relative humidity (RH) has little relationship with the aerosol activation under high supersaturation. According to N = CSk fitting the CCN spectrum, C = 3297 and k = 0.90 on Mt. Tian, characteristic of the clean continental type.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-26
    Description: The atmospheric boundary layer height is important for constraining air pollution and meteorological models. This study attempted to validate the MODIS-estimated atmospheric boundary layer height (ABLH), and variation in the ABLH in Uganda was evaluated. The ABLH was estimated from MODIS data using the mixing ratio profile gradient method and compared to the ABLH estimated from radiosonde data using three different methods. Unlike in studies in other regions of the world, correlations between ABLH estimated using MODIS and radiosonde data were weak, implying limited usefulness of MODIS data for determining ABLH. However, the diurnal variation in MODIS-derived ABLH and particulate matter (PM10) was consistent with the expected inverse relationship between PM10 mass concentration and ABLH, and the mean MODIS-derived ABLH values were significantly lower during wet seasons than dry seasons, as expected.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-27
    Description: In our previous studies, we investigated the performance of a novel pneumatic planar magnetic separator (PMS) for the dry beneficiation of a selected magnetite ore. In the present study, we have extended the studies on the PMS with the focus on investigating how various PMS processing flowsheet configurations influence its performance. The outcomes were subsequently compared with those of a Davis tube recovery (DTR) tester. The study demonstrated that the use of PMS in the dry beneficiation of magnetite ores is feasible, and operating the PMS in different flowsheet configurations positively influences the magnetite concentrate grade and purity. Finally, the study showed that the PMS performance compares well with that of DTR and can potentially replace DTR in operations that are carried out in arid regions.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-26
    Description: A modified expression of the electron entropy production in a plasma is deduced by means of the Kelly equations of state instead of the ideal gas equations of state. From the Debye–Hückel model which considers the interaction between the charges, such equations of state are derived for a plasma and the entropy is deduced. The technique to obtain the modified entropy production is based on usual developments but including the modified equations of state giving the regular result plus some extra terms. We derive an expression of the modified entropy production in terms of the tensorial Hermitian moments hr1…rm(m) by means of the irreducible tensorial Hermite polynomials.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-27
    Description: As acidic deposition has decreased across Eastern North America, forest soils at some sites are beginning to show reversal of soil acidification. However, the degree of recovery appears to vary and is not fully explained by deposition declines alone. To assess if other site and soil factors can help to explain degree of recovery from acid deposition, soil resampling chemistry data (8- to 24-year time interval) from 23 sites in the United States and Canada, located across 25° longitude from Eastern Maine to Western Ontario, were explored. Site and soil factors included recovery years, sulfate (SO42−) deposition history, SO42− reduction rate, C horizon pH and exchangeable calcium (Ca), O and B horizon pH, base saturation, and exchangeable Ca and aluminum (Al) at the time of the initial sampling. We found that O and B horizons that were initially acidified to a greater degree showed greater recovery and B horizon recovery was further associated with an increase in recovery years and lower initial SO42− deposition. Forest soils that seemingly have low buffering capacity and a reduced potential for recovery have the resilience to recover from the effects of previous high levels of acidic deposition. This suggests, that predictions of where forest soils acidification reversal will occur across the landscape should be refined to acknowledge the importance of upper soil profile horizon chemistry rather than the more traditional approach using only parent material characteristics.
    Electronic ISSN: 2571-8789
    Topics: Biology , Chemistry and Pharmacology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-26
    Description: Geospatial data is urgently needed in decision-making processes to achieve Sustainable Development Goals (SDGs) at global, national, regional and local scales. While the advancement of geo-technologies to obtain or produce geospatial data has become faster and more affordable, many countries in the global south still experience a geospatial data scarcity at the rural level due to complex geographical terrains, weak coordination among institutions and a lack of knowledge and technologies to produce visualised geospatial data like maps. We proposed a collaborative spatial learning framework that integrates the spatial knowledge of stakeholders to obtain geospatial data. By conducting participatory mapping workshops in three villages in the Deli Serdang district in Indonesia, we tested the framework in terms of facilitating communication and collaboration of the village stakeholders while also supporting knowledge co-production and social learning among them. Satellite images were used in digital and non-digital mapping workshops to support village stakeholders to produce proper village maps while fulfilling the SDGs’ emphasis to make geospatial data available through a participatory approach.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-27
    Description: The lack of a universal simulation method for triboelectric nanogenerator (TENG) makes the device design and optimization difficult before experiment, which protracts the research and development process and hinders the landing of practical TENG applications. The existing electrostatic induction models for TENGs have limitations in simulating TENGs with complex geometries and their dynamic behaviors under practical movements due to the topology change issues. Here, a dynamic finite element method (FEM) model is proposed. The introduction of air buffer layers and the moving mesh method eliminates the topology change issues during practical movement and allows simulation of dynamic and time-varying behaviors of TENGs with complex 2D/3D geometries. Systematic investigations are carried out to optimize the air buffer thickness and mesh densities, and the optimized results show excellent consistency with the experimental data and results based on other existing methods. It also shows that a 3D disk-type rotating TENG can be simulated using the model, clearly demonstrating the capability and superiority of the dynamic FEM model. Moreover, the dynamic FEM model is used to optimize the shape of the tribo-material, which is used as a preliminary example to demonstrate the possibility of designing a TENG-based sensor.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-27
    Description: In this study, the flotation behavior of malachite was investigated using hydrophobic talc nanoparticles (TNs) as collectors. To improve the floatability of TN-deposited malachite, various experimental parameters were systematically investigated. We found that the floatability sharply increased as the size of the TNs decreased. The floatability of malachite was enhanced in the presence of smaller TNs, since higher amounts of smaller TNs were deposited on the surface of the malachite, thus rendering the surface more hydrophobic. Moreover, the floatability of the TN-deposited malachite increased as the pH decreased, likely due to the more favorable interaction between TNs and malachite by means of electrostatic attraction. Furthermore, the floatability became more enhanced as the TN concentration increased, likely associated with increases in the amount of TNs deposited on the surface of the malachite, thus enhancing the floatability by altering the hydrophobicity of the surface. Our findings suggest that the application of natural hydrophobic TNs as collectors in malachite flotation should be introduced as a new concept.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-27
    Description: In this paper, 3D-printed electromagnetic (or microwave) encoders with synchronous reading based on permittivity contrast, and devoted to the measurement of displacements and velocities, are reported for the first time. The considered encoders are based on two chains of linearly shaped apertures made on a 3D-printed high-permittivity dielectric material. One such aperture chain contains the identification (ID) code, whereas the other chain provides the clock signal. Synchronous reading is necessary in order to determine the absolute position if the velocity between the encoder and the sensitive part of the reader is not constant. Such absolute position can be determined as long as the whole encoder is encoded with the so-called de Bruijn sequence. For encoder reading, a splitter/combiner structure with each branch loaded with a series gap and a slot resonator (each one tuned to a different frequency) is considered. Such a structure is able to detect the presence of the apertures when the encoder is displaced, at short distance, over the slots. Thus, by injecting two harmonic signals, conveniently tuned, at the input port of the splitter/combiner structure, two amplitude modulated (AM) signals are generated by tag motion at the output port of the sensitive part of the reader. One of the AM envelope functions provides the absolute position, whereas the other one provides the clock signal and the velocity of the encoder. These synchronous 3D-printed all-dielectric encoders based on permittivity contrast are a good alternative to microwave encoders based on metallic inclusions in those applications where low cost as well as major robustness against mechanical wearing and aging effects are the main concerns.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-26
    Description: This paper presents a vulnerable road user (VRU) tracking algorithm capable of handling noisy and missing detections from heterogeneous sensors. We propose a cooperative fusion algorithm for matching and reinforcing of radar and camera detections using their proximity and positional uncertainty. The belief in the existence and position of objects is then maximized by temporal integration of fused detections by a multi-object tracker. By switching between observation models, the tracker adapts to the detection noise characteristics making it robust to individual sensor failures. The main novelty of this paper is an improved imputation sampling function for updating the state when detections are missing. The proposed function uses a likelihood without association that is conditioned on the sensor information instead of the sensor model. The benefits of the proposed solution are two-fold: firstly, particle updates become computationally tractable and secondly, the problem of imputing samples from a state which is predicted without an associated detection is bypassed. Experimental evaluation shows a significant improvement in both detection and tracking performance over multiple control algorithms. In low light situations, the cooperative fusion outperforms intermediate fusion by as much as 30%, while increases in tracking performance are most significant in complex traffic scenes.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-08-26
    Description: East Asia is the most complex region in the world for aerosol studies, as it encounters a lot of varieties of aerosols, and aerosol classification can be a challenge in this region. In the present study, we focused on the relationship between aerosol types and aerosol optical properties. We analyzed the long-term (2005–2012) data of vertical profiles of aerosol extinction coefficients, lidar ratio (Sp), and other aerosol optical properties obtained from a NASA Micro-Pulse Lidar Network and Aerosol Robotic Network site in northern Taiwan, which frequently receives Asian continental outflows. Based on aerosol extinction vertical profiles, the profiles were classified into two types: type 1 (single-layer structure) and type 2 (two-layer structure). Fall season (October–November) was the prevailing season for the Type 1, whereas type 2 mainly happened in spring (March–April). In type 1, air masses normally originated from three regional sectors, i.e., Asia continental (AC), Pacific Ocean (PO), and Southeast Asia (SA). The mean Sp values were 39 ± 17 sr, 30 ± 12 sr, and 38 ± 18 sr for the AC, PO, and SA sectors, respectively. The Sp results suggested that aerosols from the AC sector contained dust and anthropogenic particles, and aerosols from the PO sector were most likely sea salts. We further combined the EPA dust event database and backward trajectory analysis for type 2. Results showed that Sp was 41 ± 14 sr and 53 ± 21 sr for dust storm and biomass-burning events, respectively. The Sp for biomass-burning events in type 2 showed two peaks patterns. The first peak occurred within range of 30–50 sr corresponding to urban pollutant, and the second peak occurred within range of 60–80 sr in relation to biomass burning. Finally, our study summarized the Sp values for four major aerosol types over northern Taiwan, viz., urban (42 ± 18 sr), dust (34 ± 6 sr), biomass-burning (69 ± 12 sr), and oceanic (30 ± 12 sr). Our findings provide useful references for aerosol classification and air pollution identification over the western North Pacific.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-08-27
    Description: Urbanization is a complex process closely involving the economy, society, and population. While monitoring urban development and exploring the industry-driving force in a real-time and effective way are the prerequisites for optimizing industry structure, narrowing the urban development gap, and achieving sustainable development. Nighttime light is an effective tool to monitor urban development from a macro perspective. However, the systematic research of nighttime light spatiotemporal variation modes and the industry-driving force of urban nighttime light are still unknown. Considering these issues, this paper analyzes the spatiotemporal variation modes of the average light index (ALI) and investigates the industry-driving force of ALI in 100 major prefecture-level cities across China mainland based on National Polar-Orbiting Partnership Satellite Visible Infrared Imaging Radiometer Suite (NPP VIIRS). The conclusions are as following three aspects. First, ALI is observed a funnel pattern among four regions in spatial dimension, with low in center and high in the surrounding, and it shows 5 variation modes (“W,” “√,” “Exponent,” “Logarithm,” and “N”) in temporal dimension, of which the “√” mode accounts for the highest proportion (60%). Second, the industry structure is closely related to ALI. Besides, the factor analysis result illustrates that the secondary and tertiary industry are the driving industries of ALI. Third, the classification result based on the industry contribution rate indicates that cities driven by different industries show significant spatial distribution differences. The three major industry-driving cities are mainly distributed in central and western regions, the secondary and tertiary industry-driving cities are evenly distributed, and the tertiary industry-driving cities are mainly distributed in provincial capitals. From 2013 to 2018, the fluctuation of city distribution driven by different industries changes obviously. The number of tertiary industry-driving cities increases steadily and the three major industry-driving cities are distributed wider spatially. Additionally, the impacts of location and raw coal on ALI are discussed. In general, these findings are essential to further research urban development mode and can be considered as the reference to narrow urban development gap.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-08-26
    Description: Flat surfaces captured by 3D point clouds are often used for localization, mapping, and modeling. Dense point cloud processing has high computation and memory costs making low-dimensional representations of flat surfaces such as polygons desirable. We present Polylidar3D, a non-convex polygon extraction algorithm which takes as input unorganized 3D point clouds (e.g., LiDAR data), organized point clouds (e.g., range images), or user-provided meshes. Non-convex polygons represent flat surfaces in an environment with interior cutouts representing obstacles or holes. The Polylidar3D front-end transforms input data into a half-edge triangular mesh. This representation provides a common level of abstraction for subsequent back-end processing. The Polylidar3D back-end is composed of four core algorithms: mesh smoothing, dominant plane normal estimation, planar segment extraction, and finally polygon extraction. Polylidar3D is shown to be quite fast, making use of CPU multi-threading and GPU acceleration when available. We demonstrate Polylidar3D’s versatility and speed with real-world datasets including aerial LiDAR point clouds for rooftop mapping, autonomous driving LiDAR point clouds for road surface detection, and RGBD cameras for indoor floor/wall detection. We also evaluate Polylidar3D on a challenging planar segmentation benchmark dataset. Results consistently show excellent speed and accuracy.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-08-27
    Description: A low-mass and low-volume dual-polarization L-band radiometer is introduced that has applications for ground-based remote sensing or unmanned aerial vehicle (UAV)-based mapping. With prominent use aboard the ESA Soil Moisture and Ocean Salinity (SMOS) and NASA Soil Moisture Active Passive (SMAP) satellites, L-band radiometry can be used to retrieve environmental parameters, including soil moisture, sea surface salinity, snow liquid water content, snow density, vegetation optical depth, etc. The design and testing of the air-gapped patch array antenna is introduced and is shown to provide a 3-dB full power beamwidth of 37°. We present the radio-frequency (RF) front end design, which uses direct detection architecture and a square-law power detector. Calibration is performed using two internal references, including a matched resistive source (RS) at ambient temperature and an active cold source (ACS). The radio-frequency (RF) front end does not require temperature stabilization, due to characterization of the ACS noise temperature by sky measurements. The ACS characterization procedure is presented. The noise equivalent delta (Δ) temperature (NEΔT) of the radiometer is ~0.14 K at 1 s integration time. The total antenna temperature uncertainty ranges from 0.6 to 1.5 K.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-08-26
    Description: In this study, we proposed a semi-automated and interactive scheme for organ contouring in radiotherapy planning for patients with non-small cell lung cancers. Several organs were contoured, including the lungs, airway, heart, spinal cord, body, and gross tumor volume (GTV). We proposed some schemes to automatically generate and vanish the seeds of the random walks (RW) algorithm. We considered 25 lung cancer patients, whose computed tomography (CT) images were obtained from the China Medical University Hospital (CMUH) in Taichung, Taiwan. The manual contours made by clinical oncologists were taken as the gold standard for comparison to evaluate the performance of our proposed method. The Dice coefficient between two contours of the same organ was computed to evaluate the similarity. The average Dice coefficients for the lungs, airway, heart, spinal cord, and body and GTV segmentation were 0.92, 0.84, 0.83, 0.73, 0.85 and 0.66, respectively. The computation time was between 2 to 4 min for a whole CT sequence segmentation. The results showed that our method has the potential to assist oncologists in the process of radiotherapy treatment in the CMUH, and hopefully in other hospitals as well, by saving a tremendous amount of time in contouring.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-08-27
    Description: An essential aspect in the interaction between people and computers is the recognition of facial expressions. A key issue in this process is to select relevant features to classify facial expressions accurately. This study examines the selection of optimal geometric features to classify six basic facial expressions: happiness, sadness, surprise, fear, anger, and disgust. Inspired by the Facial Action Coding System (FACS) and the Moving Picture Experts Group 4th standard (MPEG-4), an initial set of 89 features was proposed. These features are normalized distances and angles in 2D and 3D computed from 22 facial landmarks. To select a minimum set of features with the maximum classification accuracy, two selection methods and four classifiers were tested. The first selection method, principal component analysis (PCA), obtained 39 features. The second selection method, a genetic algorithm (GA), obtained 47 features. The experiments ran on the Bosphorus and UIVBFED data sets with 86.62% and 93.92% median accuracy, respectively. Our main finding is that the reduced feature set obtained by the GA is the smallest in comparison with other methods of comparable accuracy. This has implications in reducing the time of recognition.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-08-27
    Description: Avalanche disasters are extremely destructive and catastrophic, often causing serious casualties, economic losses and surface erosion. However, far too little attention has been paid to utilizing remote sensing mapping avalanches quickly and automatically to mitigate calamity. Such endeavors are limited by formidable natural conditions, human subjective judgement and insufficient understanding of avalanches, so they have been incomplete and inaccurate. This paper presents an objective and widely serviceable method for regional auto-detection using the scattering and interference characteristics of avalanches extracted from Sentinel-1 SLC images. Six indices are established to distinguish avalanches from surrounding undisturbed snow. The active avalanche belts in Kizilkeya and Aktep of the Western TianShan Mountains in China lend urgency to this research. Implementation found that smaller avalanches can be consistently identified more accurately in descending images. Specifically, 281 and 311 avalanches were detected in the ascending and descending of Kizilkeya, respectively. The corresponding numbers on Aktep are 104 and 114, respectively. The resolution area of single avalanche detection can reach 0.09 km2. The performance of the model was excellent in all cases (areas under the curve are 0.831 and 0.940 in descending and ascending of Kizilkeya, respectively; and 0.807 and 0.938 of Aktep, respectively). Overall, the evaluation of statistical indices are POD 〉 0.75, FAR 〈 0.34, FOM 〈 0.13 and TSS 〉 0.75. The results indicate that the performance of the innovation proposed in this paper, which employs multivariate comprehensive descriptions of avalanche characteristics to actualize regional automatic detection, can be more objective, accurate, applicable and robust to a certain extent. The latest and more complete avalanche inventory generated by this design can effectively assist in addressing the increasingly severe avalanche disasters and improving public awareness of avalanches in alpine areas.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-08-27
    Description: Automated tracking of physical fitness has sparked a health revolution by allowing individuals to track their own physical activity and health in real time. This concept is beginning to be applied to tracking of cognitive load. It is well known that activity in the brain can be measured through changes in the body’s physiology, but current real-time measures tend to be unimodal and invasive. We therefore propose the concept of a wearable educational fitness (EduFit) tracker. We use machine learning with physiological data to understand how to develop a wearable device that tracks cognitive load accurately in real time. In an initial study, we found that body temperature, skin conductance, and heart rate were able to distinguish between (i) a problem solving activity (high cognitive load), (ii) a leisure activity (moderate cognitive load), and (iii) daydreaming (low cognitive load) with high accuracy in the test dataset. In a second study, we found that these physiological features can be used to predict accurately user-reported mental focus in the test dataset, even when relatively small numbers of training data were used. We explain how these findings inform the development and implementation of a wearable device for temporal tracking and logging a user’s learning activities and cognitive load.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-08-26
    Description: An extremely heavy rainfall event hit Guangdong province, China, from 27 August to 1 September 2018. There were two different extreme rain regions, respectively, at the Pearl River estuary and eastern Guangdong, and a record-breaking daily precipitation of 1056.7 mm was observed at Gaotan station on 30 August. This paper utilizes a suite of observations from soundings, a gauge network, disdrometers, and polarimetric radars to gain insights to the two rainfall centers. The large-scale meteorological forcing, rainfall patterns, and microphysical processes, as well as radar-based precipitation signatures are investigated. It is concluded that a west-moving monsoon depression played a critical role in sustaining the moisture supply to the two extreme rain regions, and the combined orographic enhancement further contributed to the torrential rainfall over Gaotan station. The raindrop size distributions (DSD) observed at Zhuhai and Huidong stations, as well as the observed polarimetric radar signatures indicate that the rainfall at Doumen region was characterized by larger raindrops but a lower number concentration compared with that at Gaotan region. In addition, the dual-polarization radars are used to quantify precipitation intensity during this extreme event, providing timely information for flood warning and emergency management decision-making.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-08-27
    Description: Earth remote sensing optical satellite systems are often divided into two categories—geosynchronous and sun-synchronous. Geosynchronous systems essentially rotate with the Earth and continuously observe the same region of the Earth. Sun-synchronous systems are generally in a polar orbit and view differing regions of the Earth at the same local time. Although similar in instrument design, there are enough differences in these two types of missions that often the calibration of the instruments can be substantially different. Thus, respective calibration teams develop independent methods and do not interact regularly or often. Yet, there are numerous areas of overlap and much to learn from one another. To address this issue, a panel of experts from both types of systems was convened to discover common areas of concern, areas where improvements can be made, and recommendations for the future. As a result of the panelist’s efforts, a set of eight recommendations were developed. Those that are related to improvements of current technologies include maintaining sun-synchronous orbits (not allowing orbital decay), standardization of spectral bandpasses, and expanded use of well-developed calibration techniques such as deep convective clouds, pseudo invariant calibration sites, and lunar methodologies. New techniques for expanded calibration capability include using geosynchronous instruments as transfer radiometers, continued development of ground-based prelaunch calibration technologies, expansion of RadCalNet, and development of space-based calibration radiometer systems.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-08-27
    Description: : The main purpose of this work is to study the effectiveness of using FeCeOx nanocomposites doped with Nb2O5 for the purification of aqueous solutions from manganese. X-ray diffraction, energy–dispersive analysis, scanning electron microscopy, vibrational magnetic spectroscopy, and mössbauer spectroscopy were used as research methods. It is shown that an increase in the dopant concentration leads to the transformation of the shape of nanoparticles from spherical to cubic and rhombic, followed by an increase in the size of the nanoparticles. The spherical shape of the nanoparticles is characteristic of a structure consisting of a mixture of two phases of hematite (Fe2O3) and cerium oxide CeO2. The cubic shape of nanoparticles is typical for spinel-type FeNbO4 structures, the phase contribution of which increases with increasing dopant concentration. It is shown that doping leads not only to a decrease in the concentration of manganese in model solutions, but also to an increase in the efficiency of adsorption from 11% to 75%.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-08-27
    Description: A common design concept of the piezoelectric force sensor, which is to assemble a bump structure from a flat or fine columnar piezoelectric structure or to use a specific type of electrode, is quite limited. In this paper, we propose a new design of cylindrical piezoelectric sensors that can detect multidirectional forces. The proposed sensor consists of four row and four column sensors. The design of the sensor was investigated by the finite element method. The response of the sensor to various force directions was observed, and it was demonstrated that the direction of the force applied to the sensor could be derived from the signals of one row sensor and three column sensors. As a result, this sensor proved to be able to detect forces in the area of 225° about the central axis of the sensor. In addition, a cylindrical sensor was fabricated to verify the proposed sensor and a series of experiments were performed. The simulation and experimental results were compared, and the actual sensor response tended to be similar to the simulation.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-08-27
    Description: As satellite observation technology improves, the number of remote sensing images significantly and rapidly increases. Therefore, a growing number of studies are focusing on remote sensing image retrieval. However, having a large number of remote sensing images considerably slows the retrieval time and takes up a great deal of memory space. The hash method is being increasingly used for rapid image retrieval because of its remarkably fast performance. At the same time, selecting samples that contain more information and greater stability to train the network has gradually become the key to improving retrieval performance. Given the above considerations, we propose a deep hash remote sensing image retrieval method, called the hard probability sampling hash retrieval method (HPSH), which combines hash code learning with hard probability sampling in a deep network. Specifically, we used a probability sampling method to select training samples, and we designed one novel hash loss function to better train the network parameters and reduce the hashing accuracy loss due to quantization. Our experimental results demonstrate that HPSH could yield an excellent representation compared with other state-of-the-art hash approaches. For the university of California, merced (UCMD) dataset, HPSH+S resulted in a mean average precision (mAP) of up to 90.9% on 16 hash bits, 92.2% on 24 hash bits, and 92.8% on 32 hash bits. For the aerial image dataset (AID), HPSH+S achieved a mAP of up to 89.8% on 16 hash bits, 93.6% on 24 hash bits, and 95.5% on 32 hash bits. For the UCMD dataset, with the use of data augmentation, our proposed approach achieved a mAP of up to 99.6% on 32 hash bits and 99.7% on 64 hash bits.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-08-25
    Description: Subcooled water is the primordial matrix for ice embryo formation by homogeneous and heterogeneous nucleation. The knowledge of the specific Gibbs free energy and other thermodynamic quantities of subcooled water is one of the basic prerequisites of the theoretical analysis of ice crystallization in terms of classical nucleation theory. The most advanced equation of state of subcooled water is the IAPWS G12-15 formulation. The determination of the thermodynamic quantities of subcooled water on the basis of this equation of state requires the iterative determination of the fraction of low-density water in the two-state mixture of low-density and high-density subcooled water from a transcendental equation. For applications such as microscopic nucleation simulation models requiring highly frequent calls of the IAPWS G12-15 calculus, a new two-step predictor-corrector method for the approximative determination of the low-density water fraction has been developed. The new solution method allows a sufficiently accurate determination of the specific Gibbs energy and of all other thermodynamic quantities of subcooled water at given pressure and temperature, such as specific volume and mass density, specific entropy, isothermal compressibility, thermal expansion coefficient, specific isobaric and isochoric heat capacities, and speed of sound. The misfit of this new approximate analytical solution against the exact numerical solution was demonstrated to be smaller than or equal to the misprediction of the original IAPWS G12-15 formulation with respect to experimental values.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-08-25
    Description: Protected areas are the backbone of biodiversity conservation but are fixed in space and vulnerable to anthropogenic climate change. Myanmar is exceptionally rich in biodiversity but has a small protected area system. This study aimed to assess the potential vulnerability of this system to climate change. In the absence of good biodiversity data, we used a spatial modeling approach based on a statistically derived bioclimatic stratification (the Global Environmental Stratification, GEnS) to understand the spatial implications of projected climate change for Myanmar’s protected area system by 2050 and 2070. Nine bioclimatic zones and 41 strata were recognized in Myanmar, but their representation in the protected area system varied greatly, with the driest zones especially underrepresented. Under climate change, most zones will shift upslope, with some protected areas projected to change entirely to a new bioclimate. Potential impacts on biodiversity include mountaintop extinctions of species endemic to isolated peaks, loss of climate specialists from small protected areas and those with little elevational range, and woody encroachment into savannas and open forests as a result of both climate change and rising atmospheric CO2. Myanmar needs larger, better connected, and more representative protected areas, but political, social, and economic problems make this difficult.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-08-26
    Description: Minerals from mantle xenoliths in the Zapolyarnaya pipe in the Upper Muna field, Russia and from mineral separates from other large diamondiferous kimberlite pipes in this field (Deimos, Novinka and Komsomolskaya-Magnitnaya) were studied with EPMA and LA-ICP-MS. All pipes contain very high proportions of sub-calcic garnets. Zapolyarnaya contains mainly dunitic xenoliths with veinlets of garnets, phlogopites and Fe-rich pyroxenes similar in composition to those from sheared peridotites. PT estimates for the clinopyroxenes trace the convective inflection of the geotherm (40–45 mW·m−2) to 8 GPa, inflected at 6 GPa and overlapping with PT estimates for ilmenites derived from protokimberlites. The Upper Muna mantle lithosphere includes dunite channels from 8 to 2 GPa, which were favorable for melt movement. The primary layering deduced from the fluctuations of CaO in garnets was smoothed by the refertilization events, which formed additional pyroxenes. Clinopyroxenes from the Novinka and Komsomolskaya-Magnitnaya pipes show a more linear geotherm and three branches in the P-Fe# plot from the lithosphere base to the Moho, suggesting several episodes of pervasive melt percolation. Clinopyroxenes from Zapolyarnaya are divided into four groups according to thermobarometry and trace element patterns, which show a stepwise increase of REE and incompatible elements. Lower pressure groups including dunitic garnets have elevated REE with peaks in Rb, Th, Nb, Sr, Zr, and U, suggesting mixing of the parental protokimberlitic melts with partially melted metasomatic veins of ancient subduction origin. At least two stages of melt percolation formed the inclined PT paths: (1) an ancient garnet semi-advective geotherm (35–45 mW·m−2) formed by volatile-rich melts during the major late Archean event of lithosphere growth; and (2) a hotter megacrystic PT path (Cpx-Ilm) formed by feeding systems for kimberlite eruptions (40–45 mW·m−2). Ilmenite PT estimates trace three separate PT trajectories, suggesting a multistage process associated with metasomatism and formation of the Cpx-Phl veinlets in dunites. Heating associated with intrusions of protokimberlite caused reactivation of the mantle metasomatites rich in H2O and alkali metals and possibly favored the growth of large megacrystalline diamonds.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-08-26
    Description: Upwelling and downwelling processes play a critical role in the connectivity between offshore waters and coastal ecosystems, having relevant implications in terms of intense biogeochemical activity and global fisheries production. A variety of in situ and remote-sensing networks were used in concert with the Iberia–Biscay–Ireland (IBI) circulation forecast system, in order to investigate two persistent upwelling and downwelling events that occurred in the Northwestern (NW) Iberian coastal system during summer 2014. Special emphasis was placed on quality-controlled surface currents provided by a high-frequency radar (HFR), since this land-based technology can effectively monitor the upper layer flow over broad coastal areas in near-real time. The low-frequency spatiotemporal response of the ocean was explored in terms of wind-induced currents’ structures and immediacy of reaction. Mean kinetic energy, divergence and vorticity maps were also calculated for upwelling and downwelling favorable events, in order to verify HFR and IBI capabilities, to accurately resolve the prevailing surface circulation features, such as the locus of a persistent upwelling maximum in the vicinity of Cape Finisterre. This integrated approach proved to be well-founded to efficiently portray the three-dimensional characteristics of the NW Iberian coastal upwelling system regardless of few shortcomings detected in IBI performance, such as the misrepresentation of the most energetic surface dynamics or the overestimation of the cooling and warming associated with upwelling and downwelling conditions, respectively. Finally, the variability of the NW Iberian upwelling system was characterized by means of the development of a novel ocean-based coastal upwelling index (UI), constructed from HFR-derived hourly surface current observations (UIHFR). The proposed UIHFR was validated against two traditional UIs for 2014, to assess its credibility. Results suggest that UIHFR was able to adequately categorize and characterize a wealth of summer upwelling and downwelling events of diverse length and strength, paving the way for future investigations of the subsequent biophysical implications.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-08-26
    Description: Shore-based phased-array HF radars have been widely used for remotely sensing ocean surface current, wave, and wind around the world. However, phase uncertainties, especially phase distortions, in receiving elements significantly degrade the performance of beam forming and direction-of-arrival (DOA) estimation for phased-array HF radar. To address this problem, the conventional array signal model is modified by adding a direction-based phase error matrix. Subsequently, an array phase manifold calibration method using antenna responses of incoming ship echoes is proposed. Later, an assessment on the proposed array calibration method is made based on the DOA estimations and current measurements that are obtained from the datasets that were collected with a multi-frequency HF (MHF) radar. MHF radar-estimated DOAs using three calibration strategies are compared with the ship directions that are provided by an Automatic Identification System (AIS). Additionally, comparisons between the MHF radar-derived currents while using three calibration strategies and Acoustic Doppler Current Profilers (ADCP)-measured currents are made. The results indicate that the proposed array calibration method is effective in DOA estimation and current measurement for phased-array HF radars, especially in the phase distortion situation.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-08-26
    Description: Many human activities are tactile. Recognizing how a person touches an object or a surface surrounding them is an active area of research and it has generated keen interest within the interactive surface community. In this paper, we compare two machine learning techniques, namely Artificial Neural Network (ANN) and Hidden Markov Models (HMM), as they are some of the most common techniques with low computational cost used to classify an acoustic-based input. We employ a small and low-cost hardware design composed of a microphone, a stethoscope, a conditioning circuit, and a microcontroller. Together with an appropriate surface, we integrated these components into a passive gesture recognition input system for experimental evaluation. To perform the evaluation, we acquire the signals using a small microphone and send it through the microcontroller to MATLAB’s toolboxes to implement and evaluate the ANN and HMM models. We also present the hardware and software implementation and discuss the advantages and limitations of these techniques in gesture recognition while using a simple alphabet of three geometrical figures: circle, square, and triangle. The results validate the robustness of the HMM technique that achieved a success rate of 90%, with a shorter training time than the ANN.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-08-26
    Description: In this study we (1) mapped the areal extent of current dust sources over Northern Africa between 8°W–31°E and 22°N - Mediterranean coast; and (2) identified and characterized the geomorphic units and soil types that emit dust from these areas. We used the full resolution (3 km) data from the MSG-SEVIRI to map dust sources over a 2-year period between 2005–2006, and examined these regions with remotely sensed images and geomorphic and soil maps. A total of 〉2600 individual dust emission events were mapped; with frequency up to 34 events in the 2-year study period. The areal extent of dust emission sources exhibited a lognormal distribution with most sources ranging from 20 to 130 km2. Most dust events were singular and related to a variety of specific geomorphic units. Dust events that created hotspots were mostly located over playas and fluvial landforms, and to a lesser extent over sand dunes and anthropogenic affected regions. About 20% of dust hotspots were offset a few kilometers from clear geomorphic units. Quantitative analysis of emissions revealed that dust sourced from various geomorphic units, among them playas (12%) and fluvial systems (10%). The importance of sand dunes as dust-emission sources greatly differs between examined datasets (7% vs. 30%). Our study emphasizes the importance of scattered dust emission events that are not considered as hotspots, as these sources are usually neglected in dust emission modeling.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-08-26
    Description: In recent years, field-effect transistors (FETs) have been very promising for biosensor applications due to their high sensitivity, real-time applicability, scalability, and prospect of integrating measurement system on a chip. Non-carbon 2D materials, such as transition metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), black phosphorus (BP), and metal oxides, are a group of new materials that have a huge potential in FET biosensor applications. In this work, we review the recent advances and remarkable studies of non-carbon 2D materials, in terms of their structures, preparations, properties and FET biosensor applications. We will also discuss the challenges facing non-carbon 2D materials-FET biosensors and their future perspectives.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-08-26
    Description: People spend most of their time in indoors and, as a result, indoor air quality has become an issue of increasing concern. Due to the use of coal and heavy transportation in Beijing, China, concentrations of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 have risen and caused concerns about health risk, both outdoors and indoors. This study carried out quantitative investigation of PM2.5-bound PAHs in middle school classrooms and estimated the health risk to adolescents. According to the results, indoor PM2.5 concentrations ranged from 20.9 μg/m3 to 257.6 μg/m3, indoor PAH concentrations ranged from 8.0 ng/m3 to 83.0 ng/m3, and both were statistically correlated with outdoor concentrations. Results of diagnostic ratios (DR) and the PMF (positive matrix factorization) model indicated that coal combustion was the main source of PAHs in the classroom environment. The average value of incremental lifetime cancer risk (ILCR) was estimated to be 1.49 × 10−6, which indicated a potential health risk to students according to USEPA standards. Predictions showed that by 2021–2022, the risk will be reduced to an acceptable level. Results of this study could provide useful information for air pollution control in Beijing and proposing targeted solution against indoor air pollution.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-08-26
    Description: Siamese network-based trackers consider tracking as features cross-correlation between the target template and the search region. Therefore, feature representation plays an important role for constructing a high-performance tracker. However, all existing Siamese networks extract the deep but low-resolution features of the entire patch, which is not robust enough to estimate the target bounding box accurately. In this work, to address this issue, we propose a novel high-resolution Siamese network, which connects the high-to-low resolution convolution streams in parallel as well as repeatedly exchanges the information across resolutions to maintain high-resolution representations. The resulting representation is semantically richer and spatially more precise by a simple yet effective multi-scale feature fusion strategy. Moreover, we exploit attention mechanisms to learn object-aware masks for adaptive feature refinement, and use deformable convolution to handle complex geometric transformations. This makes the target more discriminative against distractors and background. Without bells and whistles, extensive experiments on popular tracking benchmarks containing OTB100, UAV123, VOT2018 and LaSOT demonstrate that the proposed tracker achieves state-of-the-art performance and runs in real time, confirming its efficiency and effectiveness.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-08-26
    Description: The Internet of Medical Things (IoMT) couples IoT technologies with healthcare services in order to support real-time, remote patient monitoring and treatment. However, the interconnectivity of critical medical devices with other systems in various network layers creates new opportunities for remote adversaries. Since most of the communication protocols have not been specifically designed for the needs of connected medical devices, there is a need to classify the available IoT communication technologies in terms of security. In this paper we classify IoT communication protocols, with respect to their application in IoMT. Then we describe the main characteristics of IoT communication protocols used at the perception, network and application layer of medical devices. We examine the inherent security characteristics and limitations of IoMT-specific communication protocols. Based on realistic attacks we identify available mitigation controls that may be applied to secure IoMT communications, as well as existing research and implementation gaps.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-08-26
    Description: Monitoring biomass of forages in experimental plots and livestock farms is a time-consuming, expensive, and biased task. Thus, non-destructive, accurate, precise, and quick phenotyping strategies for biomass yield are needed. To promote high-throughput phenotyping in forages, we propose and evaluate the use of deep learning-based methods and UAV (Unmanned Aerial Vehicle)-based RGB images to estimate the value of biomass yield by different genotypes of the forage grass species Panicum maximum Jacq. Experiments were conducted in the Brazilian Cerrado with 110 genotypes with three replications, totaling 330 plots. Two regression models based on Convolutional Neural Networks (CNNs) named AlexNet and ResNet18 were evaluated, and compared to VGGNet—adopted in previous work in the same thematic for other grass species. The predictions returned by the models reached a correlation of 0.88 and a mean absolute error of 12.98% using AlexNet considering pre-training and data augmentation. This proposal may contribute to forage biomass estimation in breeding populations and livestock areas, as well as to reduce the labor in the field.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-08-26
    Description: Bioelectrocatalysis provides the intrinsic catalytic functions of redox enzymes to nonspecific electrode reactions and is the most important and basic concept for electrochemical biosensors. This review starts by describing fundamental characteristics of bioelectrocatalytic reactions in mediated and direct electron transfer types from a theoretical viewpoint and summarizes amperometric biosensors based on multi-enzymatic cascades and for multianalyte detection. The review also introduces prospective aspects of two new concepts of biosensors: mass-transfer-controlled (pseudo)steady-state amperometry at microelectrodes with enhanced enzymatic activity without calibration curves and potentiometric coulometry at enzyme/mediator-immobilized biosensors for absolute determination.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-08-25
    Description: Physical rehabilitation therapies for children present a challenge, and its success—the improvement of the patient’s condition—depends on many factors, such as the patient’s attitude and motivation, the correct execution of the exercises prescribed by the specialist or his progressive recovery during the therapy. With the aim to increase the benefits of these therapies, social humanoid robots with a friendly aspect represent a promising tool not only to boost the interaction with the pediatric patient, but also to assist physicians in their work. To achieve both goals, it is essential to monitor in detail the patient’s condition, trying to generate user profile models which enhance the feedback with both the system and the specialist. This paper describes how the project NAOTherapist—a robotic architecture for rehabilitation with social robots—has been upgraded in order to include a monitoring system able to generate user profile models through the interaction with the patient, performing user-adapted therapies. Furthermore, the system has been improved by integrating a machine learning algorithm which recognizes the pose adopted by the patient and by adding a clinical reports generation system based on the QUEST metric.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-08-26
    Description: Despite many studies reporting hemispheric asymmetry in the representation and processing of emotions, the essence of the asymmetry remains controversial. Brain network analysis based on electroencephalography (EEG) is a useful biological method to study brain function. Here, EEG data were recorded while participants watched different emotional videos. According to the videos’ emotional categories, the data were divided into four categories: high arousal high valence (HAHV), low arousal high valence (LAHV), low arousal low valence (LALV) and high arousal low valence (HALV). The phase lag index as a connectivity index was calculated in theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz) and gamma (31–45 Hz) bands. Hemispheric networks were constructed for each trial, and graph theory was applied to quantify the hemispheric networks’ topological properties. Statistical analyses showed significant topological differences in the gamma band. The left hemispheric network showed significantly higher clustering coefficient (Cp), global efficiency (Eg) and local efficiency (Eloc) and lower characteristic path length (Lp) under HAHV emotion. The right hemispheric network showed significantly higher Cp and Eloc and lower Lp under HALV emotion. The results showed that the left hemisphere was dominant for HAHV emotion, while the right hemisphere was dominant for HALV emotion. The research revealed the relationship between emotion and hemispheric asymmetry from the perspective of brain networks.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-08-26
    Description: The Karlsruhe Tritium Neutrino (KATRIN) experiment aims at measuring the effective electron neutrino mass with a sensitivity of 0.2 eV/c2, i.e., improving on previous measurements by an order of magnitude. Neutrino mass data taking with KATRIN commenced in early 2019, and after only a few weeks of data recording, analysis of these data showed the success of KATRIN, improving on the known neutrino mass limit by a factor of about two. This success very much could be ascribed to the fact that most of the system components met, or even surpassed, the required specifications during long-term operation. Here, we report on the performance of the laser Raman (LARA) monitoring system which provides continuous high-precision information on the gas composition injected into the experiment’s windowless gaseous tritium source (WGTS), specifically on its isotopic purity of tritium—one of the key parameters required in the derivation of the electron neutrino mass. The concentrations cx for all six hydrogen isotopologues were monitored simultaneously, with a measurement precision for individual components of the order 10−3 or better throughout the complete KATRIN data taking campaigns to date. From these, the tritium purity, εT, is derived with precision of
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-08-26
    Description: In this paper, we present a navigation strategy exclusively designed for social robots with limited sensors for applications in homes. The overall system integrates a reactive design based on subsumption architecture and a knowledge system with learning capabilities. The component of the system includes several modules, such as doorway detection and room localization via convolutional neural network (CNN), avoiding obstacles via reinforcement learning, passing the doorway via Canny edge’s detection, building an abstract map called a Directional Semantic Topological Map (DST-Map) within the knowledge system, and other predefined layers within the subsumption architecture. The individual modules and the overall system are evaluated in a virtual environment using Webots simulator.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-08-26
    Description: In multi-target tracking scenarios with dense and heterogeneous clutter, there is a substantial increase in the false measurements that originated from the clutter within the validation gate, and consequently, the number of measurement-to-track association hypothesis grows rapidly in traditional multiple hypothesis tracker (MHT), leading to a sharp decrease in data association accuracy and tracking performance. A new multiple hypothesis tracker using validation gate with motion direction constraint (MHT-MDC) is proposed to solve these problems. In the MHT-MDC, a motion direction constraint (MDC) gate is designed by considering the prior target maneuvering information, which effectively reduces the volume of validation gate and, thus, diminishes the number of false measurements in the gate when the innovation covariance is large. Subsequently, the clutter density in the MDC gate is adaptively estimated by the conditional mean estimator of clutter density (CMECD), based on which the score functions in the MDC gate can be calculated. The MHT-MDC is compared with the MHT algorithm in simulations, and the experimental results demonstrate its superior tracking performance for weakly maneuvering targets in high clutter density scenarios.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-08-26
    Description: Over the last decade, video surveillance systems have become a part of the Internet of Things (IoT). These IP-based surveillance systems now protect industrial facilities, railways, gas stations, and even one’s own home. Unfortunately, like other IoT systems, there are inherent security risks which can lead to significant violations of a user’s privacy. In this review, we explore the attack surface of modern surveillance systems and enumerate the various ways they can be compromised with real examples. We also identify the threat agents, their attack goals, attack vectors, and the resulting consequences of successful attacks. Finally, we present current countermeasures and best practices and discuss the threat horizon. The purpose of this review is to provide researchers and engineers with a better understanding of a modern surveillance systems’ security, to harden existing systems and develop improved security solutions.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-08-26
    Description: Surface all-wave net radiation (Rn) is a crucial variable driving many terrestrial latent heat (LE) models that estimate global LE. However, the differences between different Rn products and their impact on global LE estimates still remain unclear. In this study, we evaluated two Rn products, Global LAnd Surface Satellite (GLASS) beta version Rn and Modern-Era Retrospective Analysis for Research and Applications-version 2 (MERRA-2) Rn, from 2007–2017 using ground-measured data from 240 globally distributed in-situ radiation measurements provided by FLUXNET projects. The GLASS Rn product had higher accuracy (R2 increased by 0.04–0.26, and RMSE decreased by 2–13.3 W/m2) than the MERRA-2 Rn product for all land cover types on a daily scale, and the two Rn products differed greatly in spatial distribution and variations. We then determined the resulting discrepancies in simulated annual global LE using a simple averaging model by merging five diagnostic LE models: RS-PM model, SW model, PT-JPL model, MS-PT model, and SIM model. The validation results showed that the estimated LE from the GLASS Rn had higher accuracy (R2 increased by 0.04–0.14, and RMSE decreased by 3–8.4 W/m2) than that from the MERRA-2 Rn for different land cover types at daily scale. Importantly, the mean annual global terrestrial LE from GLASS Rn was 2.1% lower than that from the MERRA-2 Rn. Our study showed that large differences in satellite and reanalysis Rn products could lead to substantial uncertainties in estimating global terrestrial LE.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-08-26
    Description: The work investigates the application of artificial neural networks and logistic regression for the recognition of activities performed by room occupants. KNX (Konnex) standard-based devices were selected for smart home automation and data collection. The obtained data from these devices (Humidity, CO2, temperature) were used in combination with two wearable gadgets to classify specific activities performed by the room occupant. The obtained classifications can benefit the occupant by monitoring the wellbeing of elderly residents and providing optimal air quality and temperature by utilizing heating, ventilation, and air conditioning control. The obtained results yield accurate classification.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-08-28
    Description: In recent years, there has been increasing interest in the development of micron-scale devices utilizing thermal gradients to manipulate molecules and colloids, and to measure their thermophoretic properties quantitatively. Various devices have been realized, such as on-chip implements, micro-thermogravitational columns and other micron-scale thermophoretic cells. The advantage of the miniaturized devices lies in the reduced sample volume. Often, a direct observation of particles using various microscopic techniques is possible. On the other hand, the small dimensions lead to some technical problems, such as a precise temperature measurement on small length scale with high spatial resolution. In this review, we will focus on the “state of the art” thermophoretic micron-scale devices, covering various aspects such as generating temperature gradients, temperature measurement, and the analysis of the current micron-scale devices. We want to give researchers an orientation for their development of thermophoretic micron-scale devices for biological, chemical, analytical, and medical applications.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-08-30
    Description: Detection of terrain features (ridges, spurs, cliffs, and peaks) is a basic research topic in digital elevation model (DEM) analysis and is essential for learning about factors that influence terrain surfaces, such as geologic structures and geomorphologic processes. Detection of terrain features based on general geomorphometry is challenging and has a high degree of uncertainty, mostly due to a variety of controlling factors on surface evolution in different regions. Currently, there are different computational techniques for obtaining detailed information about terrain features using DEM analysis. One of the most common techniques is numerically identifying or classifying terrain elements where regional topologies of the land surface are constructed by using DEMs or by combining derivatives of DEM. The main drawbacks of these techniques are that they cannot differentiate between ridges, spurs, and cliffs, or result in a high degree of false positives when detecting spur lines. In this paper, we propose a new method for automatically detecting terrain features such as ridges, spurs, cliffs, and peaks, using shaded relief by controlling altitude and azimuth of illumination sources on both smooth and rough surfaces. In our proposed method, we use edge detection filters based on azimuth angle on shaded relief to identify specific terrain features. Results show that the proposed method performs similar to or in some cases better (when detecting spurs than current terrain features detection methods, such as geomorphon, curvature, and probabilistic methods.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-08-29
    Description: The shipborne high-frequency surface wave radar (HFSWR) platform produces six degrees of freedom (DOF) motion at sea, which affects the performance of radar target detection and remote sensing of ocean surface dynamics parameters. Motion compensation can mitigate the effect of six-DOF motion, but motion parameters (including amplitude and angular frequency) need to be known. Motion parameters obtained by using high precision sensors are affected by the precision error and time delay, thus affecting the effect of motion compensation. To obtain the motion parameters accurately and in real time, a method of identifying the motion parameters by using an artificially transmitted reference radio frequency (RF) signal generated at the shore is proposed. Based on the results of the parameter identification, the reference RF signal and the first-order radar cross-sections (RCSs) modulated by six-DOF motion of the shipborne HFSWR platform can be compensated. The identification of angular frequency is divided into two steps: (1) Preliminary identification results are obtained by using the reference RF signal; (2) the pattern search method is used to further improve the identification accuracy of angular frequency. The amplitude of translation (including surge and sway) can be identified accurately through the reference RF signal. Due to the small amplitude of rotation (including roll, pitch, and yaw), it needs to be identified by the reference RF signal and pattern search method. After identifying the motion parameters, division in the time domain is used for motion compensation. Through the simulation results, both translation and rotation have good motion compensation effects. In addition, the method of using high precision sensors to obtain motion parameters and compensation is compared with the method in this paper, the simulation results of motion compensation show that the latter is better.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-08-30
    Description: An experimental product study of the reactions of furfural with the main tropospheric oxidants (Cl, OH and NO3) has been carried out using a Fourier Transform Infrared spectrophotometer (FTIR) and a gas chromatograph–mass spectrometer with a time of flight detector (GC–TOFMS). The main gas-phase products detected were 5-chloro-2(5H)-furanone, maleic anhydride, 2-nitrofuran and CO. Molar yields were quantified for the detected products in these reactions, thus suggesting the existence of nongaseous products that could not be observed with the analytical techniques employed. The formation of Secondary Organic Aerosol (SOA) from the oxidation of furfural with Cl atoms, OH, NO3 and ozone was investigated in a smog chamber in the absence of inorganic seed aerosols. The experimental results show the formation of ultrafine particles (less than 1 µm in diameter) for all of the studied reactions except for the nitrate radical. Given their small size, these ultrafine particles (
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-08-29
    Description: The information of building types is highly needed for urban planning and management, especially in high resolution building modeling in which buildings are the basic spatial unit. However, in many parts of the world, this information is still missing. In this paper, we proposed a framework to derive the information of building type using geospatial data, including point-of-interest (POI) data, building footprints, land use polygons, and roads, from Gaode and Baidu Maps. First, we used natural language processing (NLP)-based approaches (i.e., text similarity measurement and topic modeling) to automatically reclassify POI categories into which can be used to directly infer building types. Second, based on the relationship between building footprints and POIs, we identified building types using two indicators of type ratio and area ratio. The proposed framework was tested using over 440,000 building footprints in Beijing, China. Our NLP-based approaches and building type identification methods show overall accuracies of 89.0% and 78.2%, and kappa coefficient of 0.83 and 0.71, respectively. The proposed framework is transferrable to other China cities for deriving the information of building types from web mapping platforms. The data products generated from this study are of great use for quantitative urban studies at the building level.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-08-28
    Description: Precise exposure assessment of air pollutants is crucial in epidemiologic studies to ensure valid estimates of health effects. We conducted a longitudinal study to evaluate the role of air quality monitoring (AQM) measurements and high-resolution modeling outcomes focusing on nitrogen dioxide (NO2) exposure and atopic dermatitis (AD). A total of 128 young children with AD in Seoul Metropolitan Area, Korea, were recruited as a panel. We estimated the participants’ exposure to NO2 for four months, from 1 April through 31 July 2014 based on (1) monitored levels from 60 AQM stations located at varying distances from residential areas (AQM station-based NO2, AQM-NO2) and (2) estimates from a community multi-scale air quality (CMAQ) modeling system with a high-resolution (1 × 1 km) (CMAQ-NO2). We then compared the effect of AQM-NO2 on AD symptoms with that of CMAQ-NO2. The average distance between the participants’ residences and the nearest AQM station was 2.03 ± 1.06 km, ranging from 0.28 km to 5.73 km. Based on AQM-NO2, the AD symptoms increased by 10.28% (95% confidence interval (CI): 3.24, 17.79) with an increase of 10 ppb of NO2. The effect estimates of CMAQ-NO2 were similar to those of AQM-NO2 when assessed in patients living within 3 km from the nearest AQM station. Even within 1 km, the CI estimate obtained from the CMAQ was much narrower than from AQM (44.18–49.54 vs. 7.02–64.75). However, the association of AQM-NO2 with AD symptoms of patients living beyond 3 km was not positive, whereas that of CMAQ-NO2 maintained positive. In conclusion, exposure to ambient NO2 is significantly associated with aggravation of AD symptoms in young children. In addition, our study suggests that exposure assessment of NO2 using measurement data obtained from monitoring stations far from residential locations can lead to misclassification bias.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-08-30
    Description: In order to maximize energy efficiency in heterogeneous networks (HetNets), a turbo Q-Learning (TQL) combined with multistage decision process and tabular Q-Learning is proposed to optimize the resource configuration. For the large dimensions of action space, the problem of energy efficiency optimization is designed as a multistage decision process in this paper, according to the resource allocation of optimization objectives, the initial problem is divided into several subproblems which are solved by tabular Q-Learning, and the traditional exponential increasing size of action space is decomposed into linear increase. By iterating the solutions of subproblems, the initial problem is solved. The simple stability analysis of the algorithm is given in this paper. As to the large dimension of state space, we use a deep neural network (DNN) to classify states where the optimization policy of novel Q-Learning is set to label samples. Thus far, the dimensions of action and state space have been solved. The simulation results show that our approach is convergent, improves the convergence speed by 60% while maintaining almost the same energy efficiency and having the characteristics of system adjustment.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-08-29
    Description: Reducing plastic pollution in rivers, lakes, and oceans is beneficial to aquatic animals and human livelihood. To achieve this, reliable observations of the abundance, spatiotemporal variation, and composition of plastics in aquatic ecosystems are crucial. Current efforts mainly focus on collecting data on the open ocean, on beaches and coastlines, and in river systems. Urban areas are the main source of plastic leakage into the natural environment, yet data on plastic pollution in urban water systems are scarce. In this paper, we present a simple method for plastic hotspot mapping in urban water systems. Through visual observations, macroplastic abundance and polymer categories are determined. Due to its simplicity, this method is suitable for citizen science data collection. A first application in the Dutch cities of Leiden and Wageningen showed similar mean plastic densities (111–133 items/km canal) and composition (75–80% soft plastics), but different spatial distributions. These observations emphasize the importance of long-term data collection to further understand and quantify spatiotemporal variations of plastics in urban water systems. In turn, this will support improved estimates of the contribution of urban areas to the plastic pollution of rivers and oceans.
    Electronic ISSN: 2076-3263
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-08-29
    Description: Despite the potential implications of a cropland canopy water content (CCWC) thematic product, no global remotely sensed CCWC product is currently generated. The successful launch of the Landsat-8 Operational Land Imager (OLI) in 2012, Sentinel-2A Multispectral Instrument (MSI) in 2015, followed by Sentinel-2B in 2017, make possible the opportunity for CCWC estimation at a spatial and temporal scale that can meet the demands of potential operational users. In this study, we designed and tested a novel radiative transfer model (RTM) inversion technique to combine multiple sources of a priori data in a look-up table (LUT) for inverting the NASA Harmonized Landsat Sentinel-2 (HLS) product for CCWC estimation. This study directly builds on previous research for testing the constraint of the leaf parameter (Ns) in PROSPECT, by applying those constraints in PRO4SAIL in an agricultural setting where the variability of canopy parameters are relatively minimal. In total, 225 independent leaf measurements were used to train the LUTs, and 102 field data points were collected over the 2015–2017 growing seasons for validating the inversions. The results confirm increasing a priori information and regularization yielded the best performance for CCWC estimation. Despite the relatively low variable canopy conditions, the inclusion of Ns constraints did not improve the LUT inversion. Finally, the inversion of Sentinel-2 data outperformed the inversion of Landsat-8 in the HLS product. The method demonstrated ability for HLS inversion for CCWC estimation, resulting in the first HLS-based CCWC product generated through RTM inversion.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-08-30
    Description: The intrinsic heterogeneity property of concrete causes strong multiple scatterings during wave propagation, forming coda wave that follows very complex trajectories. As a superposition of multiply scattered waves, coda wave shows great sensitivity to subtle changes, but meanwhile lose spatial resolution. To make use of its sensitivity and turn the limitation into advantage, this paper presents an experimental study of three-dimensionally imaging local changes in concrete by application of inverse algorithms to coda wave measurements. Load tests are performed on a large reinforced concrete beam that contains multiple pre-existing millimeter-scale cracks in order to match real life situation. The joint effects of cracks and stresses on coda waves have been monitored using a network of fixed transducers placed at the surface. The global waveform decorrelations and velocity variations are firstly quantified through coda wave interferometry technique. Subsequently, two inverse algorithms are independently applied to map the densities of changes at each localized position. Using this methodology, the stress changes and subtle cracks in the concrete beam are detected and imaged for both temporal and spatial domains.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-08-29
    Description: The technological growth and accessibility of Unoccupied Aerial Systems (UAS) have revolutionized the way geographic data are collected. Digital Surface Models (DSMs) are an integral component of geospatial analyses and are now easily produced at a high resolution from UAS images and photogrammetric software. Systematic testing is required to understand the strengths and weaknesses of DSMs produced from various UAS. Thus, in this study, we used photogrammetry to create DSMs using four UAS (DJI Inspire 1, DJI Phantom 4 Pro, DJI Mavic Pro, and DJI Matrice 210) to test the overall accuracy of DSM outputs across a mixed land cover study area. The accuracy and spatial variability of these DSMs were determined by comparing them to (1) 12 high-precision GPS targets (checkpoints) in the field, and (2) a DSM created from Light Detection and Ranging (LiDAR) (Velodyne VLP-16 Puck Lite) on a fifth UAS, a DJI Matrice 600 Pro. Data were collected on July 20, 2018 over a site with mixed land cover near Middleton, NS, Canada. The study site comprised an area of eight hectares (~20 acres) with land cover types including forest, vines, dirt road, bare soil, long grass, and mowed grass. The LiDAR point cloud was used to create a 0.10 m DSM which had an overall Root Mean Square Error (RMSE) accuracy of ±0.04 m compared to 12 checkpoints spread throughout the study area. UAS were flown three times each and DSMs were created with the use of Ground Control Points (GCPs), also at 0.10 m resolution. The overall RMSE values of UAS DSMs ranged from ±0.03 to ±0.06 m compared to 12 checkpoints. Next, DSMs of Difference (DoDs) compared UAS DSMs to the LiDAR DSM, with results ranging from ±1.97 m to ±2.09 m overall. Upon further investigation over respective land covers, high discrepancies occurred over vegetated terrain and in areas outside the extent of GCPs. This indicated LiDAR’s superiority in mapping complex vegetation surfaces and stressed the importance of a complete GCP network spanning the entirety of the study area. While UAS DSMs and LiDAR DSM were of comparable high quality when evaluated based on checkpoints, further examination of the DoDs exposed critical discrepancies across the study site, namely in vegetated areas. Each of the four test UAS performed consistently well, with P4P as the clear front runner in overall ranking.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-08-28
    Description: The heat-exchanger/reactor (HEX reactor) is a kind of plug-flow chemical reactor which combines high heat transfer ability with good chemical performances. It was designed under the popular trend of process intensification in chemical engineering. Previous studies have investigated its characteristics and developed its nominal model. This paper is concerned with its fault tolerant control (FTC) applications. To avoid the difficulties and nonlinearities of this HEX reactor under chemical reactions, a two-layer, multiple-model structure is proposed for designing the FTC scheme. The first layer focuses on representing the nonlinear system with a bank of local linear models while the second layer uses model banks for approaching faulty situations. Model banks are achieved by system identification, and the corresponding controller banks are designed using model predictive control (MPC). The unscented Kalman filter (UKF) is introduced to estimate the states and form the fault detection and isolation (FDI) section. Finally, the FTC simulation and validation results are presented. The idea of a two-layer, multiple-model structure presents a general framework for FTC design of complex and highly nonlinear systems, such as the HEX reactor, whose mathematical model has been created. It implements the design process in an unusual way and is also worth trying on other cases.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-08-30
    Description: Radar images suffer from the impact of sidelobes. Several sidelobe-suppressing methods including the convolutional neural network (CNN)-based one has been proposed. However, the point spread function (PSF) in the radar images is sometimes spatially variant and affects the performance of the CNN. We propose the spatial-variant convolutional neural network (SV-CNN) aimed at this problem. It will also perform well in other conditions when there are spatially variant features. The convolutional kernels of the CNN can detect motifs with some distinctive features and are invariant to the local position of the motifs. This makes the convolutional neural networks widely used in image processing fields such as image recognition, handwriting recognition, image super-resolution, and semantic segmentation. They also perform well in radar image enhancement. However, the local position invariant character might not be good for radar image enhancement, when features of motifs (also known as the point spread function in the radar imaging field) vary with the positions. In this paper, we proposed an SV-CNN with spatial-variant convolution kernels (SV-CK). Its function is illustrated through a special application of enhancing the radar images. After being trained using radar images with position-codings as the samples, the SV-CNN can enhance the radar images. Because the SV-CNN reads information of the local position contained in the position-coding, it performs better than the conventional CNN. The advance of the proposed SV-CNN is tested using both simulated and real radar images.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-08-29
    Description: The range of applications of electromyography-based gesture recognition has increased over the last years. A common problem regularly encountered in literature is the inadequate data availability. Data augmentation, which aims at generating new synthetic data from the existing ones, is the most common approach to deal with this data shortage in other research domains. In the case of surface electromyography (sEMG) signals, there is limited research in augmentation methods and quite regularly the results differ between available studies. In this work, we provide a detailed evaluation of existing (i.e., additive noise, overlapping windows) and novel (i.e., magnitude warping, wavelet decomposition, synthetic sEMG models) strategies of data augmentation for electromyography signals. A set of metrics (i.e., classification accuracy, silhouette score, and Davies–Bouldin index) and visualizations help with the assessment and provides insights about their performance. Methods like signal magnitude warping and wavelet decomposition yield considerable increase (up to 16%) in classification accuracy across two benchmark datasets. Particularly, a significant improvement of 1% in the classification accuracy of the state-of-the-art model in hand gesture recognition is achieved.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-08-29
    Description: Emotion recognition has been gaining attention in recent years due to its applications on artificial agents. To achieve a good performance with this task, much research has been conducted on the multi-modality emotion recognition model for leveraging the different strengths of each modality. However, a research question remains: what exactly is the most appropriate way to fuse the information from different modalities? In this paper, we proposed audio sample augmentation and an emotion-oriented encoder-decoder to improve the performance of emotion recognition and discussed an inter-modality, decision-level fusion method based on a graph attention network (GAT). Compared to the baseline, our model improved the weighted average F1-scores from 64.18 to 68.31% and the weighted average accuracy from 65.25 to 69.88%.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-08-29
    Description: Black carbon (BC), organic carbon (OC), and total carbon (TC) in snow are important for their climatic and cryospheric effects. They are also part of the global carbon cycle. Atmospheric black and organic carbon (including brown carbon) may deposit and darken snow surfaces. Currently, there are no standardized methods for sampling, filtering, and analysis protocols to detect carbon in snow. Here, we describe our current methods and protocols to detect carbon in seasonal snow using the OCEC thermal optical method, a European standard for atmospheric elemental carbon (EC). We analyzed snow collected within and around the urban background SMEARIII (Station for Measuring Ecosystem-Atmosphere Relations) at Kumpula (60° N) and the Arctic GAW (Global Atmospheric Watch) station at Sodankylä (67° N). The median BC, OC, and TC in snow samples (ntot = 30) in Kumpula were 1118, 5279, and 6396 ppb, and in Sodankylä, they were 19, 1751, and 629 ppb. Laboratory experiments showed that error due to carbon attached to a sampling bag (n = 11) was
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-08-29
    Description: In this paper we document the design, development, results, performance and field applications of a compact directive transmit antenna for the long-range High Frequency ocean RADAR (HFR) systems operating in the International Telecommunication Union (ITU) designated 4MHz and 5MHz radiodetermination bands. The antenna design is based on the combination of the concepts of an electrically small loop with that of travelling wave antenna. This has the effect of inducing a radiated wave predominantly in a direction opposed to that of energy flow on the antenna structures. We demonstrate here that travelling wave design allows for a more compact antenna than other directive options, it has straightforward feed-point matching arrangements, and a flat frequency and phase response over an entire radiodetermination band. In situ measurements of the antenna radiation pattern, obtained with the aid of a drone, correlate well with those obtained from simulations, and show between 8dB and 30dB front-to-back suppression, with a 3dB beam width in the forward lobe of 100∘ or more. The broad-beam radiation pattern ensures proper illumination over the ocean and the significant front-to-back suppression guarantees reduced interference to terrestrial services. The proposed antenna design is compact and straight forward and can be easily deployed by minimal modifications of an existing transmission antenna. The design may be readily adapted to different environments due to the relative insensitivity of its radiation pattern and frequency response to geometric detail. The only downside to these antennas is their relatively low radiation efficiency which, however, may easily be compensated for by the available power output of a typical HFR transmitter. Antennas based on this design are currently deployed at the SeaSonde HFR sites in New South Wales, Australia, with operational ranges up to 200 km offshore despite their low radiating efficiency and the extremely low output power in use at these installations. Due to their directional pattern, it is also planned to test these antennas in phased-array Wellen RADAR (WERA) systems in both the standard receive arrays: where in-band radio frequency noise of terrestrial origin is impacting on data quality, and in the transmit array: to possibly simplify splitting, phasing and tuning requirements.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-08-28
    Description: Supraglacial liquid water at the margins of ice sheets has an important impact on the surface energy balance and can also influence the ice flow when supraglacial lakes drain to the bed. Optical imagery is able to monitor supraglacial lakes during the summer season. Here we developed an alternative method using polarimetric SAR from Sentinel-1 during 2017–2020 to distinguish between liquid water and other surface types at the margin of the Northeast Greenland Ice Stream. This allows the supraglacial hydrology to be monitored during the winter months too. We found that the majority of supraglacial lakes persist over winter. When comparing our results to optical data, we found significantly more water. Even during summer, many lakes are partly or fully covered by a lid of ice and snow. We used our classification results to automatically map the outlines of supraglacial lakes, create time series of water area for each lake, and hence detect drainage events. We even found several winter time drainages, which might have an important effect on ice flow. Our method has problems during the peak of the melt season, but for the rest of the year it provides crucial information for better understanding the component of supraglacial hydrology in the glaciological system.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-08-29
    Description: Based on the conceptual basis of information theory, we propose a novel mutual information measure—‘path-based mutual information’. This information measure results from the representation of a set of random variables as a probabilistic graphical model. The edges in this graph are modeled as discrete memoryless communication channels, that is, the underlying data is ergodic, stationary, and the Markov condition is assumed to be applicable. The associated multilinear stochastic maps, tensors, transform source probability mass functions into destination probability mass functions. This allows for an exact expression of the resulting tensor of a cascade of discrete memoryless communication channels in terms of the tensors of the constituting communication channels in the paths. The resulting path-based information measure gives rise to intuitive, non-negative, and additive path-based information components—redundant, unique, and synergistic information—as proposed by Williams and Beer. The path-based redundancy satisfies the axioms postulated by Williams and Beer, the identity axiom postulated by Harder, and the left monotonicity axiom postulated Bertschinger. The ordering relations between redundancies of different joint collections of sources, as captured in the redundancy lattices of Williams and Beer, follow from the data processing inequality. Although negative information components can arise, we speculate that these either result from unobserved variables, or from adding additional sources that are statistically independent from all other sources to a system containing only non-negative information components. This path-based approach illustrates that information theory provides the concepts and measures for a partial information decomposition.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-08-30
    Description: In recent years, a series of matching pursuit and hard thresholding algorithms have been proposed to solve the sparse representation problem with ℓ0-norm constraint. In addition, some stochastic hard thresholding methods were also proposed, such as stochastic gradient hard thresholding (SG-HT) and stochastic variance reduced gradient hard thresholding (SVRGHT). However, each iteration of all the algorithms requires one hard thresholding operation, which leads to a high per-iteration complexity and slow convergence, especially for high-dimensional problems. To address this issue, we propose a new stochastic recursive gradient support pursuit (SRGSP) algorithm, in which only one hard thresholding operation is required in each outer-iteration. Thus, SRGSP has a significantly lower computational complexity than existing methods such as SG-HT and SVRGHT. Moreover, we also provide the convergence analysis of SRGSP, which shows that SRGSP attains a linear convergence rate. Our experimental results on large-scale synthetic and real-world datasets verify that SRGSP outperforms state-of-the-art related methods for tackling various sparse representation problems. Moreover, we conduct many experiments on two real-world sparse representation applications such as image denoising and face recognition, and all the results also validate that our SRGSP algorithm obtains much better performance than other sparse representation learning optimization methods in terms of PSNR and recognition rates.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-08-30
    Description: To investigate the effect of wave-induced mixing on the upper ocean structure, especially under typhoon conditions, an ocean-wave coupled model is used in this study. Two physical processes, wave-induced turbulence mixing and wave transport flux residue, are introduced. We select tropical cyclone (TC) Nepartak in the Northwest Pacific ocean as a TC example. The results show that during the TC period, the wave-induced turbulence mixing effectively increases the cooling area and cooling amplitude of the sea surface temperature (SST). The wave transport flux residue plays a positive role in reproducing the distribution of the SST cooling area. From the intercomparisons among experiments, it is also found that the wave-induced turbulence mixing has an important effect on the formation of mixed layer depth (MLD). The simulated maximum MLD is increased to 54 m and is only 1 m less than the observed value. The wave transport flux residue shows a dominant role in the mixed layer temperature (MLT) changing. The mean error of the MLT is reduced by 0.19 °C compared with the control experiment without wave mixing effects. The study shows that the effect of wave mixing should be included in the upper ocean structure modeling.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-08-28
    Description: In this paper, we propose an adaptive entropy model (AEM), which incorporates the entropy measurement and the adaptability into the conventional Markowitz’s mean-variance model (MVM). We evaluate the performance of AEM, based on several portfolio performance indicators using the five-year Shanghai Stock Exchange 50 (SSE50) index constituent stocks data set. Our outcomes show, compared with the traditional portfolio selection model, that AEM tends to make our investments more decentralized and hence helps to neutralize unsystematic risks. Due to the existence of self-adaptation, AEM turns out to be more adaptable to market fluctuations and helps to maintain the balance between the decentralized and concentrated investments in order to meet investors’ expectations. Our model applies equally well to portfolio optimizations for other financial markets.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-08-29
    Description: Recent advances in particle sensor technologies have led to an increased development and utilization of low-cost, compact, particulate matter (PM) monitors. These devices can be deployed in dense monitoring networks, enabling an improved characterization of the spatiotemporal variability in ambient levels and exposure. However, the reliability of their measurements is an important prerequisite, necessitating rigorous performance evaluation and calibration in comparison to reference-grade instrumentation. In this study, field evaluation of Purple Air PA-II devices (low-cost PM sensors) is performed in two urban environments and across three seasons in Greece, in comparison to different types of reference instruments. Measurements were conducted in Athens (the largest city in Greece with nearly four-million inhabitants) for five months spanning over the summer of 2019 and winter/spring of 2020 and in Ioannina, a medium-sized city in northwestern Greece (100,000 inhabitants) during winter/spring 2019–2020. The PM2.5 sensor output correlates strongly with reference measurements (R2 = 0.87 against a beta attenuation monitor and R2 = 0.98 against an optical reference-grade monitor). Deviations in the sensor-reference agreement are identified as mainly related to elevated coarse particle concentrations and high ambient relative humidity. Simple and multiple regression models are tested to compensate for these biases, drastically improving the sensor’s response. Large decreases in sensor error are observed after implementation of models, leading to mean absolute percentage errors of 0.18 and 0.12 for the Athens and Ioannina datasets, respectively. Overall, a quality-controlled and robustly evaluated low-cost network can be an integral component for air quality monitoring in a smart city. Case studies are presented along this line, where a network of PA-II devices is used to monitor the air quality deterioration during a peri-urban forest fire event affecting the area of Athens and during extreme wintertime smog events in Ioannina, related to wood burning for residential heating.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-08-28
    Description: The article is devoted to a reconstruction of the sedimentation processes in Kamyshovoye Lake (the Kaliningrad Region, Russia) during the Late Glacial and Holocene. The results of the geochemical analysis of Kamyshovoye Lake’s bottom sediments, accompanied by statistical processing and detailed radiocarbon dating, are presented. It was established that a high proportion of mineral matter dominated in the intervals between 15,000 and 11,400 and between 1400 and 600 cal y BP; enrichment with carbonates was noted between 11,400 and 5200 cal y BP and during the past 600 years; and a high percentage of organic matter was recorded between 7800 and 600 cal y BP. We conclude that the increase in mineral matter was influenced by such factors as reduced vegetation cover due to natural and anthropogenic processes, aeolian transfer, and dead-ice melting during the Late Glacial. The increase in carbonate matter was mainly associated with humidity and the reduction conditions of the lake ecosystem. Organogenic matter content was affected by the autochthonic (biological) productivity of the lake, which directly depends on more favorable climatic conditions.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-08-29
    Description: The current techniques used for monitoring the blasting process in open pit mines are manual, intermittent and inefficient and can expose technical manpower to hazardous conditions. This study presents the application of unmanned aerial vehicle (UAV) systems for monitoring and improving the blasting process in open pit mines. Field experiments were conducted in different open pit mines to assess rock fragmentation, blast-induced damage on final pit walls, blast dynamics and the accuracy of blastholes including production and pre-split holes. The UAV-based monitoring was done in three different stages, including pre-blasting, blasting and post-blasting. In the pre-blasting stage, pit walls were mapped to collect structural data to predict in situ block size distribution and to develop as-built pit wall digital elevation models (DEM) to assess blast-induced damage. This was followed by mapping the production blasthole patterns implemented in the mine to investigate drillhole alignment. To monitor the blasting process, a high-speed camera was mounted on the UAV to investigate blast initiation, sequencing, misfired holes and stemming ejection. In the post-blast stage, the blasted rock pile (muck pile) was monitored to estimate fragmentation and assess muck pile configuration, heave and throw. The collected aerial data provide detailed information and high spatial and temporal resolution on the quality of the blasting process and significant opportunities for process improvement. The current challenges with regards to the application of UAVs for blasting process monitoring are discussed, and recommendations for obtaining the most value out of an UAV application are provided.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-08-29
    Description: Fertilized agricultural soils serve as a primary source of anthropogenic N2O emissions. In South Africa, there is a paucity of data on N2O emissions from fertilized, irrigated dairy-pasture systems and emission factors (EF) associated with the amount of N applied. A first study aiming to quantify direct N2O emissions and associated EFs of intensive pasture-based dairy systems in sub-Sahara Africa was conducted in South Africa. Field trials were conducted to evaluate fertilizer rates (0, 220, 440, 660, and 880 kg N ha−1 year−1) on N2O emissions from irrigated kikuyu–perennial ryegrass (Pennisetum clandestinum–Lolium perenne) pastures. The static chamber method was used to collect weekly N2O samples for one year. The highest daily N2O fluxes occurred in spring (0.99 kg ha−1 day−1) and summer (1.52 kg ha−1 day−1). Accumulated N2O emissions ranged between 2.45 and 15.5 kg N2O-N ha−1 year−1 and EFs for mineral fertilizers applied had an average of 0.9%. Nitrogen in yielded herbage varied between 582 and 900 kg N ha−1. There was no positive effect on growth of pasture herbage from adding N at high rates. The relationship between N balance and annual N2O emissions was exponential, which indicated that excessive fertilization of N will add directly to N2O emissions from the pastures. Results from this study could update South Africa’s greenhouse gas inventory more accurately to facilitate Tier 3 estimates.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-08-29
    Description: Achieving sustainable zero-waste and carbon neutral solutions that contribute to a circular economy is critically important for the long-term prosperity and continuity of traditional carbon-based energy industries. The Estonian oil shale (OS) sector is an example where such solutions are more than welcome. The combustion of OS generates a continuous flow of ashes destined to landfills. In this study, the technical feasibility of producing monolith building materials incorporating different OS ashes from Estonia was evaluated. Three binder systems were studied: self-cementation of the ashes, ceramic sintering in clay brick production and accelerated carbonation of OS ash (OSA) compacts. Results showed that most of the OSAs studied have low self-cementitious properties and these properties were affected by ash fineness and mineralogical composition. In case of clay bricks, OSA addition resulted in a higher porosity and improved insulation properties. The carbonated OSA compacts showed promising compressive strength. Accelerated carbonation of compacted samples was found to be the most promising way for the future utilization of OSAs as sustainable zero-waste and carbon neutral solution.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-08-30
    Description: Quantum turbulence deals with the phenomenon of turbulence in quantum fluids, such as superfluid helium and trapped Bose-Einstein condensates (BECs). Although much progress has been made in understanding quantum turbulence, several fundamental questions remain to be answered. In this work, we investigated the entropy of a trapped BEC in several regimes, including equilibrium, small excitations, the onset of turbulence, and a turbulent state. We considered the time evolution when the system is perturbed and let to evolve after the external excitation is turned off. We derived an expression for the entropy consistent with the accessible experimental data, which is, using the assumption that the momentum distribution is well-known. We related the excitation amplitude to different stages of the perturbed system, and we found distinct features of the entropy in each of them. In particular, we observed a sudden increase in the entropy following the establishment of a particle cascade. We argue that entropy and related quantities can be used to investigate and characterize quantum turbulence.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-08-30
    Description: At present, the state-of-the-art approaches of Visual Question Answering (VQA) mainly use the co-attention model to relate each visual object with text objects, which can achieve the coarse interactions between multimodalities. However, they ignore the dense self-attention within question modality. In order to solve this problem and improve the accuracy of VQA tasks, in the present paper, an effective Dense Co-Attention Networks (DCAN) is proposed. First, to better capture the relationship between words that are relatively far apart and make the extracted semantics more robust, the Bidirectional Long Short-Term Memory (Bi-LSTM) neural network is introduced to encode questions and answers; second, to realize the fine-grained interactions between the question words and image regions, a dense multimodal co-attention model is proposed. The model’s basic components include the self-attention unit and the guided-attention unit, which are cascaded in depth to form a hierarchical structure. The experimental results on the VQA-v2 dataset show that DCAN has obvious performance advantages, which makes VQA applicable to a wider range of AI scenarios.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-08-29
    Description: Present-day science indicates that developing sensors with excellent sensitivity and selectivity for detecting early signs of diseases is highly desirable. Electrochemical sensors offer a method for detecting diseases that are simpler, faster, and more accurate than conventional laboratory analysis methods. Primarily, exploiting non-noble-metal nanomaterials with excellent conductivity and large surface area is still an area of active research due to its highly sensitive and selective catalysts for electrochemical detection in enzyme-free sensors. In this research, we successfully fabricate Metal-Organic Framework (MOF) FeBDC-derived Fe3O4 for non-enzymatic electrochemical detection of glucose. FeBDC synthesis was carried out using the solvothermal method. FeCl2.4H2O and Benzene-1,4-dicarboxylic acid (H2BDC) are used as precursors to form FeBDC. The materials were further characterized utilizing X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier-Transform Infrared Spectroscopy (FTIR). The resulting MOF yields good crystallinity and micro-rod like morphology. Electrochemical properties were tested using Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) with a 0.1 M of Phosphate Buffer Saline (PBS pH 7.4) solution as the supporting electrolyte. The measurement results show the reduction and oxidation peaks in the CV curve of FeBDC, as well as Fe3O4. Pyrolysis of FeBDC to Fe3O4 increases the peak of oxidation and reduction currents. The Fe3O4 sample obtained has a sensitivity of 4.67 µA mM−1.cm−2, a linear range between 0.0 to 9.0 mM, and a glucose detection limit of 15.70 µM.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-08-30
    Description: In this work, we present a network architecture with parallel convolutional neural networks (CNN) for removing perspective distortion in images. While other works generate corrected images through the use of generative adversarial networks or encoder-decoder networks, we propose a method wherein three CNNs are trained in parallel, to predict a certain element pair in the 3×3 transformation matrix, M^. The corrected image is produced by transforming the distorted input image using M^−1. The networks are trained from our generated distorted image dataset using KITTI images. Experimental results show promise in this approach, as our method is capable of correcting perspective distortions on images and outperforms other state-of-the-art methods. Our method also recovers the intended scale and proportion of the image, which is not observed in other works.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-08-29
    Description: This paper presents a review and analysis of large-scale air convection tests and the establishment of intrinsic permeability in coarse open-graded materials. Natural air convection can make a significant contribution to heat transfer during cooling periods. In seasonally freezing environments this can result in excessive frost penetration and subsequent frost-related problems. Intrinsic permeability largely defines the onset of convective heat transfer in granular materials. Conventional methods for measuring intrinsic permeability cannot be applied to very coarse materials. Large-scale laboratory experiments on natural air convection can serve as an alternative method for determining this crucial parameter. This paper gives an overview of four different experimental test setups for measuring natural air convection, all differing in physical shape, boundary conditions and heat flux/temperature measurement devices. Comparison between these is difficult because the air convection pattern can differ and in some cases the shape and number of convection cells cannot be validated. Most of the studies available in the literature use theoretical equations to approximate intrinsic permeability. A method based on the analytical Nu-Ra number relationship is employed to establish the values of intrinsic permeability. Tests that provide enough data to enable the use of the Nu-Ra relationship are very limited. The overall results show a reasonable correlation between experiment-based intrinsic permeability and theoretical approximation. However, several issues must be addressed: first, differences may exist between the intrinsic permeability of natural and of crushed materials due to the shape effect. Second, the method used is in theory valid only for two-dimensional air convection within a square enclosure heated from below. Yet the results show that this method could be extended to other conditions with a certain degree of confidence. Third, a good estimate of intrinsic permeability is possible only with accurate experimental measurement.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-08-29
    Description: A remarkable exposure of tubular authigenic carbonates was found on the seafloor in the Dongsha area of the South China Sea (SCS). The tubular carbonates, around 2–3 cm in diameter and usually less than 10 cm in length, represent broken fragments of once-larger pipes that now protrude from muddy sediments. The morphology, carbon and oxygen stable isotope compositions, and trace and rare earth element contents of the carbonates were analyzed to decipher the mode of carbonate formation. The tubular carbonates exhibit a dark brown coating of iron and manganese hydrous oxides, indicating prolonged exposure to oxic bottom waters. The carbonate content of the micritic pipes falls between 12.5 and 67.3 wt.% with an average of 42.0 wt.%, suggesting formation within the sediment. This inference is supported by trace and rare earth element patterns including a moderate enrichment of middle rare earth elements. Low δ13C values (as low as −50.3‰, Vienna Pee Dee Belemnite (VPDB)) suggest that carbonate precipitation was induced by the anaerobic oxidation of methane. The unusually positive δ18O values of the carbonates (as high as +5.3‰, VPDB) are believed to reflect the destabilization of locally abundant gas hydrate. Taken together, it is suggested that pipe formation was initiated by sediment-dwelling organisms, such as crustaceans or bivalves. The burrows subsequently acted as conduits for upward fluid migration. The lithification of the sediment directly surrounding the conduits and the partial filling of the conduits with carbonate cement resulted in the formation of tubular carbonates. Turbidity currents, sediment slumps, or the vigorous emission of fluids probably induced the fragmentation of tubular carbonates within the sediment. The carbonate fragments had been further subjected to winnowing by bottom currents. This study provides insight into the interaction of megafauna burrowing with fluid migration and carbonate formation at hydrocarbon seeps, highlighting the role of bottom currents and mass wasting on the formation of fragmented tubular carbonates.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-08-29
    Description: In November 2019, the Supreme Court of India issued a notification to all the states in the National Capital Region of Delhi to install smog towers for clean air and allocated INR 36 crores (~USD 5.2 million) for a pilot. Can we vacuum our air pollution problem using smog towers? The short answer is “no”. Atmospheric science defines the air pollution problem as (a) a dynamic situation where the air is moving at various speeds with no boundaries and (b) a complex mixture of chemical compounds constantly forming and transforming into other compounds. With no boundaries, it is unscientific to assume that one can trap air, clean it, and release into the same atmosphere simultaneously. In this paper, we outline the basics of atmospheric science to describe why the idea of vacuuming outdoor air pollution is unrealistic, and the long view on air quality management in Indian cities.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-08-30
    Description: In a general Markov decision progress system, only one agent’s learning evolution is considered. However, considering the learning evolution of a single agent in many problems has some limitations, more and more applications involve multi-agent. There are two types of cooperation, game environment among multi-agent. Therefore, this paper introduces a Cooperation Markov Decision Process (CMDP) system with two agents, which is suitable for the learning evolution of cooperative decision between two agents. It is further found that the value function in the CMDP system also converges in the end, and the convergence value is independent of the choice of the value of the initial value function. This paper presents an algorithm for finding the optimal strategy pair (πk0,πk1) in the CMDP system, whose fundamental task is to find an optimal strategy pair and form an evolutionary system CMDP(πk0,πk1). Finally, an example is given to support the theoretical results.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-08-29
    Description: A method for estimation of the turbulent energy dissipation rate from measurements by a conically scanning pulsed coherent Doppler lidar (PCDL), with allowance for the wind transport of turbulent velocity fluctuations, has been developed. The method has been tested in comparative atmospheric experiments with a Stream Line PCDL (Halo Photonics, Brockamin, Worcester, United Kingdom) and a sonic anemometer. It has been demonstrated that the method provides unbiased estimates of the dissipation rate at arbitrarily large ratios of the mean wind velocity to the linear scanning speed.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-08-29
    Description: Pansharpening is a typical image fusion problem, which aims to produce a high resolution multispectral (HRMS) image by integrating a high spatial resolution panchromatic (PAN) image with a low spatial resolution multispectral (MS) image. Prior arts have used either component substitution (CS)-based methods or multiresolution analysis (MRA)-based methods for this propose. Although they are simple and easy to implement, they usually suffer from spatial or spectral distortions and could not fully exploit the spatial and/or spectral information existed in PAN and MS images. By considering their complementary performances and with the goal of combining their advantages, we propose a pansharpening weight network (PWNet) to adaptively average the fusion results obtained by different methods. The proposed PWNet works by learning adaptive weight maps for different CS-based and MRA-based methods through an end-to-end trainable neural network (NN). As a result, the proposed PWN inherits the data adaptability or flexibility of NN, while maintaining the advantages of traditional methods. Extensive experiments on data sets acquired by three different kinds of satellites demonstrate the superiority of the proposed PWNet and its competitiveness with the state-of-the-art methods.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-08-30
    Description: Children with autistic spectrum disorder (ASD) often exhibit uncontrollable disruptive behaviour during transfer to the operating room and operating table and at the induction of anaesthesia (sleep). This process often involves the physical restraining of children. These children are then lifted onto the operating table by healthcare staff after being anaesthetized. This predisposes children to fall risk and hospital staff to musculoskeletal injuries. We developed two concept mobility devices, IMOVE-I and -II, based on robotics systems comprising of restraint modules and multi-positional modality (sitting, supine, Trendelenburg). The aim was to intuitively secure children to facilitate the safe induction of sleep and ease of transfer onto operating tables upon sleep. IMOVE-I loads the child in standing position using a dual arm restraint module that is activated by trained healthcare staff. IMOVE-II loads the child in the sitting position by motivating the self-application of restraints. Opinions were obtained from 21 operating theatre healthcare staff with experience in the care of ASD children and parents with ASD children. The mean satisfaction rating of IMOVE-I was 5.62 (95% CI 5.00, 6.27) versus 8.10 (95% CI 7.64, 8.55) in IMOVE-II, p 〈 0.001. IMOVE-II is favoured over IMOVE-I in system operation and safety, ease of use and module functionality.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-08-29
    Description: Surface electromyogram (EMG) is a noninvasive measure of muscle electrical activity and has been widely used in a variety of applications. When recorded from the trunk, surface EMG can be contaminated by the cardiac electrical activity, i.e., the electrocardiogram (ECG). ECG may distort the desired EMG signal, complicating the extraction of reliable information from the trunk EMG. Several methods are available for ECG removal from the trunk EMG, but a comparative assessment of the performance of these methods is lacking, limiting the possibility of selecting a suitable method for specific applications. The aim of the present study is therefore to review and compare the performance of different ECG removal methods from the trunk EMG. To this end, a synthetic dataset was generated by combining in vivo EMG signals recorded on the biceps brachii and healthy or dysrhythmia ECG data from the Physionet database with a predefined signal-to-noise ratio. Gating, high-pass filtering, template subtraction, wavelet transform, adaptive filtering, and blind source separation were implemented for ECG removal. A robust measure of Kurtosis, i.e., KR2 and two EMG features, the average rectified value (ARV), and mean frequency (MF), were then calculated from the processed EMG signals and compared with the EMG before mixing. Our results indicate template subtraction to produce the lowest root mean square error in both ARV and MF, providing useful insight for the selection of a suitable ECG removal method.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-08-29
    Description: In recent years, industrial production has become more and more automated. Machine cutting tool as an important part of industrial production have a large impact on the production efficiency and costs of products. In a real manufacturing process, tool breakage often occurs in an instant without warning, which results a extremely unbalanced ratio of the tool breakage samples to the normal ones. In this case, the traditional supervised learning model can not fit the sample of tool breakage well, which results to inaccurate prediction of tool breakage. In this paper, we use the high precision Hall sensor to collect spindle current data of computer numerical control (CNC). Combining the anomaly detection and deep learning methods, we propose a simple and novel method called CNN-AD to solve the class-imbalance problem in tool breakage prediction. Compared with other prediction algorithms, the proposed method can converge faster and has better accuracy.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-08-29
    Description: The problem of wave identification is formulated as applied to the results of measurements of the temperature and the density of the neutral atmosphere in the range height 90–120 km by the artificial periodic irregularities (APIs) technique. The technique is based on the resonant scattering of radio waves by artificial periodic irregularities of the ionospheric plasma emerging in the field of a standing wave arising from the interference of the incident and reflected waves from the ionosphere. APIs were created using SURA heating facility (named as SURA experiment). The acoustic wave theory is reformulated on the base of data which can be observed in the given experimental setup. The basic system of equations is reduced so that it accounts only upward and downward directed waves, ignoring entropy mode. The algorithm of wave identification based on usage of dynamic projection operators for such a reduced case is proposed and explicit form of projection operators is derived. Its application to finite number dataset via Discrete Fourier Transform (DFT) is described and results of its application to the DFT-transformed set of experimental observation of the temperature and density perturbations are presented. The result yields hybrid amplitudes, that allow us to calculate energy of the directed waves that enter the observed superposition. The problem of entropy mode detection is discussed, the corresponding projecting operators for the full evolution system are built and a way to apply the method to quantification of it is proposed.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-08-29
    Description: In this article, we present a new method of dehazing based on the Koschmieder model, which aims to restore an image that has been affected by haze. The difficulty is to improve the estimation of the transmission and the atmospheric light that generally suffer from the nonhomogeneity and the random variability of the environment. The keypoint is to enhance the dehazing of very bright regions of the image in order to improve the treatment of the sky that is often overestimated or underestimated compared to the rest of the scene. The approach proposed in this paper is based on two main contributions: 1. an L0 gradient optimization function weighted by a set of Gaussian filters and based on an iterative algorithm for optimization convergence. Unlike the existing methods using a single value of the atmospheric light for the whole image, our method uses a set of values neighboring an initial estimated value. The fusion is then applied based on Laplacian and Gaussian pyramids to combine all the relevant information from the set of images constructed from atmospheric lights and improves the contrast to recover the colors of the sky without any artifacts. Finally, the results are validated by three criteria: an autocorrelation score (ZNCC), a similarity measure (SSIM) and a visual criterion. The experiments carried out on two datasets show that our approach allows a better dehazing of the images with higher SSIM and ZNCC measurements but also with better visual quality.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-08-29
    Description: One of the main contributions of the Capital Assets Pricing Model (CAPM) to portfolio theory was to explain the correlation between assets through its relationship with the market index. According to this approach, the market index is expected to explain the co-movement between two different stocks to a great extent. In this paper, we try to verify this hypothesis using a sample of 3.000 stocks of the USA market (attending to liquidity, capitalization, and free float criteria) by using some functions inspired by cooperative dynamics in physical particle systems. We will show that all of the co-movement among the stocks is completely explained by the market, even without considering the market beta of the stocks.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-08-28
    Description: Digital Elevation Models (DEMs) are widely used as a proxy for bathymetric data and several studies have attempted to improve DEM accuracy for hydrodynamic (HD) modeling. Most of these studies attempted to quantitatively improve estimates of channel conveyance (assuming a non-braided morphology) rather than accounting for the actual channel planform. Accurate representation of river conveyance and planform in a DEM is critical to HD modeling and can be achieved with a combination of remote sensing (e.g., satellite image) and field data, such as water surface elevation (WSE). Therefore, the objectives of this study are (i) to develop an algorithm for predicting channel conveyance and characterizing planform via satellite images and in situ WSE and (ii) to estimate discharge using the predicted conveyance via an HD model. The algorithm is named River Bathymetry via Satellite Image Compilation (RiBaSIC) and uses Landsat satellite imagery, Shuttle Radar Topography Mission (SRTM) DEM, Multi-Error-Removed Improved-Terrain (MERIT) DEM, and observed WSE. The algorithm is tested on four study areas along the Willamette River, Kushiyara River, Jamuna River, and Solimoes River. Channel slope and predicted hydraulic radius are subsequently estimated for approximating Manning’s roughness factor. Two-dimensional HD models using DEMs modified by the RiBaSIC algorithm and corresponding Manning’s roughness factors are employed for discharge estimation. The proposed algorithm can represent river planform and conveyance in single-channeled, meandering, wandering, and braided river reaches. Additionally, the HD models estimated discharge within 14–19% relative root mean squared error (RRMSE) in simulation of five years period.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-08-30
    Description: Quantifying river discharge is a critical component for hydrological studies, floodplain ecological conservation research, and water resources management. In recent years, a series of remote sensing-based discharge estimation methods have been developed. An example is the use of the near infrared (NIR) band of optical satellite images, with the principle of calculating the ratio between a stable land pixel for calibration (C) and a pixel within the river for measurement (M), applying a linear regression between C/M series and observed discharge series. This study trialed the C/M method, utilizing the Harmonized Landsat and Sentinel-2 (HLS) surface reflectance product on relatively small rivers with 30~100 m widths. Two study sites with different river characteristics and geographic settings in the Murray-Darling Basin (MDB) of Australia were selected as case studies. Two independent sets of HLS data and gauged discharge data for the 2017 and 2018 water years were acquired for modeling and validation, respectively. Results reveal high consistency between the HLS-derived discharge and gauged discharge at both sites. The Relative Root Mean Square Errors are 53% and 19%, and the Nash-Sutcliffe Efficiency coefficients are 0.24 and 0.69 for the two sites. This study supports the effectiveness of applying the fine-resolution HLS for modeling discharge on small rivers based on the C/M methodology, which also provides evidence of using multisource synthesized datasets as the input for discharge estimation.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-08-29
    Description: As aging populations continue to grow, primarily in developed countries, there are increasing demands for the system that monitors the activities of elderly people while continuing to allow them to pursue their individual, healthy, and independent lifestyles. Therefore, it is required to develop the activity of daily living (ADL) sensing systems that are based on high-performance sensors and information technologies. However, most of the systems that have been proposed to date have only been investigated and/or evaluated in experimental environments. When considering the spread of such systems to typical homes inhabited by elderly people, it is clear that such sensing systems will need to meet the following five requirements: (1) be inexpensive; (2) provide robustness; (3) protect privacy; (4) be maintenance-free; and, (5) work with a simple user interface. In this paper, we propose a novel senior-friendly ADL sensing system that can fulfill these requirements. More specifically, we achieve an easy collection of ADL data from elderly people while using a proposed system that consists of a small number of inexpensive energy harvesting sensors and simple annotation buttons, without the need for privacy-invasive cameras or microphones. In order to evaluate the practicality of our proposed system, we installed it in ten typical homes with elderly residents and collected the ADL data over a two-month period. We then visualized the collected data and performed activity recognition using a long short-term memory (LSTM) model. From the collected results, we confirmed that our proposed system, which is inexpensive and non-invasive, can correctly collect resident ADL data and could recognize activities from the collected data with a high recall rate of 72.3% on average. This result shows a high potential of our proposed system for application to services for elderly people.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-08-30
    Description: The Internet of Things (IoT) is an industry-recognized next intelligent life solution that increases the level of comfort, efficiency, and automation for citizens through numerous sensors, smart devices, and cloud stations connected physically. As an important application scenario of IoT, the Internet of Vehicles (IoV) plays an extremely critical role in the intelligent transportation field. In fact, the In-Vehicle Network of smart vehicles that are recognized as the core roles in intelligent transportation is currently the Controller Area Network (CAN). However, the In-Vehicle CAN bus protocol has several vulnerabilities without any encryption, authentication, or integrity checking, which severely threatens the safety of drivers and passengers. Once malicious attackers hack the vehicular gateway and obtain the access right of the CAN, they may control the vehicle based on the vulnerabilities of the CAN bus protocol. Given the severe security risk of CAN, we proposed the CANsec, a practical In-Vehicle CAN security evaluation tool that simulates malicious attacks according to major attack models to evaluate the security risk of the In-Vehicle CAN. We also show a usage case of the CANsec without knowing any information from the vehicle manufacturer.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-08-29
    Description: An evergreen scientific feature is the ability for scientific works to be reproduced. Since chaotic systems are so hard to understand analytically, numerical simulations assume a key role in their investigation. Such simulations have been considered as reproducible in many works. However, few studies have focused on the effects of the finite precision of computers on the simulation reproducibility of chaotic systems; moreover, code sharing and details on how to reproduce simulation results are not present in many investigations. In this work, a case study of reproducibility is presented in the simulation of a chaotic jerk circuit, using the software LTspice. We also employ the OSF platform to share the project associated with this paper. Tests performed with LTspice XVII on four different computers show the difficulties of simulation reproducibility by this software. We compare these results with experimental data using a normalised root mean square error in order to identify the computer with the highest prediction horizon. We also calculate the entropy of the signals to check differences among computer simulations and the practical experiment. The methodology developed is efficient in identifying the computer with better performance, which allows applying it to other cases in the literature. This investigation is fully described and available on the OSF platform.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-08-29
    Description: This study is focused on a barian titanian phlogopite found in an alkaline ultramafic dyke transecting Mesozoic limestones of the Gargano Promontory (Apulia, Italy). The rock containing the barian titanian phlogopite, an olivine-clinopyroxene-rich lamprophyre with nepheline and free of feldspars, has been classified as monchiquite. The present study combines chemical analyses, single crystal X-ray diffraction and Raman spectroscopy. Chemical variations suggest that the entry of Ba into the phlogopite structure can be explained by the exchange Ba + Al = K + Si. The crystal structure refinement indicates that the Ti uptake is consistent with the Ti–oxy exchange mechanism. The structural parameters associated with the oxy substitution mechanism are extremely enhanced and rarely reported in natural phlogopite: (a) displacement of M2 cation toward the O4 site (~0.7); (b) M2 octahedron bond-length distortion (~2.5); (c) very short c cell parameter (~10.14 Å). Raman analysis showed most prominent features in the 800–200 cm−1 region with the strongest peaks occurring at 773 and 735 cm−1. Only a weak, broad band was observed to occur in the OH-stretching region. As concerns the origin of the barian titanian phlogopite, the rock textural features clearly indicate that it crystallized from pockets of the interstitial melt. Here, Ba and Ti enrichment took place after major crystallization of olivine under fast-cooling conditions, close to the dyke margin.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-08-29
    Description: The lithobiont community encrusting an early Pleistocene palaeocliff cropping out north of Augusta (SE Sicily, Italy) was investigated based on field observations and laboratory inspection of two rocky samples. Bryozoans, serpulids, brachiopods and bivalves encrusted part of the exposed surfaces that were bored mostly by clionaid sponges. Bryozoans, with at least 25 species detected on the rocky samples, are the most diversified skeletonized lithobionts also accounting for the highest number of colonies/specimens and highest coverage. Brachiopods, with the only species Novocrania anomala and a few but large cemented valves, cover wide surfaces. Serpulids, with two species identified on the sampled rocks and further two on the outcrop, were intermediate. A multiphase colonization is present, including a final epilithobiont community locally formed on eroded surfaces exposing a network of pervasive borings. The co-occurrence of very sciaphilic species having circalittoral to bathyal distributions suggests that the studied community thrived on a rocky substratum located near or at the shelf break, probably belonging to the shelf break (or RL) biocoenosis, also in agreement with observations on the fossil content of neighboring marly sediments. The observed relationships among colonizers largely represent mere superimpositions, and real interactions are not enough to state species competitiveness.
    Electronic ISSN: 2076-3263
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-08-29
    Description: The instrument transformers scenario is moving towards the adoption of a new generation of low-power instrument transformers. This disruptive change also requires that the modeling, characterization, and testing of those devices must be improved. Therefore, this study focuses on a smart approach developed by the authors in a previous study to estimate the output of low-power voltage transformers (LPVT). The approach—which is based on a sort of modeling in the frequency domain (the so-called sinc-response)—allows obtaining the behavior of the LPVT at rated and distorted conditions. Experimental tests performed on off-the-shelf devices confirm the applicability and effectiveness of the proposed approach when estimating the output response of LPVTs.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-07-17
    Description: On 2 February 2018, the China Seismo-Electromagnetic Satellite (CSES) ZhangHeng 01 (ZH-01) was successfully launched, carrying on board, in addition to a suite of plasma and particle physics instruments, a high precision magnetometer package (HPM), able to observe the ultra-low frequency (ULF) waves. In this paper, a night time Pi2 pulsation observed by CSES is reported for the first time. This Pi2 event occurred on 3 September 2018, and began at 14:30 UT (02:37 magnetic local time), when the satellite was in the southern hemisphere between −49 and −13 magnetic latitude (MLAT). Kakioka (KAK) ground station in Japan detected the same Pi2 between 14:30–14:42 UT (23:30–23:42 local time). The Pi2 oscillations in the compressional, toroidal, and poloidal components at the CSES satellite and the H-component at the KAK station are investigated by estimating coherence, amplitude, and cross-phase. We noticed a high degree of similarity between the Pi2 event in the horizontal component at KAK and the ionospheric fluctuations in the compressional component at CSES. This high correlation indicated the magnetospheric source of the Pi2 event. In addition, Pi2 is exhibited clearly in the δBy component at CSES, which is highly correlated with the ground H component, so the Pi2 event could be explained by the Substorm Current Wedge (SCW). This interpretation is further confirmed by checking the compressional component of Van Allen Probe (VAP) B satellite inside the plasmasphere, which, for the first time, gives observational support for an earlier model. This ULF wave observation shows the consistency and reliability of the high precision magnetometer (HPM) equipped by two fluxgate magnetometers (FGM1 and FGM2) onboard CSES.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-07-18
    Description: The main factors influencing the shape of the beach, shoreline and seabed include undulation, wind and coastal currents. These phenomena cause continuous and multidimensional changes in the shape of the seabed and the Earth’s surface, and when they occur in an area of intense human activity, they should be constantly monitored. In 2018 and 2019, several measurement campaigns took place in the littoral zone in Sopot, related to the intensive uplift of the seabed and beach caused by the tombolo phenomenon. In this research, a unique combination of bathymetric data obtained from an unmanned surface vessel, photogrammetric data obtained from unmanned aerial vehicles and ground laser scanning were used, along with geodetic data from precision measurements with receivers of global satellite navigation systems. This paper comprehensively presents photogrammetric measurements made from unmanned aerial vehicles during these campaigns. It describes in detail the problems in reconstruction within the water areas, analyses the accuracy of various photogrammetric measurement techniques, proposes a statistical method of data filtration and presents the changes that occurred within the studies area. The work ends with an interpretation of the causes of changes in the land part of the littoral zone and a summary of the obtained results.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-07-19
    Description: With the development of flexible electronic materials, as well as the wide development and application of smartphones, the cloud, and wireless systems, flexible wearable sensor technology has a significant and far-reaching impact on the realization of personalized medical care and the reform of the consumer market in the future. However, due to the high requirements for accuracy, reliability, low power consumption, and less data error, the development of these potential areas is full of challenges. In order to solve these problems, this review mainly searches the literature from 2008 to May 2020, based on the PRISMA process. Based on them, this paper reviews the latest research progress of new flexible materials and different types of sensors for monitoring vital signs (including electrophysiological signals, body temperature, and respiratory frequency) in recent years. These materials and sensors can help realize accurate signal detection based on comfortable and sustainable observation, and may likely be applied to future daily clothing.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-07-18
    Description: High-lying vegetated marshes and low-lying bare mudflats have been suggested to be two stable states in intertidal ecosystems. Being able to identify the conditions enabling the shifts between these two stable states is of great importance for ecosystem management in general and the restoration of tidal marsh ecosystems in particular. However, the number of studies investigating the conditions for state shifts from bare mudflats to vegetated marshes remains relatively low. We developed a GIS approach to identify the locations of expected shifts from bare intertidal flats to vegetated marshes along a large estuary (Western Scheldt estuary, SW Netherlands), by analyzing the interactions between spatial patterns of vegetation biomass, elevation, tidal currents, and wind waves. We analyzed false-color aerial images for locating marshes, LIDAR-based digital elevation models, and spatial model simulations of tidal currents and wind waves at the whole estuary scale (~326 km²). Our results demonstrate that: (1) Bimodality in vegetation biomass and intertidal elevation co-occur; (2) the tidal currents and wind waves change abruptly at the transitions between the low-elevation bare state and high-elevation vegetated state. These findings suggest that biogeomorphic feedback between vegetation growth, currents, waves, and sediment dynamics causes the state shifts from bare mudflats to vegetated marshes. Our findings are translated into a GIS approach (logistic regression) to identify the locations of shifts from bare to vegetated states during the studied period based on spatial patterns of elevation, current, and wave orbital velocities. This GIS approach can provide a scientific basis for the management and restoration of tidal marshes.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-07-18
    Description: The advances of the Internet of Things, robotics, and Artificial Intelligence, to give just a few examples, allow us to imagine promising results in the development of smart buildings in the near future. In the particular case of elderly care, there are new solutions that integrate systems that monitor variables associated with the health of each user or systems that facilitate physical or cognitive rehabilitation. In all these solutions, it is clear that these new environments, usually called Ambient Assisted Living (AAL), configure a Cyber-Physical System (CPS) that connects information from the physical world to the cyber-world with the primary objective of adding more intelligence to these environments. This article presents a CPS-AAL for caregiving centers, with the main novelty that includes a Socially Assistive Robot (SAR). The CPS-AAL presented in this work uses a digital twin world with the information acquired by all devices. The basis of this digital twin world is the CORTEX cognitive architecture, a set of software agents interacting through a Deep State Representation (DSR) that stored the shared information between them. The proposal is evaluated in a simulated environment with two use cases requiring interaction between the sensors and the SAR in a simulated caregiving center.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...