ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Physics - Geophysics; Physics - Geophysics
  • Oxford University Press  (1)
  • American Association for the Advancement of Science
  • Annual Reviews
  • Blackwell Publishing Ltd
  • 2020-2023  (1)
  • 1980-1984
  • 1925-1929
  • 1920-1924
  • 2022  (1)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 2020-2023  (1)
  • 1980-1984
  • 1925-1929
  • 1920-1924
Jahr
  • 1
    Publikationsdatum: 2022-10-28
    Beschreibung: Relative relocation methods are commonly used to precisely relocate earthquake clusters consisting of similar waveforms. Repeating waveforms are often recorded at volcanoes, where, however, the crust structure is expected to contain strong heterogeneities and therefore the 1D velocity model assumption that is made in most location strategies is not likely to describe reality. A peculiar cluster of repeating low-frequency seismic events was recorded on the south flank of Katla volcano (Iceland) from 2011. As the hypocentres are located at the rim of the glacier, the seismicity may be due to volcanic or glacial processes. Information on the size and shape of the cluster may help constraining the source process. The extreme similarity of waveforms points to a very small spatial distribution of hypocentres. In order to extract meaningful information about size and shape of the cluster, we minimize uncertainty by optimizing the cross-correlation measurements and relative-relocation process. With a synthetic test we determine the best parameters for differential-time measurements and estimate their uncertainties, specifically for each waveform. We design a relocation strategy to work without a predefined velocity model, by formulating and inverting the problem to seek changes in both location and slowness, thus accounting for azimuth, take-off angles and velocity deviations from a 1D model. We solve the inversion explicitly in order to propagate data errors through the calculation. With this approach we are able to resolve a source volume few tens of meters wide on horizontal directions and around 100 meters in depth. There is no suggestion that the hypocentres lie on a single fault plane and the depth distribution indicates that their source is unlikely to be related to glacial processes as the ice thickness is not expected to exceed few tens of meters in the source area.
    Beschreibung: Published
    Beschreibung: 1244–1257
    Beschreibung: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Beschreibung: JCR Journal
    Schlagwort(e): Physics - Geophysics; Physics - Geophysics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...