ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Antenna temperatures and the corresponding geolocation data from the five sources of the Special Sensor Microwave/Imager data from the Defense Meteorological Satellite Program F11 satellite have been characterized. Data from the Fleet Numerical Meteorology and Oceanography Center (FNMOC) have been compared with data from other sources to define and document the differences resulting from different processing systems. While all sources used similar methods to calculate antenna temperatures, different calibration averaging techniques and other processing methods yielded temperature differences. Analyses of the geolocation data identified perturbations in the FNMOC and National Environmental Satellite, Data and Information Service data. The effects of the temperature differences were examined by generating rain rates using the Goddard Scattering Algorithm. Differences in the geophysical precipitation products are directly attributable to antenna temperature differences.
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences; Volume 55; No. 9; 1601-1612
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than "business-as-usual" scenarios.
    Keywords: Meteorology and Climatology
    Type: Proceedings of the National Academy of Sciences of the United States of America (ISSN 0027-8424); Volume 95; 8; 4113-20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: Through analysis of spectral imaging data acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) from an ER-2 aircraft at 20 km altitude during several field programs, it was found that narrow channels near the center of the strong 1.38-micron water vapor band are very sensitive in detecting thin cirrus clouds. Based on this observation from AVIRIS data, a channel centered at 1.375 microns with a width of 30 nm was selected for the Moderate Resolution Imaging Spectrometer (MODIS) for remote sensing of cirrus clouds from space. The sensitivity of the 1.375-micron MODIS channel to detect thin cirrus clouds during the day time is expected to be one to two orders of magnitude better than the current infrared emission techniques. As a result, a larger fraction of the satellite data will likely be identified as containing cirrus clouds. In order to make better studies of surface reflectance properties, thin cirrus effects must be removed from satellite images. We have developed an empirical approach for removing/correcting thin cirrus effects in the 0.4 - 1.0 micron region using channels near 1.375 microns. This algorithm will be incorporated into the present MODIS atmospheric correction algorithms for ocean color and land applications and will yield improved MODIS atmospheric aerosol, land surface, and ocean color products.
    Keywords: Meteorology and Climatology
    Type: Summaries of the Seventh JPL Airborne Earth Science Workshop January 12-16, 1998; Volume 1; 121-129; JPL-Publ-97-21-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The Lidar In-Space Technology Experiment (LITE) mission has demonstrated the utility of spaceborne lidar in observing multilayer clouds and has provided a dataset showing the distribution of tropospheric clouds and aerosols. These unambiguous observations of the vertical distribution of clouds will allow improved verification of current cloud climatologies and GCM cloud parameterizations. Although there is now great interest in cloud profiling radar, operating in the mm-wave region, for the spacebased observation of cloud heights the results of the LITE mission have shown that satellite lidars can also make significant contributions in this area.
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; Part 2; 955-958; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: The double-edge lidar technique for measuring the wind using molecular backscatter is described. Two high spectral resolution edge filters are located in the wings of the Rayleigh-Brillouin profile. This doubles the signal change per unit Doppler shift, the sensitivity, and gives nearly a factor of two improvement in measurement accuracy. The use of a crossover region is described where the sensitivity of a molecular and aerosol-based measurement are equal. This desensitizes the molecular measurement to the effects of aerosol scattering over a frequency range of +/- 100 m/s. We give methods for correcting for short-term frequency jitter and drift using a laser reference frequency measurement and methods for long-term frequency correction using a servo control system. The effects of Rayleigh-Brillouin scattering on the measurement are shown to be significant and are included in the analysis. Simulations for a conical scanning satellite-based lidar at 355 nm show an accuracy of 2-3 m/s for altitudes of 2 to 15 km for a 1 km vertical resolution, a satellite altitude of 400 km and a 200 km x 200 km spatial resolution. Results of ground based wind measurements are presented.
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; Part 2; 695-698; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: The edge technique utilizes the edge of a high spectral resolution filter for high accuracy wind measurement using direct detection lidar. The signal is split between an edge filter channel and a broadband energy monitor channel. The energy monitor channel is used for signal normalization. The edge measurement is made as a differential frequency measurement between the outgoing laser signal and the atmospheric backscattered return for each pulse. As a result, the measurement is insensitive to laser and edge filter frequency jitter and drift at a level less than a few parts in 10(exp 10). We will discuss the methodology of the technique in detail, present a broad range of simulation results, and provide preprints of a journal article currently in press.
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; Part 2; 691-694; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: Temperature measurements in the middle atmosphere using Rayleigh lidars have been performed for several decades now. The high accuracy and vertical resolution provided by lidars allow to study the temperature variability at various scales with high confidence levels. One of the numerous applications is the study of the middle atmospheric thermal tides. Although Rayleigh lidar measurements are basically possible only at nighttime, diurnal and semidiurnal components can often be extracted if the results are taken with care and correctly interpreted. Using results from more than 200 hours of nighttime measurements obtained by lidar in October 1996 and 1997 at Mauna Loa Observatory, Hawaii, a study of the middle atmospheric (25-90 km) thermal tides is presented in this paper. The amplitudes and phases of the diurnal and semidiurnal components were calculated for some altitudes where the fits converged significantly, and compared to that of the Global Scale Wave Model (GSWM).
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; 513-516; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: We review the basic multiple scattering theory of off-beam lidar returns from optically thick clouds using the diffusion approximation. The shape of the temporal signal - the stretched pulse - depends primarily on the physical thickness of the cloud whereas its spatial counterpart - the diffuse spot - conveys specific information on the cloud's optical thickness, as do the absolute returns. This makes observation of the weak off-beam lidar returns an attractive prospect in remote sensing of cloud properties. By estimating the signal-to-noise ratio, we show that night-time measurements can be performed with existing technology. By the same criterion, day-time operation is a challenge that can only be met with a combination of cutting-edge techniques in filtering and in laser sources.
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; 91-94; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: Scheduled for launch in 2001 as part of NASA's Earth Observing System (EOS), the Geoscience Laser Altimeter System (GLAS) will provide continuous laser sounding of the earth's atmosphere from space for the first time. From its polar orbit about 600 km above the surface, GLAS will employ a 40 Hz solid state laser operating at 1064 nm to measure topography to an accuracy of 10 cm. Simultaneously, the atmospheric channels (1064 and 532 nm) of GLAS will provide profiles of atmospheric backscatter from 40 km to the ground with 75 meter vertical resolution (Spinhirne and Palm, 1996). These measurements will give scientists an unprecedented global data set on the vertical structure of clouds and aerosols which will greatly aid research efforts aimed at understanding their effects on climate and their role in climate change (Hartman, 1994). To better understand and predict the performance of the GLAS atmospheric channels, a computer model was developed to simulate the type of signal that the instrument would likely produce. The model uses aircraft lidar data and provides realistic simulated GLAS data sets over large areas spanning a wide range of atmospheric conditions. These simulated GLAS datasets are invaluable for designing and testing algorithms for the retrieval of parameters such as cloud and aerosol layer height, optical depth and extinction cross section. This work is currently proceeding and in this paper we will present results of the cloud and aerosol detection algorithm with emphasis on the detection of Marine Atmospheric Boundary Layer (MABL) aerosol. In addition, we use a recently developed technique to ascertain the feasability of estimating MABL moisture and temperature structure from spaceborne systems such as GLAS.
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; 237-240; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: We have developed the theory for aerosol- and molecular-based lidar measurements of the wind using double edge versions of the edge technique. Aerosol-based wind measurements have been made at Goddard Space Flight Center and molecular-based wind measurements at the University of Geneva. We have demonstrated atmospheric measurements using these techniques for altitudes from 1 to more than 10 km. Measurement accuracies of better than 1.25 m/s have been obtained with integration times from 5 to 30 seconds. The measurements can be scaled to space and agree, within a factor of two, with satellite-based simulations of performance based on Poisson statistics.
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; Part 2; 585-586; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2005-04-14
    Description: At mid and tropical latitudes, cirrus clouds are present more than 50% of the time in satellites observations. Due to their large spatial and temporal coverage, and associated low temperatures, cirrus clouds have a major influence on the Earth-Ocean-Atmosphere energy balance through their effects on the incoming solar radiation and outgoing infrared radiation. At present the impact of cirrus clouds on climate is well recognized but remains to be asserted more precisely, for their optical and radiative properties are not very well known. In order to understand the effects of cirrus clouds on climate, their optical and radiative characteristics of these clouds need to be determined accurately at different scales in different locations i.e. latitude. Lidars are well suited to observe cirrus clouds, they can detect very thin and semi-transparent layers, and retrieve the clouds geometrical properties i.e. altitude and multilayers, as well as radiative properties i.e. optical depth, backscattering phase functions of ice crystals. Moreover the linear depolarization ratio can give information on the ice crystal shape. In addition, the data collected with an airborne version of POLDER (POLarization and Directionality of Earth Reflectances) instrument have shown that bidirectional polarized measurements can provide information on cirrus cloud microphysical properties (crystal shapes, preferred orientation in space). The spaceborne version of POLDER-1 has been flown on ADEOS-1 platform during 8 months (October 96 - June 97), and the next POLDER-2 instrument will be launched in 2000 on ADEOS-2. The POLDER-1 cloud inversion algorithms are currently under validation. For cirrus clouds, a validation based on comparisons between cloud properties retrieved from POLDER-1 data and cloud properties inferred from a ground-based lidar network is currently under consideration. We present the first results of the validation.
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; 25-28; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2009-05-03
    Description: During the interval of 1944-1997, 120 intense hurricanes (category 3, 4, or 5 on the Saffir-Simpson hurricane scale) have been observed in the Atlantic basin. These intense hurricanes have had an observed annual frequency of 0-7 events per year (having a mean, mode, and median equal to about 2 events per year), being preferentially lower during El Ninio years and higher during non-El Ninio years. Also, it has recently been established that a long-term downward trend in the annual frequency of intense hurricanes, spanning about five decades, has taken place, although this trend can, alternatively, be explained as a shift from a more active state prior to the mid 1960's to a less active state thereafter (rather than as a simple linear decline). In this paper, on the basis of 10-yr moving averages, the long4erm trend of the frequency of intense hurricanes is compared against one for the annual mean temperature at Armagh Observatory, Northern Ireland (which serves as a proxy for climatic change). Interestingly, the two sets of 10-yr moving averages correlate extremely well, especially, when incorporating a slight 6-yr lag between them (with temperature leading; r = 0.90). This suggests that the current leading trend of temperature, which had been downward, but now is upward, may portend a return to the more active state for intense hurricanes. Thus, the 1998 season (presuming the abatement of El Ninio prior to the start of the hurricane season), and for several years thereafter (at least, into the early years of the next millennium), may have an annual frequency of intense hurricanes that is commensurate with the previously observed active state that was seen prior to the mid 1960's. If true, then, the shift to the more active state, probably, occurred in the mid-to-late 1980's, apparently, having gone undetected because of the masking, or modulating, effect of El Ninio, which has been rampant since the mid-to-late 1980's.
    Keywords: Meteorology and Climatology
    Type: Monthly Weather Review
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: Goals of the 3-month experiment GREENHOUSE using the equipment of greenhouse SVET (ECO-PSY-95) were to feature growth and development of wheat through the entire cycle of ontogeny under the maximally mimicked MIR environment, and to try out the procedures and timeline of space experiment GREENHOUSE-2 as a part of the fundamental biology investigations within the MIR/NASA space science program. Irradiation intensity (PAR) was 65 W/m2 and 38 W/m2 in the experiment and laboratory control, respectively. Values of other environmental parameters were MIR average (18-25 degrees C, relative air humidity in the interval between 40% and 75%, total gas pressure of about 660 to 860 mm Hg, partial oxygen pressure within the range from 140 to 200 mm Hg, partial carbon dioxide pressure up to 7 mm Hg). Experimental results showed that wheat cultivation in inhabited chamber under a modified lighting unit providing greater irradiation of the crop area produced more plant mass although seed production dropped. Low grain content in ears could be the aftermath of the gaseous trace contaminants in the chamber atmosphere.
    Keywords: Meteorology and Climatology
    Type: Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine (ISSN 0233-528X); Volume 32; 2; 43-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.
    Keywords: Meteorology and Climatology
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 21; 11; 1455-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties. c1998 Academic Press.
    Keywords: Meteorology and Climatology
    Type: Icarus (ISSN 0019-1035); Volume 136; 2; 192-201
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-23
    Description: Ensembles of atmospheric General Circulation Model (GCM) seasonal forecasts and long-term simulations (1980-94) are analyzed to assess the controlling influences of boundary forcing and memory of the initial conditions. Both the forecasts and simulations are carried out with version 2 of the Goddard Earth Observing System (GEOS-2) GCM forced with observed sea surface temperatures (SSTs). While much of the focus is on the seasonal time scale (January- March) and the Pacific North American (PNA) region, we also present results for other regions, shorter time scales, and other known modes of variability in the northern hemisphere extratropics. Forecasts of indices of some of the key large-scale modes of variability show that there is considerable variability in skill between different regions of the Northern Hemisphere. The eastern North Atlantic region has the poorest long lead forecast skill showing no skill beyond about 10 days. Skillful seasonal forecasts are primarily confined to the wave-like ENSO response emanating from the tropical Pacific. In the Northern Hemisphere, this is associated with the well-known Pacific/North American (PNA) pattern. Memory of the initial conditions is the major factor leading to skillful extratropical forecasts of lead time less than one month, while SST forcing is the only factor at the seasonal time scale. SST forcing contributes to skillful forecasts at sub- seasonal time scales only over the PNA region. The GEOS-2 GCM produces average (1980-94) signal to noise ratios which are less than one everywhere in the extratropics, except for the subtropical Pacific where they approach 1.5. When confined to the ENSO years, the maximum signal to noise ratios occur in the PNA region where they exceed three. An assessment of the sampling distribution of the forecasts suggests the model's ENSO response is very likely too weak. These results show some sensitivity to the uncertainties in the estimates of the SST forcing fields. In the North Pacific region, the sensitivity to SST forcing manifests itself primarily as changes in the variability of the PNA response, underscoring the need for an ensemble approach to the seasonal prediction problem.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-08-31
    Description: A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of lightning radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National Lightning Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-08-29
    Description: The GEOS-1 general circulation model has been used to compute atmospheric torques on the oceans and solid Earth for the period 1980-1995. The time series for the various torque components have been analyzed by means of Fourier transform techniques. It was determined that the wind stress torque over land is more powerful than the wind stress torque over water by 55%, 42%, and 80% for the x, y, and z components respectively. This is mainly the result of power in the high frequency range. The pressure torques due to polar flattening, equatorial ellipticity, marine geoid, and continental orography were computed. The orographic or "mountain torque" components are more powerful than their wind stress counterparts (land plus ocean) by 231% (x), 191% (y), and 77% (z). The marine pressure torques due to geoidal undulations are much smaller than the orographic ones, as expected. They are only 3% (x), 4% (y), and 5% (z) of the corresponding mountain torques. The geoidal pressure torques are approximately equal in magnitude to those produced by the equatorial ellipticity of the Earth. The pressure torque due to polar flattening makes the largest contributions to the atmospheric torque budget. It has no zonal component, only equatorial ones. Most of the power of the latter, between 68% and 69%, is found in modes with periods under 15 days. The single most powerful mode has a period of 361 days. The gravitational torque ranks second in power only to the polar flattening pressure torque. Unlike the former, it does produce a zonal component, albeit much smaller (1%) than the equatorial ones. The gravitational and pressure torques have opposite signs, therefore, the gravitational torque nullifies 42% of the total pressure torque. Zonally, however, the gravitational torque amounts to only 6% of the total pressure torque. The power budget for the total atmospheric torque yields 7595 and 7120 Hadleys for the equatorial components and 966 Hadleys for the zonal. The x-component exhibits a large mean value (1811 H), mainly the result of polar flattening pressure torque acting on the ocean surfaces. Atmospheric torque modes with periods of 408, 440, and 476 days appear in the spectrum of the equatorial components.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-08-29
    Description: A summary is presented of basic lightning characteristics/criteria for current and future NASA aerospace vehicles. The paper estimates the probability of occurrence of a 200 kA peak lightning return current, should lightning strike an aerospace vehicle in various operational phases, i.e., roll-out, on-pad, launch, reenter/land, and return-to-launch site. A literature search was conducted for previous work concerning occurrence and measurement of peak lighting currents, modeling, and estimating probabilities of launch vehicles/objects being struck by lightning. This paper presents these results.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-08-29
    Description: An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.
    Keywords: Meteorology and Climatology
    Type: Bulletin American Meteorological Society
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-08-29
    Description: Reliable information on the distribution of precipitation at high temporal resolution (〈l hour) is essential for understanding the characteristics of convection in a region. Cloud-top infrared (IR) brightness temperatures from geostationary platforms have a weak physical connection to precipitation, however, their high sampling frequency makes them attractive in studying the temporal evolution of cloudiness and convection. On the other hand, microwave-based (MW) observations from lower sampling-frequency polar-orbiting platforms can provide a better physical connection to precipitating hydrometeors. A recent invention in rainfall estimation from a combination of these two sensors involves adjustment of IR estimates using co-existing MW-based precipitation data on a monthly basis. These techniques use the MW data to remove systematic errors in IR rain estimates, while retaining the high sampling frequency of IR observations (approximately every 15-30 minutes). Perhaps of even greater importance to climate and hydrometeorological applications is the separation of mesoscale convective systems into a portion of rain associated with deep convection (hereafter called convective precipitation), and to precipitation falling from more widespread anvil clouds. This current work focuses on estimation of tropical convective and stratiform rainfall. We attempt to answer fundamental questions, such as : is estimation of convective and stratiform precipitation from IR feasible? If so, how accurate can this be? What is the scale dependence of the IR algorithm's performance? To address these questions, quantitative comparisons are performed between coincident IR- and MW-based instantaneous rainfall estimates at the MW 85 Ghz resolution (-12.5 km). Our data set spans a three-month period (January to March, 1996) of MW and IR observations over northern South America (15N-15S and 35W-80W), which includes the Amazon river basin.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research-Atmospheres
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-08-29
    Description: Isotope concentrations in polar ice cores have long been used to estimate paleotemperatures. Underlying the use of this "isotope paleothermometer" is the assumption that the relationship between surface temperature and isotope concentration over time at a single geographical point is the same as that observed over space during the present-day climate. The validity of this assumption may in fact be compromised by several factors related to climate change. The specific factor studied in this paper involves the evaporative sources for polar precipitation. Climatic changes in the relative strengths of these sources would imply a need for a recalibration of the paleothermometer. To quantify such changes, we performed two GCM simulations, one of present-day climate and the other of the climate during the Last Glacial Maximum (LGM), roughly 18000 years ago. Evaporative sources of Antarctic precipitation were established using special tracer diagnostics. Results suggest that polar precipitation during the LGM does indeed consist of (relatively) more water from tropical oceans, a direct reflection of the LGM's increased equator-to-pole temperature gradient and its increased sea ice extent, which reduces high latitude evaporation. This result implies that an uncalibrated ice core paleothermometer would produce LGM temperatures that are biased slightly low. Because LGM boundary conditions are still under debate, we performed a third GCM simulation using a modified set of LGM boundary conditions. Using this simulation gives some qualitatively similar results, though the tropical contribution is not quite as high. Uncertainties in the LGM boundary conditions does hamper success in calibrating the paleothermometer.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-08-29
    Description: We discuss the effect of horizontal fluxes on the accuracy of a conventional plane-parallel radiative transfer calculation for a single pixel, known as the Independent Pixel Approximation (IPA) at absorbing wavelengths. Vertically integrated horizontal fluxes can be represented as a sum of three components; each component is the IPA accuracy on a pixel-by-pixel basis for reflectance, transmittance and absorptance, respectively. We show that IPA accuracy for reflectance always improves with more absorption, while the IPA accuracy for transmittance is less sensitive to the changes in absorption: with respect to the non-absorbing case, it may first deteriorate for weak absorption and then improve again for strongly absorbing wavelengths. EPA accuracy for absorptance always deteriorates with more absorption. As a result, vertically integrated horizontal fluxes, as a sum of IPA accuracies for reflectance, transmittance and absorptance, increase with more absorption. Finally, the question of correlations between horizontal fluxes, IPA uncertainties and radiative smoothing is addressed using wavenumber spectra of radiation fields reflected from or transmitted through fractal clouds.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-08-29
    Description: A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude,. available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-08-29
    Description: The beginning of the Bolling-Allerod warm period is marked in Greenland ice by an abrupt rise in (Delta)O-18, an abrupt drop in dust rain, and an abrupt increase in atmospheric methane content. The surface waters in the Norwegian Sea underwent a simultaneous abrupt warming. At about this time, a major change in the pattern of global rainfall occurred. Lake Victoria (latitude 0deg), which prior to this time was dry, was rejuvenated. The Red Sea, which prior to this time was hypersaline, freshened. Lake Lahontan, which prior to this time had achieved its largest size, desiccated. Whereas the chronologic support for the abruptness of the hydrologic changes is firm only for the Red Sea, in keeping with evidence obtained well away from the nor-them Atlantic in the Santa Barbara basin and the Cariaco Trench, the onset and end of the millennial-duration climate events were globally abrupt. If so, the proposed linkage between the size of African closed basin lakes and insolation cycles must be reexamined.
    Keywords: Meteorology and Climatology
    Type: Quarternary Research
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-08-29
    Description: Aircraft and ground-based radar data from the Tropical Ocean and Global Atmosphere Coupled-Ocean Atmosphere Response Experiment (TOGA COARE) show that convective systems are not always vertical. Instead, many are tilted from vertical. Satellite passive microwave radiometers observe the atmosphere at a viewing angle. For example, the Special Sensor Microwave/Imager (SSM/I) on Defense Meteorological Satellite Program (DMSP) satellites and the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) on the TRMM satellite have an incident angle of about 50deg. Thus, the brightness temperature measured from one direction of tilt may be different than that viewed from the opposite direction due to the different optical depth. This paper presents the investigation of passive microwave brightness temperatures of tilted convective systems. To account for the effect of tilt, a 3-D backward Monte Carlo radiative transfer model has been applied to a simple tilted cloud model and a dynamically evolving cloud model to derive the brightness temperature. The radiative transfer results indicate that brightness temperature varies when the viewing angle changes because of the different optical depth. The tilt increases the displacements between high 19 GHz brightness temperature (Tb(sub 19)) due to liquid emission from lower level of cloud and the low 85 GHz brightness temperature (Tb(sub 85)) due to ice scattering from upper level of cloud. As the resolution degrades, the difference of brightness temperature due to the change of viewing angle decreases dramatically. The dislocation between Tb(sub 19) and Tb(sub 85), however, remains prominent.
    Keywords: Meteorology and Climatology
    Type: Jounral of Applied Meteorology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-08-29
    Description: The last decade has seen tremendous growth in cloud dynamical and microphysical models that are able to simulate storms and storm systems with very high spatial resolution, typically of the order of a few kilometers. The fairly realistic distributions of cloud and hydrometeor properties that these models generate has in turn led to a renewed interest in the three-dimensional microwave radiative transfer modeling needed to understand the effect of cloud and rainfall inhomogeneities upon microwave observations. Monte Carlo methods, and particularly backwards Monte Carlo methods have shown themselves to be very desirable due to the quick convergence of the solutions. Unfortunately, backwards Monte Carlo methods are not well suited to treat polarized radiation. This study reviews the existing Monte Carlo methods and presents a new polarized Monte Carlo radiative transfer code. The code is based on a forward scheme but uses aliasing techniques to keep the computational requirements equivalent to the backwards solution. Radiative transfer computations have been performed using a microphysical-dynamical cloud model and the results are presented together with the algorithm description.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-08-29
    Description: In this study two global observational precipitation products, namely the Global Precipitation Climatology Project's (GPCP) community data set and CPC's Merged Analysis of Precipitation (CMAP), are compared on global to regional scales in the context of the different satellite and gauge data inputs and merger techniques. The average annual global precipitation rates, calculated from data common in regions/times to both GPCP and CMAP, are similar for the two. However, CMAP is larger than GPCP in the tropics because: (1) CMAP values in the tropics are adjusted month-by month to atoll gauge data in the West Pacific, which are greater than any satellite observations used; and (2) CMAP is produced from a linear combination of data inputs, which tends to give higher values than the microwave emission estimates alone to which the inputs are adjusted in the GPCP merger over the ocean. The CMAP month-to-month adjustment to the atolls also appears to introduce temporal variations throughout the tropics which are not detected by satellite-only products. On the other hand, GPCP is larger than CMAP in the high-latitude oceans, where CMAP includes the scattering based microwave estimates which are consistently smaller than the emission estimates used in both techniques. Also, in the polar regions GPCP transitions from the emission microwave estimates to the larger TOVS-based estimates. Finally, in high-latitude land areas GPCP can be significantly larger than CMAP because GPCP attempts to correct the gauge estimates for errors due to wind loss effects.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-08-29
    Description: In order to learn more about the Martian polar caps, it is important to compare and contrast the behavior of both frozen H2O and CO2 in different parts of the electromagnetic spectrum. Relatively little attention has been given, thus far, to observing the thermal microwave part of the spectrum. In this experiment, passive microwave radiation emanating from within a 33 cm snowpack was measured with a 35 GHz hand-held radiometer, and in addition to the natural snow measurements, the radiometer was used to measure the microwave emission and scattering from layers of manufactured CO2 (dry ice). A 1 m x 2 m plate of aluminum sheet metal was positioned beneath the natural snow so that microwave emissions from the underlying soil layers would be minimized. Compared to the natural snow crystals, results for the dry ice layers exhibit lower' microwave brightness temperatures for similar thicknesses, regardless of the incidence angle of the radiometer. For example, at 50 degree H (horizontal polarization) and with a covering of 21 cm of snow and 18 cm of dry ice, the brightness temperatures were 150 K and 76 K, respectively. When the snow depth was 33 cm, the brightness temperature was 144 K, and when the total thickness of the dry ice was 27 cm, the brightness temperature was 86 K. The lower brightness temperatures are due to a combination of the lower physical temperature and the larger crystal sizes of the commercial CO2 Crystals compared to the snow crystals. As the crystal size approaches the size of the microwave wavelength, it scatters microwave radiation more effectively, thus lowering the brightness temperature. The dry ice crystals in this experiment were about an order of magnitude larger than the snow crystals and three orders of magnitude larger than the CO2 Crystals produced in the cold stage of a scanning electron microscope. Spreading soil, approximately 2 mm in thickness, on the dry ice appeared to have no effect on the brightness temperatures.
    Keywords: Meteorology and Climatology
    Type: ICARUS
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-08-29
    Description: Variations of HDO and H2O-18 concentrations are observed in precipitation both on a geographical and on a temporal basis. These variations, resulting from successive isotopic fractionation processes at each phase change of water during its atmospheric cycle, are well documented through the IAEA/WMO network and other sources. Isotope concentrations are, in middle and high latitudes, linearly related to the annual mean temperature at the precipitation site. Paleoclimatologists have used this relationship to infer paleotemperatures from isotope paleodata extractable from ice cores, deep groundwater and other such sources. For this application to be valid, however, the spatial relationship must also hold in time at a given location as the location undergoes a series of climatic changes. Progress in water isotope modeling aimed at examining and evaluating this assumption has been recently reviewed with a focus on polar regions and, more specifically, on Greenland. This article was largely based on the results obtained using the isotopic version of the NASA/GISS Atmospheric General Circulation Model (AGCM) fitted with isotope tracer diagnostics. We extend this review in comparing the results of two different isotopic AGCMs (NASA/GISS and ECHAM) and in examining, with a more global perspective, the validity of the above assumption, i.e. the equivalence of the spatial and temporal isotope-temperature relationship. We also examine recent progress made in modeling the relationship between the conditions prevailing in moisture source regions for precipitation and the deuterium-excess of that precipitation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-08-29
    Description: We conducted numerical simulations of the wind-forcing of the sea level variations in the North Sea using a barotropic ocean model with realistic geography, bathymetry, and boundary conditions, to examine the forcing of the 14-month "pole tide" which is known to be strong along the Denmark- Netherlands coast. The simulation input is the monthly-mean surface wind stress field from the National Centers for Environmental Prediction (NCEP) reanalysis for the 40-year period 1958-1997. The output sea level response was then compared with 10 coastal tide gauge records from the Permanent Service for Mean Sea Level (PSMSL). Besides the strong seasonal variations, several prominent quasi-periodicities exist at around 7 years, 3 years, 14 months, 9 months, and 6.5 months. Correlation and spectral analyses show remarkable agreement between the model output and the observations, particularly in the 14-month, or Chandler period band. The latter indicates that the enhanced pole tide found in the North Sea along the Denmark-Netherlands coast is actually the coastal setup response to wind stress forcing with a periodicity of 14 months. We find no need to invoke a geophysical explanation involving resonance-enhancement of pole tide in the North Sea to explain the observations.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-08-31
    Description: Utilizing multi-spectral, dual-polarization Special Sensor Microwave Imager (SSM/I) radiometer measurements, we have developed in this study a method to retrieve average rain rate, R(sub f(sub R)), in a mesoscale grid box of 2deg x 3deg over land. The key parameter of this method is the fractional rain area, f(sub R), in that grid box, which is determined with the help of a threshold on the 85 GHz scattering depression 0 deduced from the SSM/I data. In order to demonstrate the usefulness of this method, nine-months of R(sub f(sub R))are retrieved from SSM/I data over three grid boxes in the Northeastern United States. These retrievals are then compared with the corresponding ground-truth-average rain rate, R(sub g), deduced from 15-minute rain gauges. Based on nine months of rain rate retrievals over three grid boxes, we find that R(sub f(sub R)can explain about 64 % of the variance contained in R(sub g). A similar evaluation of the grid-box-average rain rates R(sub GSCAT) and R(sub SRL), given by the NASA/GSCAT and NOAA/SRL rain retrieval algorithms, is performed. This evaluation reveals that R(sub GSCAT) and R(sub SRL) can explain only about 42 % of the variance contained in R(sub g). In our method, a threshold on the 85 GHz scattering depression is used primarily to determine the fractional rain area in a mesoscale grid box. Quantitative information pertaining to the 85 GHz scattering depression in the grid box is disregarded. In the NASA/GSCAT and NOAA/SRL methods on the other hand, this quantitative information is included. Based on the performance of all three methods, we infer that the magnitude of the scattering depression is a poor indicator of rain rate. Furthermore, from maps based on the observations made by SSM/I on land and ocean we find that there is a significant redundancy in the information content of the SSM/I multi-spectral observations. This leads us to infer that observations of SSM/I at 19 and 37 GHz add only marginal information to that given by 85 GHz scattering depression. As with other methods, the area-average rain retrieval method developed in this study needs tuning with radar and/or rain gauge observations. In the TRMM mission, the microwave radiometer rain retrieval algorithm can be tuned with TRMM radar observations. Since the radiometer has about 3.5 times wider spatial coverage compared to the radar in the TRMM mission, such an algorithm can be useful to extend geographically the rain information provided by the TRMM Precipitation Radar.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-23
    Description: The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometer sensors measure earth radiances in the broadband shortwave solar (O.3 - 5.0 micron and total (0.3 to 100 microns) spectral bands as well as in the 8-12 microns water vapor window spectral band. On November 27, 1997, the launch of the Tropical Rainfall Measuring Mission (TRMM) spacecraft placed the first set of CERES sensors into orbit, and 30 days later, the sensors initiated operational measurements of the earth radiance fields. In 1998, the Earth Observing System morning (EOS-AM1) spacecraft will place the second and third sensor sets into orbit. The prelaunch CERES sensors' count conversion coefficients (gains and zero-radiance offsets) were determined in vacuum ground facilities. The gains were tied radiometrically to the International Temperature Scale of 1990 (ITS-90). The gain determinations included the spectral properties (reflectance, transmittance, emittance, etc.) of both the sources and sensors as well as the in-field-of-view (FOV) and out-of-FOV sensor responses. The resulting prelaunch coefficients for the TRMM and EOS-AM1 sensors are presented. Inflight calibration systems and on-orbit calibration approaches are described, which are being used to determine the temporal stabilities of the sensors' gains and offsets from prelaunch calibrations through on-orbit measurements. Analyses of the TRMM prelaunch and on-orbit calibration results indicate that the sensors have retained their ties to ITS-90 at accuracy levels better than /- 0.3% between the 1995 prelaunch and 1997 on-orbit calibrations.
    Keywords: Meteorology and Climatology
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); Volume 36; No. 4; 1173-1185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: In this study gridded observed precipitation data sets are used to construct rainfall-based ENSO indices. The monthly El Nino and La Nina Indices (EI and LI) measure the steepest zonal gradient of precipitation anomalies between the equatorial Pacific and the Maritime Continent. This is accomplished by spatially averaging precipitation anomalies using a spatial boxcar filter, finding the maximum and minimum averages within a Pacific and Maritime Continent domain for each month, and taking differences. EI and LI can be examined separately or combined to produce one ENSO Precipitation Index (ESPI). ESPI is well correlated with traditional sea surface temperature and pressure indices, leading Nino 3.4. One advantage precipitation indices have over more conventional indices, is describing the strength and position of the Walker circulation. Examples are given of tracking the impact of ENSO events on the tropical precipitation fields.
    Keywords: Meteorology and Climatology
    Type: Journal of Climate
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-23
    Description: Arctic air masses have direct impacts on the weather and climatic extremes of midlatitude areas such as central North America. Arctic physical processes pose special and very important problems for global atmospheric models used for climate simulation and numerical weather prediction. At present, the observational database is inadequate to support research aimed at overcoming these problems. Three interdependent Arctic field programs now being planned will help to remedy this situation: SHEBA, which will operate an ice camp in the Arctic for a year-, ARM, which will supply instruments for use at the SHEBA ice camp and which will also conduct longer-term measurements near Barrow, Alaska; and FIRE, which will conduct one or more aircraft campaigns, in conjunction with remote-sensing investigations focused on the SHEBA ice camp. This paper provides an introductory overview of the physics of the Arctic from the perspective of large-scale modelers, outlines some of the modeling problems that arise in attempting to simulate these processes, and explains how the data to be provided by the three field programs can be used to test and improve large-scale models.
    Keywords: Meteorology and Climatology
    Type: Bulletin of the American Meteorological Society (ISSN 0003-0007); Volume 79; No. 2; 197-219
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: Aircraft icing endangers aviators, restricts surveillance opportunities, and reduces combat effectiveness.
    Keywords: Meteorology and Climatology
    Type: Battlespace Atmosphere and Cloud Impacts on Military App. Conference; Hanscom AFB, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union, Fall Meeting; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-08
    Description: High energy cosmic rays may influence the formation of clouds, and thus can have an impact on weather and climate. Cosmic rays in the solar wind are incident on the magnetosphere boundary and are then transmitted through the magnetosphere and atmosphere to reach the upper troposphere.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-27
    Description: This report describes the potential improvement of the effective ground resolution of MTSAT (Multi-functional Transport Satellite) Imager. The IFOV (Instantaneous Field of View) of MTSAT Imager is 4 km for infrared and 1 km visible. A combination of some images acquired by the MTSAT Imager could generate 2 km-latticed infrared images. Furthermore, it is possible to generate an effective 2 km IFOV image by the enhancement of the 2 km-latticed image using Digital Signal Processing. This report also mentions the on-orbit demonstration of this concept.
    Keywords: Meteorology and Climatology
    Type: Meteorological Satellite Center Technical Note (ISSN 0388-9653); No. 36; 1-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-22
    Description: In this study we present and describe a satellite-derived precipitation climatology over northern South America using a passive microwave technique, the Goddard Profiling Algorithm. A period of data slightly longer than 10 years is examined. The climatologies take the form of the mean estimated (adjusted) rainfall for a 10-year (+) period, with sub-divisions by month and meteorological season. For the six-year period 1992-1997, when two satellites were in operation, diurnal variability (to the extent it is discerned by four unequally spaced observations) is presented. We find an alternating pattern of morning and maxima stretching from the northeast (Atlantic coast) clear across the continent to the Pacific. The effects of topography, coastlines and geography (river valleys) on the rainfall patterns are clear. Interannual variability is examined by computing the deviations of yearly and warm season (DJF) rainfall from their respective long-term means. Interannual variability of the diurnal nature of the rainfall is presented, and the strong El Nino event of 1997-1998 is discussed.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-08
    Description: A Jacobian formulation of the pressure gradient force for use in models with topography following coordinates is proposed. It can be used in conjunction with any vertical coordinate system and is easily implemented.
    Keywords: Meteorology and Climatology
    Type: Monthly Weather Review
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: AGU, Western Pacific Geophysical Meeting; Taipei, Taiwan; Republic of China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2018-06-08
    Description: The major differences between monthly-mean ocean-surface wind fields derived from the observations of the National Aeronautics and Space Administration (NASA) Scatterometer (NSCAT) and produced by the operational numerical weather prediction (NWP) model of the European Center for Medium-Range Weather Forecasts are found in coastal and equatorial regions, where the sharp changes are smoothed over in NWP products.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-06-28
    Description: There are two fundamental goals of this research project which are listed here in terms of priority, i.e., a primary and secondary goal. The first and primary goal is to develop a prognostic system which could satisfy the operational weather prediction requirements of the meteorological subsystem within the Aircraft Vortex Spacing System (AVOSS), i.e., an operational computational Terminal Area PBL Prediction System (TAPPS). The second goal is to perform indepth diagnostic analyses of the meteorological conditions during the special wake vortex deployments at Memphis and Dallas during August 95 and September 97, respectively. These two goals are interdependent because a thorough understanding of the atmospheric dynamical processes which produced the unique meteorology during the Memphis and Dallas deployments will help us design a prognostic system for the planetary boundary layer (PBL) which could be utilized to support the meteorological subsystem within AVOSS. Concerning the primary goal, TAPPS Stage 2 was tested on the Memphis data and is about to be tested on the Dallas case studies. Furthermore benchmark tests have been undertaken to select the appropriate platform to run TAPPS in real time in support of the DFW AVOSS system. In addition, a technique to improve the initial data over the region surrounding Dallas was also tested and modified for potential operational use in TAPPS. The secondary goal involved several sensitivity simulations and comparisons to Memphis observational data sets in an effort to diagnose what specific atmospheric phenomena where occurring which may have impacted the dynamics of atmospheric wake vortices.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-1998-207055 , NAS 1.26:207055
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-05
    Description: Clouds and the Earth's Radiant Energy System (CERES) is a National Aeronautics and Space Administration (NASA) investigation to examine the role of clouds in the radiative energy flow through the Earth-atmosphere system. The first CERES scanning radiometer was launched on November 27, 1997 into a 35 inclination, 350 km altitude orbit, on the Tropical Rainfall Measuring Mission (TRMM) spacecraft. The CERES instrument consists of a three channel scanning broadband radiometer. The spectral bands measure shortwave (0.3 - 5 microns), window (8 - 12 microns), and total (0.3 - 100 microns) radiation reflected or emitted from the Earth-atmosphere system. Each Earth viewing measurement is geolocated to the Earth fixed coordinate system using satellite ephemeris, Earth rotation and geoid, and instrument pointing data. The interactive CERES coastline detection system is used to assess the accuracy of the CERES geolocation process. By analyzing radiative flux gradients at the boundaries of ocean and land masses, the accuracy of the scanner measurement locations may be derived for the CERES/TRMM instrument/satellite system. The resulting CERES measurement location errors are within 10% of the nadir footprint size. Precise pointing knowledge of the Visible and Infrared Scanner (VIRS) is required for convolution of cloud properties onto the CERES footprint; initial VIRS coastline results are included.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-05
    Description: Three SAGE III instruments are being built by Ball Aerospace & Technologies Corporation in Boulder, Colorado (USA). SAGE III is a fourth generation instrument that incorporates robust elements of its predecessors [SAM II, SAGE, SAGE II] while incorporating new design elements. The first of these will be launched aboard a Russian Meteor/3M platform in May 1999. SAGE III will add measurements of O2-A band from which density and temperature profiles are retrieved. This feature should improve refraction and Rayleigh computations over earlier. Additionally, the linear array of detectors will permit on-orbit wavelength calibration from observations of the exo-atmospheric solar Fraunhofer spectrum.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-06-28
    Description: Microwave Sounding Unit (MSU) Ch 2 data sets, collected from sequential, polar-orbiting, Sun-synchronous National Oceanic and Atmospheric Administration operational satellites, contain systematic calibration errors that are coupled to the diurnal temperature cycle over the globe. Since these coupled errors in MSU data differ between successive satellites, it is necessary to make compensatory adjustments to these multisatellite data sets in order to determine long-term global temperature change. With the aid of the observations during overlapping periods of successive satellites, we can determine such adjustments and use them to account for the coupled errors in the long-term time series of MSU Ch 2 global temperature. In turn, these adjusted MSU Ch 2 data sets can be used to yield global temperature trend. In a pioneering study, Spencer and Christy (SC) (1990) developed a procedure to derive the global temperature trend from MSU Ch 2 data. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedure, the magnitude of the coupled errors is not determined explicitly. Furthermore, based on some assumptions, these coupled errors are eliminated in three separate steps. Such a procedure can leave unaccounted residual errors in the time series of the temperature anomalies deduced by SC, which could lead to a spurious long-term temperature trend derived from their analysis. In the present study, we have developed a method that avoids the shortcomings of the SC procedures. Based on our analysis, we find there is a global warming of 0.23+/-0.12 K between 1980 and 1991. Also, in this study, the time series of global temperature anomalies constructed by removing the global mean annual temperature cycle compares favorably with a similar time series obtained from conventional observations of temperature.
    Keywords: Meteorology and Climatology
    Type: NASA/TM-1998-206646 , Rept-98A00404 , NAS 1.15:206646
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-02
    Description: The Students Clouds Observations On-Line or S'COOL project was piloted in 1997. It was created with the idea of using students to serve as one component of the validation for the Clouds and the Earth's Radiant Energy System (CERES) instrument which was launched with the Tropical Rainfall Measuring Mission (TRMM) in November, 1997. As part of NASA's Earth Science Enterprise CERES is interested in the role clouds play in regulating our climate. Over thirty schools became involved in the initial thrust of the project. The CERES instrument detects the location of clouds and identifies their physical properties. S'COOL students coordinate their ground truth observations with the exact overpass of the satellite at their location. Their findings regarding cloud type, height, fraction and opacity as well as surface conditions are then reported to the NASA Langley Distributed Active Archive Center (DAAC). The data is then accessible to both the CERES team for validation and to schools for educational application via the Internet. By March of 1998 ninety-three schools, in nine countries had enrolled in the S'COOL project. Joining the United States participants were from schools in Australia, Canada, France, Germany, Norway, Spain, Sweden, and Switzerland. The project is gradually becoming the global project envisioned by the project s creators. As students obtain the requested data useful for the scientists, it was hoped that students with guidance from their instructors would have opportunity and motivation to learn more about clouds and atmospheric science as well.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-02
    Description: A major component in the analysis of the Earth's radiation budget is the recovery of daily and monthly averaged radiative parameters using noncontinuous spatial and temporal measurements from polar orbiting satellites. In this study, the accuracy of the top of atmosphere (TOA) shortwave (SW) temporal interpolation model for the Clouds and the Earth's Radiant Energy System (CERES) is investigated using temporally intensive half-hourly TOA fluxes from the CERES/ARM/GEWEX Experiment (CAGEX) over Oklahoma (Charlock et al., 1996).
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-02
    Description: Establishing the radiative effect of molecular absorption (emission) in the atmosphere is critical to the proper interpretation of satellite retrieved radiances. Without an accurate accounting for molecular absorption, the assignment of radiative transfer processes to observed radiative effects could be fraught errors. Moreover, since the spectral characteristics of molecular absorption can change quickly with wavenumber, the adaptation of climate model parameterizations has the potential to lead to dubious results unless the chosen spectral range corresponds closely to the response function of the satellite instrument. Thus, an initiative has been undertaken to construct parameterizations that will account for the molecular absorption found in the spectral ranges of several satellite radiometers. Because of its efficiency and accuracy in calculating the molecular absorption for nonhomogeneous paths, the correlated k-distribution procedure has proven to be the most effective parameterization (Fu and Liou, 1992, and Kratz, 1995). A further advantage of the correlated k- distribution procedure is its ability to be incorporated directly into multiple scattering routines that consider scattering, as well as absorption, by clouds and aerosol particles.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-08
    Description: A formulation of the pressure gradient force for use in models with topography-following coordinates is proposed and diagnostically analyzed by Song. We investigate numerical consistency with respect to global energy conservation, depth-integrated momentum changes, and the represent of the bottom pressure torque.
    Keywords: Meteorology and Climatology
    Type: Monthly Weather Review
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-08
    Description: The radio occultation technique has been used to characterize planetary atmospheres since the 1960's spanning atmospheric pressures from several bars to 16 microbars.
    Keywords: Meteorology and Climatology
    Type: American Metrological Society, 10th Symposium on Meteorological Observations; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-27
    Description: The research in this paper focuses on describing a technique developed for cloud filtering using a bi-spectral approach on GOES-8/9 Imager data. The application was developed for use with infrared retrievals of geophysical parameters in mind, where cloud cover contaminates the derived product. However, numerous potential applications of the technique exist. The technique will be described and a preliminary validation of the algorithm will be presented. Although initially based on the spatial coherence approach from Coakley and Brethereton (1982), it has evolved to utilize a difference image of the I I and 3.9 micrometer channels on the GOES-8/9 Imager. This image is very similar to that produced by Nelson and Ellrod (1996). During the daytime the technique makes use of the varying solar reflectance in the 3.9 micrometer channel by clouds and land to identify cloudy pixels. While at night, the technique makes use of the varying emissivity of the clouds in the scene to discriminate between clear and cloudy pixels. The technique applies three basic threshold tests to produce the final cloud filtered image: 1) a standard deviation threshold to detect the spatial variance in the scene, 2) a difference threshold between adjacent pixels, and 3) a simple infrared temperature threshold. The first test is applied to the entire image at once, then in a second pass the next two tests are applied. The final infrared temperature threshold is only meant to identify the coldest clouds that might pass the previous tests. The technique performs well during the daytime, while nighttime performance is degraded but is promising. The technique has proven to be robust and shows great promise of meeting its original goal of cloud filtering for use in an infrared retrieval algorithm for use in climate studies.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses implicating manmade fluorocarbons as cause of the --'ozone hole'; (5) The current soot loading is too small to be of environmental (radiative and chemical) consequence. However, the fractal nature of soot distinguishes it aerodynamically and radiatively from sulfuric acid droplets such that its stratospheric residence time is longer, mainly because of vertical transport against gravity due to gravito-photophoretic forces. Thus it may accumulate and become of environmental concern in the future.
    Keywords: Meteorology and Climatology
    Type: Symposium on Advanced Enviornmental Monitoring; Sep 10, 1998 - Sep 14, 1998; Kwangju; Korea, Republic of
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: A number of investigators have used chemical profiles of paleosols to reconstruct the evolution of atmospheric oxygen levels during the course of Earth history (Holland, 1984, 1994; Kirkham and Roscoe, 1993; Ohmoto, 1996). Over the past decade Holland and his co-workers have examined reported paleosols from six localities that formed between 2.75 and 0.45 Ga. They have found that the chemical profiles of these paleosols are consistent with a dramatic change in atmospheric PO2 between 2.2 and 2.0 Ga from 〈 or = 0.002 to 〉 or = 0.03 atm (Holland, 1994). Ohmoto (1996) examined chemical data from twelve reported paleosols ranging in age from 2.9 to 1.8 Ga. He concluded that these chemical profiles indicate that atmospheric PO2 has not changed significantly during the past 3.0 Ga. We seek to resolve the conflict between these reconstructions through a broader examination of the paleosol literature, both to determine which reported paleosols can be definitively identified as such and to determine what these definite paleosols tell us about atmospheric evolution. We here review reports describing over 50 proposed paleosols, all but two are older than 1.7 Ga. Our review indicates that 15 of these reported paleosols can be definitively identified as ancient soils. The behavior of iron uring the formation of these 15 paleosols provides both qualitative and semiquantitative information about the evolution of the redox state of the atmosphere. Every definitely identified pre-2.44 Ga paleosol suffered significant Fe loss during weathering. This loss indicates that atmospheric PO2 was always less than about 5 x l0(-4) atm prior to 2.44 Ga. Analysis of the Hokkalampi paleosol (2.44-2.2 Ga) (Marmo, 1992) and the Ville Marie paleosol (2.38-2.215 Ga) (Rainbird, Nesbitt, and Donaldson, 1990) yield ambiguous results regarding atmospheric PO2. Loss of Fe during the weathering of the 2.245 to 2.203 Ga Hekpoort paleosol (Button, 1979) indicates that atmospheric PO2 was less than 8 x 10(-4) atm shortly before 2.2 Ga. The presence of red beds immediately overlying the Hokkalampi, Ville Marie, and Hekpoort paleosols suggests that by about 2.2 Ga there was an unquantified but substantial amount of oxygen in the atmosphere. Iron loss was negligible during formation of the 2.2 to 2.0 Ga Wolhaarkop (Holland and Beukes, 1990) and Drakenstein (Wiggering and Beukes, 1990) paleosols and during formation of all the later paleosols we previewed. Thus, atmospheric PO2 probably has been 〉 or = 0.03 atm since sometime between 2.2 and 2.0 Ga.
    Keywords: Meteorology and Climatology
    Type: American journal of science (ISSN 0002-9599); 298; 8; 621-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: The spectroscopic measurements of molecular parameters constitute one of the major areas of our research program. This part of our program has been conducted in close collaboration with Smithsonian Astrophysical Observatory (SAO) and National Institute of Standards and Technology (NIST). The references on HO2, OH, and O2 that appear on the publication list are examples of this type of work completed during the grant period. These pressure-broadening studies have provided the kind of improvements needed in the database for retrieving atmospheric profiles from far infrared limb sensing data. Authors summarized the laboratory spectroscopic studies conducted during the grant period. We attempted to measure the pressure broadening coefficients of the O2 lines in the 50 and 117/ cm regions. An accurate characterization of these lines using the IBEX detector system was needed to analyze the flight data. These are difficult lines to measure because they arise from weak magnetic dipole transitions. We used a 4-meter absorption cell to obtain the pressure broadening coefficients for the 50 and 83 /cm lines. We also completed the pressure broadening studies including the temperature dependence of two lines of OH at 83 and 118 /cm. These two lines are important not only for the balloon data retrieval work but also for the future project proposals.Another area of focus in our program is the far infrared detector research. The third area of focus deals with data distribution and dissemination.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: The goal of this project was to compare observations of marine and arctic boundary layers with (i) parameterization systems used in climate and weather forecast models, and (ii) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type and thickness as functions of large scale conditions that are predicted by global climate models.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: The seasonal changes of the upper tropospheric humidity are studied with the water vapor data from the Microwave Limb Sounder on the NASA Upper Atmosphere Research Satellite, and the winds and vertical velocity data obtained from the European Centre for Medium-Range Weather Forecasts. Using the same algorithm for vertical transport as that used for horizontal transport (Zhu and Newell, 1998), we find that the moisture in the tropical upper troposphere may be increased mainly by intensified local convection in a small portion, less than 10%, of the whole area between 40 deg S to 40 deg N. The contribution of large scale background circulations and divergence of horizontal transport is relatively small in these regions. These dynamic processes cannot be revealed by the traditional analyses of moisture fluxes. The negative feedback suggested by Lindzen (1990) also exists, if enhanced convection is concentrated in the tropics, but is apparently not the dominant process in the moisture budget.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: The Smoke, Clouds, and Radiation-Brazil (SCAR-B) field project took place in the Brazilian Amazon and cerrado regions in August-September 1995 as a collaboration between Brazilian and American scientists. SCAR-B, a comprehensive experiment to study biomass burning, emphasized measurements of surface biomass, fires, smoke aerosol and trace gases, clouds, and radiation. their climatic effects, and remote sensing from aircraft and satellites. It included aircraft and ground-based in situ measurements of smoke emission factors and the compositions, sizes, and optical properties of the smoke particles; studies of the formation of ozone; the transport and evolution of smoke; and smoke interactions with water vapor and clouds. This overview paper introduces SCAR-B and summarizes some of the main results obtained so far. (1) Fires: measurements of the size distribution of fires, using the 50 m resolution MODIS Airborne Simulator, show that most of the fires are small (e.g. 0.005 square km), but the satellite sensors (e.g., AVHRR and MODIS with I km resolution) can detect fires in Brazil which are responsible for 60-85% of the burned biomass: (2) Aerosol: smoke particles emitted from fires increase their radius by as much as 60%, during their first three days in the atmosphere due to condensation and coagulation, reaching a mass median radius of 0.13-0.17 microns: (3) Radiative forcing: estimates of the globally averaged direct radiative forcing due to smoke worldwide, based on the properties of smoke measured in SCAR-B (-O.l to -0.3 W m(exp -2)), are smaller than previously modeled due to a lower single-scattering albedo (0.8 to 0.9), smaller scattering efficiency (3 square meters g(exp -2) at 550 nm), and low humidification factor; and (4) Effect on clouds: a good relationship was found between cloud condensation nuclei and smoke volume concentrations, thus an increase in the smoke emission is expected to affect cloud properties. In SCAR-B, new techniques were developed for deriving the absorption and refractive index of smoke from ground-based remote sensing. Future spaceborne radiometers (e.g., MODIS on the Earth Observing System), simulated on aircraft, proved to be very useful for monitoring smoke properties, surface properties, and the impacts of smoke on radiation and climate.
    Keywords: Meteorology and Climatology
    Type: Paper-98JD02281 , Journal of Geophysical Research (ISSN 0148-0227); 103; D24; 31,783-31,808
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Automatic contrail detection is of major importance in the study of the atmospheric effects of aviation. Due to the large volume of satellite imagery, selecting contrail images for study by hand is impractical and highly subject to human error. It is far better to have a system in place that will automatically evaluate an image to determine 1) whether it contains contrails and 2) where the contrails are located. Preliminary studies indicate that it is possible to automatically detect and locate contrails in Advanced Very High Resolution Radiometer (AVHRR) imagery with a high degree of confidence. Once contrails have been identified and localized in a satellite image, it is useful to segment the image into contrail versus noncontrail pixels. The ability to partition image pixels makes it possible to determine the optical properties of contrails, including optical thickness and particle size. In this paper, we describe a new technique for segmenting satellite images containing contrails. This method has good potential for creating a contrail climatology in an automated fashion. The majority of contrails are detected, rejecting clutter in the image, even cirrus streaks. Long, thin contrails are most easily detected. However, some contrails may be missed because they are curved, diffused over a large area, or present in short segments. Contrails average 2-3 km in width for the cases studied.
    Keywords: Meteorology and Climatology
    Type: IEEE Transactions on Geoscience and Remote Sensing (ISSN 0196-2892); 36; 5; 1609-1619
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: During the interval of 1944-1997, 120 intense hurricanes were observed in the Atlantic basin, having an annual frequency of 0-7 events per year, being more active prior to the mid 1960s than thereafter, and being preferentially lower during El Nino years as compared to non-El Nino years. Because decadal averages of the frequency of intense hurricanes closely resemble those of average temperature anomalies for northern hemispheric and global standards and of the average temperature at the Armagh Observatory (Northern Ireland), a proxy for climatic change, it is inferred that the long-term trends of the annual frequency of intense hurricanes and temperature are statistically related. Indeed, on the basis of the 4- and 10-yr moving averages, the two are found to be strongly associated (when temperature leads by 6 yr). Because the long-term leading trends of temperature are now upward, beginning about the mid 1980s, it is inferred that the long-term trends of the annual frequency of intense hurricanes should now also be upward, beginning near 1990, suggesting that a return to the more active state probably has already occurred.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-17
    Description: Statistical aspects of intense hurricanes (those of category 3 or higher) in the Atlantic basin for the interval of 1950-1998 are investigated with respect to the ENSC, cycle and the postulated 'more versus less' activity modes for intense hurricane activity. This is accomplished in order to evaluate the statistical basis for these specific groupings and to presage a forecast for the number of expected intense hurricanes during the forthcoming 1999 hurricane season. Statistically speaking, because the 1998-1999 La Nina (onset presumed to be September 1998) should persist longer than about a year - the average duration for La Nina events based on the 10 previously occurring La Nina, each having a duration in the range of 7-22 months - it seems likely that the 1999 season will be classified as a 'non-El Nino-related' (NENR) season. If true, then, greater than or equal to 2 intense hurricanes are to be expected. Based on Poisson statistics, the probability of greater than or equal to 2 events is about 77% when the season is classified as NENR, and it is about 87% when the season is classified as NENR and the 'more active' phase is in fashion; likewise, the probability of greater than or equal to 4 events is about 31% and 48%, respectively, for the two cases. Therefore, an above average rate (possibly, as many as 4 +/- 1, or higher) of intense hurricanes forming in the Atlantic basin seems a very distinct possibility during the 1999 season.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-17
    Description: GCSS Cirrus Cloud Systems Working Group (WG2) is presently conducting a comparison of cirrus cloud models for idealized initial conditions. The experiments involve binary (off/on) tests of model sensitivity to infrared radiative processes, and thermal stratification, and vertical wind shear for situations of weakly forced (3 cm/s uplift) cold (-60 to -70 C) and warm (-35 to -50 C) cirrus clouds. A range of model types are involved including parcel, SCM, 2-D CRM, 3-D CRM and LES models. The test cases will be described and results from 2-dimensional cirrus cloud models with bulk microphysics (implicit second moment scheme) and explicit bin microphysics will be compared. Vertical ice mass flux (particle fall speed) is a critical model component leading to significant intermodel differences. Efforts are ongoing to better quantify this aspect. Future plans of WG2 will also be briefly described and include model comparisons for a well-observed case of cold (ARM IOP) cirrus and of warm (EUCREX) cirrus, as well as, a joint activity with WG4 to consider the treatment of anvil cirrus in a variety of models.
    Keywords: Meteorology and Climatology
    Type: GEWEX Cloud System Study; Nov 09, 1998 - Nov 13, 1998; Reading; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-17
    Description: A prognostic cloud scheme named McRAS (Microphysics of clouds with Relaxed Arakawa-Schubert Scheme) was developed with the aim of improving cloud-microphysics, and cloud-radiation interactions in GCMs. McRAS distinguishes convective, stratiform, and boundary-layer clouds. The convective clouds merge into stratiform clouds on an hourly time-scale, while the boundary-layer clouds do so instantly. The cloud condensate transforms into precipitation following the auto-conversion relations of Sundqvist that contain a parametric adaptation for the Bergeron-Findeisen process of ice crystal growth and collection of cloud condensate by precipitation. All clouds convect, advect, and diffuse both horizontally and vertically with a fully active cloud-microphysics throughout its life-cycle, while the optical properties of clouds are derived from the statistical distribution of hydrometeors and idealized cloud geometry. An evaluation of McRAS in a single column model (SCM) with the GATE Phase III data has shown that McRAS can simulate the observed temperature, humidity, and precipitation without discernible systematic errors. An evaluation with the ARM-CART SCM data in a cloud model intercomparison exercise shows reasonable but not an outstanding accurate simulation. Such a discrepancy is common to almost all models and is related, in part, to the input data quality. McRAS was implemented in the GEOS II GCM. A 50 month integration that was initialized with the ECMWF analysis of observations for January 1, 1987 and forced with the observed sea-surface temperatures and sea-ice distribution and vegetation properties (biomes, and soils), with prognostic soil moisture, snow-cover, and hydrology showed a very realistic simulation of cloud process, incloud water and ice, and cloud-radiative forcing (CRF). The simulated ITCZ showed a realistic time-mean structure and seasonal cycle, while the simulated CRF showed sensitivity to vertical distribution of cloud water which can be easily altered by the choice of time constant and incloud critical cloud water amount regulators for auto-conversion. The CRF and its feedbacks also have a profound effect on the ITCZ. Even though somewhat weaker than observed, the McRAS-GCM simulation produces robust 30-60 day oscillations in the 200 hPa velocity potential. Two ensembles of 4-summer (July, August, September) simulations, one each for 1987 and 1988 show that the McRAS-GCM simulates realistic and statistically significant precipitation differences over India, Central America, and tropical Africa. Several seasonal simulations were performed with McRAS-GEOS II GCM for the summer (June-July- August) and winter (December-January-February) periods to determine how the simulated clouds and CRFs would be affected by: i) advection of clouds; ii) cloud top entrainment instability, iii) cloud water inhomogeneity correction, and (iv) cloud production and dissipation in different cloud-processes. The results show that each of these processes contributes to the simulated cloud-fraction and CRF.
    Keywords: Meteorology and Climatology
    Type: GEWEX Cloud System Study; Nov 09, 1998 - Nov 13, 1998; Reading; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Cirrus clouds are a particularly uncertain component of general circulation model (GCM simulations of long-term climate change for a variety of reasons: (1) They encompass a wide range of optical thicknesses and altitudes, from thin tropopause cirrus to thick anvil cirrus that descend to the freezing level, and thus can exert both positive and negative forcing and feedback on the climate; (2) The dynamical processes that create them are poorly resolved in climate GCMs and different in the tropics and midlatitudes; (3) Predictions of their formation and microphysical properties depend on the accuracy of dynamical transports of small concentrations of water vapor to and within the upper troposphere; (4) The relative humidity conditions at which they form depends on the nature and concentration of nucleating particles and is poorly understood; (5) They are more difficult to observe than other cloud types, and hence their parameterization is more loosely constrained by available data. We will illustrate the potential sensitivity of the perturbed climate to uncertainties in cirrus cloud formulation. We will also examine the processes that form cirrus in climate models and discuss the accuracy with which climate GCMs represent these processes. We will also discuss ways in which GCM grid-scale parameterizations might be derived from cloud-scale observations. Finally, we will emphasize the types of global observations needed to constrain parameterizations of cirrus in climate GCMs.
    Keywords: Meteorology and Climatology
    Type: ECMWF: Cloud Processes and Cloud Feedbacks in Large-Scale Models; Nov 09, 1998 - Nov 13, 1998; London; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The atmospheric circulation and its interaction with the oceanic circulation involve non-linear and non-local exchanges of energy and water over a very large range of space and time scales. These exchanges are revealed, in part, by the related variations of clouds, which occur on a similar range of scales as the atmospheric motions that produce them. Collection of comprehensive measurements of the properties of the atmosphere, clouds and surface allows for diagnosis of some of these exchanges. The use of a multi-satellite-network approach by the International Satellite Cloud Climatology Project (ISCCP) comes closest to providing complete coverage of the relevant range space and time scales over which the clouds, atmosphere and ocean vary. A nearly 15-yr dataset is now available that covers the range from 3 hr and 30 km to decade and planetary. This paper considers three topics: (1) cloud variations at the smallest scales and how they may influence radiation-cloud interactions, and (2) cloud variations at "moderate" scales and how they may cause natural climate variability, and (3) cloud variations at the largest scales and how they affect the climate. The emphasis in this discussion is on the more mature subject of cloud-radiation interactions. There is now a need to begin similar detailed diagnostic studies of water exchange processes.
    Keywords: Meteorology and Climatology
    Type: Cloud Processes and Cloud Feedback in Large-Scale Models; Nov 09, 1998 - Nov 13, 1998; London; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-17
    Description: This paper will discuss findings of a collaborative lightning research project between National Aeronautics and Space Administration, the Massachusetts Institute of Technology and the National Weather Service office In Melbourne Florida. In August 1996, NWS/MLB received a workstation which incorporates data from the KMLB WSR-88D, Cloud to Ground (CG) stroke data from the National Lightning Detection Network (NLDN), and 3D volumetric lightning data collected from the Kennedy Space Centers' Lightning Detection And Ranging (LDAR) lightning system. The two primary objectives of this lightning workstation, called Lightning Imaging Sensor Data Applications Display (USDAD), are to: observe how total lightning relates to severe convective storm morphology over central Florida, and compare ground based total lightning data (LDAR) to a satellite based lightning detection system. This presentation will focus on objective #1. The LISDAD system continuously displays CG and total lighting activity overlaid on top of the KMLB composite reflectivity product. This allows forecasters to monitor total lightning activity associated with convective cells occurring over the central Florida peninsula and adjacent coastal waters. The LISDAD system also keeps track of the amount of total lightning data, and associated KMLB radar products with individual convective cells occurring over the region. By clicking on an individual cell, a history table displays flash rate information (CG and total lightning) in one minute increments, along with radar parameter trends (echo tops, maximum dBz and height of maximum dBz) every 5 minutes. This history table Is updated continuously, without user intervention, as long as the cell is identified. Reviewing data collected during the 1997 wet season (21 cases) revealed that storms which produced severe weather (hall greater or = 0.75 in. or wind damage) typically showed a rapid rise In total lightning prior to the onset of severe weather. On average, flash rate increases of 25 FPM per minute over a time scale of approximately 5 minutes were common. These pulse severe storms typically reached values of 150 to 200 FPM with some cells exceeding 400 FPM. One finding which could have a direct application to the warning process is that the rapid increase in lightning typically occurred in advance of the warning issuance time. Comparisons between the ending time of the rapid rate increase and the time of when the warning was issued by NWS/MLB meteorologist exhibited a lead time of 8 minutes. It is conceivable that if close monitoring of the LISDAD system by operational meteorologist is routinely performed, warnings for pulse severe storms could be issued up to 4 to 6 minutes earlier than what is issued currently.
    Keywords: Meteorology and Climatology
    Type: Severe Local Storms; Sep 14, 1998 - Sep 18, 1998; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-17
    Description: This paper examines the three dimensional characteristics of lightning flashes and severe storms observed in Central Florida during 1997-1998. The lightning time history of severe and tornadic storms were captured during the on-going ground validation campaign supporting the Lightning Imaging Sensor (LIS) experiment on the Tropical Rainfall Measuring Mission (TRMM). The ground validation campaign is a collaborative experiment that began in 1997 and involves scientists at the Global Hydrology and Climate Center, MIT/Lincoln Laboratories, and the NWS Forecast Office at Melbourne, FL. Lightning signatures that may provide potential early warning of severe storms are being evaluated by the forecasters at the NWS/MLB office. Severe storms with extreme flash rates sometimes exceeding 300 per minute and accompanying rapid increases in flash rate prior to the onset of the severe weather (hall, damaging winds, tornadoes) have been reported by Hodanish et al. and Williams et al. (1998-this conference). We examine the co-evolving changes in storm structure (mass, echo top, shear, latent heat release) and kinematics associated with these extreme and rapid flash rate changes over time. The flash frequency and density are compared with the three dimensional radar reflectivity structure of the storm to help interpret the possible mechanisms producing the extreme and rapidly increasing flash rates. For two tornadic storms examined thus far, we find the burst of lightning is associated with the development of upper level rotation in the storm. In one case, the lightning burst follows the formation of a bounded weak echo region (BWER). The flash rates diminish with time as the rotation develops to the ground in conjunction with the decent of the reflectivity core. Our initial findings suggest the dramatic increase of flash rates is associated with a sudden and dramatic increase in storm updraft intensity which we hypothesize is stretching vertical vorticity as well as enhancing the development of the mixed phase region of the storm. We discuss the importance of these factors in producing both the observed extreme flash rates and the severe weather that follows in these storms and others to be presented.
    Keywords: Meteorology and Climatology
    Type: Severe Local Storms; Sep 14, 1998 - Sep 18, 1998; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-17
    Description: GOES-7 VAS measurements during the Pathfinder period (1987-88) have been analysed to reveal seasonal and interannual variations in moisture transport. Long term measurements of quality winds and humidity from satellite estimates show superior benefit in diagnosing middle and upper tropospheric large scale climate variations such as ENSO events and direct circulation systems such as the Hadley Cell. A water Vapor Transport Index (WVTI) has been developed to diagnose preferred regions of strong moisture transport and to gauge the seasonal and interannual intensities detected in the GOES viewing area. Second-order variables that may be derived from GOES winds will be also discussed on the poster.
    Keywords: Meteorology and Climatology
    Type: Satellite Meteorology and Oceanography; May 25, 1998 - May 29, 1998; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-17
    Description: A multi-sensor algorithm is proposed that uses total lightning observations in conjunction,with conventional weather satellite imagery to develop proportionality relationships that can be used to improve space-time estimates of rainfall in data sparse regions. Previous studies have examined the relationships between rainfall and cloud-to-ground lightning only. The proposed algorithm is developed from relationships developed between total lightning and rainfall data collected at the TRMM ground validation site at Kennedy Space Center, Florida and elsewhere. The algorithm is evaluated throughout the tropics with data collected by the TRMM Lightning Imaging Sensor (LIS) and the other TRMM instruments. Based on earlier studies of relationships among total lightning, passive microwave ice scattering signatures, and cloud top height, this algorithm is expected to improve rainfall estimates from geosynchronous orbit. A lightning sensor is currently being designed for a future flight on the GOES satellite.
    Keywords: Meteorology and Climatology
    Type: Preciptation; Jun 26, 1998 - Jul 03, 1998; Mauna Lani Bay, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Electric field measurements are fundamental to the study of thunderstorm electrification, thundercloud charge structure, and the determination of the locations and magnitudes of charges deposited by lightning. Continuous field observations can also be used to warn of impending electrical hazards. For example, the USAF Eastern Range (ER) and NASA Kennedy Space Center (KSC) in Florida currently operate a ground-based network of electric field mill sensors to warn against lightning hazards to space vehicle operations/launches. The sensors provide continuous recordings of the ambient field. Others investigators have employed flat-plate electric field antennas to detect changes In the ambient field due to lightning. In each approach, electronic circuitry is used to directly detect and amplify the effects of the ambient field on an exposed metal conductor (antenna plate); in the case of continuous field recordings, the antenna plate is alternately shielded and unshielded by a grounded conductor. In this work effort, an alternate optical method for detecting lightning-caused electric field changes is Introduced. The primary component in the detector is an anisotropic electro-optic crystal of potassium di-hydrogen phosphate (chemically written as KH2PO4 (KDP)). When a voltage Is placed across the electro-optic crystal, the refractive Indices of the crystal change. This change alters the polarization state of a laser light beam that is passed down the crystal optic axis. With suitable application of vertical and horizontal polarizers, a light transmission measurement is related to the applied crystal voltage (which in turn Is related to the lightning caused electric field change). During the past two years, all critical optical components were procured, assembled, and aligned. An optical housing, calibration set-up, and data acquisition system was integrated for breadboard testing. The sensor was deployed at NASA Marshall Space Flight Center (MSFC) in the summer of 1998 to collect storm data. Because solid-state technology is used, future designs of the sensor will be significantly scaled down In physical dimension and weight compared to the present optical breadboard prototype. The use of fiber optics would also provide significant practical improvements.
    Keywords: Meteorology and Climatology
    Type: Dec 06, 1998 - Dec 10, 1998; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-17
    Description: During the early morning hours of February 23 1998, the worst tornado outbreak ever recorded occurred over the central Florida peninsula. At least 7 confirmed tornadoes, associated with 4 supercells, developed, with 3 of the tornadoes reaching F3 intensity. Many of the tornadoes where on the ground for tens of miles, uncommon for the state of Florida. A total of 42 people were killed, with over 250 people injured. During the outbreak, National Weather Service Melbourne, in collaboration with the National Aeronautics and Space Administration and the Massachusetts Institute of Technology was collecting data from a unique lightning observing system called Lightning Imaging Sensor Data Applications Display (LISDAD, Boldi et.al., this conference). This system marries radar data collected from the KMLB WSR-88D, cloud to ground data collected from the National Lightning Detection Network, and total lightning data collected from NASKs Lightning Detection And Ranging system. This poster will display, concurrently, total lightning data (displayed in 1 minute increments), time/height storm relative velocity products from the KMLB WSR-88D, and damage information (tornado/hail/wind) from each of the supercell thunderstorms. The primary objective of this poster presentation is to observe how total lightning activity changes as the convective storm intensifies, and how the lightning activity changes with respect to mesocyclone strength (vortex stretching) and damaging weather on the ground.
    Keywords: Meteorology and Climatology
    Type: Severe Local Storm; Sep 14, 1998 - Sep 18, 1998; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-17
    Description: The design and evaluation of the Lightning Imaging Sensor Data Applications Display (LISDAD). The ultimate goal of the LISDAD system is to quantify the utility of total lightning information in short-term, severe-weather forecasting operations. To this end, scientists from NASA, NWS, and MIT organized an effort to study the relationship of lightning and severe-weather on a storm-by-storm, and even cell-by-cell basis for as many storms as possible near Melbourne, Florida. Melbourne was chosen as it offers a unique combination of high probability of severe weather and proximity to major relevant sensors - specifically: NASA's total lightning mapping system at Kennedy Space Center (the LDAR system at KSC); a NWS/NEXRAD radar (at Melbourne); and a prototype Integrated Terminal Weather System (ITWS, at Orlando), which obtains cloud-to-ground lightning Information from the National Lightning Detection Network (NLDN), and also uses NSSL's Severe Storm Algorithm (NSSL/SSAP) to obtain information about various storm-cell parameters. To assist in realizing this project's goal, an interactive, real-time data processing system (the LISDAD system) has been developed that supports both operational short-term weather forecasting and post facto severe-storm research. Suggestions have been drawn from the operational users (NWS/Melbourne) in the design of the data display and its salient behavior. The initial concept for the users Graphical Situation Display (GSD) was simply to overlay radar data with lightning data, but as the association between rapid upward trends in the total lightning rate and severe weather became evident, the display was significantly redesigned. The focus changed to support the display of time series of storm-parameter data and the automatic recognition of cells that display rapid changes in the total-lightning flash rate. The latter is calculated by grouping discrete LDAR radiation sources into lightning flashes using a time-space association algorithm. Specifically, the GSD presents the user with the Composite Maximum Reflectivity obtained from the NWS/NEXRAD. Superimposed upon this background image are placed small black circles indicating the locations of storm cells identified by the NSSL/SSA. The circles become cyan if lightning is detected within the storm-cell; if the cell has lightning rates indicative of a severe-storm, the circle turns red. This paper will: (1) review the design of LISDAD system; (2) present some examples of its data display; and shown results of the lightning based severe-weather prediction algorithm.
    Keywords: Meteorology and Climatology
    Type: Severe Local Storm; Sep 14, 1998 - Sep 18, 1998; Minneapolis, MN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-17
    Description: New data sets used to describe components of the hydrologic and energy cycles of the Earth system are currently being produced and disseminated through the NASA EOS DAACs and several data assimilation centers supported by such organizations as NASA and NOAA. These data sets incorporate hybrid data analysis schemes and portray satellite and radiosonde data combined in a diagnostic sense and in a forecast mode. There is a need to develop a better understanding of the accuracy and utility of these global, relatively long-term, datasets to describe components of the hydrologic cycle and to understand atmospheric moisture variability and its relation to climatological significant events Much progress has been made in the last ten years in the development of global atmospheric models and analysis of satellite data for global studies. The atmospheric models have improved in their ability to predict both short term and longer term weather events. This has been possible through better understanding of atmosphere dynamics and very rapid advances in computer technology. Over the same period, data assimilation methods have advanced and unconventional data sources such as aircraft and satellite data, drifting buoys, etc., can be assimilated at non-synaptic times. As a result of these improvements, comprehensive global atmospheric fields based on four-dimensional data assimilation methods now provide one of the most reliable methods for studying dynamical and physical behavior in the atmosphere.
    Keywords: Meteorology and Climatology
    Type: Global Change Studies; Jan 11, 1998 - Jan 16, 1998; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-17
    Description: Aerosol backscatter coefficient data are examined from two local flights undertaken during NASA's GLObal Backscatter Experiment (GLOBE) in May - June, 1990. During each of these two flights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provides an ideal opportunity to allow flight level measured or modeled aerosol backscafter to be compared with pulsed lidar aerosol backscafter data that were obtained at these same altitudes either earlier or later than the flight level measurements. Aerosol backscafter comparisons were made at 1.06-, 9.11- and 9.25-mm wavelengths, using data from three lidar systems and two aerosol optical counters. The best agreement between all sensor's was found in the altitude region below 7 km where backscafter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscafter data at 1.06- and 9.25-mm wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters. Possible reasons are offered to explain this discrepancy. During the Japan local flight, microphysics analysis revealed: (1) evidence of a strong advected seasalt aerosol plume from the marine boundary layer, and (2) where backscatter was low, the large lidar sampling volume included many large particles which were of different chemical composition to the small particle category sampled by the particle counters.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-17
    Description: Global measurements of large, optically bright lightning events from the Optical Transient Detector (OTD) satellite are used to validate estimates of lightning location from single-station Schumann resonance (SR) data. Bearing estimates are obtained through conventional magnetic direction-finding techniques, while source range is estimated from the range-dependent impedance spectrum of individual SR transients. An analysis of 40 such transients suggests that single-station techniques can locate lightning globally with an accuracy of 1-2mm. This is confirmed by further validation at close ranges from flashes detected by the National Lightning Detection-Network (NLDN). Observations with both OTD and SR systems may be useful for globally locating lightning with necessary, if not sufficient, characteristics to trigger mesospheric sprites.
    Keywords: Meteorology and Climatology
    Type: Journal of Atmospheric and Solar-Terrestrial Physics (ISSN 0017-9310)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-17
    Description: Under the support of this grant a balloon-borne gondola containing a variety of aerosol instruments was developed and flown from Laramie, Wyoming, (41 deg N, 105 deg W) and from Lauder, New Zealand (45 deg S, 170 deg E). The gondola includes instruments to measure the concentrations of condensation nuclei (CN), cloud condensation nuclei (CCN), optically detectable aerosol (OA.) (r greater than or equal to 0.15 - 2.0 microns), and optical scattering properties using a nephelometer (lambda = 530 microns). All instruments sampled from a common inlet which was heated to 40 C on ascent and to 160 C on descent. Flights with the CN counter, OA counter, and nephelometer began in July 1994. The CCN counter was added in November 1994, and the engineering problems were solved by June 1995. Since then the flights have included all four instruments, and were completed in January 1998. Altogether there were 20 flights from Laramie, approximately 5 per year, and 2 from Lauder. Of these there were one or more engineering problems on 6 of the flights from Laramie, hence the data are somewhat limited on those 6 flights, while a complete data set was obtained from the other 14 flights. Good CCN data are available from 12 of the Laramie flights. The two flights from Lauder in January 1998 were successful for all measurements. The results from these flights, and the development of the balloon-bome CCN counter have formed the basis for five conference presentations. The heated and unheated CN and OA measurements have been used to estimate the mass fraction of the aerosol volatile, while comparisons of the nephelometer measurements were used to estimate the light scattering, associated with the volatile aerosol. These estimates were calculated for 0.5 km averages of the ascent and descent data between 2.5 km and the tropopause, near 11.5 km.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-1998-208094 , NAS 1.26:208094
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-16
    Description: The authors compare deterministic and stochastic rain-rate retrieval algorithms by applying them to 14-GHz nadir-looking airborne radar reflectivity profiles acquired in tropical convective rain during the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment, The deterministic algorithms both use the path-integrated attenuation (PIA), measured by the surface reference technique, as a constraint. One deterministic algorithm corrects the k-R relation, while the second corrects the Z-R relation. The stochastic algorithms are based on applying an extended Kalman filter to the reflectivity profile. One employs radar reflectivity only; the other additionally uses the PIA. The authors find that the stochastic algorithm, which uses the PIA, is the most robust algorithm with regard to incorrect assumptions about the drop size distribution (DSD). The deterministic algorithm that uses the PIA to adjust the Z-R relation is also fairly robust and produces rain rates similar to the stochastic algorithm that uses the PIA, The deterministic algorithm that adjusts only the k-R relation and the stochastic radar-only algorithm are more sensitive to assumptions about the DSD. It is likely that they underestimate convective rainfall, especially if the DSD is erroneously assumed to be appropriate for stratiform rain conditions.
    Keywords: Meteorology and Climatology
    Type: Journal of Atmospheric and Oceanic Technology; 15; 1091-1096
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-17
    Description: The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning the empirical continuum models over the full spectral range of interest for remote sensing and climate applications. Thus, we propose to further develop and refine our existing far-wing formalism to provide an improved treatment applicable from the near-infrared through the microwave. Based on the results of this investigation, we will provide to the remote sensing/climate modeling community a practical and accurate tabulation of the continuum absorption covering the near-infrared through the microwave region of the spectrum for the range of temperatures and pressures of interest for atmospheric applications.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-17
    Description: In this paper, we present a description of the internal dynamics and boundary forcing characteristics of two major components of the Asian summer monsoon (ASM), i.e., the South Asian (SAM) and the Southeast-East Asian monsoon (SEAM). The description is based on a new monsoon-climate paradigm in which the variability of ASM is considered as the outcome of the interplay of a "fast" and an "intermediate" monsoon subsystem, under the influenced of the "slow" varying external forcings. Two sets of regional monsoon indices derived from dynamically consistent rainfall and wind data are used in this study. For SAM, the internal dynamics is represented by that of a "classical" monsoon system where the anomalous circulation is governed by Rossby-wave dynamics, i.e., generation of anomalous vorticity induced by an off-equatorial heat source is balanced by planetary vorticity advection. On the other hand, the internal dynamics of SEAM is characterized by a "hybrid" monsoon system featuring multi-cellular meridional circulation over the East Asian section, extending from the deep tropics to midlatitudes. These meridional-cells link tropical heating to extratropical circulation system via the East Asian jetstream, and are responsible for the characteristic occurrences of zonally oriented anomalous rainfall patterns over East Asian and the subtropical western Pacific. In the extratropical regions, the major upper level vorticity balance is by anomalous vorticity advection and generation by the anomalous divergent circulation. A consequence of this is that compared to SAM, the SEAM is associated with stronger teleconnection patterns to regions outside the ASM. A strong SAM is linked to basin-scale sea surface temperature (SST) fluctuation with significant signal in the equatorial eastern Pacific. During the boreal spring SST warming in the Arabian Sea and the subtropical western Pacific may lead to a strong SAM. For SEAM, interannual variability is tied to SSTA over the Sea of Japan and the South China Sea regions, while the linkage to equatorial basin-scale SSTA is weak at best. A large scale SSTA dipole with warming (cooling) in the subtropical central (eastern) Pacific foreshadows a strong SEAM.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-16
    Description: The influence that cold front passages have on Louisiana coastal environments, including land loss and land building processes, has been the primary topic of this multidisciplinary research. This research has combined meteorological, remote sensing, and coastal expertise from the University of Wisconsin (UW) and Louisiana State University (LSU). Analyzed data sets include remotely sensed radiometric data (AVHRR on NOAA-12,13,14, Multispectral Atmospheric Mapping Sensor (MAMS) and MODIS Airborne Simulator (MAS) on NASA ER-2), U.S. Army Corps of Engineers (USACE) water level data, water quality data from the Coastal Studies Institute (CSI) at LSU, USACE river discharge data, National Weather Service (NWS) and CSI wind in sitzi measurements, geomorphic measurements from aerial photography (NASA ER-2 and Learjet), and CSI ground based sediment burial pipes (for monitoring topographic change along the Louisiana coast) and sediment cores. The work reported here-in is a continuation of an initial investigation into coastal Louisiana landform modification by cold front systems. That initial effort demonstrated the importance of cold front winds in the Atchafalaya Bay sediment plume distribution (Moeller et al.), documented the sediment transport and deposition process of the western Louisiana coast (Huh et al.) and developed tools (e.g. water types identification, suspended solids estimation) from multispectral radiometric data for application to the current study. This study has extended that work, developing a Geomorphic Impact Index (GI(sup 2)) for relating atmospheric forcing to coastal response and new tools to measure water motion and sediment transport.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-97-207006 , NAS 1.26:207006
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-15
    Description: Passive microwave channels like those flown on the Special Sensor Microwave Imager (SSM/I) contain two primary type of information on oceanic precipitation: condensate below the freezing level and precipitation-size condensate above the freezing level. The authors explore the question of whether these two separate pieces of information might contain insight into climate processes during a perturbation in the climate system. In particular, the relative fluctuations of rain and ice signals could be related to precipitation efficiency, an important determinant of the equilibrium climate, and thus a potential feedback mechanism in climate change. As an example of this potential application, SSM/I-derived liquid and frozen precipitation signals are used to infer changes in tropical oceanic precipitation characteristics during the cool period following the 1991 eruption of Mount Pinatubo. The need for an assessment of the temperature sensitivity of precipitation-retrieval algorithms is also discussed.
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences; 55; 1707-1713
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-15
    Description: The Tropical Rainfall Measuring Mission (TRMM) will carry the first spaceborne radar for rainfall observation. Because the TRMM Precipitation Radar (PR) footprint size of 4.3 km is greater than the scale of some convective rainfall events, there is concern that nonuniform filling of the PR antenna beam may bias the retrieved rain-rate profile. The authors investigate this effect theoretically and then observationally using data from the NASA Jet Propulsion Laboratory Airborne Rain Mapping Radar (ARMAR), acquired during Tropical Oceans Global Atmosphere Coupled Ocean Atmosphere Response Experiment in early 1993. The authors' observational approach is to simulate TRMM PR data using the ARMAR data and compare the radar observables and retrieved rain rate from the simulated PR data with those corresponding to the high-resolution radar measurements. The authors find that the path-integrated attenuation and the resulting path-averaged rain rate are underestimated. The reflectivity and rain rate near the top of the rainfall column are overestimated. The near-surface reflectivity can be overestimated or underestimated, with a mean error very close to zero. The near-surface rain rate, however, is usually underestimated, sometimes severely.
    Keywords: Meteorology and Climatology
    Type: Journal of Atmospheric and Oceanic Technology; 15; 635-646
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-10
    Description: Warm cloud lightning has been reported in several tropical locations. We have been using the intensified monochrome TV cameras at night during a number of shuttle flights to observe large active thunderstorms and their associated lightning. During a nighttime orbital pass of the STS-70 mission on 17 July 1995 at 07:57:42 GMT, the controllers obtained video imagery of a small cloud that was producing lightning. Data from a GOES infrared image establishes that the cloud top had a temperature of about 271 degrees Kelvin ( -2 degrees Celsius). Since this cloud was electrified to the extent that a lightning discharge did occur, it may be another case of lightning in a cloud that presents little if any evidence of frozen or melting precipitation.
    Keywords: Meteorology and Climatology
    Type: NASA/TM-97-208271 , NAS 1.15:208271
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: This report documents the Applied Meteorology Unit's evaluation of the Cell Trends display as a tool for radar operators to use in their evaluation of storm cell strength. The objective of the evaluation is to assess the utility of the WSR-88D graphical Cell Trends display for local radar cell interpretation in support of the 45th Weather Squadron (45 WS), Spaceflight Meteorology Group (SMG), and National Weather Service (NWS) Melbourne (MLB) operational requirements. The analysis procedure was to identify each cell and track the maximum reflectivity, height of maximum reflectivity, storm top, storm base, hail and severe hail probability, cell-based Vertically Integrated Liquid (VIL) and core aspect ratio using WATADS Build 9.0 cell trends information. One problem noted in the analysis phase was that the Storm Cell Identification and Tracking (SCIT) algorithm had a difficult time tracking the small cells associated with the Florida weather regimes. The analysis indicated numerous occasions when a cell track would end or an existing cell would be give a new ID in the middle of its life cycle. This investigation has found that most cells, which produce hail or microburst events, have discernable Cell Trends signatures. Forecasters should monitor the PUP's Cell Trends display for cells that show rapid (1 scan) changes in both the heights of maximum reflectivity and cell-based VIEL. It is important to note that this a very limited data set (four case days). Fifty-two storm cells were analyzed during those four days. The above mentioned t=ds, increase in the two cell attributes for hail events and decrease in the two cell attributes for wind events were noted in most of the cells. The probability of detection was 88% for both events. The False Alarm Rate (FAR) was a 36% for hail events and a respectable 25% for microburst events. In addition the Heidke Skill Score (HSS) is 0.65 for hail events and 0.67 for microburst events. For random forecast the HSS is 0 and that a perfect score is 1.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-1998-207904 , NAS 1.26:207904 , Rept-98-001
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-10
    Description: Surface emissivity is critical for remote sensing of surface skin temperature and infrared cloud properties when the observed radiance is influenced by the surface radiation. It is also necessary to correctly compute the longwave flux from a surface at a given skin temperature. Surface emissivity is difficult to determine because skin temperature is an ill-defined parameter. The surface-emitted radiation may arise from a range of surface depths depending on many factors including soil moisture, vegetation, surface porosity, and heat capacity. Emissivity can be measured in the laboratory for pure surfaces. Transfer of laboratory measurements to actual Earth surfaces, however, is fraught with uncertainties because of their complex nature. This paper describes a new empirical approach for estimating surface skin temperature from a combination of brightness temperatures measured at different infrared wavelengths with satellite imagers. The method uses data from the new Geostationary Operational Environmental Satellite (GOES) imager to determine multispectral emissivities from the skin temperatures derived over the ARM Southern Great Plains domain.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-10
    Description: This report describes the Applied Meteorology Unit's objective verification of the National Centers for Environmental Prediction 29-km eta model during separate warm and cool season periods from May 1996 through January 1998. The verification of surface and upper-air point forecasts was performed at three selected stations important for 45th Weather Squadron, Spaceflight Meteorology Group, and National Weather Service, Melbourne operational weather concerns. The statistical evaluation identified model biases that may result from inadequate parameterization of physical processes. Since model biases are relatively small compared to the random error component, most of the total model error results from day-to-day variability in the forecasts and/or observations. To some extent, these nonsystematic errors reflect the variability in point observations that sample spatial and temporal scales of atmospheric phenomena that cannot be resolved by the model. On average, Meso-Eta point forecasts provide useful guidance for predicting the evolution of the larger scale environment. A more substantial challenge facing model users in real time is the discrimination of nonsystematic errors that tend to inflate the total forecast error. It is important that model users maintain awareness of ongoing model changes. Such changes are likely to modify the basic error characteristics, particularly near the surface.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-1998-207910 , NAS 1.26:207910 , Rept-98-003
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: In this study, variations in precipitation during the time of corn silking are compared to Alabama corn yields. Also, this study compares precipitation variations during bloom to Alabama cotton yield. The goal is to obtain mathematical correlations between rainfall during the crop's critical period and the crop amount harvested per acre.
    Keywords: Meteorology and Climatology
    Type: NASA University Research Centers Technical Advances in Aeronautics, Space Sciences and Technology, Earth Systems Sciences, Global Hydrology, and Education; 2 and 3; 400-405; NONP-NASA-CD-1999011585
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: An examination of simulated Madden-Julian Oscillation (MJO) response to active and suppressed air-sea interactions is made using an aquaplanet model employing a realistic representation of the hydrologic cyle. In general, the evaporation-wind feedback (EWF) results from a coupling between tropical zonal surface wind stresses and evaporation anomalies. Recent observational and theoretical studies have questioned the significance of EWF in sustaining the predominantly wavenumber 1 eastward propagating mode commonly attributed to the interaction between large scale convergence and cumulus-scale convection (conditional instability of the second kind, CISK). To ascertain the nature of the EWF dependence on lower boundary conditions and thus quantify its effect on MJO development, a series of numerical experiments were conducted employing various zonally symmetric sea surface temperature (SST) distributions with active and suppressed EWF mechanisms. Results suggest that a correlation exists between tropical SSTs and the efficacy of the EWF in vertically redistributing heat acquired through surface wind stresses. It has been determined that the removal of the EWF is not a crucial factor in the dampening of the simulated MJO at high equatorial SSTs. The additional energy fed into the developing convective mode by the EWF selectively amplifies higher order wave modes in all numerical experiments thus boosting overall variances in oscillatory responses.
    Keywords: Meteorology and Climatology
    Type: 98URC049 , NASA University Research Centers Technical Advances in Aeronautics, Space Sciences and Technology, Earth Systems Sciences, Global Hydrology, and Education; 2 and 3; 269-274; NONP-NASA-CD-1999011585
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: On the basis of Trenberth's quantitative definition for marking the occurrence of an El Nino (or La Nina), one can precisely identify by month and year the starts and ends of some 15 El Nino and 10 La Nina events during the interval of 1950-1997, an interval corresponding to the most reliable for cataloging intense hurricane activity in the Atlantic basin (i.e., those of category 3-5 on the Saffir-Simpson hurricane scale). The main purpose of this investigation is primarily two-fold: First, the statistical aspects of these identified extremes and the intervening periods between them (called "interludes") are examined and, second, the statistics of the seasonal frequency of intense hurricanes in comparison to the extremes and interludes are determined. This study clearly demonstrates that of the last 48 hurricane seasons, 20 (42 percent) can be described as being "El Nino-related" (i.e., an El Nino was in progress during all, or part, of the yearly hurricane season--June-November), 13 (27 percent) as "La Nina-related" (i.e., a La Nina was in progress during all, or part, of the yearly hurricane season), and 15 (31 percent) as "interlude-related" (i.e., neither an El Nino nor a La Nina was in progress during any portion of the yearly hurricane season). Combining the latter two subgroups into a single grouping called "non-El Nino-related" seasons, one finds that they have had a mean frequency of intense hurricanes measuring 2.8 events per season, while the El Nino-related seasons have had a mean frequency of intense hurricanes measuring 1.3 events per season, where the observed difference in the means is inferred to be statistically important at the 99.8-percent level of confidence. Therefore, as previously shown more than a decade ago using a different data set, there undeniably exists an El Nino-Atlantic hurricane activity relationship, one which also extends to the class of intense hurricanes. During the interval of 1950-1997, fewer intense hurricanes occurred during El Nino-related seasons (always less than or equal to 3 and usually less than or equal to 2, this latter value having been true for 18 of the 20 El Nino-related seasons), while more usually occurred during non-El Nino-related seasons (typically greater than or equal to 2, having been true for 22 of the 28 non-El Nino-related seasons). Implications for the 1998 and 1999 hurricane seasons are discussed.
    Keywords: Meteorology and Climatology
    Type: NASA/TP-1998-209005 , NAS 1.60:209005 , M-903
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: This paper describes the Applied Meteorology Unit's (AMU) efforts to configure, implement, and test a version of the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS; Brewster 1996) that assimilates all available data within 250 km of the Kennedy Space Center (KSC) and the Eastern Range at Cape Canaveral Air Station (CCAS). The objective for running a Local Data Integration System (LDIS) such as ADAS is to generate products which may enhance weather nowcasts and short-range (less than 6 h) forecasts issued in support of ground and aerospace operations at KSC/CCAS. A LDIS such as ADAS has the potential to provide added value because it combines observational data to produce gridded analyses of temperature, wind, and moisture (including clouds) and diagnostic quantities such as vorticity, divergence, etc. at specified temporal and spatial resolutions. In this regard, a LDTS along with suitable visualization tools may provide users with a ignore complete and comprehensive understanding of evolving weather than could be developed by individually examining the disparate data sets over the same area and time. The AMU implemented a working prototype of the ADAS which does not run in real-time. Instead, the AMU is evaluating ADAS through post-analyses of weather events for a warm and cool season case. The case studies were chosen to investigate the capabilities and limitations of a LDIS such as ADAS including the impact of non-incorporation of specific data sources on the utility of the subsequent analyses.
    Keywords: Meteorology and Climatology
    Type: Aviation, Range and Aerospace Meteorology; Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: A 1-year field program was conducted at South Pole Station in 1992 to measure the downward infrared radiance spectrum at a resolution of 1/ cm over the spectral range 550-1667 cm-'. The atmosphere over the Antarctic Plateau is the coldest and driest on Earth, where in winter, surface temperatures average about -60 C, the total column water vapor is as low as 300 pm of precipitable water, and the clear-sky downward longwave flux is usually less than 80 W/sq m. Three clear-sky test cases are selected, one each for summer, winter, and spring, for which high- quality radiance data are available.as well as ancillary data to construct model atmospheres from radiosondes, ozonesondes, and other measurements. The model atmospheres are used in conjunction with the line-by-line radiative transfer model (LBLRTM) to compare model calculations with the spectral radiance measurements. The high-resolution calculations of LBLRTM (approx. = 0.001/ cm) are matched to the lower-resolution measurements (1/ cm) by adjusting their spectral resolution and by applying a correction for the finite field of view of the interferometer. In summer the uncertainties in temperature and water vapor profiles dominate the radiance error in the LBLRTM calculations. In winter the uncertainty in viewing zenith angle becomes important as well as the choice of atmospheric levels in the strong near-surface temperature inversion. The spectral radiance calculated for each of the three test cases generally agrees with that measured, to within twice the total estimated radiance error, thus validating LBLRTM to this level of accuracy for Antarctic conditions. However, the discrepancy exceeds twice the estimated error in the gaps between spectral lines in the region 1250-1500/ cm, where emission is dominated by the foreign-broadened water vapor continuum.
    Keywords: Meteorology and Climatology
    Type: Paper-97JD02433 , Journal of Geophysical Research (ISSN 0148-0227); 103; D4; 3825-3846
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: The cloudscope is a ground or aircraft instrument for viewing ice crystals impacted on a sapphire window. It is essentially a simple optical microscope with an attached compact CCD video camera whose output is recorded on a Hi-8 mm video cassette recorder equipped with digital time and date recording capability. In aircraft operation the window is at a stagnation point of the flow so adiabatic compression heats the window to sublimate the ice crystals so that later impacting crystals can be imaged as well. A film heater is used for ground based operation to provide sublimation, and it can also be used to provide extra heat for aircraft operation. The compact video camera can be focused manually by the operator, and a beam splitter - miniature bulb combination provide illumination for night operation. Several shutter speeds are available to accommodate daytime illumination conditions by direct sunlight. The video images can be directly used to qualitatively assess the crystal content of cirrus clouds and contrails. Quantitative size spectra are obtained with the tools described in this report. Selected portions of the video images are digitized using a PCI bus frame grabber to form a short movie segment or stack using NIH (National Institute of Health) Image software with custom macros developed at DRI. The stack can be Fourier transform filtered with custom, easy to design filters to reduce most objectionable video artifacts. Particle quantification of each slice of the stack is performed using digital image analysis. Data recorded for each particle include particle number and centroid, frame number in the stack, particle area, perimeter, equivalent ellipse maximum and minimum radii, ellipse angle, and pixel number. Each valid particle in the stack is stamped with a unique number. This output can be used to obtain a semiquantitative appreciation of the crystal content. The particle information becomes the raw input for a subsequent program (FORTRAN) that synthesizes each slice and separates the new from the sublimating particles. The new particle information is used to generate quantitative particle concentration, area, and mass size spectra along with total concentration, solar extinction coefficient, and ice water content. This program directly creates output in html format for viewing with a web browser.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: A number of prior studies have examined the association of lightning activity with the occurrence of severe weather and tornadoes, in particular. High flash rates are often observed in tornadic storms (Taylor, 1973; Johnson, 1980; Goodman and Knupp, 1993) but not always. Taylor found that 23% of nontornadic storms and 1% of non-severe storms had sferics rates comparable to the tornadic storms. MacGorman (1993) found that storms with mesocyclones produced more frequent intracloud (IC) lightning than cloud-to-ground (CG) lightning. MacGorman (1993) and others suggest that the lightning activity accompanying tomadic storms will be dominated by intracloud lightning-with an increase in intracloud and total flash rates as the updraft increases in depth, size, and velocity. In a recent study, Perez et al. (1998) found that CG flash rates alone are too variable to be a useful predictor of (F4, F5) tornado formation. Studies of non-tomadic storms have also shown that total lightning flash rates track the updraft, with rates increasing as the updraft intensities and decreasing rapidly with cessation of vertical growth or downburst onset (Goodman et al., 1988; Williams et al., 1989). Such relationships result from the development of mixed phase precipitation and increased hydrometer collisions that lead to the efficient separation of charge. Correlations between updraft strength and other variables such as cloud-top height, cloud water mass, and hail size have also been observed.
    Keywords: Meteorology and Climatology
    Type: FA14.4 , Severe Storms; Sep 14, 1998 - Sep 18, 1998; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: This paper examines the aerosol backscattering and extinction profiles measured at night by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site in April 1994. These lidar data are used to derive aerosol profiles for altitudes between 0.0 1 5 and 5 km. Since this lidar detects Raman scattering from nitrogen and oxygen molecules as well as the elastic scattering from molecules and aerosols, it measures both aerosol backscattering and extinction simultaneously. The aerosol extinction/backscattering ratio varied between approximately 30 sr and 75 sr at 351 nm. Aerosol optical thicknesses derived by integrating the lidar profiles of aerosol extinction measured at night between 0. I and 5 km are found to be about 10-40% lower than those measured by a Sun photometer during the day. This difference is attributed to the contribution by stratospheric aerosols not included in the lidar estimates as well as to diurnal differences in aerosol properties and concentrations. Aerosol profiles close to the surface were acquired by pointing the lidar nearly horizontally. Measurements of aerosol scattering from a tower-mounted nephelometer are found to be 40% lower than lidar measurements of aerosol extinction over a wide range of relative humidities even after accounting for the difference in wavelengths. The reasons for this difference are not clear but may be due to the inability of the nephelometer to accurately measure scattering by large particles.
    Keywords: Meteorology and Climatology
    Type: Paper-98JD01646 , Journal of Geophysical Research (ISSN 0148-0227); 103; D16; 19,663-19,672
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.
    Keywords: Meteorology and Climatology
    Type: Paper-98JD01647 , Journal of Geophysical Research (ISSN 0148-0227); 103; D16; 19,673-19,689
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...