ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth  (5)
  • Fluid geochemistry  (2)
  • Elsevier  (7)
  • American Association for the Advancement of Science (AAAS)
  • American Association of Petroleum Geologists (AAPG)
  • American Geophysical Union (AGU)
  • 2020-2022  (7)
  • 1965-1969
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2021-06-15
    Description: Sicily hosts many natural manifestations that include thermal waters, gas discharges and mud volcanoes. Due to the significant geodynamic and geological differences, the fluid discharges along a NE-WS–oriented transect that run from the Peloritani Mts. to the Sciacca Plain shows a large variability in water and gas chemical and isotopic compositions. The studied waters are characterized by Ca-HCO3, Ca(Mg)-SO4, Ca-Cl and Na-Cl compositions produced by distinct geochemical processes such as water-rock-gas interactions, mixing between deep and shallow aquifers and seawater and direct and reverse ion exchanges. The gas chemistry is dominated by CO2 to the east and CO2-N2 to the west of the study area, whereas the central part shows mud volcanoes discharging CH4-rich gases. Water isotopes suggest that the thermal waters are fed by a meteoric recharge, although isotopic exchange processes between thermal fluids and host rocks at temperature 〉150°C are recognized. Accordingly, liquid geothermometry suggests equilibrium temperatures up to 220°C. The carbon in CO2 and helium isotopes of the emissions from the westernmost sector of Sicily indicate that these two gases consists of up to 40 % of a mantle component, the latter decreasing to the east down to 10% where CO2 of thermometamorphic origin dominates. Accordingly, conceptual models of the fluid circulation for the western, central and eastern sectors are proposed. The regional geothermal reservoir, hosted in carbonates in the western sector and locally outcropping, is of low to medium temperature. Higher temperature conditions (up to 200-220°C) are suggested by geothermometry and probably related to deeper levels of the system. Sicily can be regarded as a potentially suitable area for future investigations to evaluate specific activities aimed at exploiting the geothermal resource.
    Description: Published
    Description: 102120
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: JCR Journal
    Keywords: Fluid geochemistry ; Stable isotopes ; Geothermal exploration ; Dissolved gases ; Tectonics ; 03. Hydrosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-06
    Description: The partitioning of carbon dioxide (CO〈sub〉2〈/sub〉) released by soils at Vulcano Island (Aeolian Islands, Italy) was performed by combining the CO〈sub〉2〈/sub〉 flux and the carbon isotope measurements. Based on this method, the amount of CO〈sub〉2〈/sub〉 of volcanic origin was quantified six times during the period 2015–2018. The data analysis allowed us to establish the correlation between CO〈sub〉2〈/sub〉 soil degassing and changes in the contribution of volcanic fluids. Carbon isotope determinations were performed in situ to enhance the coverage of data collection in space and time. These data were combined with both the CO〈sub〉2〈/sub〉 contents in the ground gases and the soil CO〈sub〉2〈/sub〉 flux. The amount of volcanic CO〈sub〉2〈/sub〉 was distinguished from that of biogenic origin by implementing a three-component mixing model. The results of this study indicate that the increase in CO〈sub〉2〈/sub〉 output in September 2018 reflects the increase in volcanic gas emissions. The measurement method and analysis presented in this work are sufficiently general to be applicable to the monitoring programs of active volcanoes.
    Description: Published
    Description: 106972
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Carbon dioxide ; CO2 flux ; CO2 isotope composition ; Volcano monitoring ; Volcanic unrest ; Volcanic degassing ; 04. Solid Earth ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-18
    Description: Highlights -Gas blowouts from water wells are frequent in the southeastern zone of Rome -Emitted gas killed some pets and families had to be evacuated for security reasons -Gas has a magmatic origin with the highest helium R/Ra of Colli Albani gas discharges -Monitoring of soil CO2 flux and air gas concentration allowed to assess gas hazard -Gas diffusing in soil reached nearby houses creating dangerous indoor conditions
    Description: The southeastern zone of Rome city is located at the northwest periphery of the quiescent Colli Albano volcano. This zone is characterized by the presence of a shallow (depth ~ 45–50 m) gas pressurized aquifer that produces gas blowouts when it is reached by wells. Three gas blowouts occurred in this zone in 2003, 2008 (another one was discovered during the present study) and 2016 and in this paper we describe in detail the latter two. The emitted gas consists mostly of CO2 (〉90 vol%) and contains a low but significant quantity of H2S (0.3–0.5 vol%) and it has the highest helium isotopic R/Ra value (1.90) of all Colli Albani natural gas discharges, suggesting its likely magmatic origin. In both the described gas blowouts, dozens of families had to be prudentially evacuated from their houses and the emitted gas killed some animals. We monitored, continuously or by discrete surveys, the soil CO2 flux, the indoor and outdoor air concentration of CO2 and H2S, the environmental parameters and we checked whether the cementation of the gas releasing wells had been effective. In both cases, the upper part of the wells had been partly closed with an inflating packer to avoid free gas dispersion in atmosphere; as a consequence gas diffused laterally from the wells into the permeable surficial soil up to reach the nearest houses creating hazardous indoor conditions, particularly for CO2 in some basements. During the well cementation operations, and in one case because of the packer rupture, gas and nebulized water were freely discharged from the wells into the atmosphere, and high air CO2 and H2S concentrations were found. Fortunately gas was quickly dispersed by strong winds. The positive results obtained in all the studied gas blowouts demonstrate that our applied geochemistry approach represents a model of intervention useful for the assessment of the hazard associated to accidental endogenous gas release. This model is of fundamental importance also to overcome the risk problems created by accidental gas blowout from wells in an urbanized environment, up to the safe return of the people in their evacuated houses.
    Description: Published
    Description: 104769
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Rome gas blowouts zone ; Hazard assessment of endogenous gas blowouts from wells ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-25
    Description: Recent measurements of surface vertical displacements of the European Alps show a correlation between vertical velocities and topographic features, with widespread uplift at rates of up to ~2–2.5 mm/a in the North-Western and Central Alps, and ~1 mm/a across a continuous region from the Eastern to the South-Western Alps. Such a rock uplift rate pattern is at odds with the horizontal velocity eld, characterized by shortening and crustal thickening in the Eastern Alps and very limited deformation in the Central and Western Alps. Proposed me- chanisms of rock uplift rate include isostatic response to the last deglaciation, long-term erosion, detachment of the Western Alpine slab, as well as lithospheric and surface de ection due to mantle convection. Here, we assess previous work and present new estimates of the contributions from these mechanisms. Given the large range of model estimates, the isostatic adjustment to deglaciation and erosion are su cient to explain the full observed rate of uplift in the Eastern Alps, which, if correct, would preclude a contribution from horizontal shortening and crustal thickening. Alternatively, uplift is a partitioned response to a range of mechanisms. In the Central and Western Alps, the lithospheric adjustment to deglaciation and erosion likely accounts for roughly half of the rock uplift rate, which points to a noticeable contribution by mantle-related processes such as detachment of the European slab and/or asthenospheric upwelling. While it is di cult to independently constrain the patterns and magnitude of mantle contributions to ongoing Alpine vertical displacements at present, future data should provide additional insights. Regardless, interacting tectonic and surface mass redistribution processes, rather than an individual forcing, best explain ongoing Alpine elevation changes.
    Description: Published
    Description: 589-604
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 04. Solid Earth ; 04.03. Geodesy ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-19
    Description: The chemical and isotopic features of the fluids (water and gases) in the Lucane thermal area (southern Italy) have been investigated in order to verify their origin, water temperature in the geothermal reservoir, and to recognize the main natural processes concerning the water composition during ascent towards the surface. The Lucane geothermal system is placed in the southern sector of the Apennines chains, a seismically active area, close to the southern base of the Mt. Alpi carbonate massif. Along the study area, two main sets of high-angle faults form an almost orthogonal fault system that, as suggested by local structural geology, acts as a preferential pathway for uprising deep fluids. Here, we recognized two different types of waters: (i) cold shallow waters having a meteoritic origin and interacting with carbonate rocks (dolomite and calcite), whose dissolved gases show a dominant atmospheric contribution and (ii) hypothermal waters (average temperature of 21 °C), having a meteoritic origin and interacting with both carbonate rocks and inter-bedded evaporitic deposit. Geochemical data allow estimating a geothermal reservoir temperature between 30 °C and 60 °C, according to silica and Ca/ Mg geothermometers, respectively. A heat discharge related to hypothermal groundwater flow between 7.75E +06 and 2.00E+07 J/s was computed. δ18O and δ2Η data allowed recognizing a meteoric origin for hypothermal (hereafter TL) waters, with mean recharge (infiltration) elevations between 1300 and 1700 m a.s.l. These waters are gas-rich (e.g., CO2 and He), which amounts are higher than those in air-saturated water (ASW). Carbon and helium isotope signature in the TL waters indicate their mainly crustal origin and involve a tectonic control on fluid migration through the crust. Furthermore, we observe that the He isotopic signature in gases dissolved in TL waters is stable over time and its monitoring could be a powerful tool to assess the seismogenetic processes since their preparatory phases.
    Description: Published
    Description: 106618
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: geochemistry ; tectonics ; geothermy ; earthquakes ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-03-03
    Description: The elevation of an orogenic belt is commonly related to crustal/lithosphere thickening. Here, we discuss the Apennines as an example to show that topography at a plate margin may be controlled not only by isostatic adjustment but also by dynamic, mantle-driven processes. Using recent structural constraints for the crust and mantle we find that the expected crustal isostatic component explains only a fraction of the topography of the belt, indicating positive residual topography in the central Apennines and negative residual topography in the northern Apennines and Calabria. The trend of the residual topography matches the mantle flow induced dynamic topography estimated from regional tomography models. We infer that a large fraction of the Apennines topography is related to mantle dynamics, producing relative upwellings in the central Apennines and downwellings in the northern Apennines and Calabria where subduction is still ongoing. Comparison between geodetic and geological data on vertical motions indicates that this dynamic process started in the early Pleistocene and the resulting uplift appears related to the formation and enlargement of a slab window below the central Apennines. The case of the Apennines shows that at convergent margins the elevation of a mountain belt may be significantly different from that predicted solely by crustal isostasy and that a large fraction of the elevation and its rate of change are dynamically controlled by mantle convection.
    Description: Published
    Description: 163-174
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 04. Solid Earth ; 04.03. Geodesy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-05-21
    Description: Fluid primary source(s) and chemical-physical processes controlling water and gas chemistry of thermal springs from Eastern Cordillera, sub-Andean Ranges and Santa Bárbara (Jujuy Province, northern Argentina) were investigated to provide information for a preliminary evaluation of the geothermal potential in these areas. Thermal manifestations in Eastern Cordillera (Reyes) and part of those in the western sector of sub-Andean Range (Aguas Calientes) are fed by shallow aquifers, interacting with Quaternary- Neogene rocks and the upper portion of Pliocene-Miocene formations (Orán Group), whereas the meteoric water recharge area is located at〉2500 m a.s.l., corresponding to Chañi hill. Differently, El Jordán thermal spring in the sub-Andean Range is fed by a hydrothermal aquifer hosted within highly porous and fractured formations of the Salta Group (Yacoraite Formation) and recharged by meteoric water from Sierra de Calilegua (∼1500m a.s.l.). The latter is the recharge area of the La Quinta geothermal waters as well, but these have been fed at higher altitudes (〉 2500 m a.s.l.) in the range. The hydrothermal reservoir feeding the other thermal springs from the Santa Barbara system (Caimancito, El Palmar, and Siete Aguas) is recharged by meteoric water from Zapla Ranges and Santa Barbara Hill at〈2500m a.s.l. The high-TDS (〉 16,000 mg/L) Na+-Cl- La Quinta thermal springs are produced by interaction with the evaporite deposits of Salta Group, including halite, whereas the chemistry of El Palmar, El Jordán and Caimancito thermal springs, showing a Na+-SO4 2-(Cl−) composition, depends on mixing with shallower SO4 2--rich waters interacting with gypsum deposits of Anta Formation. Dissolved and bubbling gases from all the investigated provinces are related to CO2- and CH4-rich crustal fluids produced by both thermogenic processes occurring within the hydrothermal systems and microbial activity at relatively low depth, with low to negligible mantle contribution, as indicated by the 3He/4He values ≤ 0.21 Ra. The fluid reservoir feeding the Quinta thermal springs shows the highest estimated temperatures (〉 200 °C), which, considering the depth of Salta Group in the Santa Barbara system (~2000 m), support the idea, suggested by previous authors, of an anomalous geothermal gradient for this area, a promising pre-requisite for future exploitation of the geothermal resource.
    Description: Published
    Description: 102627
    Description: 1TR. Georisorse
    Description: JCR Journal
    Keywords: Hydrothermal systems ; Fluid geochemistry ; Jujuy province ; Geothermal resource
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...