ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Man/System Technology and Life Support
  • 2000-2004  (88)
  • 2002  (88)
  • 1
    Publication Date: 2004-12-03
    Description: One of the major requirements associated with operating the International Space Station is the transportation -- space shuttle and Russian Progress spacecraft launches - necessary to re-supply station crews with food and water. The Vapor Compression Distillation (VCD) Flight Experiment, managed by NASA's Marshall Space Flight Center in Huntsville, Ala., is a full-scale demonstration of technology being developed to recycle crewmember urine and wastewater aboard the International Space Station and thereby reduce the amount of water that must be re-supplied. Based on results of the VCD Flight Experiment, an operational urine processor will be installed in Node 3 of the space station in 2005.
    Keywords: Man/System Technology and Life Support
    Type: STS 107 Shuttle Press Kit: Providing 24/7 Space Science Research; 97-99
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.
    Keywords: Man/System Technology and Life Support
    Type: Bioresource technology (ISSN 0960-8524); Volume 84; 2; 119-27
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
    Keywords: Man/System Technology and Life Support
    Type: International journal of occupational safety and ergonomics : JOSE (ISSN 1080-3548); Volume 8; 3; 339-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: BACKGROUND: As human spaceflight missions extend in duration and distance from Earth, a self-sufficient crew will bear far greater onboard responsibility and authority for mission success. This will increase the need for automated fault management (FM). Human factors issues in the use of such systems include maintenance of cognitive skill, situational awareness (SA), trust in automation, and workload. This study examine the human performance consequences of operator use of intelligent FM support in interaction with an autonomous, space-related, atmospheric control system. METHODS: An expert system representing a model-base reasoning agent supported operators at a low level of automation (LOA) by a computerized fault finding guide, at a medium LOA by an automated diagnosis and recovery advisory, and at a high LOA by automate diagnosis and recovery implementation, subject to operator approval or veto. Ten percent of the experimental trials involved complete failure of FM support. RESULTS: Benefits of automation were reflected in more accurate diagnoses, shorter fault identification time, and reduced subjective operator workload. Unexpectedly, fault identification times deteriorated more at the medium than at the high LOA during automation failure. Analyses of information sampling behavior showed that offloading operators from recovery implementation during reliable automation enabled operators at high LOA to engage in fault assessment activities CONCLUSIONS: The potential threat to SA imposed by high-level automation, in which decision advisories are automatically generated, need not inevitably be counteracted by choosing a lower LOA. Instead, freeing operator cognitive resources by automatic implementation of recover plans at a higher LOA can promote better fault comprehension, so long as the automation interface is designed to support efficient information sampling.
    Keywords: Man/System Technology and Life Support
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 73; 9; 886-97
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: INTRODUCTION: Current space suits are rigid, gas-pressurized shells that protect astronauts from the vacuum of space. A tight elastic garment or mechanical-counter-pressure (MCP) suit generates pressure by compression and may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with and without a prototype MCP glove. METHODS: The right hand of eight normal volunteers was studied at normal ambient pressure and during exposure to -50, -100 and -150 mm Hg with and without the MCP glove. Measurements included the pressure against the hand, skin microvascular flow, temperature on the dorsum of the hand, and middle finger girth. RESULTS: Without the glove, skin microvascular flow and finger girth significantly increased with negative pressure, and the skin temperature decreased compared with the control condition. The MCP glove generated approximately 200 mm Hg at the skin surface; all measured values remained at control levels during exposure to negative pressure. DISCUSSION: Without the glove, skin microvascular flow and finger girth increased with negative pressure, probably due to a blood shift toward the hand. The elastic compression of the material of the MCP glove generated pressure on the hand similar to that in current gas-pressurized space suit gloves. The MCP glove prevented the apparent blood shift and thus maintained baseline values of the measured variables despite exposure of the hand to negative pressure.
    Keywords: Man/System Technology and Life Support
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 73; 11; 1074-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: A decision model is presented that compares lighting systems for a plant growth scenario and chooses the most appropriate system from a given set of possible choices. The model utilizes a Multiple Attribute Utility Theory approach, and incorporates expert input and performance simulations to calculate a utility value for each lighting system being considered. The system with the highest utility is deemed the most appropriate system. The model was applied to a greenhouse scenario, and analyses were conducted to test the model's output for validity. Parameter variation indicates that the model performed as expected. Analysis of model output indicates that differences in utility among the candidate lighting systems were sufficiently large to give confidence that the model's order of selection was valid.
    Keywords: Man/System Technology and Life Support
    Type: Transactions of the ASAE. American Society of Agricultural Engineers (ISSN 0001-2351); Volume 45; 1; 215-21
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 8; 3-4; 125-35
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Salad greens will be among the first crops grown on lunar or planetary space stations. Swiss chard (Beta vulgaris L.) is an important candidate salad crop because it is high yielding and rich in vitamins and minerals. Five Swiss chard cultivars were grown in the greenhouse under two light levels for 13 weeks to compare cumulative yields from weekly harvests, mineral composition, and to evaluate sensory attributes as a salad green. The varieties Large White Ribbed (LWR) and Lucullus (LUC) were the highest yielding in both light regimes. LWR was the shortest of the cultivars requiring the least vertical space. LWR also received the highest sensory ratings of the five cultivars. LWR Swiss chard should be considered as an initial test variety in food production modules.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 8; 3-4; 173-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: Regardless of how well other growing conditions are optimized, crop yields will be limited by the available light up to saturation irradiances. Considering the various factors of clouds on Earth, dust storms on Mars, thickness of atmosphere, and relative orbits, there is roughly 2/3 as much light averaged annually on Mars as on Earth. On Mars, however, crops must be grown under controlled conditions (greenhouse or growth rooms). Because there presently exists no material that can safely be pressurized, insulated, and resist hazards of puncture and deterioration to create life support systems on Mars while allowing for sufficient natural light penetration as well, artificial light will have to be supplied. If high irradiance is provided for long daily photoperiods, the growing area can be reduced by a factor of 3-4 relative to the most efficient irradiance for cereal crops such as wheat and rice, and perhaps for some other crops. Only a small penalty in required energy will be incurred by such optimization. To obtain maximum yields, crops must be chosen that can utilize high irradiances. Factors that increase ability to convert high light into increased productivity include canopy architecture, high-yield index (harvest index), and long-day or day-neutral flowering and tuberization responses. Prototype life support systems such as Bios-3 in Siberia or the Mars on Earth Project need to be undertaken to test and further refine systems and parameters.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 8; 3-4; 161-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Optimized menus for a bioregenerative life support system have been developed based on measures of crop productivity, food item acceptability, menu diversity, and nutritional requirements of crew. Crop-specific biomass requirements were calculated from menu recipe demands while accounting for food processing and preparation losses. Under the assumption of staggered planting, the optimized menu demanded a total crop production area of 453 m2 for six crew. Cost of the bioregenerative food system is estimated at 439 kg per menu cycle or 7.3 kg ESM crew-1 day-1, including agricultural waste processing costs. On average, about 60% (263.6 kg ESM) of the food system cost is tied up in equipment, 26% (114.2 kg ESM) in labor, and 14% (61.5 kg ESM) in power and cooling. This number is high compared to the STS and ISS (nonregenerative) systems but reductions in ESM may be achieved through intensive crop productivity improvements, reductions in equipment masses associated with crop production, and planning of production, processing, and preparation to minimize the requirement for crew labor.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 8; 3-4; 199-210
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: This paper discusses a formal and rigorous approach to the analysis of operator interaction with machines. It addresses the acute problem of detecting design errors in human-machine interaction and focuses on verifying the correctness of the interaction in complex and automated control systems. The paper describes a systematic methodology for evaluating whether the interface provides the necessary information about the machine to enable the operator to perform a specified task successfully and unambiguously. It also addresses the adequacy of information provided to the user via training material (e.g., user manual) about the machine's behavior. The essentials of the methodology, which can be automated and applied to the verification of large systems, are illustrated by several examples and through a case study of pilot interaction with an autopilot aboard a modern commercial aircraft. The expected application of this methodology is an augmentation and enhancement, by formal verification, of human-automation interfaces.
    Keywords: Man/System Technology and Life Support
    Type: Human factors (ISSN 0018-7208); Volume 44; 1; 28-43
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.
    Keywords: Man/System Technology and Life Support
    Type: Applied and environmental microbiology (ISSN 0099-2240); Volume 68; 5; 2285-93
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 8; 2; 93-101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2005-06-30
    Description: The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.
    Keywords: Man/System Technology and Life Support
    Type: Research Reports: 2001 NASA/ASEE Summer Faculty Fellowship Program; XIII-1 - XIII-6; NASA/CR-2002-211840
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: A Kalman filtering technique is applied to the simultaneous detection of NH3 and CO2 with a diode-laser-based sensor operating at 1.53 micrometers. This technique is developed for improving the sensitivity and precision of trace gas concentration levels based on direct overtone laser absorption spectroscopy in the presence of various sensor noise sources. Filter performance is demonstrated to be adaptive to real-time noise and data statistics. Additionally, filter operation is successfully performed with dynamic ranges differing by three orders of magnitude. Details of Kalman filter theory applied to the acquired spectroscopic data are discussed. The effectiveness of this technique is evaluated by performing NH3 and CO2 concentration measurements and utilizing it to monitor varying ammonia and carbon dioxide levels in a bioreactor for water reprocessing, located at the NASA-Johnson Space Center. Results indicate a sensitivity enhancement of six times, in terms of improved minimum detectable absorption by the gas sensor.
    Keywords: Man/System Technology and Life Support
    Type: Applied physics. B, Lasers and optics (ISSN 0946-2171); Volume 74; 1; 85-93
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: Virtually all scenarios for the long-term habitation of spacecraft and other extraterrestrial structures involve plants as important parts of the contained environment that would support humans. Recent experiments have identified several effects of spaceflight on plants that will need to be more fully understood before plant-based life support can become a reality. The International Space Station (ISS) is the focus for the newest phase of space-based research, which should solve some of the mysteries of how spaceflight affects plant growth. Research carried out on the ISS and in the proposed terrestrial facility for Advanced Life Support testing will bring the requirements for establishing extraterrestrial plant-based life support systems into clearer focus.
    Keywords: Man/System Technology and Life Support
    Type: Current opinion in plant biology (ISSN 1369-5266); Volume 5; 3; 258-63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: Ethylene (C2H4) gas is produced throughout the life cycle of plants and can accumulate in closed growth chambers to levels 100 times higher than in outside environments. Elevated atmospheric C2H4 can cause a variety of abnormal responses, but the sensitivity to elevated C2H4 is not well characterized. We evaluated the C2H4 sensitivity of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) in five studies. The first three studies compared the effects of continuous C2H4 levels ranging from 0 to 1000 nmol mol-1 (ppb) in a growth chamber throughout the life cycle of the plants. A short-term 1000 nmol mol-1 treatment was included in which exposure was stopped at anthesis. Yield was reduced by 36% in wheat and 63% in rice at 50 nmol mol-1 and both species were virtually sterile when continuously exposed to 1000 nmol mol-1. However, the yield reductions were much less with exposure that stopped at anthesis, suggesting the detrimental effect of C2H4 on yield was greatest around the time of seed set. Two additional studies evaluated the differential sensitivity of two wheat cultivars (Super Dwarf and USU-Apogee) to 50 nmol mol-1 C2H4 at three CO2 levels [350, 1200, 5000 micromoles mol-1 (ppm)] in a greenhouse. Yield of USU-Apogee was not significantly reduced by C2H4 but the yield of Super Dwarf was reduced by 60%. Elevated CO2 did not influence the sensitivity to C2H4. A difference in the C2H4 sensitivity of USU-Apogee between greenhouse and growth chamber trials suggests that C2H4 sensitivity is dependent on the environment. Collectively, the data suggest that relatively low levels of C2H4 could induce anomalous plant responses by accumulation in greenhouses and growth chambers with inadequate ventilation. The data also suggest that C2H4 sensitivity can be reduced by both genetic and environmental manipulations. 2002 Crop Science Society of America.
    Keywords: Man/System Technology and Life Support
    Type: Crop science (ISSN 0011-183X); Volume 42; 3; 746-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: The recent surge of interest in human missions to Mars has also generated considerable interest in the responses of plants to hypobaria (reduced atmospheric pressure), particularly among those in the advanced life support community. Potential for in situ resource utilization, challenges in meeting engineering constraints for mass and energy, the prospect of using lightweight plant growth structures on Mars, and the minimal literature on plant responses to low pressure all suggest much needed research in this area. However, the limited literature on hypobaria combined with previous findings on plant responses to atmospheric composition and established principles of mass transfer of gases suggest that some plants will be capable of tolerating and growing at pressures below 20 kPa; and for other species, perhaps as low as 5-10 kPa. In addition, normal and perhaps enhanced growth of many plants will likely occur at reduced partial pressures of oxygen (e.g., 5 kPa). Growth of plants at such low and partial pressures indicates the feasibility of cultivating plants in lightweight, transparent "greenhouses" on the surface of Mars or in other extraterrestrial or extreme environment locations. There are numerous, accessible terrestrial analogs for moderately low pressure ranges, but not for very low and extremely low atmospheric pressures. Research pertaining to very low pressures has been historically restricted to the use of vacuum chambers. Future research prospects, approaches, and priorities for plant growth experiments at low pressure are considered and discussed as they apply to prospects for Martian agriculture.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 8; 2; 103-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.
    Keywords: Man/System Technology and Life Support
    Type: JSC-39168 , CTSD-ADV-348-Rev-C , PB2009-103982
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2015-08-12
    Description: Scientists are conducting research into electroencephalograms (EEGs) of brainwave activity, and electromyography (EMG) of muscle activity, in order to develop systems which can control an aircraft with only a pilot's thoughts. This article describes some EEG and EMG signals, and how they might be analyzed and interpreted to operate an aircraft. The development of a system to detect and interpret fine muscle movements is also profiled in the article.
    Keywords: Man/System Technology and Life Support
    Type: Aerospace America (ISSN 0740-722X); Volume 40; No. 3; 33-37
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-09-27
    Description: Despite considerable progress in understanding human capabilities and limitations, incorporating human factors into aircraft design, operation, and certification, and the emergence of new technologies designed to reduce workload and enhance human performance in the system, most aviation accidents still involve human errors. Such errors occur as a direct or indirect result of untimely, inappropriate, or erroneous actions (or inactions) by apparently well-trained and experienced pilots, controllers, and maintainers. The field of human factors has solved many of the more tractable problems related to simple ergonomics, cockpit layout, symbology, and so on. We have learned much about the relationships between people and machines, but know less about how to form successful partnerships between humans and the information technologies that are beginning to play a central role in aviation. Significant changes envisioned in the structure of the airspace, pilots and controllers' roles and responsibilities, and air/ground technologies will require a similarly significant investment in human factors during the next few decades to ensure the effective integration of pilots, controllers, dispatchers, and maintainers into the new system. Many of the topics that will be addressed are not new because progress in crucial areas, such as eliminating human error, has been slow. A multidisciplinary approach that capitalizes upon human studies and new classes of information, computational models, intelligent analytical tools, and close collaborations with organizations that build, operate, and regulate aviation technology will ensure that the field of human factors meets the challenge.
    Keywords: Man/System Technology and Life Support
    Type: Human Factors in the 21st Century; 9-1 - 9-33; RTO-MP-077
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-10-02
    Description: This paper presents the Modeling and Analysis of the Space Station Environment Control and Life Support System Pressure Control Pump Assembly (PCPA). The contents include: 1) Integrated PCPA/Manifold Analyses; 2) Manifold Performance Analysis; 3) PCPA Motor Heat Leak Study; and 4) Future Plans. This paper is presented in viewgraph form.
    Keywords: Man/System Technology and Life Support
    Type: Twelfth Thermal and Fluids Analysis Workshop; NASA/CP-2002-211783
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Silhouette's Titan Minimal Art frames possess a super elasticity that ensures a slip-free fit for wearing comfort, without causing irritating pressure points. The titanium alloy used in the frames also prevents allergic reactions. This technology is available to both NASA astronauts and public consumers in either corrective eyewear or sunglass models. The only difference between the sunwear used by NASA astronauts and the commercial models is the lens. Silhouette and Dr. Keith Manuel, the "official" optometrist overseeing the NASA Space Shuttle, the International Space Station, and various other vision-related space projects, brought NASA a lens that is considerably darker (5.5 percent overall light transmittance), with a thin gold coating that offers total protection, not only against ultraviolet (UV) radiation, but also against the harmful infrared radiation in space.
    Keywords: Man/System Technology and Life Support
    Type: Spinoff 2002; 87; NASA/NP-2002-09-290-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Goddard Space Flight Center and Triangle Research & Development Corporation collaborated to create "Smart Eyes," a charge coupled device camera that, for the first time, could read and measure bar codes without the use of lasers. The camera operated in conjunction with software and algorithms created by Goddard and Triangle R&D that could track bar code position and direction with speed and precision, as well as with software that could control robotic actions based on vision system input. This accomplishment was intended for robotic assembly of the International Space Station, helping NASA to increase production while using less manpower. After successfully completing the two- phase SBIR project with Goddard, Triangle R&D was awarded a separate contract from the U.S. Department of Transportation (DOT), which was interested in using the newly developed NASA camera technology to heighten automotive safety standards. In 1990, Triangle R&D and the DOT developed a mask made from a synthetic, plastic skin covering to measure facial lacerations resulting from automobile accidents. By pairing NASA's camera technology with Triangle R&D's and the DOT's newly developed mask, a system that could provide repeatable, computerized evaluations of laceration injury was born.
    Keywords: Man/System Technology and Life Support
    Type: Spinoff 2002; 70-71; NASA/NP-2002-09-290-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-05
    Description: A new method to control microparticles was developed in-house at the NASA Glenn Research Center in support of the nanotechnology project under NASA's Aerospace Propulsion and Power Base Research Program. A prototype interferometer-controlled optical tweezers was constructed to manipulate scanning probe microscope (SPM) tips. A laser beam passed through a Mach-Zehnder interferometer, and a microscope objective then produced an optical trap from the coaxial beams. The trap levitated and generated the coarse motion of a 10-mm polystyrene sphere used to simulate a SPM tip. The interference between the beams provided fine control of the forces and moments on the sphere. The interferometer included a piezoelectric-scanned mirror to modulate the interference pattern. The 10-mm sphere was observed to oscillate about 1 mm as the mirror and fringe pattern oscillated. The prototype tweezers proved the feasibility of constructing a more sophisticated interferometer tweezers to hold and manipulate SPM tips. The SPM tips are intended to interrogate and manipulate nanostructures. A more powerful laser will be used to generate multiple traps to hold nanostructures and SPM tips. The vibrating mirror in the interferometer will be replaced with a spatial light modulator. The modulator will allow the optical phase distribution in one leg of the interferometer to be programmed independently at 640 by 480 points for detailed control of the forces and moments. The interference patterns will be monitored to measure the motion of the SPM tips. Neuralnetwork technology will provide fast analysis of the interference patterns for diagnostic purposes and for local or remote feedback control of the tips. This effort also requires theoretical and modeling support in the form of scattering calculations for twin coherent beams from nonspherical particles.
    Keywords: Man/System Technology and Life Support
    Type: Research and Technology 2001; NASA/TM-2002-211333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-02
    Description: Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.
    Keywords: Man/System Technology and Life Support
    Type: Research and Technology 2001; NASA/TM-2002-211333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: At present, the life support system on the International Space Station Alpha vents overboard the carbon dioxide (CO2) produced by the crew members. Recovering the oxygen contained in the CO2 has the potential to reduce resupply mass by 2000 pounds per year or more, a significant weight that could be used for experimental payloads and other valuable items. The technologies used to remove CO2 from the air and to recover O2 from CO2 are flight-ready; however, the interface between the devices is a problem for the Space Station system. Ames Research Center has developed a new technology that solves the interface issue, possibly allowing closure of the oxygen loop in a spacecraft for the first time. CO2 produced by the crew is removed in the Carbon Dioxide Removal Assembly (CDRA). This device effectively produces a pure CO2 stream, but at a very low pressure. Elsewhere, the oxygen generation system which makes O2 by electrolyzing water produces a hydrogen stream. In principle the CO2 and H2 can react to form methane and water over a suitable catalyst. Water produced in this methane-formation reactor can be returned to the water electrolyzer, where the O2 can be returned to the cabin; however, the methane-formation reactor requires CO2 at a much higher pressure than that produced by the CDRA. Furthermore, the CO2 and H2 are often not available at the same time, due to power management and scheduling on the space station. In order to get the CO2 to the reactor at the right pressure and at the right time, a device or assembly that functions as a vacuum pump, compressor, and storage tank is required.
    Keywords: Man/System Technology and Life Support
    Type: Ames Research Center Research and Technology 2000; 146-147; NASA/TM-2001-210935
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-18
    Description: Ensuring the safety of the crew is a key performance requirement of a life support system. However, a number of conceptual and practical difficulties arise when devising metrics to concretely measure the ability of a life support system to maintain critical functions in the presence of anticipated and unanticipated faults. Resilience is a dynamic property of a life support system that depends on the complex interactions between faults, controls and system hardware. We review some of the approaches to understanding the robustness or resilience of complex systems being developed in diverse fields such as ecology, software engineering and cell biology and discuss their applicability to regenerative life support systems. We also consider how approaches to measuring resilience vary depending on system design choices such as the definition and choice of the nominal operating regime. Finally, we explore data collection and implementation issues such as the key differences between the instantaneous or conditional and average or overall measures of resilience. Extensive simulation of a hybrid computational model of a water revitalization subsystem (WRS) with probabilistic, component-level faults provides data about off-nominal behavior of the system. The data are used to consider alternative measures of resilience as predictors of the system's ability to recover from component-level faults.
    Keywords: Man/System Technology and Life Support
    Type: Rept-03ICES-55 , 33rd International Conference on Environmental Systems; Jul 07, 2003 - Jul 10, 2003; Vancourver, British Columbia; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-18
    Description: It is the goal of developers of advanced life support researcher to develop technology that reduces the cost of life support for future space missions and thereby enables missions that are currently infeasible or too expensive. Because the cost of propulsion dominates the cost of hardware emplacement in space and because the mass of a deliverable object controls its propulsive requirements, equivalent system mass (ESM) is used as a means for accounting for mission costs. ESM is typically calculated by adding to the actual mass the equivalent amount of mass that must be added to a mission due to other characteristics of a piece of hardware such as the item s volume or energy requirements. This approach works well for comparing different pieces of hardware when they go to the same location in space. However, different locations in mission space such low Earth orbit, Mars surface, or full trip to Mars and return to low Earth orbit require vastly different amounts of propulsion. Moving an object from Earth surface to the Martian surface and returning it to Earth will require as much as 100 times the propulsion that is required to move the object to low Earth orbit only. This paper presents the case for including the effect that location can have on cost as a part of ESM and suggests a method for achieving this improvement of ESM.
    Keywords: Man/System Technology and Life Support
    Type: 33nd International Conference on Environmental Systems; Jul 07, 2003 - Jul 10, 2003; Vancouver, British Columbia; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-18
    Description: The current CO2 removal technology of NASA is very energy intensive and contains many non-optimized subsystems. This paper discusses the concept of a next-generation, membrane integrated, adsorption processor for CO2 removal nd compression in closed-loop air revitalization systems. This processor will use many times less power than NASA's current CO2 removal technology and will be capable of maintaining a lower CO2 concentration in the cabin than that can be achieved by the existing CO2 removal systems. The compact, consolidated, configuration of gas dryer, CO2 separator, and CO2 compressor will allow continuous recycling of humid air in the cabin and supply of compressed CO2 to the reduction unit for oxygen recovery. The device has potential application to the International Space Station and future, long duration, transit, and planetary missions.
    Keywords: Man/System Technology and Life Support
    Type: 33nd International Conference on Environmental Systems; Jul 07, 2003 - Jul 10, 2003; Vancouver, British Columbia; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.
    Keywords: Man/System Technology and Life Support
    Type: 32nd International Conference on Environmental Systems; Jul 15, 2002 - Jul 18, 2002; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-18
    Description: As the National Aeronautics and Space Administration (NASA) begins to look towards longer duration space flights, the importance of fresh foods and varied menu choices increases. Long duration space missions require development of both a Transit Food System and a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions while the second will be used in conditions of partial gravity (hypogravity). The Transit Food System will consist of prepackaged food of extended shelf life. Microgravity imposes significant limitations on the ability of the crew to handle food and allows only for minimal processing. Salad crops will be available for the planetary mission. Supplementing the transit food system with salad crops is also being considered. These crops will include carrots, tomatoes, lettuce, radish, spinach, chard, cabbage, and onion. The crops will be incorporated in the menu along with the prepackaged food. The fresh tasting salad crops will provide variety, texture, and color in the menu. This variety should provide increased psychological benefit. Preliminary studies on spinach, tomatoes, and bok choy have been completed. Sensory and analytical tests, including color and moisture were conducted on the chamber grown crops and compared to store bought spinach, tomatoes, and bok choy. Preliminary studies of the appropriate serving sizes and number of servings per week have also been conducted.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-7470 , ICES Conference; Jul 15, 2002 - Jul 18, 2002; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-18
    Description: The primary goal for a collective protection system and a spacecraft environmental control and life support system (ECLSS) are strikingly similar. Essentially both function to provide the occupants of a building or vehicle with a safe, habitable environment. The collective protection system shields military and civilian personnel from short-term exposure to external threats presented by toxic agents and industrial chemicals while an ECLSS sustains astronauts for extended periods within the hostile environment of space. Both have air quality control similarities with various aircraft and 'tight' buildings. This paper reviews basic similarities between air purification system requirements for collective protection and an ECLSS that define surprisingly common technological challenges and solutions. Systems developed for air revitalization on board spacecraft are discussed along with some history on their early development as well as a view of future needs. Emphasis is placed upon two systems implemented by the National Aeronautics and Space Administration (NASA) onboard the International Space Station (ISS): the trace contaminant control system (TCCS) and the molecular sieve-based carbon dioxide removal assembly (CDRA). Over its history, the NASA has developed and implemented many life support systems for astronauts. As the duration, complexity, and crew size of manned missions increased from minutes or hours for a single astronaut during Project Mercury to days and ultimately months for crews of 3 or more during the Apollo, Skylab, Shuttle, and ISS programs, these systems have become more sophisticated. Systems aboard spacecraft such as the ISS have been designed to provide long-term environmental control and life support. Challenges facing the NASA's efforts include minimizing mass, volume, and power for such systems, while maximizing their safety, reliability, and performance. This paper will highlight similarities and differences among air purification systems. Additional information is included in the original extended abstract.
    Keywords: Man/System Technology and Life Support
    Type: Nuclear Biological Chemical Defense Collective Protection Conference; Oct 29, 2002 - Oct 31, 2002; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: Growing plants in an enclosed controlled environment is crucial in developing bioregenerative life-support systems (BLSS) for space applications. The major challenge currently facing a BLSS is the extensive use of highly energy-intensive electric light sources, which leads to substantial energy wastes through heat dissipations by these lamps. An alternative lighting strategy is the use of a solar irradiance collection, transmission, and distribution system (SICTDS). Two types of fiber optic-based SICTDS, a Fresnel-lens Himawari and a parabolic-mirror optical waveguide (OW) lighting system, were evaluated. The overall efficiency for the OW SICTDS of 40.5% exceeded by 75% that for the Himawari of 23.2%. The spectral distributions of the light delivered by the Himawari and the OW SICTDS were almost identical and had practically no difference from that of terrestrial solar radiation. The ratios of photosynthetically active radiation (PAR) to total emitted radiation (k) of 0.39 +/- 0.02 for the Himawari and 0.41 +/- 0.04 for the OW SICTDS were statistically indistinguishable, were not significantly different from that of 0.042 +/- 0.01 for terrestrial solar radiation, and were comparable to that of 0.35 for a high-pressure sodium (HPS) lamp. The coefficients of variation (CV) of 0.34 and 0.39 for PPF distributions, both at 50 mm X 50 mm square grid arrays, corresponding to the Himawari and the OW SICTDS, respectively, were comparable with each other but were both significantly greater than the CV of 0.08 corresponding to the HPS lamp. The average fresh weight or dry weight of lettuce grown in the solar chamber with either the Himawari or the OW SICTDS showed no statistical difference from the average fresh weight or dry weight of lettuce grown in the reference chamber with the HPS lamp. The results of this study suggest that an SICTDS could help reduce the electric power demand in a BLSS.
    Keywords: Man/System Technology and Life Support
    Type: Transactions of the ASAE. American Society of Agricultural Engineers (ISSN 0001-2351); 45; 5; 1547-58
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.
    Keywords: Man/System Technology and Life Support
    Type: Acta horticulturae (ISSN 0567-7572); 593; 85-91
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, p〈0.001). There was no significant change in glove compression with the chamber pressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.
    Keywords: Man/System Technology and Life Support
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); 9; 2; 93-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: Oxidation is one of a number of technologies that are being considered for waste management and resource recovery from waste materials generated on board space missions. Oxidation processes are a very effective and efficient means of clean and complete conversion of waste materials to sterile products. However, because oxidation uses oxygen there is an "oxygen penalty" associated either with resupply of oxygen or with recycling oxygen from some other source. This paper is a systems approach to the issue of oxygen penalty in life support systems and presents findings on the oxygen penalty associated with an integrated oxidation-Sabatier-Oxygen Generation System (OGS) for waste management in an Advanced Life Support System. The findings reveal that such an integrated system can be operated to form a variety of useful products without a significant oxygen penalty.
    Keywords: Man/System Technology and Life Support
    Type: SAE-2002-01-2396 , 33nd International Conference on Environmental Systems; Jul 15, 2002 - Jul 18, 2002; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This paper considers some of the common assumptions and engineering rules of thumb used in life support system design. One general design rule is that the longer the mission, the more the life support system should use recycling and regenerable technologies. A more specific rule is that, if the system grows more than half the food, the food plants will supply all the oxygen needed for the crew life support. There are many such design rules that help in planning the analysis of life support systems and in checking results. These rules are typically if-then statements describing the results of steady-state, "back of the envelope," mass flow calculations. They are useful in identifying plausible candidate life support system designs and in rough allocations between resupply and resource recovery. Life support system designers should always review the design rules and make quick steady state calculations before doing detailed design and dynamic simulation. This paper develops the basis for the different assumptions and design rules and discusses how they should be used. We start top-down, with the highest level requirement to sustain human beings in a closed environment off Earth. We consider the crew needs for air, water, and food. We then discuss atmosphere leakage and recycling losses. The needs to support the crew and to make up losses define the fundamental life support system requirements. We consider the trade-offs between resupplying and recycling oxygen, water, and food. The specific choices between resupply and recycling are determined by mission duration, presence of in-situ resources, etc., and are defining parameters of life support system design.
    Keywords: Man/System Technology and Life Support
    Type: SAE-2003-01-2356 , 33rd International Conference on Environmental Systems: Advanced Life Support and Systems Analysis I; Jul 07, 2003 - Jul 10, 2003; Vancouver, British Columbia; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: Integrated human test facilities are a key component of NASA's Advanced Life Support Program (ALSP). Over the past several years, the ALSP has been developing such facilities to serve as a large-scale advanced life support and habitability test bed capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. These facilities-targeted for evaluation of hypogravity compatible life support and habitability systems to be developed for use on planetary surfaces-are currently in the development stage at the Johnson Space Center. These major test facilities are comprised of a set of interconnected chambers with a sealed internal environment, which will be outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support and habitability functions. This presentation provides a description of the proposed test "missions" to be supported by these integrated human test facilities, the overall system architecture of the facilities, the current development status of the facilities, and the role that human design has played in the development of the facilities.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-7279 , Made to Move Exhibit; Jan 28, 2002; Coppenhagen; Denmark
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-18
    Description: Advanced control technologies are not necessary for the safe, reliable and continuous operation of Advanced Life Support (ALS) systems. ALS systems can and are adequately controlled by simple, reliable, low-level methodologies and algorithms. The automation provided by advanced control technologies is claimed to decrease system mass and necessary crew time by reducing buffer size and minimizing crew involvement. In truth, these approaches increase control system complexity without clearly demonstrating an increase in reliability across the ALS system. Unless these systems are as reliable as the hardware they control, there is no savings to be had. A baseline ALS system is presented with the minimal control system required for its continuous safe reliable operation. This baseline control system uses simple algorithms and scheduling methodologies and relies on human intervention only in the event of failure of the redundant backup equipment. This ALS system architecture is designed for reliable operation, with minimal components and minimal control system complexity. The fundamental design precept followed is "If it isn't there, it can't fail".
    Keywords: Man/System Technology and Life Support
    Type: SAE-03ICES-111 , 33nd International Conference on Environmental Systems; Jul 07, 2003 - Jul 10, 2003; Vancouver, British Columbia; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-24
    Description: Topics include: a technology focus on engineering materials, electronic components and systems, software, mechanics, machinery/automation, manufacturing, bio-medical, physical sciences, information sciences book and reports, and a special section of Photonics Tech Briefs.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-16
    Description: A management information system (MIS), including a database management system (DBMS) and a decision support system (DSS), was developed to dynamically analyze the variable nutritional content of foods grown and prepared in an Advanced Life Support System (ALSS) such as required for long-duration space missions. The DBMS was designed around the known nutritional content of a list of candidate crops and their prepared foods. The DSS was designed to determine the composition of the daily crew diet based on crop and nutritional information stored in the DBMS. Each of the selected food items was assumed to be harvested from a yet-to-be designed ALSS biomass production subsystem and further prepared in accompanying food preparation subsystems. The developed DBMS allows for the analysis of the nutrient composition of a sample 20-day diet for future Advanced Life Support missions and is able to determine the required quantities of food needed to satisfy the crew's daily consumption. In addition, based on published crop growth rates, the DBMS was able to calculate the required size of the biomass production area needed to satisfy the daily food requirements for the crew. Results from this study can be used to help design future ALSS for which the integration of various subsystems (e.g., biomass production, food preparation and consumption, and waste processing) is paramount for the success of the mission.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); 8; 4-Mar; 191-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-10
    Description: This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NO(sub x) and SO(sub 2) contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NO(sub x) and SO(sub 2) in activated carbon made from biomass. Conversion of adsorbed NO(sub x) to nitrogen has also been observed.
    Keywords: Man/System Technology and Life Support
    Type: DE2002-795947
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-10
    Description: Adaptive automation (AA) has been explored as a solution to the problems associated with human-automation interaction in supervisory control environments. However, research has focused on the performance effects of dynamic control allocations of early stage sensory and information acquisition functions. The present research compares the effects of AA to the entire range of information processing stages of human operators, such as air traffic controllers. The results provide evidence that the effectiveness of AA is dependent on the stage of task performance (human-machine system information processing) that is flexibly automated. The results suggest that humans are better able to adapt to AA when applied to lower-level sensory and psychomotor functions, such as information acquisition and action implementation, as compared to AA applied to cognitive (analysis and decision-making) tasks. The results also provide support for the use of AA, as compared to completely manual control. These results are discussed in terms of implications for AA design for aviation.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TP-2002-211932 , NAS 1.60:211932 , L-18229
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-10
    Description: Pilot 'complacency' has been implicated as a contributing factor in numerous aviation accidents and incidents. The term has become more prominent with the increase in automation technology in modern cockpits and, therefore, research has been focused on understanding the factors that may mitigate its effect on pilot-automation interaction. The study examined self-efficacy of supervisory monitoring and the relationship between complacency on strategy of pilot use of automation for workload management under automation schedules that produce the potential for complacency. The results showed that self-efficacy can be a 'double-edged' sword in reducing potential for automation-induced complacency but limiting workload management strategies and increasing other hazardous states of awareness.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2002-211925 , NAS 1.15:211925 , L-18231
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-10
    Description: Progress has been made on "Personality as it relates to decision making, information processing and error management in commercial aviation" in several areas during the first phase of the project.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.
    Keywords: Man/System Technology and Life Support
    Type: NASA/CR-2002-211169 , NAS 1.26:211169
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-10
    Description: Fire suppressant distribution testing was performed on the Materials Science Research Rack-1 (MSRR-1), a furnace facility payload that will be installed in the U.S. Lab module of the International Space Station. Unlike racks that were tested previously, the MSRR-1 uses the Active Rack Isolation System (ARIS) to reduce vibration on experiments, so the effects of ARIS on fire suppressant distribution were unknown. Two tests were performed to map the distribution of CO2 fire suppressant throughout a mockup of the MSRR-1 designed to have the same component volumes and flowpath restrictions as the flight rack. For the first test, the average maximum CO2 concentration for the rack was 60 percent, achieved within 45 s of discharge initiation, meeting the requirement to reach 50 percent throughout the rack within 1 min. For the second test, one of the experiment mockups was removed to provide a worst-case configuration, and the average maximum CO2 concentration for the rack was 58 percent. Comparing the results of this testing with results from previous testing leads to several general conclusions that can be used to evaluate future racks. The MSRR-1 will meet the requirements for fire suppressant distribution. Primary factors that affect the ability to meet the CO2 distribution requirements are the free air volume in the rack and the total area and distribution of openings in the rack shell. The length of the suppressant flowpath and degree of tortuousness has little correlation with CO2 concentration. The total area of holes in the rack shell could be significantly increased. The free air volume could be significantly increased. To ensure the highest maximum CO2 concentration, the PFE nozzle should be inserted to the stop on the nozzle.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2002-211465 , M-1038 , NAS 1.15:211465
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: Topics include: a technology focus on sensors, electronic components and systems, software, materials, materials, mechanics, manufacturing, physical sciences, information sciences, book and reports, motion control and a special section of Photonics Tech Briefs.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: Topics include: a technology focus sensors, software, electronic components and systems, materials, mechanics, machinery/automation, manufacturing, bio-medical, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include: a technology focus on computers, electronic components and systems, software, materials, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and Motion control Tech Briefs.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include: a technology focus on data acquisition, electronic components and systems, software, materials, mechanics, machinery/automation, bio-medical, physical sciences, book and reports, and a special section of Photonics Tech Briefs.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include:a technology focus on computers, electronic components and systems, software, materials, mechanics,physical sciences machinery, manufacturing/fabrication, mathematics, book and reports, motion control tech briefs and a special section on Photonics Tech Briefs.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-11
    Description: In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material layups/configurations for possible use in future spacesuit designs.
    Keywords: Man/System Technology and Life Support
    Type: SAE-2002-01-220
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-10
    Description: The technical memorandum describes research conducted to examine the etiologies and nature of hazardous states of awareness and the psychophysiological factors involved in their onset in aerospace operations. A considerable amount of research has been conducted at NASA that examines psychological and human factors issues that may play a role in aviation safety. The technical memorandum describes some of the research that was conducted between 1998 and 2001, both in-house and as cooperative agreements, which addressed some of these issues. The research was sponsored as part of the physiological factors subelement of the Aviation Operation Systems (AOS) program and Physiological / Psychological Stressors and Factors project. Dr. Lance Prinzel is the Level III subelement lead and can be contacted at l.j.prinzel@larc.nasa.gov.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2002-211444 , L-18149 , NAS 1.15:211444
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include: a technology focus on engineering materials, electronic components and circuits, software, mechanics, machinery/automation, manufacturing, physical sciences, information sciences, book and reports, and a special section of Photonics Tech Briefs.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include: a technology focus on data acquisition, electronic components and systems, software, materials, mechanics, machinery/automation, physical sciences, book and reports, motion control, and a special section of Photonics Tech Briefs.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include: a special section on data acquisition, software, electronic components and systems, materials, computer programs, mechanics, machinery/automation, manufacturing, biomedical, physical sciences, book and reports, and a special section of Photonics Tech Briefs.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: The contents include: 1) Application Briefs; 2) Sneak Preview of Sensors Expo; 3) The Complexity of the Diagnosis Problem; 4) Design Concepts for the ISS TransHab Module; 5) Characteristics of Supercritical Transitional Mixing Layers; 6) Electrometer for Triboelectric Evaluation of Materials; 7) Infrared CO2 Sensor With Built-In Calibration Chambers; 8) Solid-State Potentiometric CO Sensor; 9) Planetary Rover Absolute Heading Detection Using a Sun Sensor; 10) Concept for Utilizing Full Areas of STJ Photodetector Arrays; 11) Development of Cognitive Sensors; 12) Enabling Higher-Voltage Operation of SOl CMOS Transistors; 13) Estimating Antenna-Pointing Errors From Beam Squints; 14) Advanced-Fatigue-Crack-Growth and Fracture- Mechanics Program; 15) Software for Sequencing Spacecraft Actions; 16) Program Distributes and Tracks Organizational Memoranda; 16) Flat Membrane Device for Dehumidification of Air; 17) Inverted Hindle Mount Reduces Sag of a Large, Precise Mirror; 18) Heart-Pump-Outlet/Cannula Coupling; 19) Externally Triggered Microcapsules Release Drugs In Situ; 20) Combinatorial Drug Design Augmented by Information Theory; 21) Multiple-Path-Length Optical Absorbance Cell; 22) Model of a Fluidized Bed Containing a Mixture of Particles; 23) Refractive Secondary Concentrators for Solar Thermal Systems; 24) Cold Flow Calorimeter; 25) Methodology for Tracking Hazards and Predicting Failures; 26) Estimating Heterodyne-Interferometer Polarization Leakage; 27) An Efficient Algorithm for Propagation of Temporal- Constraint Networks; 28) Software for Continuous Replanning During Execution; 29) Surface-Launched Explorers for Reconnaissance/Scouting; 30) Firmware for a Small Motion-Control Processor; 31) Gear Bearings and Gear-Bearing Transmissions; and 32) Linear Dynamometer With Variable Stroke and Frequency.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics covered include: Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; and Life Sciences.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: The incorporation of micronutrients into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in the National Aeronautics and Space Administration's (NASA's) Advanced Life Support (ALS) program for Lunar or Martian outposts. Solid state 31P nuclear magnetic resonance (NMR) was utilized to examine the paramagnetic effects of Fe3+, Mn2+, and Cu2+ to determine if they were incorporated into the SHA structure. Separate Fe3+, Mn2+, and Cu2+ containing SHA materials along with a transition metal free SHA (pure-SHA) were synthesized using a precipitation method. The proximity (〈1 nm) of the transition metals to the 31P nuclei of SHA were apparent when comparing the integrated 31P signal intensities of the pure-SHA (87 arbitrary units g-1) with the Fe-, Mn-, and Cu-SHA materials (37-71 arbitrary units g-1). The lower integrated 31P signal intensities of the Fe-, Mn-, and Cu-SHA materials relative to the pure-SHA suggested that Fe3+, Mn2+, and Cu2+ were incorporated in the SHA structure. Further support for Fe3+, Mn2+, and Cu2+ incorporation was demonstrated by the reduced spin-lattice relaxation constants of the Fe-, Mn-, and Cu-SHA materials (T'=0.075-0.434s) relative to pure-SHA (T1=58.4s). Inversion recovery spectra indicated that Fe3+, Mn2+, and Cu2+ were not homogeneously distributed about the 31P nuclei in the SHA structure. Extraction with diethylene-triamine-penta-acetic acid (DTPA) suggested that between 50 and 80% of the total starting metal concentrations were incorporated in the SHA structure. Iron-, Mn-, and Cu-containing SHA are potential slow release sources of Fe, Mn, and Cu in the ALS cropping system.
    Keywords: Man/System Technology and Life Support
    Type: Soil Science Society of America journal. Soil Science Society of America (ISSN 0361-5995); 66; 2; 455-63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.
    Keywords: Man/System Technology and Life Support
    Type: SAE-02ICES-76 , 32nd International Conference on Environmental Systems; Jul 15, 2002 - Jul 18, 2002; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.
    Keywords: Man/System Technology and Life Support
    Type: 33nd International Conference on Environmental Systems; Jul 15, 2002 - Jul 18, 2002; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Despite the central importance of crew safety in designing and operating a life support system, the metric commonly used to evaluate alternative Advanced Life Support (ALS) technologies does not currently provide explicit techniques for measuring safety. The resilience of a system, or the system s ability to meet performance requirements and recover from component-level faults, is fundamentally a dynamic property. This paper motivates the use of computer models as a tool to understand and improve system resilience throughout the design process. Extensive simulation of a hybrid computational model of a water revitalization subsystem (WRS) with probabilistic, component-level faults provides data about off-nominal behavior of the system. The data can then be used to test alternative measures of resilience as predictors of the system s ability to recover from component-level faults. A novel approach to measuring system resilience using a Markov chain model of performance data is also developed. Results emphasize that resilience depends on the complex interaction of faults, controls, and system dynamics, rather than on simple fault probabilities.
    Keywords: Man/System Technology and Life Support
    Type: SAE-02ICES-98 , 33nd International Conference on Environmental Systems; Jul 15, 2002 - Jul 18, 2002; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: A process task analysis effort was undertaken by Dynacs Inc. commencing in June 2002 under contract from NASA YA-D6. Funding was provided through NASA's Ames Research Center (ARC), Code M/HQ, and Industrial Engineering and Safety (IES). The John F. Kennedy Space Center (KSC) Engineering Development Contract (EDC) Task Order was 5SMA768. The scope of the effort was to conduct a Human Factors Process Failure Modes and Effects Analysis (HF PFMEA) of a hazardous activity and provide recommendations to eliminate or reduce the effects of errors caused by human factors. The Liquid Oxygen (LOX) Pump Acceptance Test Procedure (ATP) was selected for this analysis. The HF PFMEA table (see appendix A) provides an analysis of six major categories evaluated for this study. These categories include Personnel Certification, Test Procedure Format, Test Procedure Safety Controls, Test Article Data, Instrumentation, and Voice Communication. For each specific requirement listed in appendix A, the following topics were addressed: Requirement, Potential Human Error, Performance-Shaping Factors, Potential Effects of the Error, Barriers and Controls, Risk Priority Numbers, and Recommended Actions. This report summarizes findings and gives recommendations as determined by the data contained in appendix A. It also includes a discussion of technology barriers and challenges to performing task analyses, as well as lessons learned. The HF PFMEA table in appendix A recommends the use of accepted and required safety criteria in order to reduce the risk of human error. The items with the highest risk priority numbers should receive the greatest amount of consideration. Implementation of the recommendations will result in a safer operation for all personnel.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2002-117 , KSC-YA-6040 , Society of Women Engineers; Oct 08, 2002; Daytona Beach, FL.; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: Seeing is critical to human performance. Lighting is critical for seeing. Therefore, lighting is critical to human performance. This is common sense, and here on earth, it is easily taken for granted. However, on orbit, because the sun will rise or set every 45 minutes on average, humans working in space must cope with extremely dynamic lighting conditions. Contrast conditions of harsh shadowing and glare is also severe. The prediction of lighting conditions for critical operations is essential. Crew training can factor lighting into the lesson plans when necessary. Mission planners can determine whether low-light video cameras are required or whether additional luminaires need to be flown. The optimization of the quantity and quality of light is needed because of the effects on crew safety, on electrical power and on equipment maintainability. To address all of these issues, an illumination modeling system has been developed by the Graphics Research and Analyses Facility (GRAF) and Lighting Environment Test Facility (LETF) in the Space Human Factors Laboratory at NASA Johnson Space Center. The system uses physically based ray tracing software (Radiance) developed at Lawrence Berkeley Laboratories, a human factors oriented geometric modeling system (PLAID) and an extensive database of humans and environments. Material reflectivity properties of major surfaces and critical surfaces are measured using a gonio-reflectometer. Luminaires (lights) are measured for beam spread distribution, color and intensity. Video camera performances are measured for color and light sensitivity. 3D geometric models of humans and the environment are combined with the material and light models to form a system capable of predicting lighting conditions and visibility conditions in space.
    Keywords: Man/System Technology and Life Support
    Type: CAES 99: Computer-Aided Ergonomics and Safety Meeting; May 19, 1999 - May 21, 1999; Barcelona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.
    Keywords: Man/System Technology and Life Support
    Type: Paper-02ICES-25 , 32nd International Conference on Environmental Systems; Jul 15, 2002 - Jul 18, 2002; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: The International NASA/DARPA Photobiology Conference held at the Johnson Space Center in Houston/TX demonstrated where low level laser therapy (LLLT), respectively low intensity light activated biostimulation (LILAB) and nanotechnological applications employing photobiomodulation techniques will presumably go in the next ten years. The conference was a continuation of the 1st International Conference on Nearfield Optical Analysis organized by Andrei Sommer (ENSOMA Lab, University of Ulm, Germany) in November 2000 at Castle Reisenburg, Germany, which started with a group of ten scientists from eight different countries. The 1st conference was co-sponsored by the American Chemical Society to evaluate the molecular mechanism of accelerated and normal wound healing processes. The 2nd conference was co-sponsored by DARPA, NASA-JSC and the Medical College of Wisconsin. Despite the short time between events, the 2nd conference hosted 40 international experts form universities, research institutes, agencies and the industry. The materials published here are expected to become milestones forming a novel platform in biomedical photobiology. The multidisciplinary group of researchers focused on LLLT/LILAB-applications under extreme conditions expected to have beneficial effects particularly in space, on submarines, and under severe battlefield conditions. The group also focused on novel technologies with possibilities allowing investigating the interaction of light with biological systems, molecular mechanisms of wound healing, bone regeneration, nerve regeneration, pain modulation, as well as biomineralization and biofilm formulation processes induced by nanobacteria.
    Keywords: Man/System Technology and Life Support
    Type: NASA/CP-2002-210786 , S-896 , NAS 1.55:210786 , May 31, 2001 - Jun 01, 2001; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); 8; 4-Mar; 137-47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: Elevated CO2 levels in air can lead to impaired functioning and even death to humans. Control of CO2 is critical in confined spaces that have little physical or biological buffering capacity (e.g., spacecraft, submarines, or aircraft). A novel enzyme-based contained liquid membrane bioreactor was designed for CO2 capture and certain application cases are reported in this article. The results show that the liquid layer accounts for the major transport resistance. With addition of carbonic anhydrase, the transport resistance decreased by 71%. Volatile organic compounds of the type and concentration expected to be present in either the crew cabin or a plant growth chamber did not influence carbonic anhydrase activity or reactor operation during 1-day operation. Alternative sweep method studies, examined as a means of eliminating consumables, showed that the feed gas could be used successfully in a bypass mode when combined with medium vacuum pressure (-85 kPa) to achieve CO2 separation comparable to that with an inert sweep gas. The reactor exhibited a selectivity for CO2 versus N2 of 1400:1 and CO2 versus O2 is 866:1. The CO2 permeance was 1.44 x 10(-7) mol m-2 Pa-1 s-1 (4.3 x 10(-4) cm3 cm-2 s-1 cmHg-1) at a feed concentration of 0.1% CO2. These data show that the enzyme-based contained liquid membrane is a promising candidate technology that may be suitable for NASA applications to control CO2 in the crew or plant chambers.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); 8; 4-Mar; 181-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: The incorporation of micronutrients (e.g., Fe, Mn, Cu) into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in NASA's Advanced Life Support (ALS) program for long-duration space missions. Separate Fe3+ (Fe-SHA), Mn2+ (Mn-SHA), and Cu2+ (Cu-SHA) containing SHA materials were synthesized by a precipitation method. Electron paramagnetic resonance (EPR) spectroscopy was used to determine the location of Fe3+, Mn2+, and Cu2+ ions in the SHA structure and to identify other Fe(3+)-, Mn(2+)-, and Cu(2+)-containing phases that formed during precipitation. The EPR parameters for Fe3+ (g=4.20 and 8.93) and for Mn2+ (g=2.01, A=9.4 mT, D=39.0 mT and E=10.5 mT) indicated that Fe3+ and Mn2+ possessed rhombic ion crystal fields within the SHA structure. The Cu2+ EPR parameters (g(z)=2.488, A(z)=5.2 mT) indicated that Cu2+ was coordinated to more than six oxygens. The rhombic environments of Fe3+ and Mn2+ along with the unique Cu2+ environment suggested that these metals substituted for the 7 or 9 coordinate Ca2+ in SHA. The EPR analyses also detected poorly crystalline metal oxyhydroxides or metal-phosphates associated with SHA. The Fe-, Mn-, and Cu-SHA materials are potential slow release sources of Fe, Mn, and Cu for ALS and terrestrial cropping systems.
    Keywords: Man/System Technology and Life Support
    Type: Soil Science Society of America journal. Soil Science Society of America (ISSN 0361-5995); 66; 4; 1359-66
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.
    Keywords: Man/System Technology and Life Support
    Type: SAE-2003-01-2543 , 33nd International Conference on Environmental Systems; Jul 07, 2003 - Jul 10, 2003; Vancouver, British Columbia; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: Planning and scheduling systems organize "tasks" into a timeline or schedule. The tasks are defined within the scheduling system in logical containers called models. The dictionary might define a model of this type as "a system of things and relations satisfying a set of rules that, when applied to the things and relations, produce certainty about the tasks that are being modeled." One challenging domain for a planning and scheduling system is the operation of on-board experiments for the International Space Station. In these experiments, the equipment used is among the most complex hardware ever developed, the information sought is at the cutting edge of scientific endeavor, and the procedures are intricate and exacting. Scheduling is made more difficult by a scarcity of station resources. The models to be fed into the scheduler must describe both the complexity of the experiments and procedures (to ensure a valid schedule) and the flexibilities of the procedures and the equipment (to effectively utilize available resources). Clearly, scheduling International Space Station experiment operations calls for a "maximally expressive" modeling schema.
    Keywords: Man/System Technology and Life Support
    Type: IEEE Aerospace Conference; Mar 08, 2003 - Mar 15, 2003; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: This NASA Technical Memorandum is a compilation of presentations and discussions in the form of minutes from a workshop entitled 'Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media' held at NASA's Johnson Space Center, July 24-25, 2000. This workshop arose from the growing belief within NASA's Advanced Life Support Program that further advances and improvements in plant production systems for microgravity would benefit from additional knowledge of fundamental processes occurring in the root zone. The objective of the workshop was to bring together individuals who had expertise in various areas of fluid physics, soil physics, plant physiology, hardware development, and flight tests to identify, discuss, and prioritize critical issues of water and air flow through porous media in microgravity. Participants of the workshop included representatives from private companies involved in flight hardware development and scientists from universities and NASA Centers with expertise in plant flight tests, plant physiology, fluid physics, and soil physics.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2002-210774 , S-884 , NAS 1.15:210774 , JSC-CN-7357 , Plant Production Systems for Microgravity: Critical Issues in Water, Air, and Solute Transport Through Unsaturated Porous Media; Jul 24, 2000 - Jul 25, 2000; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: For effective astronaut training applications, choosing the right display devices to present images is crucial. In order to assess what devices are appropriate, it is important to design a successful virtual environment for a comparison study of the display devices. We present a comprehensive system for the comparison of Dome and head-mounted display (HMD) systems. In particular, we address interactions techniques and playback environments.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-7562 , Computer Graphics and Satial Information; Aug 06, 2002 - Aug 08, 2002; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-10
    Description: An optical see-through, augmented reality display was used to study subjects' ability to detect aircraft maneuvering and landing at the Dallas Ft. Worth International airport in an ATC Tower simulation. Subjects monitored the traffic patterns as if from the airport's western control tower. Three binocular fields of view (14 deg, 28 deg and 47 deg) were studied in an independent groups' design to measure the degradation in detection performance associated with the visual field restrictions. In a second experiment the 14 deg and 28 deg fields were presented either with 46% binocular overlap or 100% overlap for separate groups. The near asymptotic results of the first experiment suggest that binocular fields of view much greater than 47% are unlikely to dramatically improve performance; and those of the second experiment suggest that partial binocular overlap is feasible for augmented reality displays such as may be used for ATC tower applications.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2002-211853 , NAS 1.15:211853 , IH-025
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not Wearing Proper Protective and Hose/tubing located in high-traffic area" which account for 59.18% of total dendritic frequency need to be addressed to reduce the chance of a hazard from occurring. However, the occurrences of some dendritics are more important than others. As a result immediate, from a Weighted c perspective, corrective action should be taken to ameliorate the cause of the Class A dendritic "Personnel located under suspended or moving loads" rather than just the most commonly occurring dendritics. In any case the vast majority of data obtained indicates that testing operations possess a relatively high degree of safety.
    Keywords: Man/System Technology and Life Support
    Type: UTEP-26-1203-90
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-10
    Description: Apparatus and methods for modulating the control authority (i.e., control function) of a computer simulation or game input device (e.g., joystick, button control) using physiological information so as to affect the user's ability to impact or control the simulation or game with the input device. One aspect is to use the present invention, along with a computer simulation or game, to affect physiological state or physiological self-regulation according to some programmed criterion (e.g., increase, decrease, or maintain) in order to perform better at the game task. When the affected physiological state or physiological self-regulation is the target of self-regulation or biofeedback training, the simulation or game play reinforces therapeutic changes in the physiological signal(s).
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-10
    Description: One of the main factors in all aviation accidents is human error. The NASA Aviation Safety Program (AvSP), therefore, has identified several human-factors safety technologies to address this issue. Some technologies directly address human error either by attempting to reduce the occurrence of errors or by mitigating the negative consequences of errors. However, new technologies and system changes may also introduce new error opportunities or even induce different types of errors. Consequently, a thorough understanding of the relationship between error classes and technology "fixes" is crucial for the evaluation of intervention strategies outlined in the AvSP, so that resources can be effectively directed to maximize the benefit to flight safety. The purpose of the present project, therefore, was to examine the repositories of human factors data to identify the possible relationship between different error class and technology intervention strategies. The first phase of the project, which is summarized here, involved the development of prototype data structures or matrices that map errors onto "fixes" (and vice versa), with the hope of facilitating the development of standards for evaluating safety products. Possible follow-on phases of this project are also discussed. These additional efforts include a thorough and detailed review of the literature to fill in the data matrix and the construction of a complete database and standards checklists.
    Keywords: Man/System Technology and Life Support
    Type: ARL-02-1/NASA-02-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-10
    Description: An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a glass display that also included advanced flight symbology, such as a velocity vector. The third concept, referred to as the SVS display, was identical to the EAI except that computer-generated terrain imagery replaced the conventional blue-sky/brown-ground of the EAI. Pilot performance parameters, pilot control inputs and physiological data were recorded for post-test analysis. Situation awareness (SA) and qualitative pilot comments were obtained through questionnaires and free-form interviews administered immediately after the experimental session. Initial pilot performance data were obtained by instructor pilot observations. Physiological data (skin temperature, heart rate, and muscle flexure) were also recorded. Preliminary results indicate that far less errors were committed when using the EAI and SVS displays than when using conventional instruments. The specific data example examined in this report illustrates the benefit from SVS displays to avoid massive loss of SA conditions. All pilots acknowledged the enhanced situation awareness provided by the SVS display concept. Levels of pilot stress appear to be correlated with skin temperature measurements.
    Keywords: Man/System Technology and Life Support
    Type: Rept-2002-01-1550
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-12
    Description: This slide presentation reviews how information technology supports the Human Research Facility (HRF) and specifically the uses that contractor has for the information. There is information about the contractor, the HRF, some of the experiments that were performed using the HRF on board the Shuttle, overviews of the data architecture, and software both commercial and specially developed software for the specific experiments.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-7429
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-12
    Description: Nutrition has played a critical role throughout the history of exploration, and space exploration is no exception. While a one- to two-week flight aboard the Space Shuttle might be analogous to a camping trip, adequate nutrition is absolutely critical while spending several months on the International Space Station (Figure 1) or several years on a mission to another planet. To ensure adequate nutrition, space nutrition specialists must know how much of the individual nutrients astronauts need, and these nutrients must be available in the spaceflight food system. To complicate matters, these spaceflight nutritional requirements are influenced by many of the physiological changes that occur during spaceflight. In this chapter, we describe some of these changes, their impact on crew health, and ways NASA is investigating how to minimize these changes. We also review the space food systems, issues involved in setting up a cafeteria in a weightless environment, and information about dietary intake of nutrients during space missions
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-7319
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: Heart rate and arterial pressure were measured during shuttle re-entry, landing and initial standing in crewmembers with and without inflated anti-g suits and with and without liquid cooling garments (LCG). Preflight, three measurements were obtained seated, then standing. Prior to and during re-entry, arterial pressure and heart rate were measured every five minutes until wheels stop (WS). Then crewmembers initiated three seated and three standing measurements. In subjects without inflated anti-g suits, SBP and DBP were significantly lower during preflight standing (P = 0.006; P = 0.001 respectively) and at touchdown (TD) (P = 0.001; P = 0.003 respectively); standing SBP was significantly lower after WS. on-LeG users developed significantly higher heart rates during re-entry (P = 0.029, maxG; P = 0.05, TD; P = 0.02, post-WS seated; P = 0.01, post-WS standing) than LCG users. Our data suggest that the anti-g suit is effective, but the combined anti-g suit with LCG is more effective.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-7521
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-14
    Description: The effects of a pressurized suit on human performance were investigated. The suit is known as an Extra-Vehicular Mobility Unit (EMU) and is worn by astronauts while working outside their spacecraft in a low earth orbit. Isolated isokinetic joint torques of three female and three male subjects (all experienced users of the suit in 1G gravity) were measured while working at 100% and 80% of their maximum voluntary torque (MVT, which is synonymous with maximum voluntary contraction (MVC)). It was found that the average decrease in the total amount of work (the sum of the work in each repetition until fatigue) done when the subjects were wearing the EMU were 48% and 41% while working at 100% and 80% MVT, respectively. There is a clear relationship between the MVT and the time and amount of work done until fatigue. Here, the time to fatigue is defined as the ending time of the repetition for which the computed work done during that repetition dropped below 50% of the work done during the first repetition. In general the stronger joints took longer to fatigue and did more work than the weaker joints. It was found that the EMU decreases the work output at the wrist and shoulder joints the most, due to the EMU joint geometry. The EMU also decreased the joint range of motion. The average total amount of work done by the test subjects increased by 5.2% (20.4%) for the unsuited (suited) case, when the test subjects decreased the level of effort from 100% to 80% MVT. Also, the average time to fatigue increased by 9.2% (25.6%) for the unsuited (suited) case, when the test subjects decreased the level of effort from 100% to 80% MVT. It was also found that the experimentally measured torque decay could be predicted by a logarithmic equation. The absolute average errors in the predictions were found to be 18.3% and 18.9% for the unsuited and suited subjects, respectively, when working at 100% MVT, and 22.5% and 18.8% for the unsuited and suited subjects, respectively, when working at 80% MVT. These results could be very useful in the design of future EMU suits and the planning of Extra-Vehicular Activity (EVA) for the future International Space Station assembly operations.
    Keywords: Man/System Technology and Life Support
    Type: Ergonomics (ISSN 0014-0139); 45; 7; 484-500
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-15
    Description: A layered canopy model was used to analyze the effects of diffuse light on canopy gross photosynthesis in controlled environment plant growth chambers, where, in contrast to the field, highly diffuse light can occur at high irradiance. The model suggests that high diffuse light fractions (approximately 0.7) and irradiance (1400 micromoles m-2 s-1) may enhance crop life-cycle canopy gross photosynthesis for hydroponic wheat by about 20% compared to direct light at the same irradiance. Our simulations suggest that high accuracy is not needed in specifying diffuse light fractions in chambers between approximately 0.7 and 1, because simulated photosynthesis for closed canopies plateau in this range. We also examined the effect of leaf angle distribution on canopy photosynthesis under growth chamber conditions, as these distributions determine canopy extinction coefficients for direct and diffuse light. We show that the spherical leaf angle distribution is not suitable for modeling photosynthesis of planophile canopies (e.g., soybean and peanut) in growth chambers. Also, the absorption of the light reflected from the surface below the canopy should generally be included in model simulations, as the corresponding albedo values in the photosynthetically active range may be quite high in growth chambers (e.g., approximately 0.5). In addition to the modeling implications, our results suggest that diffuse light conditions should be considered when drawing conclusions from experiments in controlled environments.
    Keywords: Man/System Technology and Life Support
    Type: Acta horticulturae (ISSN 0567-7572); 593; 39-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: We present schemes for real-time generalized interactions such as probing, piercing, cauterizing and ablating virtual tissues. These methods have been implemented in a robust, real-time (haptic rate) surgical simulation environment allowing us to model procedures including animal dissection, microsurgery, hysteroscopy, and cleft lip repair.
    Keywords: Man/System Technology and Life Support
    Type: Studies in health technology and informatics (ISSN 0926-9630); 85; 74-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: We present schemes for real-time generalized mesh cutting. Starting with the a basic example, we describe the details of implementing cutting on single and multiple surface objects as well as hybrid and volumetric meshes using virtual tools with single and multiple cutting surfaces. These methods have been implemented in a robust surgical simulation environment allowing us to model procedures ranging from animal dissection to cleft lip correction.
    Keywords: Man/System Technology and Life Support
    Type: Studies in health technology and informatics (ISSN 0926-9630); 85; 79-85
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: The United States Laboratory Module "Destiny" was the product of many architectural, technology, manufacturing, schedule and cost constraints which spanned 15 years. Requirements for the Space Station pressurized elements were developed and baselined in the mid to late '80's. Although the station program went through several design changes the fundamental requirements that drove the architecture did not change. Manufacturing of the U.S. Laboratory began in the early 90's. Final assembly and checkout testing completed in December of 2000. Destiny was launched, mated to the International Space Station and successfully activated on the STS-98 mission in February of 2001. The purpose of this paper is to identify key requirements, which directly or indirectly established the architecture of the U.S. Laboratory. Provide an overview of how that architecture affected the manufacture, assembly, test, and activation of the module on-orbit. And finally, through observations made during the last year of operation, provide considerations in the development of future requirements and mission integration controls for space habitats.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-7919 , Space Architecture Symposium World Space Conferece; Oct 10, 2002; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...