ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.07. Tectonophysics  (8)
  • Remote sensing  (4)
  • Sea ice
  • Elsevier  (15)
  • American Institute of Physics (AIP)
  • 2020-2022  (5)
  • 2015-2019  (10)
Collection
Years
Year
  • 1
    Publication Date: 2021-02-26
    Description: In this study we combine seismological and GOCE satellite gravity information by using a Bayesian-like technique, with the aim of inferring the density structure of the Pacific (90°N 90°S) (121°E 60°W) lithosphere and upper mantle. We recover a 1° × 1° 3-D density model, down to 300 km depth, which explains gravity observations with a variance reduction of 67.41%. The model, with an associated a posteriori standard deviation, provides a significant contribution to understanding the evolution of the Pacific lithosphere and answers to some debated geodynamic questions. Our methodology enables us to combine the recovery of density parameters with the optimum density-vSV scalings. The latter account for both seismological and gravity observations in order to identify the regions characterized by chemically-induced density heterogeneities which add to the thermally-induced anoma- lies. Chemically-modified structures are found west of the East Pacific Rise (EPR) and are of relevant amplitude both below the north-western side of the Pacific Plate, at the base of the lithosphere, and up to 100 km depth beneath the Hawaiian and Super Swell regions, thus explaining the anomalous shallow regions without invoking the thermal buoyancy as the sole justification. Coherently with the chemically modified structures, our results a) support a lighter and more buoyant lithosphere than that predicted by the cooling models and b) are in favor of the hypothesized crustal underplating beneath the Hawaiian chain and be- neath the volcanic units in the southern branch of the Super Swell region. The comparison between calculated mantle gravity residuals and residual topography a) suggests a lateral viscosity growth associated with the increasing thickness and density of the Plate and b) correlates well with sub-lithospheric mantle flow from the EPR towards west, up to the Kermadec and Tonga Trench in the south and the Kuril-Kamchatka Trench in the north.
    Description: Published
    Description: 101-115
    Description: 7T. Struttura della Terra e geodinamica
    Description: JCR Journal
    Keywords: Pacific lithosphere ; GOCE ; Satellite gravity ; Seismological observations ; Residual Topography ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-07
    Description: While mantle convection is a fundamental ingredient of geodynamics, the driving mechanism of plate tectonics remains elusive. Are plates driven only from the thermal cooling of the mantle or are there further astronomical forces acting on them? GPS measurements are now accurate enough that, on long baselines, both secular plate motions and periodic tidal displacements are visible. The now 〉20 year-long space geodesy record of plate motions allows a more accurate analysis of the contribution of the horizontal component of the body tide in shifting the lithosphere. We review the data and show that lithospheric plates retain a non-zero horizontal component of the solid Earth tidal waves and their speed correlates with tidal harmonics. High-frequency semidiurnal Earth's tides are likely contributing to plate motions, but their residuals are still within the error of the present accuracy of GNSS data. The low-frequency body tides rather show horizontal residuals equal to the relative motion among plates, proving the astronomical input on plate dynamics. Plates move faster with nu- tation cyclicities of 8.8 and 18.6 years that correlate to lunar apsides migration and nodal precession. The high- frequency body tides are mostly buffered by the high viscosity of the lithosphere and the underlying mantle, whereas low-frequency horizontal tidal oscillations are compatible with the relaxation time of the low-velocity zone and can westerly drag the lithosphere over the asthenospheric mantle. Variable angular velocities among plates are controlled by the viscosity anisotropies in the decoupling layer within the low-velocity zone. Tidal oscillations also correlate with the seismic release.
    Description: Published
    Description: 103179
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Body tide ; Plate tectonics ; Geeodynamics ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-15
    Description: Extreme and inaccessible environments are a new frontier that unmanned and remotely operated ve-hicles can today safely access and monitor. The Lusi mud eruption (NE Java Island, Indonesia) representsone of these harsh environments that are totally unreachable with traditional techniques. Here boilingmud is constantly spewed tens of meters in height and tall gas clouds surround the 100 m wide activecrater. The crater is surrounded by a ~600 m diameter circular zone of hot mud that prevents anyapproach to investigate and sample the eruption site. In order to access this active crater we designedand assembled a multipurpose drone.The Lusi drone is equipped with numerous airborne devices suitable for use on board of other mul-ticopters. During the missions, three cameras can complete 1) video survey, 2) high resolution photo-grammetry of desired and preselected polygons, and 3) thermal photogrammetry surveys with infra-redcamera to locate hotfluids seepage areas or faulted zones. Crater sampling and monitoring operationscan be pre-planned with aflight software, and the pilot is required only for take-off and landing. A winchallows the deployment of gas, mud and water samplers and contact thermometers to be operated withno risk for the aircraft. During the winch operations (that can be performed automatically), the aircrafthovers at a safety height until the tasks controlled by the winch-embedded processor are completed. Thedrone is also equipped with GPS-connected CO2and CH4sensors. Gridded surveys using these devicesallowed obtaining 2D maps of the concentration and distribution of various gasses over the area coveredby theflight path.The device is solid, stable even with significant wind, affordable, and easy to transport. The Lusi dronesuccessfully operated during several expeditions at the ongoing active Lusi eruption site and proved to bean excellent tool to study other harsh or unreachable sites, where operations with more conventionalmethods are too expensive, dangerous or simply impossible
    Description: LUSI LAB project, PI A. Mazzini; esearch Council of Norway through itsCenters of Excellence funding scheme, Project Number 223272; BPLS (Badan Penanggulangan Lumpur Sidoarjo, Sidoarjo Mudflow Management Agency)
    Description: Published
    Description: 26-37
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Keywords: Lusi mud eruption ; Drone-UAV ; Multirotor ; Remote sampling ; Remote sensing ; Indonesia ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-19
    Description: Syneruptive gas flux time series can, in principle, be retrieved from satellite maps of SO2 collected during and immediately after volcanic eruptions, and used to gain insights into the volcanic processes which drive the volcanic activity. Determination of the age and height of volcanic plumes are key prerequisites for such calculations. However, these parameters are challenging to constrain using satellite-based techniques. Here, we use imagery from OMI and GOME-2 satellite sensors and a novel numerical procedure based on back-trajectory analysis to calculate plume height as a function of position at the satellite measurement time together with plume injection height and time at a volcanic vent location. We applied this new procedure to three Etna eruptions (12 August 2011, 18 March 2012 and 12 April 2013) and compared our results with independent satellite and ground-based estimations. We also compare our injection height time-series with measurements of volcanic tremor, which reflects the eruption intensity, showing a good match between these two datasets. Our results are a milestone in progressing towards reliable determination of gas flux data from satellite-derived SO2 maps during volcanic eruptions, which would be of great value for operational management of explosive eruptions.
    Description: 1) European Research Council under the European Union's Seventh Framework Programme (FP/2.007-2013)/ERC Grant Agreement no. 279802, project 283 CO2Volc. 2) MEDiterranean SUpersite Volcanoes 280 (MED-SUV) WP 3.3.3
    Description: Published
    Description: 79-91
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Volcanic SO2 ; Trajectory modelling ; Remote sensing ; Volcanic tremor ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-25
    Description: Recent measurements of surface vertical displacements of the European Alps show a correlation between vertical velocities and topographic features, with widespread uplift at rates of up to ~2–2.5 mm/a in the North-Western and Central Alps, and ~1 mm/a across a continuous region from the Eastern to the South-Western Alps. Such a rock uplift rate pattern is at odds with the horizontal velocity eld, characterized by shortening and crustal thickening in the Eastern Alps and very limited deformation in the Central and Western Alps. Proposed me- chanisms of rock uplift rate include isostatic response to the last deglaciation, long-term erosion, detachment of the Western Alpine slab, as well as lithospheric and surface de ection due to mantle convection. Here, we assess previous work and present new estimates of the contributions from these mechanisms. Given the large range of model estimates, the isostatic adjustment to deglaciation and erosion are su cient to explain the full observed rate of uplift in the Eastern Alps, which, if correct, would preclude a contribution from horizontal shortening and crustal thickening. Alternatively, uplift is a partitioned response to a range of mechanisms. In the Central and Western Alps, the lithospheric adjustment to deglaciation and erosion likely accounts for roughly half of the rock uplift rate, which points to a noticeable contribution by mantle-related processes such as detachment of the European slab and/or asthenospheric upwelling. While it is di cult to independently constrain the patterns and magnitude of mantle contributions to ongoing Alpine vertical displacements at present, future data should provide additional insights. Regardless, interacting tectonic and surface mass redistribution processes, rather than an individual forcing, best explain ongoing Alpine elevation changes.
    Description: Published
    Description: 589-604
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: 04. Solid Earth ; 04.03. Geodesy ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-15
    Description: An Mw 6.1, devastating earthquake, on April 6, 2009, struck the Middle Aterno Valley (Abruzzi Apennines, Italy) due to the activation of a poorly known normal fault system. Structural analysis of the fault population and investigation of the relationships with the Quaternary continental deposits through integrated field and laboratory techniques were conducted in order to reconstruct the long-term, tectono-sedimentary evolution of the basin and hypothesize the size of the fault segment. A polyphasic evolution of the Middle Aterno Valley is characterized by a conjugate, ∼E-W and ∼NS-striking fault system, during the early stage of basin development, and by a dip-slip, NW-striking fault system in a later phase. The old conjugate fault system controlled the generation of the largest sedimentary traps in the area and is responsible for the horst and graben structures within the basin. During the Early Pleistocene the E-W and NS system reactivated with dip-slip kinematics. This gave rise to intra-basin bedrock highs and a significant syn-tectonic deposition, causing variable thickness and hiatuses of the continental infill. Subsequently, since the end of the Early Pleistocene, with the inception of the NW-striking fault system, several NW-strands linked into longer splays and their activity migrated toward a leading segment affecting the Paganica-San Demetrio basin: the Paganica-San Demetrio fault alignment. The findings from this work constrain and are consistent with the subsurface basin geometry inferred from previous geophysical investigations. Notably, two major elements of the ∼E-W and ∼NS-striking faults likely act as transfer to the nearby stepping active fault systems or form the boundaries, as geometric complexities, that limit the Paganica-San Demetrio fault segment overall length to 19 ± 3 km. The resulting size of the leading fault segment is coherent with the extent of the 6 April 2009 L'Aquila earthquake causative fault. The positive match between the geologic long-term and coseismic images of the 2009 seismogenic fault highlights that the comprehensive reconstruction of the deformation history offers a unique contribution to the understanding faults seismic potential.
    Description: MIUR (Italian Ministry of Education, University and Research) project “FIRB Abruzzo - High-resolution analyses for assessing the seismic hazard and risk of the areas affected by the 6 April 2009 earthquake”, ref. RBAP10ZC8K_005 and RBAP10ZC8K_007, and by Agreement INGV-DPC 2012–2021
    Description: Published
    Description: 30-66
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Quaternary geology ; L'Aquila earthquake ; structural geology ; Middle Aterno Valley ; neotectonics ; active fault ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-12
    Description: InSAR images allow to detect the coseismic deformation, delimiting the epicentral area where the larger displacement has been concentrated. By inspecting the InSAR fringe patterns it is commonly recognized that, for dip-slip faults, the most deformed area is elliptical, or quadrilobated for strike-slip faults. This area coincides with the surface projection of the volume coseismically mobilized in the hanging wall of thrusts and normal faults, or the crustal walls adjacent to strike-slip faults. In the present work we analyzed a dataset of 32 seismic events, aiming to compare the deformation fields in terms of shape, spatial extents, and amount of deformed rock volumes, and the corresponding earthquake type and magnitudes. The dimension of the deformed area detected by InSAR scales with the magnitude of the earthquake, and we found that for M ≥ 6 is always larger than 100 km2, increasing to more than 550 km2 for M ≈ 6.5. Moreover, the comparison between InSAR and Peak Ground Accelerations documents the larger shaking within the areas suffering higher vertical deformation. As well established, the seismic epicenter rarely coincides with the area of larger shaking. Instead, the higher macro- seismic intensity often corresponds to the area of larger vertical displacement (either downward or upward), apart local site amplification effects. Outside this area, the vertical displacement is drastically lower, determining the strong attenuation of seismic waves and the decrease of the peak ground acceleration in the surrounding far- field area. Indeed, the segment of the activated fault constrains the area where the vertical oscillations are larger, allowing the contemporaneous maximum freedom degree of the crustal volume affected by horizontal maximum shaking, i.e., the near-field or epicentral area; therefore, the epicentral area and volume are active, i.e., they coseismically move and are contemporaneously crossed by seismic waves (active volume and surface active domain) where trapped waves and constructive interference are expected, whereas the surrounding far-field area is mainly fixed and passively crossed by seismic waves (passive volume and surface passive domain). All these considerations point out that InSAR images of areas affected by earthquakes are a powerful tool representing the fingerprint of the epicentral area where the largest shaking has taken place during an earthquake. Seismic hazard assessments should primarily rely on the expected future active domains.
    Description: Published
    Description: 103667
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: InSAR coseismic vertical deformation ; Constructive waves inferference ; Seismic hazard assessment ; Earthquake epicentral area ; Near-field active domain ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-05-31
    Description: We analyze the gross crustal structure of the Atlantic Ocean passive continental margins from north to the south, comparing eleven sections of the conjugate margins. As a general result, the western margins show a sharper continental-ocean transition with respect to the eastern margins that rather show a wider stretched and thinner margin. The Moho is in average about 5.7 ±1 dipping toward the interior of the continent on the western side, whereas it is about 2.7 ±1 in the eastern margins. Moreover, the stretched continental crust is on average 244 km wide on the western side, whereas it is up to about 439 km on the eastern side of the Atlantic. This systematic asymmetry reflects the early stages of the diachronous Mesozoic to Cenozoic continental rifting, which is inferred as the result of a polarized westward motion of both western and eastern plates, being Greenland, Northern and Southern Americas plates moving westward faster with respect to Scandinavia, Europe and Africa, relative to the underlying mantle.
    Description: Published
    Description: 101205
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Passive continental margin ; Westward drift of the lithosphere ; Moho dip Continental-ocean transition ; Asymmetric rift ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-06-10
    Description: Understanding how long-term subduction dynamics relates to the short-term seismicity and crustal tec tonics is a challenging but crucial topic in seismotectonics. We attempt to address this issue by linking long-term geodynamic evolution with short-term seismogenic deformation in the Northern Apennines. This retreating subduction orogen displays tectonic and seismogenic behaviors on various spatiotemporal scales that also characterize other subduction zones in the Mediterranean area. We use visco-elasto-plastic seismo-thermo-mechanical (STM) modeling with a realistic 2D setup based on available geological and geophysical data. The subduction dynamics and seismicity are coupled in the numerical modeling, and driven only by buoyancy forces, i.e., slab pull. Our results suggest that lower crustal rheology and lithospheric mantle temperature modulate the crustal tectonics of the Northern Apennines, as inferred by previous studies. The observed spatial distribution of upper crustal tectonic regimes and surface displacements requires buoyant, highly ductile material in the subduction channel beneath the internal part of the orogen. This allows protrusion of the asthenosphere in the lower crust and lithospheric delamination associated with slab retreat. The resulting surface velocities and principal stress axes generally agree with present-day observations, suggesting that slab delamination and retreat can explain the dynamics of the orogen. Our simulations successfully reproduce the type and overall distribution of seismicity with thrust faulting events in the external part of the orogen and normal faulting in its internal part. Slab temperatures and lithospheric mantle stiffness affect the cumulative seismic moment release and spatial distribution of upper crustal earthquakes. The properties of deep, sub-crustal material are thus shown to influence upper crustal seismicity in an orogen driven by slab retreat, even though the upper crust is largely decoupled from the lithospheric mantle. Our simulations therefore highlight the effect of deep lower crustal rheologies, self-driven subduction dynamics and mantle properties in controlling shallow deformation and seismicity.
    Description: Published
    Description: 228481
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Numerical modeling ; Geodynamics ; Seismotectonics orogen ; Delamination ; Northern Apennines ; 04.06. Seismology ; 04.03. Geodesy ; 05.01. Computational geophysics ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-12-12
    Description: The Great Burma earthquake (MsGR 8.0; Ms 7.6–7.7) occurred on May 23rd, 1912, and was one of the most remarkable early 1900's seismic events in Asia as described by Gutenberg and Richter (1954). The earthquake, focused near Maymyo, struck the Northern Shan State in eastern Myanmar. Contemporary evaluation of damage distribution and oral accounts led to a correlation between the earthquake and the topographically prominent Kyaukkyan Fault near the western margin of the Shan Plateau, although direct evidence has never been reported. This study aims to find evidence of paleoseismic activity, and to better understand the relationship between the 1912 earthquake and the Kyaukkyan Fault. Paleoseismic trenching along the Kyaukkyan Fault revealed evidence of several surface rupturing events. The northernmost trench exposes at least two visible rupture events since 4660 ± 30 BP: an older rupture stratigraphically constrained by AMS 14C dating to between 4660 ± 30 BP and 1270 ± 30 BP, and a younger rupture formed after 1270 ± 30 BP. The presence of pottery, bricks and cookingrelated charcoal in the younger faulted stratigraphy demonstrates Kyaukkyan Fault activity within human times, and a possible correlation between the younger rupture and the 1912 Maymyo earthquake is not excluded. The southern paleoseismic trench, within a broad transtensional basin far from bounding faults, exposes two (undated) surface ruptures. Further study is required to correlate those ruptures to the events dated in the north. These preliminary paleoseismological results constitute the first quantitative evidence of paleoseismic activity along the northern ~160 km of the Kyaukkyan Fault, and support existing evidence that the Kyaukkyan Fault is an active but slow-slipping structure with a long interseismic period.
    Description: Published
    Description: 75-86
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Paleoseismology ; active tectonics ; Myanmar ; 1912 earthquake ; strike-slip faulting ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 118 (2015): 122-135, doi:10.1016/j.dsr2.2015.02.008.
    Description: A coupled biophysical model is used to examine the impact of changes in sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms (MUPBs) in the Chukchi Sea of the Arctic Ocean over the period 1988–2013. The model is able to reproduce the basic features of the ICESCAPE (Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment) observed MUPB during July 2011. The simulated MUPBs occur every year during 1988–2013, mainly in between mid-June and mid-July. While the simulated under-ice blooms of moderate magnitude are widespread in the Chukchi Sea, MUPBs are less so. On average, the area fraction of MUPBs in the ice-covered areas of the Chukchi Sea during June and July is about 8%, which has been increasing at a rate of 2% yr–1 over 1988–2013. The simulated increase in the area fraction as well as primary productivity and chlorophyll a biomass is linked to an increase in light availability, in response to a decrease in sea ice and snow cover, and an increase in nutrient availability in the upper 100 m of the ocean, in conjunction with an intensification of ocean circulation. Simulated MUPBs are temporally sporadic and spatially patchy because of strong spatiotemporal variations of light and nutrient availability. However, as observed during ICESCAPE, there is a high likelihood that MUPBs may form at the shelf break, where the model simulates enhanced nutrient concentration that is seldom depleted between mid-June and mid-July because of generally robust shelf-break upwelling and other dynamic ocean processes. The occurrence of MUPBs at the shelf break is more frequent in the past decade than in the earlier period because of elevated light availability there. It may be even more frequent in the future if the sea ice and snow cover continues to decline such that light is more available at the shelf break to further boost the formation of MUPBs there.
    Description: This work is supported by the NASA Cryosphere Program and Climate and Biological Response Program and the NSF Office of Polar Programs (Grant Nos. NNX12AB31G; NNX11AO91G; ARC-0901987).
    Keywords: Arctic Ocean ; Chukchi Sea ; Phytoplankton ; Blooms ; Sea ice ; Snow depth ; Light availability ; Nutrient availability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cold Regions Science and Technology 109 (2015): 9-17, doi:10.1016/j.coldregions.2014.08.004.
    Description: Traditional measures for detecting oil spills in the open-ocean are both difficult to apply and less effective in ice-covered seas. In view of the increasing levels of commercial activity in the Arctic, there is a growing gap between the potential need to respond to an oil spill in Arctic ice-covered waters and the capability to do so. In particular, there is no robust operational capability to remotely locate oil spilt under or encapsulated within sea ice. To date, most research approaches the problem from on or above the sea ice, and thus they suffer from the need to ‘see’ through the ice and overlying snow. Here we present results from a large-scale tank experiment which demonstrate the detection of oil beneath sea ice, and the quantification of the oil layer thickness is achievable through the combined use of an upward-looking camera and sonar deployed in the water column below a covering of sea ice. This approach using acoustic and visible measurements from below is simple and effective, and potentially transformative with respect to the operational response to oil spills in the Arctic marine environment. These results open up a new direction of research into oil detection in ice-covered seas, as well as describing a new and important role for underwater vehicles as platforms for oil-detecting sensors under Arctic sea ice.
    Description: This work was funded through a competitive grant for the detection of oil under ice obtained from Prince William Sound Oil Spill Recovery Institute (OSRI) (11-10-09). Additional funding/resources was obtained through the EU FP7 funded ACCESS programme (Grant Agreement n°. 265863).
    Keywords: Arctic ; Oil spill ; Sea ice ; Oil detection ; Sonar ; Camera
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Coastal Engineering 136 (2018): 147-160, doi:10.1016/j.coastaleng.2018.01.003.
    Description: The performance of a linear depth inversion algorithm, cBathy, applied to coastal video imagery was assessed using observations of water depth from vessel-based hydrographic surveys and in-situ altimeters for a wide range of wave conditions (0.3 〈 significant wave height 〈 4.3 m) on a sandy Atlantic Ocean beach near Duck, North Carolina. Comparisons of video-based cBathy bathymetry with surveyed bathymetry were similar to previous studies (root mean square error (RMSE) = 0.75 m, bias = −0.26 m). However, the cross-shore locations of the surfzone sandbar in video-derived bathymetry were biased onshore 18–40 m relative to the survey when offshore wave heights exceeded 1.2 m or were greater than half of the bar crest depth, and broke over the sandbar. The onshore bias was 3–4 m when wave heights were less than 0.8 m and were not breaking over the sandbar. Comparisons of video-derived seafloor elevations with in-situ altimeter data at three locations onshore of, near, and offshore of the surfzone sandbar over ∼1 year provide the first assessment of the cBathy technique over a wide range of wave conditions. In the outer surf zone, video-derived results were consistent with long-term patterns of bathymetric change (r2 = 0.64, RMSE = 0.26 m, bias = −0.01 m), particularly when wave heights were less than 1.2 m (r2 = 0.83). However, during storms when wave heights exceeded 3 m, video-based cBathy over-estimated the depth by up to 2 m. Near the sandbar, the sign of depth errors depended on the location relative to wave breaking, with video-based depths overestimated (underestimated) offshore (onshore) of wave breaking in the surfzone. Wave speeds estimated by video-based cBathy at the initiation of wave breaking often were twice the speeds predicted by linear theory, and up to three times faster than linear theory during storms. Estimated wave speeds were half as fast as linear theory predictions at the termination of wave breaking shoreward of the sandbar. These results suggest that video-based cBathy should not be used to track the migration of the surfzone sandbar using data when waves are breaking over the bar nor to quantify morphological evolution during storms. However, these results show that during low energy conditions, cBathy estimates could be used to quantify seasonal patterns of seafloor evolution.
    Description: This research was funded by the U.S. Army Corps of Engineers Coastal Field Data Collection Program, the Deputy Assistant Secretary of the Army for Research and Technology under ERDC's research program titled “Force Projection Entry Operations, STO D.GRD.2015.34”, the U.S. Naval Research Laboratory base program from the Office of Naval Research, a Vannevar Bush Faculty Fellowship funded by the Assistant Secretary of Defense for Research and Engineering, and the National Science Foundation.
    Keywords: Remote sensing ; Beach morphology ; Depth inversion ; Bathymetry estimation ; Video imaging ; Surfzone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Luis, K. M. A., Rheuban, J. E., Kavanaugh, M. T., Glover, D. M., Wei, J., Lee, Z., & Doney, S. C. Capturing coastal water clarity variability with Landsat 8. Marine Pollution Bulletin, 145, (2019): 96-104, doi: 10.1016/j.marpolbul.2019.04.078.
    Description: Coastal water clarity varies at high temporal and spatial scales due to weather, climate, and human activity along coastlines. Systematic observations are crucial to assessing the impact of water clarity change on aquatic habitats. In this study, Secchi disk depths (ZSD) from Boston Harbor, Buzzards Bay, Cape Cod Bay, and Narragansett Bay water quality monitoring organizations were compiled to validate ZSD derived from Landsat 8 (L8) imagery, and to generate high spatial resolution ZSD maps. From 58 L8 images, acceptable agreement was found between in situ and L8 ZSD in Buzzards Bay (N = 42, RMSE = 0.96 m, MAPD = 28%), Cape Cod Bay (N = 11, RMSE = 0.62 m, MAPD = 10%), and Narragansett Bay (N = 8, RMSE = 0.59 m, MAPD = 26%). This work demonstrates the value of merging in situ ZSD with high spatial resolution remote sensing estimates for improved coastal water quality monitoring.
    Description: This work was supported by the John D. and Catherine T. MacArthur Foundation (grant 14-106159-000-CFP) and by the National Science Foundation grant DGE 1249946, Integrative Graduate Education and Research Traineeship (IGERT): Coasts and Communities – Natural and Human Systems in Urbanizing Environments. Lastly, we are indebted to the Massachusetts Water Resources Authority, Buzzards Bay Coalition, Provincetown Center for Coastal Studies, Narragansett Bay Commission, and the numerous citizen scientists responsible for collecting the in situ measurements used in this study. Comments and suggestions from our anonymous reviewer were greatly appreciated.
    Keywords: Water quality ; Secchi disk depth ; Remote sensing ; Landsat
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ocean Modelling 105 (2016): 1-12, doi:10.1016/j.ocemod.2016.02.009
    Description: The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.
    Description: This work was supported by the Office of Naval Research, Code 322, “Arctic and Global Prediction”, directed by Drs. Martin Jeffries and Scott Harper. (Grant numbers and Principal Investigators are: Ackley, N000141310435; Babanin, N000141310278; Doble, N000141310290; Fairall, N0001413IP20046; Gemmrich, N000141310280; Girard-Ardhuin and Ardhuin, N000141612376; Graber, N000141310288; Guest, N0001413WX20830; Holt, N0001413IP20050; Lehner, N000141310303; Maksym, N000141310446; Perrie, N00014-15-1-2611; Rogers, N0001413WX20825; Shen, N000141310294; Squire, N000141310279; Stammerjohn, N000141310434; Thomson, N000141310284; Wadhams, N000141310289.)
    Keywords: Sea ice ; Arctic Ocean ; Ocean surface waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...