ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Maps
  • Other Sources  (19)
  • ddc:551  (19)
  • 2020-2024  (19)
  • 1990-1994
  • 1955-1959
  • 1945-1949
  • 2022  (19)
Collection
  • Maps
  • Other Sources  (19)
Source
Language
Years
  • 2020-2024  (19)
  • 1990-1994
  • 1955-1959
  • 1945-1949
  • 2020-2023  (20)
Year
  • 1
    Publication Date: 2023-12-04
    Description: Studies of the upper 447 m of the DEEP site sediment succession from central Lake Ohrid, Balkan Peninsula, North Macedonia and Albania provided important insights into the regional climate history and evolutionary dynamics since permanent lacustrine conditions established at 1.36 million years ago (Ma). This paper focuses on the entire 584‐m‐long DEEP sediment succession and a comparison to a 197‐m‐long sediment succession from the Pestani site ~5 km to the east in the lake, where drilling ended close to the bedrock, to unravel the earliest history of Lake Ohrid and its basin development. 26Al/10Be dating of clasts from the base of the DEEP sediment succession implies that the sedimentation in the modern basin started at c. 2 Ma. Geophysical, sedimentological and micropalaeontological data allow for chronological information to be transposed from the DEEP to the Pestani succession. Fluvial conditions, slack water conditions, peat formation and/or complete desiccation prevailed at the DEEP and Pestani sites until 1.36 and 1.21 Ma, respectively, before a larger lake extended over both sites. Activation of karst aquifers to the east probably by tectonic activity and a potential existence of neighbouring Lake Prespa supported filling of Lake Ohrid. The lake deepened gradually, with a relatively constant vertical displacement rate of ~0.2 mm a−1 between the central and the eastern lateral basin and with greater water depth presumably during interglacial periods. Although the dynamic environment characterized by local processes and the fragmentary chronology of the basal sediment successions from both sites hamper palaeoclimatic significance prior to the existence of a larger lake, the new data provide an unprecedented and detailed picture of the geodynamic evolution of the basin and lake that is Europe’s presumed oldest extant freshwater lake.
    Keywords: ddc:551 ; Balkan Peninsula ; Lake Ohrid ; DEEP sediment succession ; Pestani succession ; evolutionary dynamics ; regional climate history
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-14
    Description: Distributed models have been increasingly applied at finer spatiotemporal resolution. However, most diagnostic analyses aggregate performance measures in space or time, which might bias subsequent inferences. Accordingly, this study explores an approach for quantifying the parameter sensitivity in a spatiotemporally explicit way. We applied the Morris method to screen key parameters within four different sampling spaces in a grid‐based model (mHM‐Nitrate) for NO3‐N simulation in a mixed landuse catchment using a 1‐year moving window for each grid. The results showed that an overly wide range of aquatic denitrification rates could mask the sensitivity of the other parameters, leading to their spatial patterns only related to the proximity to outlet. With adjusted parameter space, spatial sensitivity patterns were determined by NO3‐N inputs and hydrological transport capacity, while temporal dynamics were regulated by annual wetness conditions. The relative proportion of parameter sensitivity further indicated the shifts in dominant hydrological/NO3‐N processes between wet and dry years. By identifying not only which parameter(s) is(are) influential, but where and when such influences occur, spatial sensitivity analysis can help evaluate current model parameterization. Given the marked sensitivity in agricultural areas, we suggest that the current NO3‐N parameterization scheme (land use‐dependent) could be further disentangled in these regions (e.g., into croplands with different rotation strategies) but aggregated in non‐agricultural areas; while hydrological parameterization could be resolved into a finer level (from spatially constant to land use‐dependent especially in nutrient‐rich regions). The spatiotemporal sensitivity pattern also highlights NO3‐N transport within soil layers as a focus for future model development.
    Description: Key Points: A diagnostic analysis was conducted to disentangle the parameter sensitivity for NO3‐N simulations in catchment modeling in space and time. Sensitivity differed within sampling spaces, but was controlled spatially by NO3‐N supply/water fluxes while temporally by wetness condition. Analysis suggests finer‐level parameterization needs in arable land, and prioritizes NO3‐N transport in soils for improved conceptualization.
    Description: Chinese Scholarship Council
    Description: Leverhulme Trust http://dx.doi.org/10.13039/501100000275
    Description: Einstein Stiftung Berlin http://dx.doi.org/10.13039/501100006188
    Description: Berlin University Alliance http://dx.doi.org/10.13039/501100021727
    Description: https://doi.org/10.5281/zenodo.6497225
    Description: https://fred.igb-berlin.de/data/package/629
    Keywords: ddc:551 ; spatial time‐varying sensitivity analysis ; distributed nitrate modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-21
    Description: Upwelling of subsurface waters injects macronutrients (fixed N, P, and Si) and micronutrient trace metals (TMs) into surface waters supporting elevated primary production in Eastern Boundary Upwelling Regions. The eastern South Atlantic features a highly productive shelf sea transitioning to a low productivity N‐Fe (co)limited open ocean. Whilst a gradient in most TM concentrations is expected in any off‐shelf transect, the factors controlling the magnitude of cross‐shelf TM fluxes are poorly constrained. Here, we present dissolved TM concentrations of Fe, Co, Mn, Cd, Ni, and Cu within the Benguela Upwelling System from the coastal section of the GEOTRACES GA08 cruise. Elevated dissolved Fe, Co, Mn, Cd, Ni, Cu and macronutrient concentrations were observed near shelf sediments. Benthic sources supplied 2.22 ± 0.99 μmol Fe m−2 day−1, 0.05 ± 0.03 μmol Co m−2 day−1, 0.28 ± 0.11 μmol Mn m−2 day−1 and were found to be the dominant source to shallow shelf waters compared to atmospheric depositions. Similarly, off‐shelf transfer was a more important source of TMs to the eastern South Atlantic Ocean compared to atmospheric deposition. Assessment of surface (shelf, upper 200 m) and subsurface (shelf edge, 200–500 m) fluxes of Fe and Co indicated TM fluxes from subsurface were 2–5 times larger than those from surface into the eastern South Atlantic Ocean. Under future conditions of increasing ocean deoxygenation, these fluxes may increase further, potentially contributing to a shift toward more extensive regional limitation of primary production by fixed N availability.
    Description: Key Points: Shelf sediments release redox‐sensitive trace metals (TMs) to overlying oxygen‐depleted waters in the Benguela Upwelling System. Sediment‐derived TMs are upwelled and laterally transported constituting a major source to shelf waters and to the eastern South Atlantic. Subsurface fluxes of dissolved Fe and Co from the shelf edge play an important role in supplying Fe and Co to the eastern South Atlantic.
    Description: China Scholarship Council, CSC http://dx.doi.org/10.13039/501100004543
    Description: GEOMAR and German Research Foundation
    Description: German DFG
    Description: German Research Foundation
    Description: https://doi.pangaea.de/10.1594/PANGAEA.947275
    Keywords: ddc:551 ; dissolved trace metals ; Benguela Upwelling Systems ; fluxes ; Eastern Boundary Upwelling Systems Regions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-21
    Description: Extraordinary amounts of greenhouse gases can be stored within the monimolimnion of meromictic lakes, that is, in the water body which is excluded from mixing events. Lake Burgsee (Thuringia, Germany) is a shallow (depth 〈5 m) lake with a approximately 24 m deep sinkhole, which is fed by underground brine sources and has formed such a monimolimnion. We investigated the carbon dioxide and methane dynamics in this meromictic lake, from production potentials in the sediment via concentrations in the monimolimnion and mixolimnion to emissions to the atmosphere. In the monimolimnion, we found one of the highest methane concentrations (up to 〉5 mmol L−1) ever reported for a natural freshwater lake, while carbon dioxide concentrations in the water and methane production rates in the sediments were rather ordinary and within the range of holomictic eutrophic lakes. At the thermocline, gas concentrations accumulated to approximately 100 μmol L−1 CH4 and 80–230 μmol L−1 CO2. Estimated fluxes to the atmosphere reached considerable 3.5 mmol CH4 m−2 d−1 and 1.5 mmol CO2 m−2 d−1 above the sinkhole and 0.8 mmol CH4 m−2 d−1 and 0.4 mmol CO2 m−2 d−1 above the near‐by shallow lake center in 2018. Our results demonstrate that lakes in natural brine areas may provide significant storages and releases of greenhouse gases and require further investigation.
    Description: Plain Language Summary: In meromictic lakes, the deepest water layer, the monimolimnion, is stagnant and not included in seasonal water circulation. Organic matter continuously sinks down into the oxygen‐free monimolimnion, where it is decomposed into the final gaseous products carbon dioxide (CO2) and methane (CH4). Lake Burgsee is a meromictic shallow (depth 〈5 m), brine‐fed lake with a approximately 24 m deep sinkhole. At the bottom of the narrow sinkhole, salinities are as high as in brackish water and cause a chemical stratification of the water body—a monimolimnion—in approximately 18 m depth. CH4 concentrations above the sediment reach 〉5 mmol L−1, which is more than one order of magnitude higher than at the water surface and among the highest CH4 concentrations found in freshwater lakes worldwide. Further, emissions of CH4 and CO2 from the water to the atmosphere were considerable in 2018, and about four times higher above the sinkhole than above the shallow lake center. These results demonstrate, that lakes in natural brine areas may store and release significant amounts of greenhouse gases and require further investigation.
    Description: Key Points: In the urban meromictic Lake Burgsee, methane production potentials in the sediment are similar to eutrophic holomictic lakes. At its deepest site, it contains one of the highest methane concentrations (〉5 mmol L−1 CH4) ever reported for a natural freshwater lake. Lake Burgsee emits up to 〉3 mmol m−2 d−1 CH4 to the atmosphere above the sinkhole and 〈1 mmol m−2 d−1 CH4 at a near‐by shallow site.
    Keywords: ddc:551 ; meromictic lake ; sinkhole ; salinity ; greenhouse gases ; methane flux ; carbon dioxide
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-25
    Description: Maritime boundary‐layer clouds over the Southern Ocean (SO) have a large shortwave radiative effect. Yet, climate models have difficulties in representing these clouds and, especially, their phase in this observationally sparse region. This study aims to increase the knowledge of SO cloud phase by presenting in‐situ cloud microphysical observations from the Southern Ocean Clouds, Radiation, Aerosol, Transport Experimental Study (SOCRATES). We investigate the occurrence of ice in summertime marine stratocumulus and cumulus clouds in the temperature range between 6 and −25°C. Our observations show that in ice‐containing clouds, maximum ice number concentrations of up to several hundreds per liter were found. The observed ice crystal concentrations were on average one to two orders of magnitude higher than the simultaneously measured ice nucleating particle (INP) concentrations in the temperature range below −10°C and up to five orders of magnitude higher than estimated INP concentrations in the temperature range above −10°C. These results highlight the importance of secondary ice production (SIP) in SO summertime marine boundary‐layer clouds. Evidence for rime splintering was found in the Hallett‐Mossop (HM) temperature range but the exact SIP mechanism active at lower temperatures remains unclear. Finally, instrument simulators were used to assess simulated co‐located cloud ice concentrations and the role of modeled HM rime‐splintering. We found that CAM6 is deficient in simulating number concentrations across the HM temperature range with little sensitivity to the model HM process, which is inconsistent with the aforementioned observational evidence of highly active SIP processes in SO low‐level clouds.
    Description: Plain Language Summary: Clouds in the Southern Ocean are important for climate but not well represented in climate models. Observations in this remote region have been rare. This study presents results from a recent airborne campaign that took place in the Southern Ocean where low‐ and mid‐level clouds were investigated by detecting individual cloud particles within the clouds. Although large fraction of the observed clouds did not contain ice crystals, occasionally high amounts of ice crystals were observed that cannot be explained by ice formation on aerosol particles but were result of multiplication of existing ice crystals. We tested the capability of a commonly used climate model to represent the observed ice concentrations and their sensitivity to one ice multiplication process parameterized in the model. These investigations revealed that the in the model the ice multiplication process was not responsible for generation of ice, which is in contradiction with the observations.
    Description: Key Points: Ice concentrations several orders of magnitude higher than ice nucleating particle concentrations were observed. Secondary ice production was believed to be responsible for the observed high ice number concentrations. Comparison with climate model indicated that secondary ice processes are still inadequately represented in the model.
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: U.S. Department of Energy http://dx.doi.org/10.13039/100000015
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: NSF Polar Programs
    Keywords: ddc:551 ; southern ocean ; mixed‐phase clouds ; in‐situ observations ; ice crystals ; secondary ice ; ice nucleating particles
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-12
    Description: Harmonic Earth tide components in well water levels have been used to estimate hydraulic and geomechanical subsurface properties. However, the robustness of various methods based on analytical solutions has not been established. First, we review the theory and examine the latest analytical solution used to relate well water levels to Earth tides. Second, we develop and verify a novel numerical model coupling hydraulics and geomechanics to Earth tide strains. Third, we assess subsurface conditions over depth for a range of realistic properties. Fourth, we simulate the well water level response to Earth tide strains within a 2D poroelastic layered aquifer system confined by a 100 m thick aquitard. We find that the non‐linear inversion of analytical solutions to match two observations (amplitudes and phases) to multiple unknown parameters is sensible to the initial guess. We reveal that undrained, confined conditions are necessary for the analytical solution to be valid. This occurs for the dominant M2 frequency at depths 〉50 m and requires specific storage at constant strain of Sϵ ≥ 10−6 m−1, hydraulic conductivity of the aquitard of kl ≤ 5 ⋅ 10−5 ms−1 and aquifer of ka ≥ 10−4 ms−1. We further illustrate that the analytical solution is valid in unconsolidated systems, whereas consolidated systems require additional consideration of the Biot modulus. Overall, a priori knowledge of the subsurface system supports interpretation of the groundwater response. Our results improve understanding of the effect of Earth tides on groundwater systems and its interpretation for subsurface properties.
    Description: Plain Language Summary: Earth tide induced strains in the subsurface lead to well water level fluctuations in groundwater monitoring wells. This groundwater response has been interpreted with analytical solutions to estimate aquifer properties. However, analytical solutions are based on simplified assumptions whose accuracy have not yet been tested. We develop a new approach to simulate the influence of Earth tides on groundwater based on fundamental physical principles. We simulate realistic conditions and compare our results to those from analytical solution to determine the hydraulic and subsurface conditions under which simplified interpretations are valid. Our results improve understanding of the effects of Earth tides on groundwater systems and interpretation of subsurface properties from well water levels.
    Description: Key Points: We develop and verify a numerical model for the well water level response to Earth tides. Subsurface property estimation requires undrained and confined conditions occurring at depths 〉50 m. Amplitudes and phases from numerical and analytical solutions systematically diverge reflecting theory simplifications.
    Description: German Research Council
    Description: https://doi.org/10.5281/zenodo.6950492
    Keywords: ddc:551 ; tidal subsurface analysis ; numerical modeling ; Earth tides
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-13
    Description: Management of hydropower plants strongly influences streamflow dynamics and hence the interaction between surface water and groundwater. As dam operations cause variations in river stages, these can result in changes in the groundwater level at multiple temporal scales. In this work, we study the case of an Alpine aquifer, where weekly fluctuations are particularly pronounced. We consider an area with four river reaches differently impacted by reservoir operations and investigate the influence of these rivers on the common aquifer. Using continuous wavelet transform and wavelet coherence analysis, we show that weekly fluctuations in the groundwater table are particularly pronounced in dry years, in particular in the winter season, although the area of the aquifer impacted by dam operations remains almost unchanged. We thus observe that in Alpine catchments, surface water‐groundwater interaction is sensitive to the conditions determined by a specific hydrological year. We also investigate the influences of the river‐aquifer water fluxes and show that under dry conditions hydropeaking mainly affects their temporal dynamics. Our observations have significant consequences for predicting nutrient and temperature dynamics/regimes in river‐aquifer systems impacted by hydropower plant management.
    Description: Plain Language Summary: The operation of hydropower plants affects the water level in the downstream part of the river, which in turn can alter the groundwater level. In this work, we study an Alpine aquifer crossed by rivers differently impacted by hydropower production. We use statistical tools to analyze the interaction between the rivers and the groundwater, and observe that this interaction is sensitive to the conditions of the hydrological year, such as dry periods.
    Description: Key Points: Wavelet power spectrum and coherence analysis is used to study river‐aquifer interactions under dam operations in an Alpine catchment. The impact of reservoir operations on the aquifer is strongest under low flow conditions but the area impacted shows little variation. Under low flow conditions, dam operations considerably influence the frequency of the water exchange between rivers and aquifer.
    Description: Consejo Nacional de Ciencia y Tecnología http://dx.doi.org/10.13039/501100003141
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Consejo Veracruzano de Investigación Científica y Desarrollo Tecnológico
    Description: https://doi.org/10.17632/97jchhz4s8.2
    Keywords: ddc:551 ; surface water‐groundwater interaction ; hydropower ; managed rivers ; groundwater modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-19
    Description: Detailed imaging of accretionary wedges reveals splay fault networks that could pose a significant tsunami hazard. However, the dynamics of multiple splay fault activation during megathrust earthquakes and the consequent effects on tsunami generation are not well understood. We use a 2‐D dynamic rupture model with complex topo‐bathymetry and six curved splay fault geometries constrained from realistic tectonic loading modeled by a geodynamic seismic cycle model with consistent initial stress and strength conditions. We find that all splay faults rupture coseismically. While the largest splay fault slips due to a complex rupture branching process from the megathrust, all other splay faults are activated either top down or bottom up by dynamic stress transfer induced by trapped seismic waves. We ascribe these differences to local non‐optimal fault orientations and variable along‐dip strength excess. Generally, rupture on splay faults is facilitated by their favorable stress orientations and low strength excess as a result of high pore‐fluid pressures. The ensuing tsunami modeled with non‐linear 1‐D shallow water equations consists of one high‐amplitude crest related to rupture on the longest splay fault and a second broader wave packet resulting from slip on the other faults. This results in two episodes of flooding and a larger run‐up distance than the single long‐wavelength (300 km) tsunami sourced by the megathrust‐only rupture. Since splay fault activation is determined by both variable stress and strength conditions and dynamic activation, considering both tectonic and earthquake processes is relevant for understanding tsunamigenesis.
    Description: Plain Language Summary: In subduction zones, where one tectonic plate moves beneath another, earthquakes can occur on many different faults. Splay faults are relatively steep faults that branch off the largest fault (the megathrust) in a subduction zone. As they are steeper than the megathrust, the same amount of movement on them could result in more vertical displacement of the seafloor. Therefore, splay faults are thought to play an important role in the generation of tsunamis. Here, we use computer simulations to study if an earthquake can break multiple splay faults at once and how this affects the resulting tsunami. We find that multiple splay faults can indeed fail during a single earthquake due to the stress changes from trapped seismic waves, which promote rupture on splay faults. Rupture on splay faults results in larger seafloor displacements with smaller wavelengths, so the ensuing tsunami is bigger and results in two main flooding episodes at the coast. Our results show that it is important to consider rupture on splay faults when assessing tsunami hazard.
    Description: Key Points: Multiple splay faults can be activated during a single earthquake by megathrust slip and dynamic stress transfer due to trapped waves. Splay fault activation is facilitated by their favorable orientation with respect to the local stress field and their closeness to failure. Long‐term geodynamic stresses and fault geometries affect dynamic splay fault rupture and the subsequent tsunami.
    Description: Volkswagen Foundation (VolkswagenStiftung) http://dx.doi.org/10.13039/501100001663
    Description: Royal Society (The Royal Society) http://dx.doi.org/10.13039/501100000288
    Description: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) http://dx.doi.org/10.13039/100010663
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: National Science Foundation (NSF) http://dx.doi.org/10.13039/100000001
    Description: https://github.com/TUM-I5/SWE
    Description: https://doi.org/10.5281/zenodo.6969455
    Keywords: ddc:551 ; earthquake ; tsunami ; subduction zone ; dynamic rupture ; splay fault ; numerical modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-20
    Description: Understanding the magmatic plumbing system of rift volcanoes is essential when examining the interplay between magmatic and tectonic forces. Recent seismicity, volcanic activity, magma emplacement, and volatile release make the Natron basin the ideal location to study these processes in the East African Rift System. Here, we present the first high‐resolution tomographic imaging of Oldoinyo Lengai volcano and surrounding volcanic systems using attenuation mapping. High scattering and absorption features reveal fluid‐filled fracture networks below regions of magmatic volatile release at the surface and a close spatial association between carbonatite volcanism and deeply penetrating, fluid‐filled faults. High‐absorption features appear sensitive to fluids and thermal gradients, revealing a central sill complex and connected plumbing system down to the mid‐crust, which links volcanoes and rift segments across the developing magmatic rift.
    Description: Plain Language Summary: The interplay between magmatic and tectonic forces during rifting is still debated. While they are a key component of rift development, the complex structures of rifts and melt storage systems scatter and absorb seismic waves passing through them: in turn, this deteriorates the quality of the subsurface images we obtain from them. In this study, we use the loss of energy suffered by seismic waves to image the Natron basin, which hosts extinct volcanoes and the only active natrocarbonatite volcano on Earth, Oldoinyo Lengai. The results identify areas of melt storage and fracture networks that feed volatiles and melt to this volcano. Results suggest that carbonatite melts may ascend through the crust efficiently along deep‐seated faults systems, while silicate melts in the region may be primarily sourced from a separate melt reservoir. This reservoir, which is elongate and oriented oblique to the general trend of the rift, may act as a magmatic transfer zone between two rift segments.
    Description: Key Points: First fine‐scale 3D images reveal an interconnected rift plumbing system using scattering and absorption mapping. High scattering and absorption mark fluid‐filled faults that degas magmatic fluids and act as potential conduits for carbonatite melts. A high absorption melt reservoir feeds eruptions at Oldoinyo Lengai and dike intrusions and acts as a transfer zone between rift segments.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: Terrestrial Magmatic Systems
    Description: https://github.com/LucaDeSiena/MuRAT
    Description: https://doi.org/10.14470/4W7564850022
    Description: http://doi.org/10.6084/m9.figshare.20101232
    Keywords: ddc:551 ; rift plumbing system ; attenuation imaging ; magma‐fault interactions ; Oldoinyo Lengai ; Natron Basin
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-20
    Description: We present the first global ocean‐biogeochemistry model that uses a telescoping high resolution for an improved representation of coastal carbon dynamics: ICON‐Coast. Based on the unstructured triangular grid topology of the model, we globally apply a grid refinement in the land‐ocean transition zone to better resolve the complex circulation of shallow shelves and marginal seas as well as ocean‐shelf exchange. Moreover, we incorporate tidal currents including bottom drag effects, and extend the parameterizations of the model's biogeochemistry component to account explicitly for key shelf‐specific carbon transformation processes. These comprise sediment resuspension, temperature‐dependent remineralization in the water column and sediment, riverine matter fluxes from land including terrestrial organic carbon, and variable sinking speed of aggregated particulate matter. The combination of regional grid refinement and enhanced process representation enables for the first time a seamless incorporation of the global coastal ocean in model‐based Earth system research. In particular, ICON‐Coast encompasses all coastal areas around the globe within a single, consistent ocean‐biogeochemistry model, thus naturally accounting for two‐way coupling of ocean‐shelf feedback mechanisms at the global scale. The high quality of the model results as well as the efficiency in computational cost and storage requirements proves this strategy a pioneering approach for global high‐resolution modeling. We conclude that ICON‐Coast represents a new tool to deepen our mechanistic understanding of the role of the land‐ocean transition zone in the global carbon cycle, and to narrow related uncertainties in global future projections.
    Description: Plain Language Summary: The coastal ocean is an area hardly taken into account by current climate change assessment activities. Yet, its capacity in carbon dioxide (CO2) uptake and storage is crucial to be included in a science‐based development of sustainable climate change mitigation and adaptation strategies. Earth system models are powerful tools to investigate the marine carbon cycle of the open ocean. The coastal ocean, however, is poorly represented in global models to date, because of missing key processes controlling coastal carbon dynamics and too coarse spatial resolutions to adequately simulate coastal circulation features. Here, we introduce the first global ocean‐biogeochemistry model with a dedicated representation of the coastal ocean and associated marine carbon dynamics: ICON‐Coast. In this model, we globally apply a higher resolution in the coastal ocean and extend the accounted physical and biogeochemical processes. This approach enables for the first time a consistent, seamless incorporation of the global coastal ocean in model‐based Earth system research. In particular, ICON‐Coast represents a new tool to deepen our understanding about the role of the land‐ocean transition zone in the global climate system, and to narrow related uncertainties in possible and plausible climate futures.
    Description: Key Points: We introduce the first global ocean‐biogeochemistry model with a dedicated representation of coastal carbon dynamics. We globally apply a grid refinement in the coastal ocean to better resolve regional circulation features, including ocean‐shelf exchange. We explicitly incorporate key physical and biogeochemical processes controlling coastal carbon dynamics.
    Description: German Research Foundation, Excellence Strategy EXC 2037 (CLICCS)
    Description: European Union, Horizon2020 Research and Innovation Program (ESM2025)
    Description: German Federal Ministry of Education
    Description: https://doi.org/10.5281/zenodo.6630352
    Keywords: ddc:551 ; coastal ocean ; global modeling ; marine carbon cycle ; variable‐resolution grid ; ocean‐biogiochemistry ; high‐resolution modeling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-01-27
    Description: River estuaries are characterized by mixing processes between freshwater discharge and marine water masses. Since the first are depleted in heavier stable isotopes compared with the marine realm, estuaries often show a linear correlation between salinity and water stable isotopes (δ18O and δ2H values). In this study, we evaluated spatial and seasonal isotope dynamics along three estuarine lagoon transects, located at the northern German Baltic Sea coast. The data show strong seasonality of isotope values, even at locations located furthest from the river mouths. They further reveal a positive and linear salinity‐isotope correlation in spring, but ‐in two of the three studied transects‐ hyperbolic and partially reverse correlations in summers. We conclude that additional hydrological processes partially overprint the two‐phase mixing correlation during summers: aside from the isotope seasonality of the riverine inflows, the shallow inner lagoons in the studied estuaries are influenced by evaporation processes. In contrast the estuarine outflow regions are under impact of significant salinity and isotope fluctuations of the Baltic Sea. Deciphering those processes is crucial for the understanding of water isotope and salinity dynamics. This is also of relevance in context of ecological studies, for example, when interpreting oxygen and hydrogen isotope data in aquatic organisms that depend on ambient estuarine waters.
    Description: Spatial and seasonal water isotope dynamics were evaluated along three estuarine lagoon transects at the German Baltic Sea coast. Data reveal a positive and linear salinity‐isotope correlation in spring, but partially reverse correlations in summers. The results show that evaporation processes in the shallow inner lagoons and varying Baltic Sea influence in the outer estuary regions are able to overprint the two‐phase mixing correlation between riverine and marine water masses.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.1594/PANGAEA.937990
    Keywords: ddc:551 ; δ2H ; δ18O ; Baltic Sea ; bodden ; Rügen ; salinity ; Schlei ; Zingst
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-06-14
    Description: The Cenozoic strata of the Xining Basin, NE Tibet, have provided crucial records for understanding the tectonic and palaeo‐environmental evolution of the region. Yet, the age of the lower part of the sedimentary stratigraphy and, consequently, the early tectonic evolution of the basin remain debated. Here, we present the litho‐ and magnetostratigraphy of various early Eocene sections throughout the Xining Basin independently constrained by the U–Pb radiometric age of a carbonate bed. Our study extends the dated stratigraphy down to 53.0 Ma (C24n.1r) and reveals highly variable accumulation rates during the early Eocene ranging from 0.5 to 8 cm/ka. This is in stark contrast to the low but stable accumulation rates (2–3 cm/ka) observed throughout the overlying Palaeogene and Neogene strata. Such a pattern of basin infill is not characteristic of flexural subsidence as previously proposed, but rather supports an extensional origin of the Xining Basin with multiple depocentres, which subsequently coalesced into a more stable and slowly subsiding basin. Whether this extension was related to the far‐field effects of the subducting Pacific Plate or the India–Asia collision remains to be confirmed by future studies.
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: Hessisches Ministerium für Wissenschaft und Kunst http://dx.doi.org/10.13039/501100003495
    Keywords: ddc:551 ; Eocene ; geochronology ; northeast Tibet ; palaeomagnetism ; stratigraphy ; Xining Basin
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-06-16
    Description: Secondary organic aerosol (SOA) forms a major part of the tropospheric submicron particle mass. Still, the exact formation mechanisms of SOA have remained elusive. It is now admitted that highly oxygenated organic molecules (HOMs) can contribute to a large fraction of SOA formation. In this study, we performed a set of chamber experiments to investigate the SOA formation, and the HOMs uptake and processing directly formed by OH‐radical initiated oxidation of α‐pinene under two different aerosol seed conditions. Numerous HOM compounds were identified using advanced online and offline analytical techniques, and grouped into four classes according to their different uptake behaviors. For the first time, individual HOMs uptake coefficients ranging from 1.1 × 10−2 to 1.5 × 10−1 were experimentally determined and analyzed using a resistance model which considers uptake limitations by individual gas‐ and/or particle‐phase processes. This study demonstrates that the uptake coefficients of HOMs strongly depend on their molar mass and their respective O/C ratio. Results show that aerosol seed composition and phase state affect the initial uptake of HOMs. Furthermore, the study demonstrates that the acidity and/or different seed phase‐state can significantly enhance the subsequent uptake through occurring acidity‐driven reactions reflected in a reactive behavior, particularly under (NH4)HSO4 seed conditions, promoting up to 3 times a higher SOA mass formation including the formation of highly oxidized organosulfates (HOOS). Overall, the present study implies that HOMs and their subsequent chemical processing can play an important role in both the early growth of newly formed particles and SOA formation when particle acidity is high.
    Description: Plain Language Summary: Tropospheric organic aerosol (OA) compounds represent a large part of submicron particulate matter. A big fraction of OA is formed from oxidation of emitted gaseous volatile organic compounds such as α‐pinene. Oxidation products are less‐volatile compounds that tend to condense on aerosol particles. Recently identified “highly oxygenated organic molecules” (HOMs) are formed by gas‐phase autoxidation processes and exhibit very low vapor pressures. Therefore, HOMs are expected to efficiently contribute to secondary organic aerosol (SOA). However, up to now, SOA formation potential of HOMs is still not well described because of lacking experimental investigations and analysis. Consequently, this study aims to investigate the mentioned HOMs partitioning and subsequent SOA formation from the OH‐radical initiated oxidation of α‐pinene under both Na2SO4 and (NH4)HSO4 aerosol seed conditions through complex chamber experiments. For the first time, individual HOMs uptake coefficients were determined experimentally. Further investigations demonstrated that the uptake coefficients of HOMs strongly depend on their molar mass, as well as on their respective O/C ratio. Finally, the results show that aerosol acidity and/or phase state significantly enhances the HOMs uptake and promotes up to three times higher SOA mass formation under (NH4)HSO4 seed conditions compared to that under neutral seed conditions.
    Description: Key Points: Uptake coefficients of numerous highly oxygenated organic molecules (HOMs) were experimentally determined for the first time. HOMs uptake and secondary organic aerosol formation were significantly enhanced by acidic (NH4)HSO4 seed. Highly oxidized organosulfates formation were observed under acidic (NH4)HSO4 seed conditions.
    Description: European Commission http://dx.doi.org/10.13039/501100000780
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: https://doi.org/10.25326/FJNF-7224
    Description: https://doi.org/10.25326/KC8N-DY53
    Keywords: ddc:551 ; aerosol study ; highly oxygenated organic molecules
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-01-19
    Description: While timing and ice extent of the last glacial maximum are generally well known, the courses of earlier glaciations have remained poorly constrained, with one of the main reasons being the scarcity of sedimentary archives. This study introduces a new palaeolake record from a Mid‐Pleistocene glaciofluvial channel system in the Lower Aare Valley (Northern Switzerland). The record of Rinikerfeld comprises a 〉40 m long succession of Quaternary deposits that are targeted by multi‐method sedimentological analysis. Sedimentary facies together with geochemical and geotechnical parameters, pollen content, as well as luminescence ages allow the reconstruction of the establishment, evolution and infilling of the early Marine Isotope Stage 6‐aged Rinikerfeld Palaeolake. A drastic change in lake sediment composition and structure indicates cessation of the initial glacially derived input, which is explained by landscape modification and drainage rerouting during the Penultimate (Beringen) Glaciation. Geochemical and palynological data further reveal cold, initially periglacial but slightly ameliorating, climate conditions, while the lake was progressively filled up by local runoff, before being buried by periglacial colluvial diamicts, and potentially overridden by ice. It is therefore concluded that the onset of the Beringen Glaciation was an environmentally as well as geomorphically dynamic time period in the Northern Alpine Foreland.
    Description: NATIONALE GENOSSENSCHAFT FÜR DIE LAGERUNG RADIOAKTIVER ABFÄLLE
    Keywords: ddc:551 ; Northern Alpine foreland ; palaeolake ; penultimate glaciation ; periglacial lake ; sedimentary archive
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-01-19
    Description: The transport of dissolved organic carbon (DOC) from the soils to inland waters plays an important role in the global carbon cycle. Widespread increases in DOC concentrations have been observed in surface waters over the last few decades, affecting carbon balances, ecosystem functioning and drinking water treatment. However, the primary hydrological controls on DOC mobilization are still uncertain. The aim of this study was to investigate the role of microtopography in the riparian zone for DOC export and DOM quality. DOC concentration and DOM quality in the shallow groundwater of a riparian zone and in streamflow in a forested headwater catchment was investigated using fluorescence and absorbance characteristics. We found higher DOC concentrations with a higher aromaticity in the microtopographical depressions, which were influenced by highly dynamic shallow groundwater levels, than in the flat forest soil. As a result of the frequent wet‐dry cycles in the upper soil layers, aromatic DOC accumulated in the shallow groundwater within and below the microtopographical depressions. Rising groundwater levels during precipitation events led to the connection of the microtopographical depressions to the stream, resulting in a change toward more aromatic DOC in the stream. Increasing stream DOC concentrations were accompanied by increasing concentrations of iron and aluminum, suggesting the coupled release of these metals with DOC from the riparian zone. Our results highlight the importance of the interplay between microtopography and groundwater level dynamics in the riparian zone for DOC export from headwater catchments.
    Description: Plain Language Summary: Dissolved organic carbon (DOC) is the result of the continuous breakdown of organic material, such as leaves. It accumulates in the soil and is transported to streams mainly during precipitation events. In this study, we analyzed the shallow groundwater of two differing sites in the Bavarian Forest National Park. Both sites were located close to the stream, but one was characterized by typical forest soil and one by small ponds, which were occasionally filled with water. The site with ponds showed much higher DOC concentrations and the DOC was chemically different from the other site. During a precipitation event, we observed a shift in chemical composition of stream water parameters toward the chemical characteristics found at the site with ponds. Therefore, we conclude that the ponds contribute substantially to DOC mobilization, once they fill with water and get connected to the stream.
    Description: Key Points: This study found small‐scale differences in dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) quality in the riparian zone. Microtopographical depressions were characterized by high DOC concentrations and aromatic DOC. In‐stream DOC concentrations and DOM quality during a precipitation event resembled shallow groundwater below microtopographical depressions.
    Description: Stifterverband http://dx.doi.org/10.13039/501100008384
    Description: Helmholtz Association http://dx.doi.org/10.13039/501100009318
    Description: Rudolf and Helene Glaser Foundation
    Description: European Regional Development Funds
    Description: https://doi.org/10.6084/m9.figshare.19086455
    Description: https://doi.org/10.48758/ufz.12908
    Keywords: ddc:551 ; dissolved organic carbon ; hydrology ; microtopography ; DOM quality
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2023-11-18
    Description: Arctic warming and permafrost thaw visibly expose changes in the landscape of the Lena River delta, the largest Arctic delta. Determining the past and modern river regime of thick deltaic deposits shaping the Lena River mouth in north‐eastern Siberia is critical for understanding the history of delta formation and carbon sequestration. Using a 65 m long sediment core from the delta apex a set of sedimentological techniques is applied to aid in reconstructing the Lena River history. The analysis includes: (i) grain‐size measurements and the determination of the bedload composition; (ii) X‐ray fluorescence, X‐ray diffractometry, and magnetic susceptibility measurements and heavy mineral analysis for tracking mineral change; (iii) pH, electrical conductivity, ionic concentrations, and the δ〈sub〉18〈/sub〉O and δD stable isotope composition from ground ice for reconstructing permafrost formation. In addition; (iv) total and dissolved organic carbon is assessed. Chronology is based on; (vi) radiocarbon dating of organic material (accelerator mass spectrometry and conventional) and is complemented by two infrared – optically stimulated luminescence dates. The record stretches back approximately to Marine Isotope Stage 7. It holds periods from traction, over saltation, to suspension load sedimentation. Minerogenic signals do not indicate provenance change over time. They rather reflect the change from high energy to a lower energy regime after Last Glacial Maximum time parallel to the fining‐up grain‐size trend. A prominent minimum in the ground ice stable isotope record at early Holocene highlights that a river arm migration and an associated refreeze of the underlying river talik has altered the isotopic composition at that time. Fluvial re‐routing might be explained by internal dynamics in the Lena River lowland or due to a tectonic movement, since the study area is placed in a zone of seismic activity. At the southern Laptev Sea margin, onshore continental compressional patterns are bordering offshore extensional normal faults.
    Description: Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research
    Description: https://doi.org/10.1594/PANGAEA.945355
    Keywords: ddc:551 ; Lena River ; north‐eastern Siberia ; palaeoenvironment ; permafrost ; Quaternary
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-11-17
    Description: Concentrations of the toxic element lead (Pb) are elevated in seawater due to historical emissions. While anthropogenic atmospheric emissions are the dominant source of dissolved Pb (dPb) to the Atlantic Ocean, evidence is emerging of a natural source associated with subglacial discharge into the ocean but this has yet to be constrained around Greenland. Here, we show subglacial discharge from the cavity underneath Nioghalvfjerdsbræ floating ice tongue, is a previously unrecognized source of dPb to the NE Greenland Shelf. Contrasting cavity‐inflowing and cavity‐outflowing waters, we constrain the associated net‐dPb flux as 2.2 ± 1.4 Mg·yr−1, of which ∼90% originates from dissolution of glacial bedrock and cavity sediments. We propose that the retreat of the floating ice tongue, the ongoing retreat of many glaciers on Greenland, associated shifts in sediment dynamics, and enhanced meltwater discharges into shelf waters may result in pronounced changes, possibly increases, in net‐dPb fluxes to coastal waters.
    Description: Plain Language Summary: Lead (Pb) is a toxic element. Hundreds of thousands of tons have historically been emitted into the atmosphere through use of leaded gasoline, ore‐smelting and coal‐combustion which led to large‐scale deposition of Pb into the ocean and onto the Greenland Ice Sheet. Since the phase‐out of leaded gasoline, concentrations of dissolved Pb in the surface ocean have declined, increasing the relative importance of other, natural sources of Pb to the marine environment. In 2016, we conducted a survey near Nioghalvfjerdsbræ, one of Greenland’s largest marine‐terminating glaciers, to investigate if Greenland Ice Sheet discharge is a source of Pb to the Northeast Greenland Shelf. We observed elevated dissolved Pb concentrations at intermediate depths within a ⁓60 km radius downstream of the Nioghalvfjerdsbræ terminus. The Pb enrichment originates from underneath the glacier’s floating ice tongue. Lead sources underneath Nioghalvfjerdsbræ likely include Pb from eroded bedrock and exchange with fjord sediments. Our calculations suggest that Nioghalvfjerdsbræ dissolved Pb discharge is comparable to that from small Arctic rivers. Given the widespread occurance of Pb‐rich minerals across Greenland, observed increases in meltwater discharge and the retreat of marine‐terminating glaciers could increase dPb supply to Greenlandic shelf regions.
    Description: Key Points: Helium and neon show strong evidence for a subglacial source of Pb discharging onto the NE Greenland Shelf. Contrasting inflowing and outflowing waters beneath the floating ice tongue of Nioghalvfjerdsbræ shows a 2‐3‐fold dPb enrichment. The dissolved Pb flux from Nioghalvfjerdsbræ (2.2 ± 1.4 Mg·yr−1) is comparable to small Arctic rivers, with ∼90% of a sedimentary origin.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Kuwait Institute for Scientific Research http://dx.doi.org/10.13039/501100005074
    Description: Swiss Polar Foundation
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871028
    Description: https://doi.pangaea.de/10.1594/PANGAEA.871030
    Description: https://doi.pangaea.de/10.1594/PANGAEA.879197
    Description: https://doi.pangaea.de/10.1594/PANGAEA.905347
    Description: https://doi.pangaea.de/10.1594/PANGAEA.933431
    Description: https://doi.pangaea.de/10.1594/PANGAEA.931336
    Description: https://doi.org/10.5194/essd-8-543-2016
    Keywords: ddc:551 ; Greenland ice sheet ; Arctic ; marine‐terminating glacier ; Nioghalvfjerdsbrae ; lead fluxes ; GEOTRACES
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-02-21
    Description: Emergent constraints on carbon cycle feedbacks in response to warming and increasing atmospheric CO〈sub〉2 〈/sub〉 concentration have previously been identified in Earth system models participating in the Coupled Model Intercomparison Project (CMIP) Phase 5. Here, we examine whether two of these emergent constraints also hold for CMIP6. The spread of the sensitivity of tropical land carbon uptake to tropical warming in an idealized simulation with a 1% per year increase of atmospheric CO〈sub〉2 〈/sub〉 shows only a slight decrease in CMIP6 (−52 ± 35 GtC/K) compared to CMIP5 (−49 ± 40 GtC/K). For both model generations, the observed interannual variability in the growth rate of atmospheric CO〈sub〉2 〈/sub〉 yields a consistent emergent constraint on the sensitivity of tropical land carbon uptake with a constrained range of −37 ± 14 GtC/K for the combined ensemble (i.e., a reduction of ∼30% in the best estimate and 60% in the uncertainty range relative to the multimodel mean of the combined ensemble). A further emergent constraint is based on a relationship between CO〈sub〉2 〈/sub〉 fertilization and the historical increase in the CO〈sub〉2 〈/sub〉 seasonal cycle amplitude in high latitudes. However, this emergent constraint is not evident in CMIP6. This is in part because the historical increase in the amplitude of the CO〈sub〉2 〈/sub〉 seasonal cycle is more accurately simulated in CMIP6, such that the models are all now close to the observational constraint.
    Description: Plain Language Summary: The statistical model of so‐called emergent constraints help to better understand the sensitivity of Earth system processes in a changing climate. Here, we analyze the robustness of two previously found emergent constraints on carbon cycle feedbacks, using models from the Coupled Model Intercomparison Project (CMIP) of Phases 5 and 6. First the decrease of carbon storage in the tropics due to increasing near‐surface air temperatures, which is found to be robust on the choise of model ensemble. Giving a constraint estimate of −52 ± 35 GtC/K for CMIP6 models, being within the range of uncertainty for the previously estimated result for CMIP5. Second, the increase of carbon storage in high latitudes due to CO〈sub〉2 〈/sub〉 fertilization effect, which is found to be not evident among CMIP6 models. This is in part because the historical increase in the amplitude of the CO〈sub〉2 〈/sub〉 seasonal cycle is more accurately simulated in CMIP6, such that the models are all now close to the observational constraint.
    Description: Key Points: An emergent constraint on the sensitivity of tropical land carbon to global warming, originally derived from Coupled Model Intercomparison Project Phase 5 (CMIP5), also holds for CMIP6. The combined CMIP5 + CMIP6 ensemble gives an emergent constraint on the sensitivity of tropical land carbon to global warming of −37 ± 14 GtC/K. An emergent constraint on the fertilization feedback due to rising CO〈sub〉2 〈/sub〉 levels, previously derived, is not evident in CMIP6.
    Description: Horizon 2020 Framework Programme http://dx.doi.org/10.13039/100010661
    Description: ERC
    Description: https://doi.org/10.5281/zenodo.6900341
    Description: https://doi.org/10.5281/zenodo.3387139
    Description: https://github.com/ESMValGroup
    Description: https://docs.esmvaltool.org/
    Keywords: ddc:551 ; carbon cycle ; emergent constraint ; CMIP5 ; CMIP6 ; fertilization effect ; temperature warming
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-02-09
    Description: Tracing pathways and transformations of particulate organic carbon from landscape sources to oceanic sinks is commonly done using the isotopic composition or biomarker content of particulate organic matter (POM). However, similarity of source characteristics and complex mixing in rivers often preclude a robust deconvolution of individual contributions. Moreover, these approaches are limited in detecting organic matter transformations. This impedes understanding of carbon cycling. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT‐ICR‐MS) can simultaneously identify many molecular formulas from mixtures of organic matter, and provide direct information on its compositional variability. Here, we investigate how FT‐ICR‐MS can give insight into POM dynamics on a landscape scale, focusing on the trans‐Himalayan Kali Gandaki River, Nepal. Using molecular information, we identify source tracers in the solvent extractable lipid fraction of riverine POM, finding up to 102 indicative molecular formulas for individual sources. Further, we assess molecular transformations of the lipid fraction of POM during its transfer from litter into topsoil, and onwards into the river. A large number of shared mass formulas and a well‐preserved isoprenoidal patterns suggest efficient incorporation of litter into topsoil. In contrast, we observe a selective loss of mass formulas and a preferential export of formulas with low double bond equivalents and a low nominal oxidation state of carbon after organic matter entrainment in the river. Our results demonstrate the potential of FT‐ICR‐MS for source‐to‐sink studies, allowing detailed organic matter source characterization and discrimination, and tracking of molecular transformations along organic matter pathways spanning different spatial and temporal scales.
    Description: Plain Language Summary: The transfer of organic matter (OM) by rivers from landscape sources into the ocean followed by its burial in marine sediments is an important carbon sink. Therefore, OM is often traced along this journey using its isotopic or biomarker composition. But contributions of OM sources to river sediments can be difficult to estimate because of similar source characteristics, mixing of many sources and changes of the molecular composition along the way. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT‐ICR‐MS) is a novel method able to identify many molecular formulas from OM mixtures at once providing direct information about their molecular composition. Here, we investigate how FT‐ICR‐MS contributes to understanding the transport and transformation of particulate OM focusing on a Himalayan river in Nepal. We use the molecular information to identify tracers for individual OM sources in the landscape. We then assess molecular transformations during the transfer of litter into topsoil, and onwards into the river. Our data suggest efficient incorporation of litter into topsoil, but we observe a selective loss of molecular formulas upon entrainment of sources into the river. Our results reveal that FT‐ICR‐MS is useful for detailed source characterization and tracking of molecular transformations along OM pathways.
    Description: Key Points: Organic matter sourcing and transformations in a Himalayan river studied by FT‐ICR‐MS measurements of solvent extractable lipids. Identification of up to 102 indicator mass formulas for different organic matter sources in the landscape using indicator species analysis. Mass formulas preserved during incorporation of litter into topsoil but selectively lost during entrainment of sources into the river.
    Description: Helmholtz Impuls und Vernetzungsfond
    Description: GFZ expedition funding
    Description: http://doi.org/10.5880/GFZ.4.6.2022.002
    Keywords: ddc:551 ; particulate organic carbon ; solvent extractable lipids ; FT‐ICR‐MS ; Himalaya ; carbon cycling ; indicator species analysis
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...