NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A TRMM Rainfall Estimation Method Applicable to Land AreasUtilizing multi-spectral, dual-polarization Special Sensor Microwave Imager (SSM/I) radiometer measurements, we have developed in this study a method to retrieve average rain rate, R(sub f(sub R)), in a mesoscale grid box of 2deg x 3deg over land. The key parameter of this method is the fractional rain area, f(sub R), in that grid box, which is determined with the help of a threshold on the 85 GHz scattering depression 0 deduced from the SSM/I data. In order to demonstrate the usefulness of this method, nine-months of R(sub f(sub R))are retrieved from SSM/I data over three grid boxes in the Northeastern United States. These retrievals are then compared with the corresponding ground-truth-average rain rate, R(sub g), deduced from 15-minute rain gauges. Based on nine months of rain rate retrievals over three grid boxes, we find that R(sub f(sub R)can explain about 64 % of the variance contained in R(sub g). A similar evaluation of the grid-box-average rain rates R(sub GSCAT) and R(sub SRL), given by the NASA/GSCAT and NOAA/SRL rain retrieval algorithms, is performed. This evaluation reveals that R(sub GSCAT) and R(sub SRL) can explain only about 42 % of the variance contained in R(sub g). In our method, a threshold on the 85 GHz scattering depression is used primarily to determine the fractional rain area in a mesoscale grid box. Quantitative information pertaining to the 85 GHz scattering depression in the grid box is disregarded. In the NASA/GSCAT and NOAA/SRL methods on the other hand, this quantitative information is included. Based on the performance of all three methods, we infer that the magnitude of the scattering depression is a poor indicator of rain rate. Furthermore, from maps based on the observations made by SSM/I on land and ocean we find that there is a significant redundancy in the information content of the SSM/I multi-spectral observations. This leads us to infer that observations of SSM/I at 19 and 37 GHz add only marginal information to that given by 85 GHz scattering depression. As with other methods, the area-average rain retrieval method developed in this study needs tuning with radar and/or rain gauge observations. In the TRMM mission, the microwave radiometer rain retrieval algorithm can be tuned with TRMM radar observations. Since the radiometer has about 3.5 times wider spatial coverage compared to the radar in the TRMM mission, such an algorithm can be useful to extend geographically the rain information provided by the TRMM Precipitation Radar.
Document ID
19990026648
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Prabhakara, C.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Iacovazzi, R., Jr.
(Raytheon STX Corp. Greenbelt, MD United States)
Oki, R.
(Tokyo Univ. Japan)
Weinman, J. A.
(NASA Goddard Space Flight Center Greenbelt, MD United States)
Date Acquired
September 6, 2013
Publication Date
January 1, 1998
Subject Category
Meteorology And Climatology
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available