ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Ithaca, N.Y. : Periodicals Archive Online (PAO)
    Industrial and Labor Relations Review. 2:3 (1949:Apr.) 319 
    ISSN: 0019-7939
    Topics: Economics
    Notes: Current Problems in Labor Relations Legislation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-21
    Description: Analytical Chemistry DOI: 10.1021/ac404135f
    Print ISSN: 0003-2700
    Electronic ISSN: 1520-6882
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: Removal of carbon dioxide (CO2) is a necessary step in air revitalization and is often accomplished with sorbent materials. Since moisture competes with CO2 in sorbent materials, it is necessary to remove the water first. This is typically accomplished in two stages: bulk removal and residual drying. Silica gel is used as the bulk drying material in the Carbon Dioxide Removal Assembly (CDRA) in operation on ISS. There has been some speculation that silica gel may also be capable of serving as the residual drying material. This paper will describe test apparatus and procedures for determining the performance of silica gel in residual air drying.
    Keywords: Man/System Technology and Life Support
    Type: ARC-E-DAA-TN12101 , International Conference on Environmental Systems; Jul 13, 2014 - Jul 17, 2014; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Long duration missions to deep space will require new approaches for supplying astronauts. In-space microbial manufacturing could generate many important compounds (such as nutrients, pharmaceuticals and fuels) but there are significant barriers to deploying reliable bioproduction platforms to space. These include ensuring adequate production and proper purification of the desired product, especially in the unique radiation and microgravity environment. Here we are focused on developing methods and technologies to feed microbial factories using the resources available in space. CO2, found in abundance in spacecraft cabins and the Mars atmosphere, can be sequestered and converted into bioproducts. While autotrophic organisms can use CO2 directly, they are generally slow growing and have less-developed biotechnology toolkits. Therefore we are developing an alternative paradigm in which CO2 is first reduced to more energetic carbon compounds that can support more rapid growth of workhorse biotechnology platforms (E. coli, S. cerevisiae, P. pastoris).Various technologies exist or are being developed to convert CO2. For example, the Sabatier system currently installed on the ISS, reacts CO2 and H2 to generate CH4 and H2O. This methane could be consumed by engineered methanotrophic bacteria. Alternatively, electrochemical systems can convert CO2 into formate (CHO2) which could be consumed by formatotrophic bacteria. In either case, synthetic biology techniques allow these microbes to serve as reprogrammable biofactories capable of producing a vast number or products.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN62367 , American Society for Gravitational and Space Research (ASGSR) Meeting 2018; Oct 31, 2018 - Nov 03, 2018; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: An ongoing effort is underway at NASA Amcs Research Center (ARC) tu develop an On-line Project Information System (OPIS) for the Advanced Life Support (ALS) Program. The objective of this three-year project is to develop, test, revise and deploy OPIS to enhance the quality of decision-making metrics and attainment of Program goals through improved knowledge sharing. OPIS will centrally locate detailed project information solicited from investigators on an annual basis and make it readily accessible by the ALS Community via a web-accessible interface. The data will be stored in an object-oriented relational database (created in MySQL(Trademark) located on a secure server at NASA ARC. OPE will simultaneously serve several functions, including being an R&TD status information hub that can potentially serve as the primary annual reporting mechanism. Using OPIS, ALS managers and element leads will be able to carry out informed research and technology development investment decisions, and allow analysts to perform accurate systems evaluations. Additionally, the range and specificity of information solicited will serve to educate technology developers of programmatic needs. OPIS will collect comprehensive information from all ALS projects as well as highly detailed information specific to technology development in each ALS area (Waste, Water, Air, Biomass, Food, Thermal, and Control). Because the scope of needed information can vary dramatically between areas, element-specific technology information is being compiled with the aid of multiple specialized working groups. This paper presents the current development status in terms of the architecture and functionality of OPIS. Possible implementation approaches for OPIS are also discussed.
    Keywords: Computer Systems
    Type: 34th International Conference on Environmental Systems; Jul 19, 2004 - Jul 22, 2004; Colorado Springs, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: OTIS is an on-line communication platform designed for smooth flow of technology information between advanced life support (ALS) technology developers, researchers, system analysts, and managers. With pathways for efficient transfer of information, several improvements in the ALS Program will result. With OTIS, it will be possible to provide programmatic information for technology developers and researchers, technical information for analysts, and managerial decision support. OTIS is a platform that enables the effective research, development, and delivery of complex systems for life support. An electronic data collection form has been developed for the solid waste element, drafted by the Solid Waste Working Group. Forms for other elements (air revitalization, water recovery, food processing, biomass production and thermal control) will also be developed, based on lessons learned from the development of the solid waste form. All forms will be developed by consultation with other working groups, comprised of experts in the area of interest. Forms will be converted to an on-line data collection interface that technology developers will use to transfer information into OTIS. Funded technology developers will log in to OTIS annually to complete the element- specific forms for their technology. The type and amount of information requested expands as the technology readiness level (TRL) increases. The completed forms will feed into a regularly updated and maintained database that will store technology information and allow for database searching. To ensure confidentiality of proprietary information, security permissions will be customized for each user. Principal investigators of a project will be able to designate certain data as proprietary and only technical monitors of a task, ALS Management, and the principal investigator will have the ability to view this information. The typical OTIS user will be able to read all non-proprietary information about all projects.Interaction with the database will occur over encrypted connections, and data will be stored on the server in an encrypted form. Implementation of OTIS will initiate a community-accessible repository of technology development information. With OTIS, ALS element leads and managers will be able to carry out informed technology selection for programmatic decisions. OTIS will also allow analysts to make accurate evaluations of technology options. Additionally, the range and specificity of information solicited will help educate technology developers of program needs. With augmentation, OTIS reporting is capable of replacing the current fiscal year-end reporting process. Overall, the system will enable more informed R&TD decisions and more rapid attainment of ALS Program goals.
    Keywords: Documentation and Information Science
    Type: Habitation 2004; Jan 04, 2004 - Jan 07, 2004; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.
    Keywords: Mechanical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: A workshop entitled "Life Support and Habitation and Planetary Protection Workshop" was held in Houston, Texas on April 27-29, 2005 to facilitate the development of planetary protection guidelines for future human Mars exploration missions and to identify the potential effects of these guidelines on the design and selection of related human life support, extravehicular activity and monitoring and control systems. This report provides a summary of the workshop organization, starting assumptions, working group results and recommendations. Specific result topics include the identification of research and technology development gaps, potential forward and back contaminants and pathways, mitigation alternatives, and planetary protection requirements definition needs. Participants concluded that planetary protection and science-based requirements potentially affect system design, technology trade options, development costs and mission architecture. Therefore early and regular coordination between the planetary protection, scientific, planning, engineering, operations and medical communities is needed to develop workable and effective designs for human exploration of Mars.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2006-213485 , A-06004
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-27
    Description: Future long-duration missions face significant challenges maintaining crew health. A critical area is supplying adequate nutrition, as certain vitamins and nutrients in supplied foods and supplements demonstrate substantial degradation during extended storage. To address this issue, we are developing and flight-testing a platform technology that demonstrates in situ microbial production of targeted nutrients over extended mission durations. This 5-year experiment, known as BioNutrients-1, was started on the International Space Station in May 2019. It involves two components: an on-orbit hydration and production experiment; and the development of space-compatible, key bio-manufacturing microorganisms. On-orbit testing utilizes a small production pack system that encloses sterile edible growth substrate and desiccated Saccharomyces cerevisiae strains genetically engineered to produce the nutrients beta-carotene or zeaxanthin. On hydration and mixing of the production pack, the organisms revive and grow until limited by the depletion of growth media, hypothetically leading to consistent amounts of biomass and nutrients. In eventual mission applications, the packet contents would be heat treated to inactivate the microorganisms prior to consumption. For these flight experiments, the packet will not be heat treated, but will instead be frozen for return to Earth for analyses. In addition to the production pack trials, 14 different microorganisms/treatments were also delivered to ISS for long-duration storage. These samples will be intermittently returned to Earth and analyzed to determine survival rates and genomics. For this presentation, initial data from returned samples and ground controls will be discussed.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN69382 , American Society for Gravitational and Space Research (ASGSR); Nov 20, 2019 - Nov 23, 2019; Denver. CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Long duration missions pose substantial new challenges for solid waste management in Advanced Life Support (ALS) systems. These possibly include storing large volumes of waste material in a safe manner, rendering wastes stable or sterilized for extended periods of time, and/or processing wastes for recovery of vital resources. This is further complicated because future missions remain ill-defined with respect to waste stream quantity, composition and generation schedule. Without definitive knowledge of this information, development of requirements is hampered. Additionally, even if waste streams were well characterized, other operational and processing needs require clarification (e.g. resource recovery requirements, planetary protection constraints). Therefore, the development of solid waste management (SWM) subsystem requirements for long duration space missions is an inherently uncertain, complex and iterative process. The intent of this paper is to address some of the difficulties in writing requirements for missions that are not completely defined. This paper discusses an approach and motivation for ALS SWM requirements development, the characteristics of effective requirements, and the presence of those characteristics in requirements that are developed for uncertain missions. Associated drivers for life support system technological capability are also presented. A general means of requirements forecasting is discussed, including successive modification of requirements and the need to consider requirements integration among subsystems.
    Keywords: Man/System Technology and Life Support
    Type: SAE-02ICES-76 , 32nd International Conference on Environmental Systems; Jul 15, 2002 - Jul 18, 2002; San Antonio, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...