ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (41)
  • Wiley  (37)
  • Nature Publishing Group
  • Springer
  • 2020-2023  (88)
  • 2020-2020
  • 1945-1949
  • 2020  (88)
  • 2020  (88)
Collection
Years
Year
  • 1
    Publication Date: 2022-03-11
    Description: As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modelling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the centre of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice‐bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon was ice‐grounded in spring. In bedfast ice areas, the electrical resistivity profiles suggest that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modelling suggests thermokarst lake taliks refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 °C. This occurs, because the top‐down chemical degradation of newly formed ice‐bearing permafrost is slower than the cooling of the talik. Hence, lagoons may pre‐condition taliks with a layer of ice‐bearing permafrost before encroachment by the sea and this frozen layer may act as a cap on gas migration out of the underlying talik.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Romagnoni, G., Kvile, K. o., Dagestad, K., Eikeset, A. M., Kristiansen, T., Stenseth, N. C., & Langangen, O. Influence of larval transport and temperature on recruitment dynamics of North Sea cod (Gadus morhua) across spatial scales of observation. Fisheries Oceanography, (2020): 1-16, doi:10.1111/fog.12474.
    Description: The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early‐life stage dispersal with statistical stock–recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua ). By using a coupled physical–biological model, we estimated the egg and larval transport over a 44‐year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual‐based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock–recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock–recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.
    Description: G.R. was supported by the Norden Top‐level Research Initiative sub‐programme “Effect Studies and Adaptation to Climate Change” through the Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER). K.Ø.K. was supported by the WHOI John H. Steele Post‐doctoral Scholar award and VISTA – a basic research program in collaboration between The Norwegian Academy of Science and Letters, and Equinor. We thank an anonymous referee for valuable comments that substantially improved the article.
    Keywords: Atlantic cod ; biophysical model ; larval transport ; North Sea ; populations ; stock–recruitment ; temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jacox, M. G., Alexander, M. A., Siedlecki, S., Chen, K., Kwon, Y., Brodie, S., Ortiz, I., Tommasi, D., Widlansky, M. J., Barrie, D., Capotondi, A., Cheng, W., Di Lorenzo, E., Edwards, C., Fiechter, J., Fratantoni, P., Hazen, E. L., Hermann, A. J., Kumar, A., Miller, A. J., Pirhalla, D., Buil, M. P., Ray, S., Sheridan, S. C., Subramanian, A., Thompson, P., Thorne, L., Annamalai, H., Aydin, K., Bograd, S. J., Griffis, R. B., Kearney, K., Kim, H., Mariotti, A., Merrifield, M., & Rykaczewski, R. Seasonal-to-interannual prediction of North American coastal marine ecosystems: forecast methods, mechanisms of predictability, and priority developments. Progress in Oceanography, 183, (2020): 102307, doi:10.1016/j.pocean.2020.102307.
    Description: Marine ecosystem forecasting is an area of active research and rapid development. Promise has been shown for skillful prediction of physical, biogeochemical, and ecological variables on a range of timescales, suggesting potential for forecasts to aid in the management of living marine resources and coastal communities. However, the mechanisms underlying forecast skill in marine ecosystems are often poorly understood, and many forecasts, especially for biological variables, rely on empirical statistical relationships developed from historical observations. Here, we review statistical and dynamical marine ecosystem forecasting methods and highlight examples of their application along U.S. coastlines for seasonal-to-interannual (1–24 month) prediction of properties ranging from coastal sea level to marine top predator distributions. We then describe known mechanisms governing marine ecosystem predictability and how they have been used in forecasts to date. These mechanisms include physical atmospheric and oceanic processes, biogeochemical and ecological responses to physical forcing, and intrinsic characteristics of species themselves. In reviewing the state of the knowledge on forecasting techniques and mechanisms underlying marine ecosystem predictability, we aim to facilitate forecast development and uptake by (i) identifying methods and processes that can be exploited for development of skillful regional forecasts, (ii) informing priorities for forecast development and verification, and (iii) improving understanding of conditional forecast skill (i.e., a priori knowledge of whether a forecast is likely to be skillful). While we focus primarily on coastal marine ecosystems surrounding North America (and the U.S. in particular), we detail forecast methods, physical and biological mechanisms, and priority developments that are globally relevant.
    Description: This study was supported by the NOAA Climate Program Office’s Modeling, Analysis, Predictions, and Projections (MAPP) program through grants NA17OAR4310108, NA17OAR4310112, NA17OAR4310111, NA17OAR4310110, NA17OAR4310109, NA17OAR4310104, NA17OAR4310106, and NA17OAR4310113. This paper is a product of the NOAA/MAPP Marine Prediction Task Force.
    Keywords: Prediction ; Predictability ; Forecast ; Ecological forecast ; Mechanism ; Seasonal ; Interannual ; Large marine ecosystem
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-11-09
    Description: The aim of this study is to improve our knowledge of the attenuation structure in the Southern Apennines using a new amplitude ratio tomography method (Phillips et al., Geophys Res Lett 32(21): L21301, 2005) applied on both direct and coda envelope measurements derived from 150 events recorded by 47 stations of the Istituto Nazionale di Geofisica e Vulcanologia National Seismic Network (Rete Sismica Nazionale Centralizzata). The twodimensional (2-D) analysis allows us to take into account lateral crustal variations and heterogeneities of this region. Using the same event and station distribution, we also applied a simple 1-D methodology, and the performance of the 1-D and 2-D path assumptions is tested by comparing the average interstation variance for the path-corrected amplitudes using coda and direct waves. In general, coda measurement results are more stable than using direct waves when the same methodology is applied. Using the 2-D approach, we observe more stable results for both waves. However, the improvement is quite small, probably because the crustal heterogeneity is weak. This means that, for this region, the 1-D path assumption is a good approximation of the attenuation characteristics of the region. A comparison between Q tomography images obtained using direct and coda amplitudes shows similar results, consistent with the geology of the region. In fact, we observe low Q along the Apennine chain toward the Tyrrhenian Sea and higher values to the east, in correspondence with the Gargano zone that is related to the Apulia Carbonate Platform. Finally, we compared our results with the coda Q values proposed by Bianco et al. (Geophys J Int 150:10–22, 2002) for the same region. The good agreement validates our results as the authors used a completely independent methodology.
    Description: Published
    Description: 355–365
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: coda Q tomography
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-16
    Description: On September 6, 2017, the solar active region AR 2673 emitted two solar flares: the first at 08:57 UT (X2.2) and the second at 11:53 UT (X9.3); both were powerful enough to black-out high and low frequency radio waves (where UT is universal time). The X9.3 was the strongest solar flare event in the past decade. In this study, we took the advantage of these two extreme flare events to investigate corresponding effects on the ionosphere using multi-instrument observations from magnetometers, Global Positioning System – Total Electron content (GPS-TEC) receivers, ionosondes and Swarm satellites over a large geographical extent covering South American, African and European sectors. During the X2.2 flare, European and African sectors were sunlit and during X9.3 European, African, and South American sectors were sunlit and exposed to the solar flare radiation. During the X2.2 flare, there was an ionosonde blackout for a duration of about 45 min, while during the X9.3 flare this blackout lasted for 1 h and 30 min. The blackout are seen over a large global extent which demonstrates the severity of solar flare events in disrupting the radio communication. The horizontal component of Earth’s geomagnetic field has shown ripples and enhancements during these flare events. The ionospheric Vertical Total Electron Content (VTEC) showed a positive phase along with an intensification of the Equatorial Ionization Anomaly (EIA) over the South American and African sectors. The dynamical and physical processes associated with the TEC and EIA variabilities due to solar flare are discussed.
    Description: Published
    Description: 1775-1791
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-07
    Description: Palaeoenvironmental reconstructions with temporal coverages extending beyond Marine Isotope Stage (MIS) three are scarce within the data sparse region of Chukotka, Far East Russia. The objective of this paper is to infer palaeoenvironmental variability from a 10.76 m long, OSL- and 14C- dated sediment core from Lake Ilirney, Chukotka (67°21′N, 168°19′E). We analysed high-resolution sediment-geochemistry (XRF), sedimentology (TC, TN, TOC, grain-size), mineralogy (XRD) and preliminary micropalaeontological data (diatoms and pollen) from the core as well as acoustic sub-bottom profiling data from the lake basin. Our results affirm the application of XRF-based sediment-geochemical proxies as effective tracers of palaeoenvironmental variability within arctic lake systems. Our study reveals that a lake formed during MIS3 from 51.8 (±4.1) ka BP, following extensive MIS4 glaciation. Catchment palaeoenvironmental conditions during this time remained harsh associated with the continued presence of a catchment glacier until 36.2 (±2.6) ka BP. Partial amelioration reflected by increased diatom, catchment vegetation and lake organic productivity and clastic sediment input from mixed sources from 36.2 (±2.6) ka BP resulted in a lake high-stand ∼15 m above present and is interpreted as evidence of a more productive palaeoenvironment coincident with the MIS3 interstadial optimum. A transitional period of deteriorating palaeoenvironmental conditions occurred ∼30–27.9 ka BP and was superseded by periglacial-glacial conditions from 27.9 (±0.8) ka BP, during the last glacial maximum. Deglaciation as marked by sediment-geochemical proxies commenced at 20.2 (±0.8) ka BP. Our findings are compared with lacustrine, Yedoma and river-bluff records from across Beringia and potentially yield limited support for a marked Younger Dryas cooling in the study area.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-12-13
    Description: Poás is a complex stratovolcano with an altitude of 2,708 m asl, located in the Cordillera Volcánica Central of Costa Rica. Prior to 2017, the last three historical eruptions occurred on 7 February 1834, between January and May 1910 and during the period 1953-1955. Very few literature exists on the 1834 eruption. The only references state that it was an important event, that ash reached 〉53 km W-SW of Poás, and that it harmed the grasslands around the volcano. Related deposits of this eruption suggest phreatic activity, which launched bombs and blocks. Moreover, there is evidence of pyroclastic flow deposits near the crater. The 1910 eruption is better described. Despite the fact that ash fall is only reported near the volcano, a volume of the deposit of 1.6 x 107 m3 is estimated. Deposits of the eruption are white in color with many hydrothermally altered, and minor presence of juvenile fragments (vesicular lapilli). The eruption is classified as vulcanian, with deposits of ash fall and pyroclastic flows close to the crater. A Volcano Explosivity Index 3 (VEI 3) is estimated. The eruption affected agriculture. The 1953-1955 eruptions had a longer duration. Various ash fall deposits at several sites are reported. Deposits of this eruption, easily distinguished in the field, are black scoria lapilli, bombs with, sometimes fusiform, bread crust textures. In the eastern sector of the crater bombs can reach meters in size; such large bombs near the eruption centre at one side suggest the inclination of the eruptive conduct, or an asymmetrical vent-crater system. Inside the crater a 40 m-high dome and a lava flow were extruded during the eruption. Towards the east side of the current Laguna Caliente crater lake, relicts of a 8.5 m thick lava pool are found. During the entire eruptive episode, the acid lake presumably lacked. The eruption is described to be of a mixed type: strombolian, phreatomagmatic, vulcanian and dome extrusion eruptions. Considering the characteristics of this eruption, the height of the eruption column, ejected volume (2.1 x 107  m3), and its presumed duration, a VEI 3 is estimated. The eruptions damaged agricultural activity (including cattle), and forced the spontaneous evacuation of some people. In April 2017 magmatic eruptions followed a decade-long period of intense phreatic activity. These eruptions destroyed the 1953-1955 Dome and led to the complete dry out of Laguna Caliente. Pyroclastic cones and sulphur volcanism manifested at the bottom of the former crater lake bottom. The 2017 eruption severely affected touristic activities at and near Poás, with an estimated economic loss of 20 million dollars. By May-August 2018 Laguna Caliente reappeared. The volcanic hazards related to the three studied historical eruptions are: pyroclastic flows (at least 1 km from the eruptive centre, including reaching the current mirador sector), ballistics (bomb ejections up to 2 km from the emission centre), dispersion and fall of pyroclasts (tens of kms), gas emission and acid rain, dispersed by WSW dominant winds, and lahars in most of the river canyons SW of the volcano.  
    Description: Published
    Description: 261-299
    Description: 1V. Storia eruttiva
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-07-04
    Description: Collapse of permafrost coasts delivers large quantities of particulate organic carbon (POC) to arctic coastal areas. With rapidly‐changing environmental conditions, sediment and organic carbon (OC) mobilization and transport pathways are also changing. Here, we assess the sources and sinks of POC in the highly‐dynamic nearshore zone of Herschel Island ‐ Qikiqtaruk (Yukon, Canada). Our results show that POC concentrations sharply decrease, from 15.9 to 0.3 mg L‐1, within the first 100 – 300 meters offshore. Simultaneously, radiocarbon ages of POC drop from 16,400 to 3,600 14C years, indicating rapid settling of old permafrost POC to underlying sediments. This suggests that permafrost OC is, apart from a very narrow resuspension zone (〈5 m water depth), predominantly deposited in nearshore sediments. While long‐term storage of permafrost OC in marine sediments potentially limits biodegradation and its subsequent release as greenhouse gas, resuspension of fine‐grained, OC‐rich sediments in the nearshore zone potentially enhances OC turnover.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-06-20
    Description: Between 2003-2016, the Greenland ice sheet (GrIS) was one of the largest contributors to sea level rise, as it lost about 255 Gt of ice per year. This mass loss slowed in 2017 and 2018 to about 100 Gt yr−1. Here we examine further changes in rate of GrIS mass loss, by analyzing data from the GRACE-FO (Gravity Recovery and Climate Experiment – Follow On) satellite mission, launched in May 2018. Using simulations with regional climate models we show that the mass losses observed in 2017 and 2018 by the GRACE and GRACE-FO missions are lower than in any other two year period between 2003 and 2019, the combined period of the two missions. We find that this reduced ice loss results from two anomalous cold summers in western Greenland, compounded by snow-rich autumn and winter conditions in the east. For 2019, GRACE-FO reveals a return to high melt rates leading to a mass loss of 223 ± 12 Gt month−1 during the month of July alone, and a record annual mass loss of 532 ± 58 Gt yr−1.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-13
    Description: We present an interdisciplinary review of the observed and projected variations in atmospheric and oceanic circulation within the southwestern South Atlantic focused on basin-scale processes driven by climate change, and their potential impact on the regional fisheries. The observed patterns of atmospheric circulation anomalies are consistent with anthropogenic climate change. There is strong scientific evidence suggesting that the Brazil Current is intensifying and shifting southwards during the past decades in response to changes in near-surface wind patterns, leading to intense ocean warming along the path of the Brazil Current, the South Brazil Bight, and in the Río de la Plata. These changes are presumably responsible for the poleward shift of commercially important pelagic species in the region and the long-term shift from cold-water to warm-water species in industrial fisheries of Uruguay. Scientific and traditional knowledge shows that climate change is also affecting small-scale fisheries. Long-term records suggest that mass mortalities decimated harvested clam populations along coastal ecosystems of the region, leading to prolonged shellfishery closures. More frequent and intense harmful algal blooms together with unfavorable environmental conditions driven by climate change stressors affect coastal shellfisheries, impact economic revenues, and damage the livelihood of local communities. We identify future modelling needs to reduce uncertainty in the expected effects of climate change on marine fisheries. However, the paucity of fisheries data prevents a more effective assessment of the impact of climate change on fisheries and hampers the ability of governments and communities to adapt to these changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-06-10
    Description: In fold and thrust belts developing at convergent margins, the migration of the advancing wedge is accompanied by bulging of the downgoing plate, followed by the development of a foredeep basin filled by a thick succession of syn-orogenic sediments. The transition from forebulge to foredeep marks a key moment in the evolution of the orogenic system. In deep water environments, the record of this transition is typically complete and progressive. Conversely, in the shallow-water/continental environment of many collisional systems, the uplift of the forebulge area can imply emersion and erosion, obliterating the stratigraphic record of key steps of the evolution of the orogenic system. The southern Apennines constitute one of these collisional fold and thrust belts where the development of the forebulge has implied emersion and erosion, with the development of a Miocene forebulge erosional unconformity, accompanied by extensional deformation associated with the bending of the lithosphere during the forebulge stage. In this paper, we use strontium isotope stratigraphy to constrain with unprecedented time-resolution the age of the forebulge unconformity in areas presently incorporated in the northern sector of the southern Apennines fold and thrust belt. Integration of our results and those of previous studies indicates, at the regional scale, a younging toward the foreland of the forebulge unconformity across the belt. Our highresolution ages also reveal a diachronous onset of the flexural subsidence over short distances, associated with the occurrence of horst and graben structures, possibly resulting from inherited paleotopography along with forebulge extension. This work highlights how high-resolution dating is critical to unravel the evolution of foreland basin systems at different scales.
    Description: Published
    Description: 105634
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Foreland basin system ; Forebulge unconformity ; Strontium isotope stratigraphy ; Forebulge extension ; Miocene ; Southern Apennines (Italy)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. H., Rheuban, J. E., McCorkle, D. C., Burdige, D. J., & Zimmerman, R. C. Closing the oxygen mass balance in shallow coastal ecosystems. Limnology and Oceanography, 64(6), (2019): 2694-2708, doi: 10.1002/lno.11248.
    Description: The oxygen concentration in marine ecosystems is influenced by production and consumption in the water column and fluxes across both the atmosphere–water and benthic–water boundaries. Each of these fluxes has the potential to be significant in shallow ecosystems due to high fluxes and low water volumes. This study evaluated the contributions of these three fluxes to the oxygen budget in two contrasting ecosystems, a Zostera marina (eelgrass) meadow in Virginia, U.S.A., and a coral reef in Bermuda. Benthic oxygen fluxes were evaluated by eddy covariance. Water column oxygen production and consumption were measured using an automated water incubation system. Atmosphere–water oxygen fluxes were estimated by parameterizations based on wind speed or turbulent kinetic energy dissipation rates. We observed significant contributions of both benthic fluxes and water column processes to the oxygen mass balance, despite the often‐assumed dominance of the benthic communities. Water column rates accounted for 45% and 58% of the total oxygen rate, and benthic fluxes accounted for 23% and 39% of the total oxygen rate in the shallow (~ 1.5 m) eelgrass meadow and deeper (~ 7.5 m) reef site, respectively. Atmosphere–water fluxes were a minor component at the deeper reef site (3%) but a major component at the shallow eelgrass meadow (32%), driven by diel changes in the sign and strength of atmosphere–water gradient. When summed, the measured benthic, atmosphere–water, and water column rates predicted, with 85–90% confidence, the observed time rate of change of oxygen in the water column and provided an accurate, high temporal resolution closure of the oxygen mass balance.
    Description: This work was substantially improved by comments from two anonymous reviewers. We thank Victoria Hill, David Ruble, Jeremy Bleakney, and Brian Collister for assistance in the field and the staff of the Bermuda Institute of Ocean Sciences and the Anheuser‐Busch Coastal Research Center for logistical support. This work was supported by NSF OCE grants 1657727 (to M.H.L. and D.C.M.), 1635403 (to R.C.Z. and D.J.B.), and 1633951 (to M.H.L.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems XX (2019): Tyne, R. L., Barry, P. H., Hillegonds, D. J., Hunt, A. G., Kulongoski, J. T., Stephens, M. J., Byrne, D. J., & Ballentine, C. J. A novel method for the extraction, purification, and characterization of noble gases in produced fluids. Geochemistry Geophysics Geosystems, 20, (2019): 5588-5597, doi: 10.1029/2019GC008552.
    Description: Hydrocarbon systems with declining or viscous oil production are often stimulated using enhanced oil recovery (EOR) techniques, such as the injection of water, steam, and CO2, in order to increase oil and gas production. As EOR and other methods of enhancing production such as hydraulic fracturing have become more prevalent, environmental concerns about the impact of both new and historical hydrocarbon production on overlying shallow aquifers have increased. Noble gas isotopes are powerful tracers of subsurface fluid provenance and can be used to understand the impact of EOR on hydrocarbon systems and potentially overlying aquifers. In oil systems, produced fluids can consist of a mixture of oil, water and gas. Noble gases are typically measured in the gas phase; however, it is not always possible to collect gases and therefore produced fluids (which are water, oil, and gas mixtures) must be analyzed. We outline a new technique to separate and analyze noble gases in multiphase hydrocarbon‐associated fluid samples. An offline double capillary method has been developed to quantitatively isolate noble gases into a transfer vessel, while effectively removing all water, oil, and less volatile hydrocarbons. The gases are then cleaned and analyzed using standard techniques. Air‐saturated water reference materials (n = 24) were analyzed and results show a method reproducibility of 2.9% for 4He, 3.8% for 20Ne, 4.5% for 36Ar, 5 .3% for 84Kr, and 5.7% for 132Xe. This new technique was used to measure the noble gas isotopic compositions in six produced fluid samples from the Fruitvale Oil Field, Bakersfield, California.
    Description: This work was supported by a Natural Environment Research Council studentship to R. L. Tyne (grant NE/L002612/1) and the USGS (grant 15‐080‐250), as part of the California State Water Resource Control Board's, Oil and Gas Regional Groundwater Monitoring Program (RMP). Data can be accessed in Tables 1 and 2 and in the data release from Gannon et al. (2018). We thank the owners and operators at the Fruitvale Oil Field for access to wells. We thank Stuart Gilfillan and an anonymous reviewer for their constructive reviews as well as Marie Edmonds for editorial handling. We also thank Matthew Landon and Myles Moor from the USGS who provided helpful comments on an earlier version of the manuscript. Any use of trade, firm or product names are for descriptive purposes only and do not imply endorsement by the U.S. Government.
    Description: 2020-04-14
    Keywords: Noble Gas ; Methods ; Produced Fluids
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chapman, A. S. A., Beaulieu, S. E., Colaco, A., Gebruk, A. V., Hilario, A., Kihara, T. C., Ramirez-Llodra, E., Sarrazin, J., Tunnicliffe, V., Amon, D. J., Baker, M. C., Boschen-Rose, R. E., Chen, C., Cooper, I. J., Copley, J. T., Corbari, L., Cordes, E. E., Cuvelier, D., Duperron, S., Du Preez, C., Gollner, S., Horton, T., Hourdez, S., Krylova, E. M., Linse, K., LokaBharathi, P. A., Marsh, L., Matabos, M., Mills, S. W., Mullineaux, L. S., Rapp, H. T., Reid, W. D. K., Rybakova (Goroslavskaya), E., Thomas, T. R. A., Southgate, S. J., Stohr, S., Turner, P. J., Watanabe, H. K., Yasuhara, M., & Bates, A. E. sFDvent: a global trait database for deep-sea hydrothermal-vent fauna. Global Ecology and Biogeography, 28(11), (2019): 1538-1551, doi: 10.1111/geb.12975.
    Description: Motivation Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite growing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single repository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFDvent (sDiv‐funded trait database for the Functional Diversity of vents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent database, describe our approach, and evaluate its scope. Finally, we compare the sFDvent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement Deep‐sea hydrothermal‐vent fauna with species‐level identification present or in progress. Software format .csv and MS Excel (.xlsx).
    Description: We would like to thank the following experts, who are not authors on this publication but made contributions to the sFDvent database: Anna Metaxas, Alexander Mironov, Jianwen Qiu (seep species contributions, to be added to a future version of the database) and Anders Warén. We would also like to thank Robert Cooke for his advice, time, and assistance in processing the raw data contributions to the sFDvent database using R. Thanks also to members of iDiv and its synthesis centre – sDiv – for much‐valued advice, support, and assistance during working‐group meetings: Doreen Brückner, Jes Hines, Borja Jiménez‐Alfaro, Ingolf Kühn and Marten Winter. We would also like to thank the following supporters of the database who contributed indirectly via early design meetings or members of their research groups: Malcolm Clark, Charles Fisher, Adrian Glover, Ashley Rowden and Cindy Lee Van Dover. Finally, thanks to the families of sFDvent working group members for their support while they were participating in meetings at iDiv in Germany. Financial support for sFDvent working group meetings was gratefully received from sDiv, the Synthesis Centre of iDiv (DFG FZT 118). ASAC was a PhD candidate funded by the SPITFIRE Doctoral Training Partnership (supported by the Natural Environmental Research Council, grant number: NE/L002531/1) and the University of Southampton at the time of submission. ASAC also thanks Dominic, Lesley, Lettice and Simon Chapman for their support throughout this project. AEB and VT are sponsored through the Canada Research Chair Programme. SEB received support from National Science Foundation Division of Environmental Biology Award #1558904 and The Joint Initiative Awards Fund from the Andrew W. Mellon Foundation. AC is supported by Program Investigador (IF/00029/2014/CP1230/CT0002) from Fundação para a Ciência e a Tecnologia (FCT). This study also had the support of Fundação para a Ciência e a Tecnologia, through the strategic project UID/MAR/04292/2013 granted to marine environmental sciences centre. Data compiled by AVG and EG were supported by Russian science foundation Grant 14‐50‐00095. AH was supported by the grant BPD/UI88/5805/2017 awarded by CESAM (UID/AMB/50017), which is financed by FCT/Ministério da Educação through national funds and co‐funded by fundo Europeu de desenvolvimento regional, within the PT2020 Partnership Agreement and Compete 2020. ERLL was partially supported by the MarMine project (247626/O30). JS was supported by Ifremer. Data on vent fauna from the East Scotia Ridge, Mid‐Cayman Spreading Centre, and Southwest Indian Ridge were obtained by UK natural environment research council Grants NE/D01249X/1, NE/F017774/1 and NE/H012087/1, respectively. REBR's contribution was supported by a Postdoctoral Fellowship at the University of Victoria, funded by the Canadian Healthy Oceans Network II Strategic Research Program (CHONe II). DC is supported by a post‐doctoral scholarship (SFRH/BPD/110278/2015) from FCT. HTR was supported by the Research Council of Norway through project number 70184227 and the KG Jebsen Centre for Deep Sea Research (University of Bergen). MY was partially supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (project codes: HKU 17306014, HKU 17311316).
    Keywords: biodiversity ; collaboration ; conservation ; cross‐ecosystem ; database ; deep sea ; functional trait ; global‐scale ; hydrothermal vent ; sFDvent
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Du, J., Park, K., Yu, X., Zhang, Y. J., & Ye, F. Massive pollutants released to Galveston Bay during Hurricane Harvey: Understanding their retention and pathway using Lagrangian numerical simulations. Science of the Total Environment, 704, (2019): 135364, doi: 10.1016/j.scitotenv.2019.135364.
    Description: Increasing frequency of extreme precipitation events under the future warming climate makes the storm-related pollutant release more and more threatening to coastal ecosystems. Hurricane Harvey, a 1000-year extreme precipitation event, caused massive pollutant release from the Houston metropolitan area to the adjacent Galveston Bay. 0.57 × 106 tons of raw sewage and 22,000 barrels of oil, refined fuels and chemicals were reportly released during Harvey, which would likely deteriorate the water quality and damage the coastal ecosystem. Using a Lagrangian particle-tracking method coupled with a validated 3D hydrodynamic model, we examined the retention, pathway, and fate of the released pollutants. A new timescale, local exposure time (LET), is introduced to quantitatively evaluate the spatially varying susceptibility inside the bay and over the shelf, with a larger LET indicating the region is more susceptible to the released pollutants. We found LET inside the bay is at least one order of magnitude larger for post-storm release than storm release due to a quick recovery in the system's flushing. More than 90% of pollutants released during the storm exited the bay within two days, while those released after the storm could stay inside the bay for up to three months. This implies that post-storm release is potentially more damaging to water quality and ecosystem health. Our results suggest that not only the amount of total pollutant load but also the release timing should be considered when assessing a storm's environmental and ecological influence, because there could be large amounts of pollutants steadily and slowly discharged after storm through groundwater, sewage systems, and reservoirs.
    Description: We like to acknowledge the Texas Coastal Management Program, the Texas General Land Office and NOAA for partial funding of this project through CMP Contract #19-040-000-B074. This work was performed using computing facilities at the College of William and Mary, which were provided by contributions from the National Science Foundation, the Commonwealth of Virginia Equipment Trust Fund and the Office of Naval Research.
    Keywords: Storm discharge ; Retention ; Local exposure time ; Particle tracking ; SCHISM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Weber, L., González-Díaz, P., Armenteros, M., Ferrer, V. M., Bretos, F., Bartels, E., Santoro, A. E., & Apprill, A. Microbial signatures of protected and impacted Northern Caribbean reefs: changes from Cuba to the Florida Keys. Environmental Microbiology, 22(1), (2019): 499-519, doi: 10.1111/1462-2920.14870.
    Description: There are a few baseline reef‐systems available for understanding the microbiology of healthy coral reefs and their surrounding seawater. Here, we examined the seawater microbial ecology of 25 Northern Caribbean reefs varying in human impact and protection in Cuba and the Florida Keys, USA, by measuring nutrient concentrations, microbial abundances, and respiration rates as well as sequencing bacterial and archaeal amplicons and community functional genes. Overall, seawater microbial composition and biogeochemistry were influenced by reef location and hydrogeography. Seawater from the highly protected ‘crown jewel’ offshore reefs in Jardines de la Reina, Cuba had low concentrations of nutrients and organic carbon, abundant Prochlorococcus, and high microbial community alpha diversity. Seawater from the less protected system of Los Canarreos, Cuba had elevated microbial community beta‐diversity whereas waters from the most impacted nearshore reefs in the Florida Keys contained high organic carbon and nitrogen concentrations and potential microbial functions characteristic of microbialized reefs. Each reef system had distinct microbial signatures and within this context, we propose that the protection and offshore nature of Jardines de la Reina may preserve the oligotrophic paradigm and the metabolic dependence of the community on primary production by picocyanobacteria.
    Description: We thank Justin Ossolinski, Sean McNally, Tom Lankiewicz, Lázaro García, and the crew from R/V Felipe Poey for assistance with sample collection and processing. We thank Marlin Nauticas and Marinas for the use of their dive facilities. We thank Chris Wright, Mark Band, and staff at the University of Illinois W. M. Keck Center for Comparative and Functional Genomics for sequencing assistance, Karen Selph for training in flow cytometry, Krista Longnecker for TOC and TN analyses, and Joe Jennings for nutrient analyses. Funding was provided to A.A. and A.E.S. by a Dalio Explore award from the Dalio Foundation (now 'OceanX') and analysis time was supported with the NSF Graduate Research Fellowship award to L.W. and NSF award OCE 1736288 to A.A. Research was conducted under the LH112 AN (25) 2015 licence granted by the Cuban Center for Inspection and Environmental Control.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mundl-Petermeier, A., Walker, R. J., Jackson, M. G., Blichert-Toft, J., Kurz, M. D., & Halldorsson, S. A. Temporal evolution of primordial tungsten-182 and he-3/He-4 signatures in the Iceland mantle plume. Chemical Geology, 525, (2019): 245-259. doi: 10.1016/j.chemgeo.2019.07.026.
    Description: Studies of short-lived radiogenic isotope systems and noble gas isotopic compositions of plume-derived rocks suggest the existence of primordial domains in Earth's present-day mantle. Tungsten-182 anomalies together with high 3He/4He in Phanerozoic rocks from large igneous provinces and ocean island basalts demonstrate the preservation of early-formed (within the first 60 Ma of solar system history) mantle domains tapped by modern mantle plumes. It has proven difficult to link the evidence for primordial domains with geochemical evidence for more recent processes, such as recycling. The Greenland-Iceland plume system, starting with eruptions of the Paleocene North Atlantic Igneous Province, is later manifested in the mid-Miocene to modern volcanic products of Iceland. Here, we report Pb isotopic compositions, μ182W (deviations in 182W/184W of a sample from a laboratory reference standard in parts per million), and 3He/4He, as well as highly siderophile element concentrations and Re-Os isotopic systematics of basaltic samples erupted at different times during the ~60 Ma history of the Greenland-Iceland plume. Paleocene samples from Greenland, representing the early stage of the mantle plume, are characterized by variable 3He/4He ranging from 7 to 48 R/RA (measured 3He/4He normalized to the atmospheric ratio) and an average μ182W of −4.0 ± 3.6 (2SD), within modern upper mantle-like values of 0 ± 4.5. The basalts from Iceland can be divided into two groups based on their Pb isotope compositions. One group, consisting mostly of Miocene basalts, is characterized by 206Pb/204Pb ranging from ~18.4 to 18.5, 3He/4He ranging from 17.8 to 40.2 R/RA, and μ182W values ranging from +1.7 to −9.1 ± 4.5. The other group, consisting mainly of Pleistocene and Holocene basalts, is characterized by higher 206Pb/204Pb, ranging from ~18.7 to 19.2, 3He/4He ranging from 7.9 to 25.7 R/RA, and μ182W values ranging from −0.6 to −11.7 ± 4.5. Collectively, the Greenland-Iceland suite examined requires mixing between a minimum of three mantle source domains characterized by distinct Pb-He-W isotopic compositions, in order to account for this range of isotopic data. The temporal changes in the isotopic data for these rocks appear to track the dominant contributing plume components as the system evolved. One of the domains is indistinguishable from the ambient upper oceanic mantle and contributed substantial material throughout the time progression. The other two domains are most likely primordial reservoirs that underwent limited de-gassing. Given the negative μ182W values in some rocks, one of these domains likely formed within the first 60 Ma of solar system history and is a major contributor to the youngest basalts. The isotopic characteristics of Greenland-Iceland plume-derived rocks reveal episodic changes in the source component proportions.
    Description: This study was supported by NSF grant EAR-1624587 (to RJW and AMP). AMP acknowledges FWF grant V659-N29. MJ acknowledges NSF grant EAR-1624840, and MK acknowledges OCE-1259218. We would like to thank Lotte M. Larsen and Asger K. Pedersen for providing the West Greenland samples, and Bernard Marty for the samples from East Greenland. We thank Catherine Chauvel for the editorial handling and Rita Parai, Dominique Weis, David Graham and an anonymous reviewer for the helpful and constructive comments on this and an earlier version of the manuscript.
    Keywords: μ182W ; Iceland ; Mantle plume ; 3He/4He ; Primordial reservoir
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wheat, C. G., Seewald, J. S., & Takai, K. Fluid transport and reaction processes within a serpentinite mud volcano: South Chamorro Seamount. Geochimica Et Cosmochimica Acta, 269, (2020): 413-428, doi: 10.1016/j.gca.2019.10.037
    Description: Natural fluids with a pH (25 °C) up to 12.3 were collected from a sub-seafloor borehole observatory (Ocean Drilling Program (ODP) Hole 1200C) on South Chamorro Seamount, a serpentinite mud volcano in the Mariana forearc. We used systematic differences in the chemical compositions of pore waters from drilling operations during ODP Leg 195 and borehole fluids collected subsequently from Hole 1200C to define two endmember solutions, one of which was a sulfate-rich fluid with a methane concentration of 50 mM that ascends from the subduction channel and the other was a low-sulfate fluid. The sequence of sample collection and fluid compositions constrain subsurface hydrologic conditions. Deep-sourced, sulfate- and methane-rich, sterile fluids from the subduction channel can reach the seafloor unchanged within the central conduit, whereas other fluid pathways likely intersect the pelagic sediment that underlies the serpentinite mud volcano, providing potentially suitable conditions and inoculum for microbial anaerobic oxidation of methane (AOM). These AOM-affected, low-sulfate fluids also make it to the seafloor where they discharge. The source of the sulfate- and methane-rich fluid in the subduction channel is attributed to abiotic methane production fueled by hydrogen production from serpentinization and carbonate dissolution. This methane production includes a mechanism to raise the pH above values from serpentinization alone. Results from South Chamorro Seamount represent an end member along a transect defined by the distance from the trench. Results from this site are applied to other serpentinite mud volcanoes along this transect to speculate on likely chemical conditions within shallower and cooler portions of the subduction channel.
    Description: The authors thank the entire shipboard parties of cruises NT09-01 and NT09-07 on the R/V Nastushima and the crews and pilots of the ROV HyperDolphin. We also thank Tom Pettigrew for removing the dummy plug and designing the insert for the borehole. This research was supported by the National Science Foundation (OCE-0727120 and 1439564 (CGW) and OCE--0725204 (JS)) and the Japan Agency for Marine-Earth Science and Technology. This is C-DEBI contribution 497.
    Keywords: Serpentinization ; Mud volcano ; Subduction ; Mariana forearc ; Dissolved gases ; Anaerobic methane oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Staudinger, M. D., Goyert, H., Suca, J. J., Coleman, K., Welch, L., Llopiz, J. K., Wiley, D., Altman, I., Applegate, A., Auster, P., Baumann, H., Beaty, J., Boelke, D., Kaufman, L., Loring, P., Moxley, J., Paton, S., Powers, K., Richardson, D., Robbins, J., Runge, J., Smith, B., Spiegel, C., & Steinmetz, H. The role of sand lances (Ammodytes sp.) in the Northwest Atlantic ecosystem: a synthesis of current knowledge with implications for conservation and management. Fish and Fisheries, 00, (2020): 1-34, doi:10.1111/faf.12445.
    Description: The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.
    Description: This manuscript is the result of follow‐up work stemming from a working group formed at a two‐day multidisciplinary and international workshop held at the Parker River National Wildlife Refuge, Massachusetts in May 2017, which convened 55 experts scientists, natural resource managers and conservation practitioners from 15 state, federal, academic and non‐governmental organizations with interest and expertise in Ammodytes ecology. Support for this effort was provided by USFWS, NOAA Stellwagen Bank National Marine Sanctuary, U.S. Department of the Interior, U.S. Geological Survey, Northeast Climate Adaptation Science Center (Award # G16AC00237), an NSF Graduate Research Fellowship to J.J.S., a CINAR Fellow Award to J.K.L. under Cooperative Agreement NA14OAR4320158, NSF award OCE‐1325451 to J.K.L., NSF award OCE‐1459087 to J.A.R, a Regional Sea Grant award to H.B. (RNE16‐CTHCE‐l), a National Marine Sanctuary Foundation award to P.J.A. (18‐08‐B‐196) and grants from the Mudge Foundation. The contents of this paper are the responsibility of the authors and do not necessarily represent the views of the National Oceanographic and Atmospheric Administration, U.S. Fish and Wildlife Service, New England Fishery Management Council and Mid‐Atlantic Fishery Management Council. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
    Keywords: Ammodytes ; ecosystem‐based management ; forage fish ; life history ; sand lance ; trophic ecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Horowitz, E. J., Cochran, J. K., Bacon, M. P., & Hirschberg, D. J. 210Po and 210Pb distributions during a phytoplankton bloom in the North Atlantic: implications for POC export. Deep-Sea Research Part I: Oceanographic Research Papers, 164, (2020): 103339, doi:10.1016/j.dsr.2020.103339.
    Description: During the North Atlantic Bloom Experiment (NABE) of the Joint Global Ocean Flux Study (JGOFS), water column sampling for particulate and dissolved 210Po and 210Pb was performed four times (26 April and 4, 20, 30 May 1989) during a month-long Lagrangian time-series occupation of the NABE site, as well as one-time samplings at stations during transit to and from the site. There are few prior studies documenting short-term changes in 210Po and 210Pb profiles over the course of a phytoplankton bloom, and we interpret the profiles in terms of the classical “steady-state” (SS) approach used in most studies, as well as by using a non-steady state approach suggested by the temporal evolution of the profiles. Changes in 210Po profiles during a bloom are expectable as this radionuclide is scavenged and exported. During NABE, 210Pb profiles also displayed non-steady state, with significant increases in upper water column inventory occurring midway through the experiment. Export of 210Po from the upper 150 m using the classic “steady-state” model shows increases from 0.5 ± 8.5 dpm m−2 d−1 to 68.2 ± 4.2 dpm m−2 d−1 over the ~one-month occupation. Application of a non-steady state model, including changes in both 210Pb and 210Po profiles, gives higher 210Po export fluxes. Detailed depth profiles of particulate organic carbon (〉0.8 μm) and particulate 210Po (〉0.4 μm) are available from the 20 and 30 May samplings and show maxima in POC/Po at ~37 m. Applying the POC/210Po ratios at 150 m to the “steady state” 210Po fluxes yields POC export from the upper 150 m of 8.2 ± 1.5 mmol C m− 2 d−1 on 20 May and 6.0 ± 1.6 mmol C m−2 d−1 on 30 May. The non-steady state model applied to the interval 20 to 30 May yields POC export of 24.3 mmol C m−2 d−1. The non-steady state (NSS) 210Po-derived POC fluxes are comparable to, but somewhat less than, those estimated previously from 234Th/238U disequilibrium for the same time interval (37.3 and 45.0 mmol m−2 d−1, depending on the POC/Th ratio used). In comparison, POC fluxes measured with a floating sediment trap deployed at 150 m from 20 to 30 May were 11.6 mmol m−2 d−1. These results suggest that non-steady state Po-derived POC fluxes during the NABE agree well with those derived from 234Th/238U disequilibrium and agree with sediment trap fluxes within a factor of ~2. However, unlike the 234Th-POC flux proxy, non-steady stage changes in profiles of 210Pb, the precursor of 210Po, must be considered.
    Description: We are grateful to T. Hammar and A. Fleer (WHOI) for assistance at sea and in the laboratory. This work was supported originally by National Science Foundation (United States) grant OCE-8819544 to JKC and more recently by OCE-1736591. We thank Stephen Thurston (American Museum of Natural History) for graphics assistance Robert Aller, Steven Beaupre, and two anonymous reviewers for helpful comments.
    Keywords: Polonium-210 ; Lead-210 ; 210Po ; 210Pb ; North Atlantic ; Spring bloom ; POC flux
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, P., Pickart, R. S., Fissel, D., Ross, E., Kasper, J., Bahr, F., Torres, D. J., O'Brien, J., Borg, K., Melling, H., & Wiese, F. K. Circulation in the vicinity of Mackenzie Canyon from a year-long mooring array. Progress in Oceanography, 187, (2020): 102396, doi:10.1016/j.pocean.2020.102396.
    Description: Data from a five-mooring array extending from the inner shelf to the continental slope in the vicinity of Mackenzie Canyon, Beaufort Sea are analyzed to elucidate the components of the boundary current system and their variability. The array, part of the Marine Arctic Ecosystem Study (MARES), was deployed from October 2016 to September 2017. Four distinct currents were identified: an eastward-directed flow adjacent to the coast; a westward-flowing, surface-intensified current centered on the outer-shelf; a bottom-intensified shelfbreak jet flowing to the east; and a recirculation at the base of the continental slope within the canyon. The shelf current transports −0.120.03 Sv in the mean and is primarily wind-driven. The response is modulated by the presence of ice, with little-to-no signal during periods of nearly-immobile ice cover and maximum response when there is partial ice cover. The shelfbreak jet transports 0.030.02 Sv in the mean, compared to 0.080.02 Sv measured upstream in the Alaskan Beaufort Sea over the same time period. The loss of transport is consistent with a previous energetics analysis and the lack of Pacific-origin summer water downstream. The recirculation in the canyon appears to be the result of local dynamics whereby a portion of the westward-flowing southern limb of the Beaufort Gyre is diverted up the canyon across isobaths. This interpretation is supported by the fact that the low-frequency variability of the recirculation is correlated with the wind-stress curl in the Canada Basin, which drives the Beaufort gyre.
    Description: The authors are indebted to Fisheries and Oceans Canada for building the logistics for MARES into the at-sea missions of the Integrated Beaufort Observatory. We are grateful to the captain and crew of the CCGS Sir Wilfred Laurier for ably deploying and recovering the MARES array. Marshall Swartz assisted with the cruise preparation logistics. We thank the two anonymous reviewers for their input which helped improve the paper. This project was funded by the US Bureau of Ocean Energy Management (BOEM), on behalf of the National Ocean Partnership Program. The Canadian contribution was supported by the Environmental Studies Research Fund (ESRF Project 2014-02N). MARES publication 003.
    Keywords: Canadian Beaufort Sea ; Mackenzie Canyon ; Boundary currents ; Canyon circulation ; Ice-ocean interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ritschard, E. A., Whitelaw, B., Albertin, C. B., Cooke, I. R., Strugnell, J. M., & Simakov, O. Coupled genomic evolutionary histories as signatures of organismal innovations in cephalopods: co-evolutionary signatures across levels of genome organization may shed light on functional linkage and origin of cephalopod novelties. BioEssays, 41, (2019): 1900073, doi: 10.1002/bies.201900073.
    Description: How genomic innovation translates into organismal organization remains largely unanswered. Possessing the largest invertebrate nervous system, in conjunction with many species‐specific organs, coleoid cephalopods (octopuses, squids, cuttlefishes) provide exciting model systems to investigate how organismal novelties evolve. However, dissecting these processes requires novel approaches that enable deeper interrogation of genome evolution. Here, the existence of specific sets of genomic co‐evolutionary signatures between expanded gene families, genome reorganization, and novel genes is posited. It is reasoned that their co‐evolution has contributed to the complex organization of cephalopod nervous systems and the emergence of ecologically unique organs. In the course of reviewing this field, how the first cephalopod genomic studies have begun to shed light on the molecular underpinnings of morphological novelty is illustrated and their impact on directing future research is described. It is argued that the application and evolutionary profiling of evolutionary signatures from these studies will help identify and dissect the organismal principles of cephalopod innovations. By providing specific examples, the implications of this approach both within and beyond cephalopod biology are discussed.
    Description: E.A.R. and O.S. are supported by the Austrian Science Fund (Grant No. P30686‐B29). E.A.R. is supported by Stazione Zoologica Anton Dohrn (Naples, Italy) PhD Program. The authors wish to thank Graziano Fiorito (SZN, Italy), Hannah Schmidbaur (University of Vienna, Austria), Thomas Hummel (University of Vienna, Austria) for many insightful comments and reading of the draft manuscript. The authors would like to apologize to all colleagues whose work has been omitted due to space constraints.
    Keywords: Cephalopod ; Gene duplication ; Genome rearrangement ; Novel gene ; Organismal innovation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Arenas Gómez, Claudia M., Sabin, K. Z., & Echeverri, K. Wound healing across the animal kingdom: Crosstalk between the immune system and the extracellular matrix. Developmental Dynamics, (2020): 1-13, doi:10.1002/dvdy.178.
    Description: Tissue regeneration is widespread in the animal kingdom. To date, key roles for different molecular and cellular programs in regeneration have been described, but the ultimate blueprint for this talent remains elusive. In animals capable of tissue regeneration, one of the most crucial stages is wound healing, whose main goal is to close the wound and prevent infection. In this stage, it is necessary to avoid scar formation to facilitate the activation of the immune system and remodeling of the extracellular matrix, key factors in promoting tissue regeneration. In this review, we will discuss the current state of knowledge regarding the role of the immune system and the interplay with the extracellular matrix to trigger a regenerative response.
    Description: The research in the Echeverri lab is supported NIH NCID R01 to Karen Echeverri and start‐up funds from the MBL. Keith Z. Sabin has been supported by an NIH T32 GM113846 grant.
    Keywords: Extracellular matrix ; Immune system ; Regeneration ; Wound healing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hirst, W. G., Biswas, A., Mahalingan, K. K., & Reber, S. Differences in intrinsic tubulin dynamic properties contribute to spindle length control in Xenopus species. Current Biology, 30(11), (2020): 2184-2190.e5, doi: 10.1016/j.cub.2020.03.067.
    Description: The function of cellular organelles relates not only to their molecular composition but also to their size. However, how the size of dynamic mesoscale structures is established and maintained remains poorly understood [1, 2, 3]. Mitotic spindle length, for example, varies several-fold among cell types and among different organisms [4]. Although most studies on spindle size control focus on changes in proteins that regulate microtubule dynamics [5, 6, 7, 8], the contribution of the spindle’s main building block, the αβ-tubulin heterodimer, has yet to be studied. Apart from microtubule-associated proteins and motors, two factors have been shown to contribute to the heterogeneity of microtubule dynamics: tubulin isoform composition [9, 10] and post-translational modifications [11]. In the past, studying the contribution of tubulin and microtubules to spindle assembly has been limited by the fact that physiologically relevant tubulins were not available. Here, we show that tubulins purified from two closely related frogs, Xenopus laevis and Xenopus tropicalis, have surprisingly different microtubule dynamics in vitro. X. laevis microtubules combine very fast growth and infrequent catastrophes. In contrast, X. tropicalis microtubules grow slower and catastrophe more frequently. We show that spindle length and microtubule mass can be controlled by titrating the ratios of the tubulins from the two frog species. Furthermore, we combine our in vitro reconstitution assay and egg extract experiments with computational modeling to show that differences in intrinsic properties of different tubulins contribute to the control of microtubule mass and therefore set steady-state spindle length.
    Description: This article was prompted by our stay at the Marine Biological Laboratory (MBL), Woods Hole, MA in the summer of 2016 funded by the Princeton-Humboldt Strategic Partnership Grant together with the lab of Sabine Petry (Princeton University). We thank Jeff Woodruff (UT Southwestern), David Drechsel (IMP), and Marcus J. Taylor (MPI IB) for constructive criticism and comments on the manuscript and Helena Jambor for constructive comments on figure design. We thank the AMBIO imaging facility (Charité, Berlin) and Nikon at MBL for imaging support, Aliona Bogdanova and Barbara Borgonovo (MPI CBG) for their help with protein purification, and Francois Nedelec (University of Cambridge) for help with Cytosim. We are grateful to the Görlich lab (MPI BPC), in particular Bastian Hülsmann and Jens Krull, and the NXR for supply with X. tropicalis frogs. We thank Antonina Roll-Mecak (National Institute of Neurological Disorders and Stroke) for help with mass spectrometry analysis and discussions and Duck-Yeon Lee in the Biochemistry Core (National Heart, Lung and Blood Institute) for access to mass spectrometers. For mass spectrometry, we would like to acknowledge the assistance of Benno Kuropka and Chris Weise from the Core Facility BioSupraMol supported by the Deutsche Forschungsgemeinschaft (DFG). We thank all former and current members of the Reber lab for discussion and helpful advice, in particular, Christoph Hentschel and Soma Zsoter for technical assistance and Sebastian Reusch for help with tubulin purification. S.R. acknowledges funding from the IRI Life Sciences (Humboldt-Universität zu Berlin, Excellence Initiative/DFG). W.G.H. was supported by the Alliance Berlin Canberra co-funded by a grant from the Deutsche Forschungsgemeinschaft (DFG) for the International Research Training Group (IRTG) 2290 and the Australian National University. K.K.M. was supported by funds in the Roll-Mecak lab, intramural program of the National Institute of Neurological Disorders and Stroke.
    Keywords: Spindle scaling ; Tubulin ; Microtubule dynamics ; Xenopus ; Spindle length
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Munoz, S. E., Porter, T. J., Bakkelund, A., Nusbaumer, J., Dee, S. G., Hamilton, B., Giosan, L., & Tierney, J. E. Lipid biomarker record documents hydroclimatic variability of the Mississippi River Basin during the common era. Geophysical Research Letters, 47(12), (2020): e2020GL087237, doi:10.1029/2020GL087237.
    Description: Floods and droughts in the Mississippi River basin are perennial hazards that cause severe economic disruption. Here we develop and analyze a new lipid biomarker record from Horseshoe Lake (Illinois, USA) to evaluate the climatic conditions associated with hydroclimatic extremes that occurred in this region over the last 1,800 years. We present geochemical proxy evidence of temperature and moisture variability using branched glycerol dialkyl glycerol tetraethers (brGDGTs) and plant leaf wax hydrogen isotopic composition (δ2Hwax) and use isotope‐enabled coupled model simulations to diagnose the controls on these proxies. Our data show pronounced warming during the Medieval era (CE 1000–1,600) that corresponds to midcontinental megadroughts. Severe floods on the upper Mississippi River basin also occurred during the Medieval era and correspond to periods of enhanced warm‐season moisture. Our findings imply that projected increases in temperature and warm‐season precipitation could enhance both drought and flood hazards in this economically vital region.
    Description: This project was supported by grants to S. E. M and L. G. (NSF EAR‐1804107), T. J. P. (NSERC Discovery Grant), and S. G. D. (NOAA‐NA18OAR4310427).
    Keywords: Lipid biomarker ; Leaf wax ; BrGDGT ; Common Era ; Paleoclimate ; Hydroclimate
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marty, B., Almayrac, M., Barry, P. H., Bekaert, D., V., Broadley, M. W., Byrne, D. J., Ballentine, C. J., & Caracausi, A. An evaluation of the C/N ratio of the mantle from natural CO2-rich gas analysis: Geochemical and cosmochemical implications. Earth and Planetary Science Letters, 551, (2020): 116574, doi:10.1016/j.epsl.2020.116574.
    Description: The terrestrial carbon to nitrogen ratio is a key geochemical parameter that can provide information on the nature of Earth's precursors, accretion/differentiation processes of our planet, as well as on the volatile budget of Earth. In principle, this ratio can be determined from the analysis of volatile elements trapped in mantle-derived rocks like mid-ocean ridge basalts (MORB), corrected for fractional degassing during eruption. However, this correction is critical and previous attempts have adopted different approaches which led to contrasting C/N estimates for the bulk silicate Earth (BSE) (Marty and Zimmermann, 1999; Bergin et al., 2015). Here we consider the analysis of CO2-rich gases worldwide for which a mantle origin has been determined using noble gas isotopes in order to evaluate the C/N ratio of the mantle source regions. These gases experienced little fractionation due to degassing, as indicated by radiogenic 4He / 40Ar* values (where 4He and 40Ar* are produced by the decay of U+Th, and 40K isotopes, respectively) close to the mantle production/accumulation values. The C/N and C/3 He ratios of gases investigated here are within the range of values previously observed in oceanic basalts. They point to an elevated mantle C/N ratio (∼350-470, molar) higher than those of potential cosmochemical accretionary endmembers. For example, the BSE C/N and 36 Ar / N ratios (160-220 and 75 x 10-7, respectively) are higher than those of CM-CI chondrites but within the range of CV-CO groups. This similarity suggests that the Earth accreted from evolved planetary precursors depleted in volatile and moderately volatile elements. Hence the high C / N composition of the BSE may be an inherited feature rather than the result of terrestrial differentiation. The C / N and 36 Ar / N ratios of the surface (atmosphere plus crust) and of the mantle cannot be easily linked to any known chondritic composition. However, these compositions are consistent with early sequestration of carbon into the mantle (but not N and noble gases), permitting the establishment of clement temperatures at the surface of our planet.
    Description: M.A, D.V.B, M.W.B, D.J.B and B.M were supported by the European Research Council (PHOTONIS project, grant agreement No. 695618 to B.M.). Samples were collected as part of Study # YELL-08056 - Xenon anomalies in the Yellowstone Hotspot. We would like to thank Annie Carlson and all of the rangers at the Yellowstone National Park for providing invaluable advice and help when collecting the samples. This work was partially supported by a grant (G-2016-7206) from the Alfred P. Sloan Foundation and the Deep Carbon Observatory to P.H.B as well as NSF award 2015789 to P.H.B.. Sampling at Mt. Etna and gas analysis was supported by Instituto Nazionale di Geofisica e Vulcanologia Palermo. Fruitful discussions with Marc Hirschmann helped us to shape the ideas presented in this work. We acknowledge detailed and insightful reviews by Sami Mikhail and an anonymous reviewer, and efficient editing by Frederic Moynier. This is CRPG contribution 2741.
    Keywords: Carbon ; Nitrogen ; Earth ; Mantle ; Gases
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bowen, J. C., Ward, C. P., Kling, G. W., & Cory, R. M. Arctic amplification of global warming strengthened by sunlight oxidation of permafrost carbon to CO2. Geophysical Research Letters, 47(12), (2020): e2020GL087085, doi:10.1029/2020GL087085.
    Description: Once thawed, up to 15% of the ∼1,000 Pg of organic carbon (C) in arctic permafrost soils may be oxidized to carbon dioxide (CO2) by 2,100, amplifying climate change. However, predictions of this amplification strength ignore the oxidation of permafrost C to CO2 in surface waters (photomineralization). We characterized the wavelength dependence of permafrost dissolved organic carbon (DOC) photomineralization and demonstrate that iron catalyzes photomineralization of old DOC (4,000–6,300 a BP) derived from soil lignin and tannin. Rates of CO2 production from photomineralization of permafrost DOC are twofold higher than for modern DOC. Given that model predictions of future net loss of ecosystem C from thawing permafrost do not include the loss of CO2 to the atmosphere from DOC photomineralization, current predictions of an average of 208 Pg C loss by 2,299 may be too low by ~14%.
    Description: This research was supported by National Science Foundation (NSF) CAREER 1351745 (R.M.C.), DEB 1637459 and 1754835 (G.W.K.), the Camille and Henry Dreyfus Postdoctoral Program in Environmental Chemistry (R.M.C. and C.P.W.), the Frank and Lisina Hock Endowed Fund (C.P.W.), and the NOSAMS Graduate Student Internship Program (J.C.B.).
    Keywords: Photochemistry ; Permafrost ; Arctic ; Carbon cycling ; Dissolved organic carbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-10-20
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Martins, M. C. I., Miller, C., Hamilton, P., Robbins, J., Zitterbart, D. P., & Moore, M. Respiration cycle duration and seawater flux through open blowholes of humpback (Megaptera novaeangliae) and North Atlantic right (Eubalaena glacialis) whales. Marine Mammal Science, (2020): 1-20, doi:10.1111/mms.12703.
    Description: Little is known about the dynamics of baleen whale respiratory cycles, especially the mechanics and activity of the blowholes and their interaction with seawater. In this study, the duration of complete respiration cycles (expiration/inhalation events) were quantified for the first time in two species: North Atlantic right whale (NARW) and humpback whale (HW) using high resolution, detailed imagery from an unoccupied aerial system (UAS). The mean duration of complete respiration cycles (expiration/inhalation event) in the NARW and HW were 3.07 s (SD = 0.503, n = 15) and 2.85 s (SD = 0.581, n = 21), respectively. Furthermore, we saw no significant differences in respiration cycle duration between age and sex classes in the NARW, but significant differences were observed between age classes in the HW. The observation of seawater covering an open blowhole was also quantified, with NARW having 20% of all breaths with seawater presence versus 90% in HW. Seawater incursion has not been described previously and challenges the general consensus that water does not enter the respiratory tract in baleen whales. Prevalent seawater has implications for the analysis and interpretation of exhaled respiratory vapor/mucosa samples, as well as for the potential inhalation of oil in spills.
    Description: Samples were collected under NMFS NOAA Permits 17355, 17355‐01, and 21371, and with approval from the Woods Hole Oceanographic Institution Institutional Animal Care and Use Committee. Funding by Ocean Life Institute of the Woods Hole Oceanographic Institution, NOAA NA14OAR4320158 and University College London Master of Research in Biodiversity, Evolution and Conservation program.
    Keywords: Humpback whale ; North Atlantic right whale ; Respiratory cycle ; Respiratory health ; Unoccupied aerial systems
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Huynh, A., Maktabi, B., Reddy, C. M., O'Neil, G. W., Chandler, M., & Baki, G. Evaluation of alkenones, a renewably sourced, plant-derived wax as a structuring agent for lipsticks. International Journal of Cosmetic Science, (2020), doi:10.1111/ics.12597.
    Description: OBJECTIVE Waxes are used as structuring agents in lipsticks. There are a variety of waxes combined in a single lipstick to provide good stability, pleasant texture and good pay‐off. Due to a significant growth for natural, green and sustainable products, there is a constant search for alternatives to animal‐derived and petroleum‐derived ingredients. In this study, a green, non‐animalderived wax, namely long‐chain ketones (referred to as alkenones), sourced from marine microalgae was formulated into lipsticks and evaluated as a structuring agent. METHODS Alkenones were used as a substitute for microcrystalline wax, ozokerite and candelilla wax, typical structuring agents. In total, 384 lipsticks were formulated: L1 (control, no alkenones), L2 (alkenones as a substitute for ozokerite), L3 (alkenones as a substitute for microcrystalline wax) and L4 (alkenones as a substitute for candelilla wax). Products were tested for hardness (bending force), stiffness, firmness (needle penetration), pay‐off (using a texture analyser and a consumer panel), friction, melting point and stability for 12 weeks at 25 and 45°C. RESULTS Alkenones influenced each characteristic evaluated. In general, lipsticks with alkenones (L2‐L4) became softer and easier to bend compared to the control (L1). In terms of firmness, lipsticks were similar to the control, except for L4, which was significantly (P 〈 0.05) firmer. The effect on pay‐off was not consistent. L2 and L3 had higher pay‐off to skin and fabric than L1. In addition, L4 had the lowest amount transferred, but it still had the highest colour intensity on skin. Alkenones influenced friction (glide) positively; the average friction decreased for L2‐L4. The lowest friction (i.e. best glide) was shown in L4. Melting point of the lipsticks was lower when alkenones were present. Overall, L4, containing 7% of 4 alkenones in combination with microcrystalline wax, ozokerite and carnauba wax, was found to have the most desirable attributes, including ease of bending, high level of firmness, low pay‐off in terms of amount, high colour intensity on skin and low friction (i.e. better glide). Consumers preferred L4 the most overall. CONCLUSION Results of this study indicate that alkenones offer a sustainable, non‐animal and non‐petroleum‐derived choice as a structuring agent for lipsticks.
    Description: The authors would like to thank Texture Technologies for the technical assistance provided during this project. This research was funded by the Washington Research Foundation and a private donor from friends of the Woods Hole Oceanographic Institution, grant number N‐127244.
    Keywords: Colour cosmetics ; Formulation/stability ; Statistics ; Alkenones ; Lipstick
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-08-15
    Description: The attenuation coefficient b is one of the most common ways to describe how strong the carbon flux is attenuated throughout the water column. Therefore, b is an essential input variable in many carbon flux and climate models. Marsay et al. (2015, https://doi.org/10.1073/pnas.1415311112) proposed that the median surface water temperature (0–500 m) may be a predictor of b, but our observations from Arctic waters challenge this hypothesis. We found a highly variable attenuation coefficient (b = 0.43–1.84) in cold Arctic waters (〈4.1 °C). Accordingly, we suggest that water temperature is not a globally valid predictor of the attenuation coefficient. We advocate instead that the phytoplankton composition and especially the relative abundance of diatoms can be used to parametrize the carbon flux attenuation in local and global carbon flux models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-06-09
    Description: Joint analysis of high-penetration multi-channel and high-resolution single-channel seismic reflection profiles, calibrated by deep well boreholes, allowed a detailed reconstruction of the Late Miocene to Recent tectonic history of the Capo Granitola and Sciacca fault systems offshore southwestern Sicily. These two fault arrays are part of a regional system of transcurrent faults that dissect the foreland block in front of the Neogene Sicilian fold and thrust belt. The Capo Granitola and Sciacca faults are thought to reactivate inherited Mesozoic to Miocene normal faults developed on the northern continental margin of Africa. During Latest Miocene-Pliocene, the two ~NNE-SSW striking faults were active in left transpression, which inverted Late Miocene extensional half-grabens and created push-up ridges along both systems. Tectonic activity decreased during the Pleistocene, but transpressional folds deform Middle-Late Pleistocene sediments as well, suggesting that the two fault systems are active. The ~40 km long longitudinal amplitude profile of 1st order folds (Capo Granitola and Sciacca anticlines) shows ~15–20 km bell-shaped undulations that represents 2nd order folds. The length of these undulations together with the map pattern of faults allowed to divide the CGFS and SFS into two segments, northern and southern, respectively. Total uplift of the Sciacca Anticline is twice than the uplift of the Capo Granitola Anticline. Incremental fold growth rates decreased during time from 0.22 mm/yr (Capo Granitola Anticline) and 0.44 mm/yr (Sciacca Anticline) in the Pliocene, to 0.07 and 0.22 mm/yr, respectively, during the last ~1.8 Ma.
    Description: Published
    Description: 187-204
    Description: 2T. Deformazione crostale attiva
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Keywords: Multiscale analysis ; Basin inversion ; Strike-slip faults ; Fold growth rates ; Pelagian foreland ; SW Sicily offshore ; 04.07. Tectonophysics ; 04.04. Geology ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-06-14
    Description: Observations from satellites provide high-resolution images of ground deformation allowing to infer deformation sources by developing advanced modeling of magma ascent and intrusion processes. Nevertheless, such models can be strongly biased without a precise model of the internal structure of the volcano. In this study, we jointly exploited two interferometric techniques to interpret the 2011–2013 unrest at Campi Flegrei caldera (CFc). The first is the Interferometric Synthetic Aperture Radar (InSAR) technique, which provides highly-resolved spatial and temporal images of ground deformation. The second is the Ambient Noise Tomography (ANT), which images subsurface structures, providing the constraints necessary to infer the depth of the shallow source at CFc (between 0.8 and 1.2 km). We applied for the first time a tool to delineate the deformation source boundaries from the observed deformation maps: the Total Horizontal Derivative (THD) technique. The THD processes the vertical component of the ground deformation field detected through InSAR applied to COSMO-SkyMed data. The patterns retrieved by applying the THD technique show consistent spatial correlations with (1) the seismic group-velocity maps achieved through the ANT and (2) the distribution of the earthquakes nucleated during the unrest at ~1 km. High-velocity anomalies, the retrieved geometrical features of the deformation field, and the spatial distribution of seismicity coincide with extinct volcanic vents in the eastern part of the caldera (Solfatara/ Pisciarelli and Astroni). Such a coincidence hints at a significant role of the extinct plumbing system in either constraining or channeling the eastward propagation of magmatic fluids. Here, we demonstrated that a joint analysis of the InSAR patterns, seismic structures, and seismicity allows us to model in space and time the characteristics and nature of the shallow deformation source at CFc. Using published literature, we show that the effects of structural heterogeneities at shallow depths may have a more significant early-stage impact on the evolution of the surface displacement signals than deeper magmatic sources: these secondary structural effects may produce local amplification in the deformation records which can be mistakenly interpreted as early signals of impending eruptions. The achieved results are particularly relevant for the understanding of the origin of deformation signal at volcanoes where magma propagation within sills is expected, as at CFc.
    Description: Published
    Description: 111440
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: InSAR ; Ambient noise tomography ; Total horizontal derivative ; Campi Flegrei caldera ; Natural seismicity
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-05-24
    Description: The relation between macroseismic intensity and ground shaking makes it possible to transform instrumental Ground Motion Parameters (GMPs) in macroseismic intensity and vice versa, and is therefore useful for making comparisons between estimates of seismic hazard determined in terms of GMPs and macroseismic intensity, and for other engineering and seismological applications. Empirical relationships between macroseismic intensity and different recorded GMPs for the Italian territory are presented in this paper. The coefficients are calibrated using a dataset of horizontal geometrical mean GMPs, i.e. peak ground acceleration (PGA), peak ground velocity (PGV), spectral acceleration (SA) at 0.2, 0.3, 1.0 and 2.0 s from the ITalian ACcelerometric Archive (ITACA; Luzi et al. 2019), and macroseismic intensity at Mercalli-Cancani-Sieberg (MCS) scale from the database DBMI15 (Locati et al. 2019). A dataset was obtained that corresponds to 240 pairs of macroseismic intensity-GMPs from 67 Italian earthquakes in the time window 1972-2016 with moment magnitude ranging from 4.2 to 6.8 and macroseismic intensity in the range [2, 10-11]. The final dataset is developed correlating strong motion stations and macroseismic intensity observations generally within 2 km from each other, but the associations is manually validated through the expert opinion. The adopted functional form is non-linear predicting macroseismic intensity as a function of LogGMPs and vice versa by performing separate regressions. The set of empirical conversion relationships GMP-I MCS -GMP and the associated standard deviations are compared with previous models. The results of an illustrative PSHA, obtained using a new seismogenic zonation (Santulin et al. 2017), proposed as one of the inputs of the new Italian seismic hazard model (Meletti et al. 2017), are used to analyse and compare seismic hazard assessment in terms of PGA and the related seismic hazard map in terms of macroseismic intensity (MCS) obtained using the empirical relationships here proposed for the PGA.
    Description: Published
    Description: 5143–5164
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: macroseismic ; intensity ; groundmotionparameters ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-06-10
    Description: Active lava lakes represent a variety of open-vent volcanism in which a sizable body of lava accumulates at the top of the magma column, constrained by the vent and/or crater geometry. The longevity of lava lakes reflects a balancing of cooling and outgassing occurring at the surface and input of hot and gas-rich magma from below. Due to their longevity and relative accessibility, lava lakes provide a natural laboratory for studying fundamental volcanic processes such as degassing, convection and cooling. This article examines all seven lakes that existed at the time of writing in 2018, located in the Pacific, Antarctica, Africa, and South and Central America. These lakes span all tectonic environments, and a range of magma compositions. We focus on analysis of the lake surface motion using image velocimetry, which reveals both similarities and contrasts in outgassing and lake dynamics when comparing the different lakes. We identify two categories of lake behavior: Organized (Erta’Ale, Nyiragongo, Kīlauea after 2011, and Erebus) and Chaotic (Villarrica, Masaya, Marum). This division does not map directly to lake size, viscosity, gas emission rate, or temperature. Instead, when examined together, we find that the lakes follow a linear relationship between average surface speed and the ratio of total gas flux to lake surface area. This relationship points to the combined importance of both flux and lake size in addition to the total volume of gas emission, and suggests that a shared deep mechanism controls the supply of heat and gas to all lakes. On the other hand, the differences between Chaotic and Organized lakes highlight the important role of the geometry of the conduit-lake transition, which superimposes a shallow signal on that of the deep circulation. The spatial patterns of surface motion we document suggest that the release of gas bubbles at Chaotic lakes is more efficient (i.e., bubbles are less likely to be retained and recycled) compared with Organized lakes. In addition, the data presented here indicate that the solidified crust of Organized lakes plays a role in regulating convection and outgassing in lava lakes.
    Description: Published
    Description: 16-31
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-06-08
    Description: This chapter is arguably the most complete compilation of sulfur volcanism of any given volcano on Earth: Poás. Sulfur volcanism at Poás is described in historical literature since 1828, and in scientific literature since the 1960’s. We first classify the various manifestations of sulfur volcanism at crater lake bearing volcanoes (subaerial and sublacustrine sulfur pools, sulfur spherules, flows, cones/hornitos, and sweat, and pyroclastic and burning sulfur), based on work by Japanese pioneers of the early 1900s. Their first observations and models have passed the test of time and still stand as theories today. Comparing the sulfur volcanism at Poás with the one at other (55) volcanoes, it is honest to say that only White Island (New Zealand) and Kawah Ijen (Indonesia) are the only ones comparable with Poás, being the most dynamic of them all.
    Description: Published
    Description: 45-78
    Description: 4V. Processi pre-eruttivi
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-06-09
    Description: A 3D crustal density model for Egypt was compiled. It is constrained by available deep seismic refraction, receiver functions analysis, borehole, and geological data. In Egypt, seismic data are sparsely and irregularly distributed. Consequently, we developed the crustal thickness model by integrating seismic and gravity data. Satellite gravity data was inverted to build an initial model, which was followed by a detailed 3D forward gravity modelling. The initial crustal thickness is determined by applying seismically constrained non-linear inversion, based on the modified Bott's method and Tikhonov regularization assuming spherical Earth approximation. Moreover, the gravity inversion-based Moho depth estimates are in good agreement with results of seismic studies and are exploited for the 3D forward modelling. Crustal thicknesses range from 25 to 30 km along the rifted margins of the Red Sea, which thin toward the Mediterranean Sea. Thicknesses in southern Egypt reach values between 35 and 40 km. A maximum crustal thickness of 45 km is found in the southwestern part of Egypt. Within the Sinai Peninsula, the thickness varies from the shallow southern edge (∼ 31 km) and increases toward the North (∼ 36 km). Our model revealed a thick lower crust beneath the southern part of Egypt, which can be associated with crustal modification that occurred during the collision of East Gondwana and the Saharan Metacraton along the Keraf suture zone during the final assembly of Gondwana in the Neoproterozoic. Finally, the isostatic implications of the differences between the seismic and gravity-derived Mohos are thoroughly discussed. In conclusion, the developed 3D crustal thickness model provides high-resolution Moho depth estimates that closely resembles the major geological and tectonic features. Also, the existing correlation between the topography, Bouguer anomalies, and Moho depths indicates that the investigated area is close to its isostatic equilibrium.
    Description: Published
    Description: 52-67
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rastetter, E. B., & Kwiatkowski, B. L. An approach to modeling resource optimization for substitutable and interdependent resources. Ecological Modelling, 425, (2020): 109033, doi:10.1016/j.ecolmodel.2020.109033.
    Description: We develop a hierarchical approach to modeling organism acclimation to changing availability of and requirements for substitutable and interdependent resources. Substitutable resources are resources that fill the same metabolic or stoichiometric need of the organism. Interdependent resources are resources whose acquisition or expenditure are tightly linked (e.g., light, CO2, and water in photosynthesis and associated transpiration). We illustrate the approach by simulating the development of vegetation with four substitutable sources of N that differ only in the cost of their uptake and assimilation. As the vegetation develops, it uses the least expensive N source first then uses progressively more expensive N sources as the less expensive sources are depleted. Transition among N sources is based on the marginal yield of N per unit effort expended, including effort expended to acquire C to cover the progressively higher uptake costs. We illustrate the approach to interdependent resources by simulating the expenditure of effort to acquire light energy, CO2, and water to drive photosynthesis in vegetation acclimated to different conditions of soil water, atmospheric vapor pressure deficit, CO2 concentration, and light levels. The approach is an improvement on the resource optimization used in the earlier Multiple Element Limitation (MEL) model.
    Description: This work was supported in part by the National Science Foundation under NSF grants 1651722, 1637459, 1603560, 1556772, 1841608. Any Opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.
    Keywords: Resource optimization ; Acclimation ; Substitutable resources ; Interdependent resources ; Resource limitation ; Multiple resource limitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Trathan, P. N., Wienecke, B., Barbraud, C., Jenouvrier, S., Kooyman, G., Le Bohec, C., Ainley, D. G., Ancel, A., Zitterbart, D. P., Chown, S. L., LaRue, M., Cristofari, R., Younger, J., Clucas, G., Bost, C., Brown, J. A., Gillett, H. J., & Fretwell, P. T. The emperor penguin - vulnerable to projected rates of warming and sea ice loss. Biological Conservation, 241, (2020): 108216, doi:10.1016/j.biocon.2019.108216.
    Description: We argue the need to improve climate change forecasting for ecology, and importantly, how to relate long-term projections to conservation. As an example, we discuss the need for effective management of one species, the emperor penguin, Aptenodytes forsteri. This species is unique amongst birds in that its breeding habit is critically dependent upon seasonal fast ice. Here, we review its vulnerability to ongoing and projected climate change, given that sea ice is susceptible to changes in winds and temperatures. We consider published projections of future emperor penguin population status in response to changing environments. Furthermore, we evaluate the current IUCN Red List status for the species, and recommend that its status be changed to Vulnerable, based on different modelling projections of population decrease of ≥50% over the current century, and the specific traits of the species. We conclude that current conservation measures are inadequate to protect the species under future projected scenarios. Only a reduction in anthropogenic greenhouse gas emissions will reduce threats to the emperor penguin from altered wind regimes, rising temperatures and melting sea ice; until such time, other conservation actions are necessary, including increased spatial protection at breeding sites and foraging locations. The designation of large-scale marine spatial protection across its range would benefit the species, particularly in areas that have a high probability of becoming future climate change refugia. We also recommend that the emperor penguin is listed by the Antarctic Treaty as an Antarctic Specially Protected Species, with development of a species Action Plan.
    Description: We thank Thomas J. Bracegirdle, Tony Phillips and Kevin Hughes for helpful comments on earlier drafts of this manuscript. PNT acknowledges the support of WWF-UK under GB095701 and SJ the support of NSF OPP1744794 and 1643901.
    Keywords: Antarctic ; Climate change ; Aptenodytes forsteri ; IUCN Red List threat status ; Protection ; Conservation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sosa, O. A., Burrell, T. J., Wilson, S. T., Foreman, R. K., Karl, D. M., & Repeta, D. J. Phosphonate cycling supports methane and ethylene supersaturation in the phosphate-depleted western North Atlantic Ocean. Limnology and Oceanography, (2020), doi:10.1002/lno.11463.
    Description: In oligotrophic ocean regions, dissolved organic phosphorus (DOP) plays a prominent role as a source of phosphorus (P) to microorganisms. An important bioavailable component of DOP is phosphonates, organophosphorus compounds with a carbon‐phosphorus (C‐P) bond, which are ubiquitous in high molecular weight dissolved organic matter (HMWDOM). In addition to being a source of P, the degradation of phosphonates by the bacterial C‐P lyase enzymatic pathway causes the release of trace hydrocarbon gases relevant to climate and atmospheric chemistry. In this study, we investigated the roles of phosphate and phosphonate cycling in the production of methane (CH4) and ethylene (C2H4) in the western North Atlantic Ocean, a region that features a transition in phosphate concentrations from coastal to open ocean waters. We observed an inverse relationship between phosphate and the saturation state of CH4 and C2H4 in the water column, and between phosphate and the relative abundance of the C‐P lyase marker gene phnJ . In phosphate‐depleted waters, methylphosphonate and 2‐hydroxyethylphosphonate, the C‐P lyase substrates that yield CH4 and C2H4, respectively, were readily degraded in proportions consistent with their abundance and bioavailability in HMWDOM and with the concentrations of CH4 and C2H4 in the water column. We conclude that phosphonate degradation through the C‐P lyase pathway is an important source and a common production pathway of CH4 and C2H4 in the phosphate‐depleted surface waters of the western North Atlantic Ocean and that phosphate concentration can be an important control on the saturation state of these gases in the upper ocean.
    Description: We thank the captain and crew of the R/V Neil Armstrong and chief scientist Benjamin Van Mooy for supporting and leading research at sea. Chiara Santinelli and Eric Grabowski provided analyses of dissolved organic carbon. This research was funded by NSF Chemical Oceanography award OCE‐1634080 to D.J.R. Additional support was provided by the Gordon and Betty Moore Foundation grant 3794 to D.M.K. and grant 6000 to D.J.R., and the Simons Collaboration on Ocean Processes and Ecology (SCOPE) program grant 329108 to D.M.K., E.F.D., and D.J.R.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Jin, D., Hoagland, P., & Buesseler, K. O. The value of scientific research on the ocean's biological carbon pump. Science of the Total Environment, 749, (2020): 141357, doi:10.1016/j.scitotenv.2020.141357.
    Description: The ocean's biological carbon pump (BCP) sequesters carbon from the surface to the deep ocean and seabed, constituting one of Earth's most valuable ecosystem services. Significant uncertainty exists surrounding the amounts and rates of organic carbon sequestered in the oceans, however. With improved understanding of BCP sequestration, especially its scale, world policymakers would be positioned to make more informed decisions regarding the mitigation of carbon emissions. Here, an analytical model of the economic effects of global carbon emissions—including scientific uncertainty about BCP sequestration—was developed to estimate the value of marine scientific research concerning sequestration. The discounted net economic benefit of a putative 20-year scientific research program to narrow the range of uncertainty around the amount of carbon sequestered in the ocean is on the order of $0.5 trillion (USD), depending upon the accuracy of predictions, the convexities of climate damage and economic output functions, and the initial range of uncertainty.
    Description: This research is supported by WHOI's Ocean Twilight Zone program which is part of the Audacious Project, a collaborative endeavor, housed at TED. DJ was also funded by National Oceanic and Atmospheric Administration (NOAA) Cooperative Institutes (CINAR) award NA14OAR4320158. KB was also funded by National Aeronautics and Space Administration (NASA) as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program award 80NSSC17K0555. We thank Ankur Shah for research assistance and three anonymous reviewers for their constructive suggestions.
    Keywords: Economic value of scientific research ; Value of information ; Biological carbon pump ; Carbon sequestration ; Ecosystem service ; Ocean twilight zone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brothers, L. L., Foster, D. S., Pendleton, E. A., & Baldwin, W. E. Seismic stratigraphic framework of the continental shelf offshore Delmarva, USA: implications for Mid-Atlantic Bight evolution since the Pliocene. Marine Geology, 428, : (2020)106287, doi:10.1016/j.margeo.2020.106287.
    Description: Understanding how past coastal systems have evolved is critical to predicting future coastal change. Using over 12,000 trackline kilometers of recently collected, co-located multi-channel boomer, sparker and chirp seismic reflection profile data integrated with previously collected borehole and vibracore data, we define the upper (〈 115 m below mean lower low water) seismic stratigraphic framework offshore of the Delmarva Peninsula, USA. Twelve seismic units and 11 regionally extensive unconformities (U1-U11) were mapped over 5900 km2 of North America's Mid-Atlantic continental shelf. We interpret U3, U7, U9, U11 as transgressive ravinement surfaces, while U1,2,4,5,6,8,10 are subaerial unconformities illustrating distinct periods of lower sea-level. Based on areal distribution, stratigraphic relationships and dating results (Carbon 14 and amino acid racemization estimates) from earlier vibracore and borehole studies, we interpret the infilled channels as late Neogene and Quaternary courses of the Susquehanna, Potomac, Rappahannock, York, James rivers and tributaries, and a broad flood plain. These findings indicate that the region's geologic framework is more complex than previously thought and that Pleistocene paleochannels are abundant in the Mid-Atlantic. This study synthesizes and correlates the findings of other Atlantic Margin studies and establishes a large-scale Quaternary framework that enables more detailed stratigraphic analysis in the future. Such work has implications for inner continental shelf systems tract evolution, the relationship between antecedent geology and modern coastal systems, assessments of eustacy, glacial isostatic adjustment, and other processes and forcings that play a role in passive margin evolution.
    Description: This work was supported by the U.S. Department of the Interior's Response to Hurricane Sandy.
    Keywords: N Atlantic ; Shelf (morphology and stratigraphy) ; Quaternary stratigraphy ; Paleochannels ; Geophysics (seismic)
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lin, H. T., Hsieh, C. C., Repeta, D. J., & Rappé, M. S. Sampling of basement fluids via circulation obviation retrofit kits (CORKs) for dissolved gases, fluid fixation at the seafloor, and the characterization of organic carbon. Methodsx, 7, (2020): 101033, doi:10.1016/j.mex.2020.101033.
    Description: The advanced instrumented GeoMICROBE sleds (Cowen et al., 2012) facilitate the collection of hydrothermal fluids and suspended particles in the subseafloor (basaltic) basement through Circulation Obviation Retrofit Kits (CORKs) installed within boreholes of the Integrated Ocean Drilling Program. The main components of the GeoMICROBE can be converted into a mobile pumping system (MPS) that is installed on the front basket of a submersible or remotely-operated-vehicle (ROV). Here, we provide details of a hydrothermal fluid-trap used on the MPS, through which a gastight sampler can withdraw fluids. We also applied the MPS to demonstrate the value of fixing samples at the seafloor in order to determine redox-sensitive dissolved iron concentrations and speciation measurements. To make the best use of the GeoMICROBE sleds, we describe a miniature and mobile version of the GeoMICROBE sled, which permits rapid turn-over and is relatively easy for preparation and operation. Similar to GeoMICROBE sleds, the Mobile GeoMICROBE (MGM) is capable of collecting fluid samples, filtration of suspended particles, and extraction of organics. We validate this approach by demonstrating the seafloor extraction of hydrophobic organics from a large volume (247L) of hydrothermal fluids. • We describe the design of a hydrothermal fluid-trap for use with a gastight sampler, as well as the use of seafloor fixation, through ROV- or submersible assisted mobile pumping systems. • We describe the design of a Mobile GeoMICROBE (MGM) that enhances large volume hydrothermal fluid sampling, suspended particle filtration, and organic matter extraction on the seafloor. • We provide an example of organic matter extracted and characterized from hydrothermal fluids via a MGM.
    Description: We dedicate this work to Dr. James P. Cowen, who had envisioned and constructed the integrated instrumentation, GeoMICROBE, to monitor the sub-basement biosphere. We thank the chief scientists, captains, crews, and science teams on board R/V Atlantis cruises AT15-35, AT15-51, AT15-66, AT18-07, MSM20-5, AT26-03, and AT26-18, and the pilots and crews of ROV Jason II and HOV Alvin. We thank our student assistants, Natalie Hamada, Kathryn Hu, Ryan Matzumoto, Everette Omori, and Fan-Chieh Chuang. This work was supported by the National Science Foundation-Microbial Observatory Project (NSF-MCB06-04014 to J. P. Cowen), Center for Dark Energy Biosphere Investigations (C-DEBI; NSF award OCE-0939564 to M. S. Rappé), NSF award OCE-1260723 (to M. S. Rappé), and the Ministry of Science and Technology of Taiwan award (MOST 105-2119-M-002-034, MOST 107-2611-M-002-002, MOST 108-2611-M-002-006, and MOST109-2611-M-002-008 to H.-T. Lin). Ministry of Education (MOE) Republic of China (Taiwan) 109L892601 to H.-T. Lin. NSF award OCE-1634080 (to D. J. Repeta), the Simons Foundation-Simons Collaboration on Ocean Processes and Ecology (SCOPE) award 329108 (to D. J. Repeta), the Gordon and Betty Moore Foundation award 6000 (to D. J. Repeta). This paper is SOEST contribution number 11121, HIMB contribution 1804 and C-DEBI contribution number 543.
    Keywords: GeoMICROBE ; Hydrothermal fluid ; Crustal fluid ; Mobile pumping system ; Helium ; Methane ; Dissolved organic matter ; Extraction and preconcentration ; Deep subseafloor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zeng, L., Schmitt, R. W., Li, L., Wang, Q., & Wang, D. Forecast of summer precipitation in the Yangtze River Valley based on South China Sea springtime sea surface salinity. Climate Dynamics, 53(9-10), (2019): 5495-5509, doi: 10.1007/s00382-019-04878-y.
    Description: As a major moisture source, the South China Sea (SCS) has a significant impact on the summer precipitation over China. The ocean-to-land moisture transport generates sea surface salinity (SSS) anomalies that can be used to predict summer precipitation on land. This study illustrates a high correlation between springtime SSS in the central SCS and summer precipitation over the middle and lower Yangtze River Valley (the YRV region). The linkage between spring SSS in the central SCS and summer YRV precipitation is established by ocean-to-land moisture transport by atmospheric processes and land–atmosphere soil moisture feedback. In spring, oceanic moisture evaporated from the sea surface generates high SSS in the central SCS and directly feeds the precipitation over southern China and the YRV region. The resulting soil moisture anomalies last for about 3 months triggering land–atmosphere soil moisture feedback and modulating the tropospheric moisture content and circulation in the subsequent summer. Evaluation of the atmospheric moisture balance suggests both a dynamic contribution (stronger northward meridional winds) and a local thermodynamic contribution (higher tropospheric moisture content) enhance the summer moisture supply over the YRV, generating excessive summer precipitation. Thus, spring SSS in the SCS can be utilized as an indicator of subsequent summer precipitation over the YRV region, providing value for operational climate prediction and disaster early warning systems in China.
    Description: This research has been supported by the National Natural Science Foundation of China (Nos. 41776025, 41476014, 41606030, 41806027, 41806035). RWS was supported by NSF Grant ICER-1663704. LL was supported by NSF-ICER-1663138. QW was also sponsored by the Pearl River S&T Nova Program of Guangzhou (201906010051). LZ was also supported by the Innovation Academy of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, and the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou).
    Keywords: South China Sea ; Yangtze River Valley ; Sea surface salinity ; Moisture flux ; Summer precipitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sakinan, S., Lawson, G. L., Wiebe, P. H., Chu, D., & Copley, N. J. Accounting for seasonal and composition-related variability in acoustic material properties in estimating copepod and krill target strength. Limnology and Oceanography-Methods, 17, (2019): 607-625, doi: 10.1002/lom3.10336.
    Description: Estimation of abundance or biomass, using acoustic techniques requires knowledge of the frequency dependent acoustic backscatter characteristics, or target strength, of organisms. Target strength of zooplankton is typically estimated from physics‐based models that involve multiple parameters, notably including the acoustic material properties (i.e., the contrasts in density and sound speed between the animal and surrounding seawater). In this work, variability in the acoustic material properties of two zooplankton species in the Gulf of Maine, the copepod (Calanus finmarchicus) and krill (Meganyctiphanes norvegica), was investigated relative to changing season as well as, for the copepod, temperature and depth. Increases in the density and sound speed contrasts of these species from fall to spring were observed. Target strength predictions based on these measurements varied between fall and spring by 2‐3 dB in krill. Measurements were also conducted on C. finmarchicus lipid extract at changing temperature and pressure. The density contrast of the extract varied negatively with temperature, while the sound speed contrast changed by more than 10 % over the temperature and pressure ranges that the organism expected to occupy. C. finmarchicus target strength predictions showed that the combined effect of temperature and pressure can be significant (more than 10 dB) due to the varying response of lipids. The large vertical migration ranges and lipid accumulation characteristics of these species (e.g., the diapause behaviour of Calanus copepods) suggest that it is necessary for seasonal and environmental variability in material properties to be taken into account to achieve reliable measurements.
    Description: We thank Captain Ken Houtler and Mate Ian Hanley on the R/V Tioga for assistance at sea. Al Bradley kindly loaned and provided assistance with the pressure chamber. We would also like to thank Phil Alatalo and Taylor Crockford for their assistance with at‐sea sampling, Dave Kulis and Jennifer Johnson for their assistance in the laboratory, and Andone Lavery for advice and loaning of the data acquisition system. Special thanks to Alex Bergan for general logistics and overall support. Funding was provided by the WHOI Ocean Life Institute. S.S. was supported by TUBITAK 2219 ‐ International Postdoctoral Research Fellowship Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Weber, L., Gonzalez-Diaz, P., Armenteros, M., & Apprill, A. The coral ecosphere: a unique coral reef habitat that fosters coral-microbial interactions. Limnology and Oceanography, 64(6), (2019): 2373-2388, doi: 10.1002/lno.11190.
    Description: Scleractinian corals are bathed in a sea of planktonic and particle‐associated microorganisms. The metabolic products of corals influence the growth and composition of microorganisms, but interactions between corals and seawater microorganisms are underexplored. We conducted a field‐based survey to compare the biomass, diversity, composition, and functional capacity of microorganisms in small‐volume seawater samples collected adjacent to five coral species with seawater collected 〉 1 m away from the reef substrate on the same reefs. Seawater collected close to corals generally harbored copiotrophic‐type bacteria and its bacterial and archaeal composition was influenced by coral species as well as the local reef environment. Trends in picoplankton abundances were variable and either increased or decreased away from coral colonies based on coral species and picoplankton functional group. Genes characteristic of surface‐attached and potentially virulent microbial lifestyles were enriched in near‐coral seawater compared to reef seawater. There was a prominent association between the coral Porites astreoides and the coral symbiont Endozoicomonas, suggesting recruitment and/or shedding of these cells into the surrounding seawater. This evidence extends our understanding of potential species‐specific and reef site‐influenced microbial interactions that occur between corals and microorganisms within this near‐coral seawater environment that we propose to call the “coral ecosphere.” Microbial interactions that occur within the coral ecosphere could influence recruitment of coral‐associated microorganisms and facilitate the transfer of coral metabolites into the microbial food web, thus fostering reef biogeochemical cycling and a linkage between corals and the water column.
    Description: This project was funded by the Dalio Foundation through the Dalio Ocean Initiative, which helped establish a new partnership between U.S. and Cuban scientists. Data analysis and manuscript preparation support was provided by NSF GRFP award to L. W. and NSF OCE‐1736288 to A. A. Special thanks to our colleague Alyson Santoro (University of California, Santa Barbara) for project advice and discussion, Fernando Bretos (The Ocean Foundation) for cruise conceptualization and organization, and Justin Ossolinski, Sean McNally, Thomas Lankiewicz, as well as the fellow scientists on the missions for field assistance. Thanks to the crew of the R/V Felipe Poey as well as the La Reina vessel and the Avalon diving center. We are grateful for Karen Selph of the University of Hawai‘i School of Ocean and Earth Science and Technology for training in flow cytometry methods and Chris Wright and the University of Illinois W. M. Keck Center for Comparative and Functional Genomics for sequencing support. We would also like to thank Greg Fournier, Elizabeth Kujawinski, and Stefan Sievert for comments on this manuscript.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hunter-Cevera, K. R., Neubert, M. G., Olson, R. J., Shalapyonok, A., Solow, A. R., & Sosik, H. M. Seasons of Syn. Limnology and Oceanography. (2019), doi: 10.1002/lno.11374.
    Description: Synechococcus is a widespread and important marine primary producer. Time series provide critical information for identifying and understanding the factors that determine abundance patterns. Here, we present the results of analysis of a 16‐yr hourly time series of Synechococcus at the Martha's Vineyard Coastal Observatory, obtained with an automated, in situ flow cytometer. We focus on understanding seasonal abundance patterns by examining relationships between cell division rate, loss rate, cellular properties (e.g., cell volume, phycoerythrin fluorescence), and environmental variables (e.g., temperature, light). We find that the drivers of cell division vary with season; cells are temperature‐limited in winter and spring, but light‐limited in the fall. Losses to the population also vary with season. Our results lead to testable hypotheses about Synechococcus ecophysiology and a working framework for understanding the seasonal controls of Synechococcus cell abundance in a temperate coastal system.
    Description: We would like to thank E. T. Crockford, E. E. Peacock, J. Fredericks, Z. Sandwith, the MVCO Operations Team, divers of the WHOI diving program, and captain Houtler and first mate Hanley of the R/V Tioga for logistical support; S. Laney for assistance with radiometer data processing; and P. Henderson of the Woods Hole Oceanographic Institution (WHOI) Nutrient Analytical Facility for analytical support. This work was supported by U.S. NSF grants OCE‐0119915, OCE‐0530830, OCE‐1031256, OCE‐1655686, DEB‐1145017, and DEB‐1257545; NASA grants NNX11AF07G and NNX13AC98G; Gordon and Betty Moore Foundation grant GGA#934; the Investment in Science Fund, given primarily by WHOI Trustee and Corporation Members; Simons Foundation award 561126; National Defense Science and Engineering graduate fellowship from the U.S. Department of Defense, and the Hibbitt Early Career Fellowship at the Marine Biological Laboratory.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bhatnagar, S., Cowley, E. S., Kopf, S. H., Pérez Castro, S., Kearney, S., Dawson, S. C., Hanselmann, K., & Ruff, S. E. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. Environmental Microbiome, 15(1),(2020): 3, doi:10.1186/s40793-019-0348-0.
    Description: Background: Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. Results: Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. Conclusions: The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.
    Description: This work was carried out at the Microbial Diversity summer course at the Marine Biological Laboratory in Woods Hole, MA. The course was supported by grants from National Aeronautics and Space Administration, the US Department of Energy, the Simons Foundation, the Beckman Foundation, and the Agouron Institute. Additional funding for SER was provided by the Marine Biological Laboratory.
    Keywords: Microbial succession ; Green sulfur bacteria ; Prosthecochloris ; Syntrophy ; Brackish coastal ecosystem ; Anoxygenic phototrophy ; Microviridae ; Sulfur cycling ; CRISPR-Cas ; Resilience
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Arenas Gomez, C. M., Woodcock, M. R., Smith, J. J., Voss, S. R., & Delgado, J. P. A de novo reference transcriptome for Bolitoglossa vallecula, an Andean mountain salamander in Colombia. Data in Brief, 29, (2020): 105256, doi:10.1016/j.dib.2020.105256.
    Description: The amphibian order Caudata, contains several important model species for biological research. However, there is need to generate transcriptome data from representative species of the primary salamander families. Here we describe a de novo reference transcriptome for a terrestrial salamander, Bolitoglossa vallecula (Caudata: Plethodontidae). We employed paired-end (PE) illumina RNA sequencing to assemble a de novo reference transcriptome for B. vallecula. Assembled transcripts were compared against sequences from other vertebrate taxa to identify orthologous genes, and compared to the transcriptome of a close plethodontid relative (Bolitoglossa ramosi) to identify commonly expressed genes in the skin. This dataset should be useful to future comparative studies aimed at understanding important biological process, such as immunity, wound healing, and the production of antimicrobial compounds.
    Description: This work was funded by a research grant from COLCIENCIAS 569 (GRANT 027-2103) and CODI (Programa Sostenibilidad) 2013–2014 of the University of Antioquia. A PhD fellowship to the first author, Claudia Arenas was funded by the COLCIENCIAS 567 Grant. We thank the lab of Juan Fernando Alzate from the University of Antioquia for their help in developing our bioinformatic methodological approach. We thank Andrea Gómez and Melisa Hincapie for their help in animal collection and husbandry.
    Keywords: Bolitoglossa ; Plethodontid ; Salamanders ; Skin ; Transcriptomics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Addamo, A. M., Miller, K. J., Haussermann, V., Taviani, M., & Machordom, A. Global-scale genetic structure of a cosmopolitan cold-water coral species. Aquatic Conservation: Marine and Freshwater Ecosystems, (2020): 1-14, doi:10.1002/aqc.3421.
    Description: 1. When considering widely distributed marine organisms with low dispersal capabilities, there is often an implication that the distribution of cosmopolitan species is an artefact of taxonomy, constrained by the absence of characters for delimiting either sibling or cryptic species. Few studies have assessed the relationship among populations across the global range of the species' distribution, and the presence of oceanographic barriers that might influence gene flow among populations are underestimated. 2. In this study, evolutionary and ecological drivers of connectivity patterns have been inferred among populations of the cold‐water coral Desmophyllum dianthus, a common and widespread solitary scleractinian species, whose reproduction strategy and larval dispersal are still poorly unknown. 3. The genetic structure of D. dianthus was explored using 30 microsatellites in 347 specimens from 13 localities distributed in the Mediterranean Sea and Atlantic and Pacific Oceans. 4. Results clearly reveal genetically differentiated populations in the Northern and Southern Hemispheres (FST = 0.16, FSC = 0.01, FCT = 0.15, P‐values highly significant), and Chilean and New Zealand populations with independent genetic profiles. 5. Marine connectivity patterns at different spatial scales are discussed to characterize larval dispersal and gene flow through the Northern and Southern Hemispheres.
    Description: This research was supported by the Spanish Ministry of Science and Innovation (CGL2011‐23306), and EU CoCoNET—“Towards COast to COast NETworks of marine protected areas (from the shore to the high and deep sea), coupled with sea‐based wind energy potential”—from FP7‐KKBE of the European Commission (project ID: 287844). This scientific contribution commits to EESF Cocarde, Italian Flag Ritmare, and Region Apulia Biomap programmes. This is scientific publication no. 1888 Ismar‐CNR Bologna. Funding to VH was partially provided through Fondecyt project nos. 1131039 and 1161699. This is publication no. 179 of Huinay Scientific Field Station.
    Keywords: cold‐water corals ; cosmopolitan species ; gene flow ; larval dispersal ; microsatellite ; molecular ecology ; population structure
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ralston, D. K., Yellen, B., Woodruff, J. D., & Fernald, S. Turbidity hysteresis in an estuary and tidal river following an extreme discharge event. Geophysical Research Letters, 47(15), (2020): e2020GL088005, doi:10.1029/2020GL088005.
    Description: Nonlinear turbidity‐discharge relationships are explored in the context of sediment sourcing and event‐driven hysteresis using long‐term (≥12‐year) turbidity observations from the tidal freshwater and saline estuary of the Hudson River. At four locations spanning 175 km, turbidity generally increased with discharge but did not follow a constant log‐log dependence, in part due to event‐driven adjustments in sediment availability. Following major sediment inputs from extreme precipitation and discharge events in 2011, turbidity in the tidal river increased by 20–50% for a given discharge. The coherent shifts in the turbidity‐discharge relationship along the tidal river over the subsequent 2 years suggest that the 2011 events increased sediment availability for resuspension. In the saline estuary, changes in the sediment‐discharge relationship were less apparent after the high discharge events, indicating that greater background turbidity due to internal sources make event‐driven inputs less important in the saline estuary at interannual time scales.
    Description: This work was sponsored by the National Estuarine Research Reserve System Science Collaborative, funded by the National Oceanic and Atmospheric Administration and managed by the University of Michigan Water Center (NAI4NOS4190145), with additional support to Yellen and Woodruff from USGS Cooperative Agreement No. G19AC00091.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Li, Y., Stumpf, R. P., McGillicuddy, D. J.,Jr, & He, R. Dynamics of an intense Alexandrium catenella red tide in the Gulf of Maine: satellite observations and numerical modeling. Harmful Algae, 99, (2020): 101927, doi:10.1016/j.hal.2020.101927.
    Description: In July 2009, an unusually intense bloom of the toxic dinoflagellate Alexandrium catenella occurred in the Gulf of Maine. The bloom reached high concentrations (from hundreds of thousands to one million cells L−1) that discolored the water and exceeded normal bloom concentrations by a factor of 1000. Using Medium Resolution Imaging Spectrometer (MERIS) imagery processed to target chlorophyll concentrations (〉2 µg L−1), patches of intense A. catenella concentration were identified that were consistent with the highly localized cell concentrations observed from ship surveys. The bloom patches were generally aligned with the edge of coastal waters with high-absorption. Dense bloom patches moved onshore in response to a downwelling event, persisted for approximately one week, then dispersed rapidly over a few days and did not reappear. Coupled physical-biological model simulations showed that wind forcing was an important factor in transporting cells onshore. Upward swimming behavior facilitated the horizontal cell aggregation, increasing the simulated maximum depth-integrated cell concentration by up to a factor of 40. Vertical convergence of cells, due to active swimming of A. catenella from the subsurface to the top layer, could explain the additional 25-fold intensification (25 × 40=1000-fold) needed to reach the bloom concentrations that discolored the water. A model simulation that considered upward swimming overestimated cell concentrations downstream of the intense aggregation. This discrepancy between model and observed concentrations suggested a loss of cells from the water column at a time that corresponded to the start of encystment. These results indicated that the joint effect of upward swimming, horizontal convergence, and wind-driven flow contributed to the red water event, which might have promoted the sexual reproduction event that preceded the encystment process.
    Description: DJM gratefully acknowledges support of the Woods Hole Center for Oceans and Human Health, funded jointly by the National Science Foundation (OCE-1314642 and OCE-1840381) the National Institute of Environmental Health Sciences (P01ES021923–01 and P01 ES028938–01). RH acknowledges support made possible by NOAA grant NA15NOS4780196 and NA16NOS0120028.
    Keywords: Red water ; Bloom patches ; Cell accumulation ; Coastal upwelling ; Upward swimming
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Barone, B., Nicholson, D., Ferron, S., Firing, E., & Karl, D. The estimation of gross oxygen production and community respiration from autonomous time-series measurements in the oligotrophic ocean. Limnology and Oceanography-Methods, 17, (2019): 650-664, doi: 10.1002/lom3.10340.
    Description: Diel variations in oxygen concentration have been extensively used to estimate rates of photosynthesis and respiration in productive freshwater and marine ecosystems. Recent improvements in optical oxygen sensors now enable us to use the same approach to estimate metabolic rates in the oligotrophic waters that cover most of the global ocean and for measurements collected by autonomous underwater vehicles. By building on previous methods, we propose a procedure to estimate photosynthesis and respiration from vertically resolved diel measurements of oxygen concentration. This procedure involves isolating the oxygen variation due to biological processes from the variation due to physical processes, and calculating metabolic rates from biogenic oxygen changes using linear least squares analysis. We tested our method on underwater glider observations from the surface layer of the North Pacific Subtropical Gyre where we estimated rates of gross oxygen production and community respiration both averaging 1.0 mmol O2 m−3 d−1, consistent with previous estimates from the same environment. Method uncertainty was computed as the standard deviation of the fitted parameters and averaged 0.6 and 0.5 mmol O2 m−3 d−1 for oxygen production and respiration, respectively. The variability of metabolic rates was larger than this uncertainty and we were able to discern covariation in the biological production and consumption of oxygen. The proposed method resolved variability on time scales of approximately 1 week. This resolution can be improved in several ways including by measuring turbulent mixing, increasing the number of measurements in the surface ocean, and adopting a Lagrangian approach during data collection.
    Description: This study would not have been possible without the skilled contribution of Steve Poulos (University of Hawaii) who directed glider operations including deployments, recoveries, and piloting. We thank Steve and all the other people involved in these activities including Sarah Searson, Gabe Foreman, Jim Burkitt, and Blake Watkins (University of Hawaii). We thank Henry Bittig (Laboratoire d'Océanographie de Villefranche) for his advice on the inverse filtering correction. We thank Saulo Soares, Andrei Natarov, and Kelvin Richards (University of Hawaii) for their comments on an early draft of this manuscript. We also thank Sam Wilson, Tara Clemente, Dan Sadler, Susan Curless, and Walt Deppe (University of Hawaii) for leading the oceanographic cruises used for glider deployments and recoveries. We thank the HOT‐SCOPE team for measuring the Winkler O2 concentration used for optode calibration. We thank Jesse M. Wilson for providing us the period of the CR measurements reported in Wilson et al. (2014). Finally, we thank captains and crews of R/V Kilo Moana and R/V Ka'imikai‐O‐Kanaloa, and the Ocean Technology Group of the University of Hawaii for their assistance at sea. Glider data used in this article are available on the ftp server of the School of Ocean and Earth Science and Technology of the University of Hawaii (ftp://ftp.soest.hawaii.edu/pilot/). Blended Sea Winds are distributed by NOAA‐NCDC and are available at https://www.ncdc.noaa.gov. Sea‐level pressure from the NCEP/NCAR reanalysis is available at https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html. Satellite PAR is distributed by NASA and available at https://oceandata.sci.gsfc.nasa.gov. This research was supported by the 2015 Balzan Prize to D.M.K., the Simons Foundation (SCOPE award 329108 to D.M.K. and E.F. DeLong), the Gordon and Betty Moore Foundation (grant #3794 to D.M.K.), and the National Science Foundation through grants to C‐MORE (EF‐0424599 to D.M.K.) and HOT (OCE‐1260164 to D.M.K). D.N. was supported by NSF (OCE‐1129644) and an Independent Study Award from the Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gadol, O., Tibor, G., ten Brink, U., Hall, J. K., Groves-Gidney, G., Bar-Ann, G., Huebscher, C., & Makovsky, Y. Semi-automated bathymetric spectral decomposition delineates the impact of mass wasting on the morphological evolution of the continental slope, offshore Israel. Basin Research, (2019): 1-28, doi: 10.1111/bre.12420.
    Description: Understanding continental‐slope morphological evolution is essential for predicting basin deposition. However, separating the imprints and chronology of different seafloor shaping processes is difficult. This study explores the utility of bathymetric spectral decomposition for separating and characterizing the variety of interleaved seafloor imprints of mass wasting, and clarifying their role in the morphological evolution of the southeastern Mediterranean Sea passive‐margin slope. Bathymetric spectral decomposition, integrated with interpretation of seismic profiles, highlights the long‐term shape of the slope and separates the observed mass transport elements into several genetic groups: (1) a series of ~25 km wide, now‐buried slide scars and lobes; (2) slope‐parallel bathymetric scarps representing shallow faults; (3) slope‐perpendicular, open slope slide scars; (4) bathymetric roughness representing debris lobes; (5) slope‐confined gullies. Our results provide a multi‐scale view of the interplay between sediment transport, mass transport and shallow faulting in the evolution of the slope morphology. The base of the slope and focused disturbances are controlled by ~1 km deep salt retreat, and mimic the Messinian base of slope. The top of the open‐slope is delimited by faults, accommodating internal collapse of the margin. The now‐buried slides were slope‐confined and presumably cohesive, and mostly nucleated along the upper‐slope faults. Sediment accumulations, infilling the now‐buried scars, generated more recent open‐slope slides. These latter slides transported ~10 km3 of sediments, depositing a significant fraction (~3 m in average) of the sediments along the base of the studied slope during the past 〈 50 ka. South to north decrease in the volume of the open‐slope slides highlight their role in counterbalancing the northwards diminishing sediment supply and helping to maintain a long‐term steady‐state bathymetric profile. The latest phase slope‐confined gullies were presumably created by channelling of bottom currents into slide‐scar depressions, possibly establishing incipient canyon headword erosion.
    Description: Funding for this study was provided by the State of Israel Ministry of Science and Technology grant 3–9145. Omri Gadol studies were supported by the State of Israel Ministry of Energy grants program, the Dr. Moses Strauss Department of Marine Geosciences and the Hatter Department of Marine Technologies. We thank the Oil Commissioner Office, State of Israel Ministry of Energy, Delek Drilling, Adira Energy and Modiin Energy for data sharing and permitting; and Emerson‐Paradigm for sponsoring their software. We also thank Alexander Surdyaev, AMEL, for his constant support; and David Mosher, Glen Sherman and Jason Chaytor for their valuable reviews.
    Keywords: landslide volume ; Levant Basin ; mass transport complexes ; morphometric analyses ; semi‐automated mapping ; slope confined gullies ; submarine slide ; thin skin faulting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kantha, L., Weller, R. A., Farrar, J. T., Rahaman, H., & Jampana, V. A note on modeling mixing in the upper layers of the Bay of Bengal: importance of water type, water column structure and precipitation. Deep-Sea Research Part II-Topical Studies in Oceanography, 168, (2019): 104643. doi: 10.1016/j.dsr2.2019.104643.
    Description: Turbulent mixing in the upper layers of the northern Bay of Bengal is affected by a shallow layer overlying the saline waters of the Bay, which results from the huge influx of freshwater from major rivers draining the Indian subcontinent and from rainfall over the Bay during the summer monsoon. The resulting halocline inhibits wind-driven mixing in the upper layers. The brackish layer also alters the optical properties of the water column. Air-sea interaction in the Bay is expected to play a significant role in the intraseasonal variability of summer monsoons over the Indian subcontinent, and as such the sea surface temperature (SST) changes during the summer monsoon are of considerable scientific and societal importance. In this study, data from the heavily instrumented Woods Hole Oceanographic Institution (WHOI) mooring, deployed at 18oN, 89.5oE in the northern Bay from December 2014 to January 2016, are used to drive a one-dimensional mixing model, based on second moment closure model of turbulence, to explore the intra-annual variability in the upper layers. The model results highlight the importance of the optical properties of the upper layers (and hence the penetration of solar insolation in the water column), as well as the temperature and salinity in the upper layers prescribed at the start of the model simulation, in determining the SST in the Bay during the summer monsoon. The heavy rainfall during the summer monsoon also plays an important role. The interseasonal and intraseasonal variability in the upper layers of the Bay are contrasted with those in the Arabian Sea, by the use of the same model but driven by data from an earlier deployment of a WHOI mooring in the Arabian Sea at 15.5 oN, 61.5 oE from December 1994 to December 1995.
    Description: LK was supported by U.S. Office of Naval Research (ONR) MISO/BoB DRI under grant number N00014-17-1-2716. RW and JTF were supported by ONR Grants N00014-13-1-0453 and N00014-17-1-2880, and the WHOI mooring was funded by Grant N00014-13-1-0453. RW was supported by ONR for the 1994–1995 deployment of the surface mooring in the Arabian Sea. HR and VJ wish to thank Dr. SSC Shenoi, the Director of INCOIS and Dr. M Ravichandran, Director, NCPOR for the encouragement and support to carry out this study. This work was supported by the Ministry of Earth Sciences (MoES), Govt. of India. This is also INCOIS Contribution number 349.
    Keywords: Bay of Bengal ; Arabian sea ; Mixing in the upper layers ; Second moment closure ; Turbulence ; WHOI mooring ; OMNI mooring ; Water type ; Solar insolation ; Precipitation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Blakeslee, A. M. H., Manousaki, T., Vasileiadou, K., & Tepolt, C. K. An evolutionary perspective on marine invasions. Evolutionary Applications, 13, (2020): 479-485, doi:10.1111/eva.12906.
    Description: Species distributions are rapidly changing as human globalization increasingly moves organisms to novel environments. In marine systems, species introductions are the result of a number of anthropogenic mechanisms, notably shipping, aquaculture/mariculture, the pet and bait trades, and the creation of canals. Marine invasions are a global threat to human and non‐human populations alike and are often listed as one of the top conservation concerns worldwide, having ecological, evolutionary, and social ramifications. Evolutionary investigations of marine invasions can provide crucial insight into an introduced species’ potential impacts in its new range, including: physiological adaptation and behavioral changes to exploit new environments; changes in resident populations, community interactions, and ecosystems; and severe reductions in genetic diversity that may limit evolutionary potential in the introduced range. This special issue focuses on current research advances in the evolutionary biology of marine invasions and can be broadly classified into a few major avenues of research: the evolutionary history of invasive populations, post‐invasion reproductive changes, and the role of evolution in parasite introductions. Together, they demonstrate the value of investigating marine invasions from an evolutionary perspective, with benefits to both fundamental and applied evolutionary biology at local and broad scales.
    Description: We thank the organizers of Marine Evolution 2018 for bringing together a dynamic group of researchers working in all aspects of marine evolutionary biology and for facilitating the discussion of evolution in marine invasion. We also thank Evolutionary Applications for providing an avenue to share the results of this meeting more broadly and hope it will encourage continued research and discussion of this topic.
    Keywords: adaptation ; estuarine ; evolutionary history ; host–parasite interactions ; introduction ; non‐native ; reproduction ; sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kuloyo, O., Ruff, S. E., Cahill, A., Connors, L., Zorz, J. K., de Angelis, I. H., Nightingale, M., Mayer, B., & Strous, M. Methane oxidation and methylotroph population dynamics in groundwater mesocosms. Environmental Microbiology. (2020), doi:10.1111/1462-2920.14929.
    Description: Extraction of natural gas from unconventional hydrocarbon reservoirs by hydraulic fracturing raises concerns about methane migration into groundwater. Microbial methane oxidation can be a significant methane sink. Here, we inoculated replicated, sand‐packed, continuous mesocosms with groundwater from a field methane release experiment. The mesocosms experienced thirty‐five weeks of dynamic methane, oxygen and nitrate concentrations. We determined concentrations and stable isotope signatures of methane, carbon dioxide and nitrate and monitored microbial community composition of suspended and attached biomass. Methane oxidation was strictly dependent on oxygen availability and led to enrichment of 13C in residual methane. Nitrate did not enhance methane oxidation under oxygen limitation. Methylotrophs persisted for weeks in the absence of methane, making them a powerful marker for active as well as past methane leaks. Thirty‐nine distinct populations of methylotrophic bacteria were observed. Methylotrophs mainly occurred attached to sediment particles. Abundances of methanotrophs and other methylotrophs were roughly similar across all samples, pointing at transfer of metabolites from the former to the latter. Two populations of Gracilibacteria (Candidate Phyla Radiation) displayed successive blooms, potentially triggered by a period of methane famine. This study will guide interpretation of future field studies and provides increased understanding of methylotroph ecophysiology.
    Description: The authors acknowledge funding from the Alberta Innovates Technology Futures (AITF), and University of Calgary Eyes High Doctoral Scholarships (O.O.K., J.K.Z.) and AITF/Eyes High Postdoctoral Fellowships (S.E.R.), as well as the PROMOS Internship Abroad Scholarship by the German Academic Exchange Service (I.H.d.A.). Additional support was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), Strategic Project Grant no. 463045‐14, the Campus Alberta Innovation Chair Program (M.S.), Alberta Innovates, The Canadian Foundation for Innovation (M.S.), the Alberta Small Equipment Grant Program (M.S.) and an NSERC Discovery Grant (M.S. and B.M.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liu, S., Parsons, R., Opalk, K., Baetge, N., Giovannoni, S., Bolanos, L. M., Kujawinski, E. B., Longnecker, K., Lu, Y., Halewood, E., & Carlson, C. A. Different carboxyl-rich alicyclic molecules proxy compounds select distinct bacterioplankton for oxidation of dissolved organic matter in the mesopelagic Sargasso Sea. Limnology and Oceanography, (2020), doi:10.1002/lno.11405.
    Description: Marine dissolved organic matter (DOM) varies in its recalcitrance to rapid microbial degradation. DOM of varying recalcitrance can be exported from the ocean surface to depth by subduction or convective mixing and oxidized over months to decades in deeper seawater. Carboxyl‐rich alicyclic molecules (CRAM) are characterized as a major component of recalcitrant DOM throughout the oceanic water column. The oxidation of CRAM‐like compounds may depend on specific bacterioplankton lineages with oxidative enzymes capable of catabolizing complex molecular structures like long‐chain aliphatics, cyclic alkanes, and carboxylic acids. To investigate the interaction between bacteria and CRAM‐like compounds, we conducted microbial remineralization experiments using several compounds rich in carboxyl groups and/or alicyclic rings, including deoxycholate, humic acid, lignin, and benzoic acid, as proxies for CRAM. Mesopelagic seawater (200 m) from the northwest Sargasso Sea was used as media and inoculum and incubated over 28 d. All amendments demonstrated significant DOC removal (2–11 μmol C L−1) compared to controls. Bacterioplankton abundance increased significantly in the deoxycholate and benzoic acid treatments relative to controls, with fast‐growing Spongiibacteracea, Euryarcheaota, and slow‐growing SAR11 enriched in the deoxycholate treatment and fast‐growing Alteromonas, Euryarcheaota, and Thaumarcheaota enriched in the benzoic acid treatment. In contrast, bacterioplankton grew slower in the lignin and humic acid treatments, with oligotrophic SAR202 becoming significantly enriched in the lignin treatment. Our results indicate that the character of the CRAM proxy compounds resulted in distinct bacterioplankton removal rates of DOM and affected specific lineages of bacterioplankton capable of responding.
    Description: We thank Z. Landry for the inspiring idea of SAR202 catabolism of CRAM. We thank the University of California, Santa Barbara Marine Science Institute Analytical Laboratory for analyzing inorganic nutrient samples. We thank C. Johnson for her help in FISH sample processing and BATS group in supporting our project. We thank N. K. Rubin‐Saika and R. Padula for their help with amino acid sample preparation. We thank Z. Liu, J. Xue, K. Lu, and Y. Shen for their help with amino acid protocol development and validation. We thank B. Stephens for his help on microscopic image analysis. We thank M. Dasenko and the staff of the CGRB at Oregon State University for amplicon library preparation and DNA sequencing. We are grateful for the help provided by the officers and crews of the R/V Atlantic Explorer. Bermuda Institute of Ocean Sciences (BIOS) provides us tremendous support in terms of facilities and lab space. We thank Bermuda government for its allowance of our water sampling and sample export (export permit number SP160904, issued 07 October 2016 under the Fisheries Act, 1972). This project was supported by Simons Foundation International's BIOS‐SCOPE program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goldmann, K., Boeddinghaus, R. S., Klemmer, S., Regan, K. M., Heintz-Buschart, A., Fischer, M., Prati, D., Piepho, H., Berner, D., Marhan, S., Kandeler, E., Buscot, F., & Wubet, T. Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 22(3),(2020): 873-888, doi:10.1111/1462-2920.14653.
    Description: Soils provide a heterogeneous environment varying in space and time; consequently, the biodiversity of soil microorganisms also differs spatially and temporally. For soil microbes tightly associated with plant roots, such as arbuscular mycorrhizal fungi (AMF), the diversity of plant partners and seasonal variability in trophic exchanges between the symbionts introduce additional heterogeneity. To clarify the impact of such heterogeneity, we investigated spatiotemporal variation in AMF diversity on a plot scale (10 × 10 m) in a grassland managed at low intensity in southwest Germany. AMF diversity was determined using 18S rDNA pyrosequencing analysis of 360 soil samples taken at six time points within a year. We observed high AMF alpha‐ and beta‐diversity across the plot and at all investigated time points. Relationships were detected between spatiotemporal variation in AMF OTU richness and plant species richness, root biomass, minimal changes in soil texture and pH. The plot was characterized by high AMF turnover rates with a positive spatiotemporal relationship for AMF beta‐diversity. However, environmental variables explained only ≈20% of the variation in AMF communities. This indicates that the observed spatiotemporal richness and community variability of AMF was largely independent of the abiotic environment, but related to plant properties and the cooccurring microbiome.
    Description: We thank the managers of the three Exploratories, Kirsten Reichel‐Jung, Swen Renner, Katrin Hartwich, Sonja Gockel, Kerstin Wiesner, and Martin Gorke for their work in maintaining the plot and project infrastructure; Christiane Fischer and Simone Pfeiffer for giving support through the central office, Michael Owonibi and Andreas Ostrowski for managing the central data base, and Eduard Linsenmair, Dominik Hessenmöller, Jens Nieschulze, Ernst‐Detlef Schulze, Wolfgang W. Weisser and the late Elisabeth Kalko for their role in setting up the Biodiversity Exploratories project. The work has been funded by the DFG Priority Program 1374 ‘Infrastructure‐Biodiversity‐Exploratories’ (BU 941/22‐1, BU 941/22‐3, KA 1590/8‐2, KA 1590/8‐3). Field work permits were issued by the responsible state environmental office of Baden‐Württemberg (according to § 72 BbgNatSchG). Likewise, we kindly thank Beatrix Schnabel, Melanie Günther and Sigrid Härtling for 454 sequencing in Halle. AHB gratefully acknowledges the support of the German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig funded by the German Research Foundation (FZT 118). Authors declare no conflict of interests.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schwing, F. B., Sissenwine, M. J., Batchelder, H., Dam, H. G., Gomez-Gutierrez, J., Keister, J. E., Liu, H., & Peterson, J. O. William (Bill) Peterson's contributions to ocean science, management, and policy. Progress in Oceanography, 182, (2020): 102241, doi:10.1016/j.pocean.2019.102241.
    Description: In addition to being an esteemed marine ecologist and oceanographer, William T. (Bill) Peterson was a dedicated public servant, a leader in the ocean science community, and a mentor to a generation of scientists. Bill recognized the importance of applied science and the need for integrated “big science” programs to advance our understanding of ecosystems and to guide their management. As the first US GLOBEC program manager, he was pivotal in transitioning the concept of understanding how climate change impacts marine ecosystems to an operational national research program. The scientific insight and knowledge generated by US GLOBEC informed and advanced the ecosystem-based management approaches now being implemented for fishery management in the US. Bill held significant leadership roles in numerous international efforts to understand global and regional ecological processes, and organized and chaired a number of influential scientific conferences and their proceedings. He was passionate about working with and training young researchers. Bill’s academic affiliations, notably at Stony Brook and Oregon State Universities, enabled him to advise, train, and mentor a host of students, post-doctoral researchers, and laboratory technicians. Under his collegial guidance they became critical independent thinkers and diligent investigators. His former students and colleagues carry on Bill Peterson’s legacy of research that helps us understand marine ecosystems and informs more effective resource stewardship and conservation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McCollom, T. M., Klein, F., Moskowitz, B., Berquo, T. S., Bach, W., & Templeton, A. S. Hydrogen generation and iron partitioning during experimental serpentinization of an olivine-pyroxene mixture. Geochimica Et Cosmochimica Acta, 282, (2020): 55-75, doi:10.1016/j.gca.2020.05.016.
    Description: A series of laboratory experiments was conducted to investigate serpentinization of olivine–pyroxene mixtures at 230 °C, with the objective of evaluating the effect of mixed compositions on Fe partitioning among product minerals, H2 generation, and reaction rates. An initial experiment reacted a mixture of 86 wt.% olivine and 14 wt.% orthopyroxene (Opx) with the same initial grain size for 387 days. The experiment resulted in extensive reaction (∼53% conversion), and solids recovered at termination of the experiment were dominated by Fe-bearing chrysotile and relict olivine along with minor brucite and magnetite. Only limited amounts of H2 were generated during the first ∼100 days of the experiment, but the rate of H2 generation then increased sharply coincident with an increase in pH from mildly alkaline to strongly alkaline conditions. Two shorter term experiments with the same reactants (26 and 113 days) produced a mixture of lizardite and talc that formed a thin coating on relict olivine and Opx grains, with virtually no generation of H2. Comparison of the results with reaction path models indicates that the Opx reacted about two times faster than olivine, which contrasts with some previous studies that suggested olivine should react more rapidly than Opx at the experimental conditions. The models also indicate that the long-term experiment transitioned from producing serpentine ± talc early in the early stages to precipitation of serpentine plus magnetite, with brucite beginning to precipitate only late in the experiment as Opx was depleted. The results indicate that overall reaction of olivine and Opx was initially relatively slow, but reaction rates accelerated substantially when the pH transitioned to strongly alkaline conditions. Serpentine and brucite precipitated from the olivine-Opx mixture had higher Fe contents than observed in olivine-only experiments at mildly alkaline pH, but had comparable Fe contents to reaction of olivine at strongly alkaline pH implying that higher pH may favor greater partitioning of Fe into serpentine and brucite and less into magnetite. Despite the presence of brucite, dissolved silica activities during the long-term olivine-Opx experiment maintained levels well above serpentine-brucite equilibrium. Instead, silica activities converged on levels close to metastable equilibrium between brucite and olivine. It is proposed that silica levels during the experiment may have been regulated by exchange of SiO2 between the fluid and a silica-depleted, brucite-like surface layer on dissolving olivine.
    Description: This research was supported by the U. S. National Science Foundation Marine Geology and Geophysics program through grant NSF-OCE 0927744 and by the NASA Astrobiology Institute through Cooperative Agreement NNA15BB02A. Additional support to TMM from the Hanse Wissenschaftskolleg (Delmenhorst, Germany) at an early stage of this project is gratefully acknowledged. FK acknowledges support through Grant NSF-OCE 1427274. The IRM is supported by the Instruments and Facilities Program of the NSF Division of Earth Science. This is IRM contribution 1711. We very much appreciate the comments of Fabrice Brunet, Gleb Pokrovski and an anonymous reviewer that helped us refine our interpretations and improve communication of the results.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, G. E., Baumgartner, M. F., Corkeron, P. J., Bell, J., Berchok, C., Bonnell, J. M., Thornton, J. B., Brault, S., Buchanan, G. A., Cholewiak, D. M., Clark, C. W., Delarue, J., Hatch, L. T., Klinck, H., Kraus, S. D., Martin, B., Mellinger, D. K., Moors-Murphy, H., Nieukirk, S., Nowacek, D. P., Parks, S. E., Parry, D., Pegg, N., Read, A. J., Rice, A. N., Risch, D., Scott, A., Soldevilla, M. S., Stafford, K. M., Stanistreet, J. E., Summers, E., Todd, S., & Van Parijs, S. M. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Global Change Biology, (2020): 1-30, doi:10.1111/gcb.15191.
    Description: Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata ) and North Atlantic right whales (NARW; Eubalaena glacialis ). This study assesses the acoustic presence of humpback (Megaptera novaeangliae ), sei (B. borealis ), fin (B. physalus ), and blue whales (B. musculus ) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.
    Description: We thank Chris Pelkie, David Wiley, Michael Thompson, Chris Tessaglia‐Hymes, Eric Matzen, Chris Tremblay, Lance Garrison, Anurag Kumar, John Hildebrand, Lynne Hodge, Russell Charif, Kathleen Dudzinski, and Ann Warde for help with project planning, field work support, and data management. For all the support and advice, thanks to the NEFSC Protected Species Branch, especially the passive acoustics group, Josh Hatch, and Leah Crowe. We thank the field and crew teams on all the ships that helped in the numerous deployments and recoveries. This research was funded and supported by many organizations, specified by projects as follows: data recordings from region 1 were provided by K. Stafford (funding: National Science Foundation #NSF‐ARC 0532611). Region 2 data: D. K. Mellinger and S. Nieukirk, National Oceanic and Atmospheric Administration (NOAA) PMEL contribution #5055 (funding: NOAA and the Office of Naval Research #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244‐08‐1‐0029, N00244‐09‐1‐0079, and N00244‐10‐1‐0047). Region 3A data: D. Risch (funding: NOAA and Navy N45 programs). Region 3 data: H. Moors‐Murphy and Fisheries and Oceans Canada (2005–2014 data), and the Whitehead Lab of Dalhousie University (eastern Scotian Shelf data; logistical support by A. Cogswell, J. Bartholette, A. Hartling, and vessel CCGS Hudson crew). Emerald Basin and Roseway Basin Guardbuoy data, deployment, and funding: Akoostix Inc. Region 3 Emerald Bank and Roseway Basin 2004 data: D. K. Mellinger and S. Nieukirk, NOAA PMEL contribution #5055 (funding: NOAA). Region 4 data: S. Parks (funding: NOAA and Cornell University) and E. Summers, S. Todd, J. Bort Thornton, A. N. Rice, and C. W. Clark (funding: Maine Department of Marine Resources, NOAA #NA09NMF4520418, and #NA10NMF4520291). Region 5 data: S. M. Van Parijs, D. Cholewiak, L. Hatch, C. W. Clark, D. Risch, and D. Wiley (funding: National Oceanic Partnership Program (NOPP), NOAA, and Navy N45). Region 6 data: S. M. Van Parijs and D. Cholewiak (funding: Navy N45 and Bureau of Ocean and Energy Management (BOEM) Atlantic Marine Assessment Program for Protected Species [AMAPPS] program). Region 7 data: A. N. Rice, H. Klinck, A. Warde, B. Martin, J. Delarue, and S. Kraus (funding: New York State Department of Environmental Conservation, Massachusetts Clean Energy Center, and BOEM). Region 8 data: G. Buchanan, and K. Dudzinski (funding: New Jersey Department of Environmental Protection and the New Jersey Clean Energy Fund) and A. N. Rice, C. W. Clark, and H. Klinck (funding: Center for Conservation Bioacoustics at Cornell University and BOEM). Region 9 data: J. E. Stanistreet, J. Bell, D. P. Nowacek, A. J. Read, and S. M. Van Parijs (funding: NOAA and US Fleet Forces Command). Region 10 data: L. Garrison, M. Soldevilla, C. W. Clark, R. A. Chariff, A. N. Rice, H. Klinck, J. Bell, D. P. Nowacek, A. J. Read, J. Hildebrand, A. Kumar, L. Hodge, and J. E. Stanistreet (funding: US Fleet Forces Command, BOEM, NOAA, and NOPP). Region 11 data: C. Berchok as part of a collaborative project led by the Fundacion Dominicana de Estudios Marinos, Inc. (Dr. Idelisa Bonnelly de Calventi; funding: The Nature Conservancy [Elianny Dominguez]) and D. Risch (funding: World Wildlife Fund, NOAA, and Dutch Ministry of Economic Affairs).
    Keywords: baleen whales ; changes in distribution ; conservation ; North Atlantic Ocean ; passive acoustic monitoring ; seasonal occurrence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Babbin, A. R., Buchwald, C., Morel, F. M. M., Wankel, S. D., & Ward, B. B. Nitrite oxidation exceeds reduction and fixed nitrogen loss in anoxic Pacific waters. Marine Chemistry, 224, (2020): 103814, doi:10.1016/j.marchem.2020.103814.
    Description: The diversity of nitrogen-based dissimilatory metabolisms in anoxic waters continues to increase with additional studies to the marine oxygen deficient zones (ODZs). Although the microbial oxidation of nitrite (NO2–) has been known for over a century, studies of the pathways and microbes involved have generally proceeded under the assumption that nitrite oxidation to nitrate requires dioxygen (O2). Anaerobic NO2– oxidation until now has been conclusively shown only for anammox bacteria, albeit only as a limited sink for NO2– in their metabolism compared to the NO2– reduced to N2. Here, using direct experimental techniques optimized for replicating in situ anoxic conditions, we show that NO2– oxidation is substantial, widespread, and consistent across the ODZs of the eastern tropical Pacific Ocean. Regardless of the specific oxidant, NO2– oxidation rates are up to an order of magnitude larger than simultaneous N2 production rates for which these zones are known, and cannot be explained by anammox rates alone. Higher rates of NO2– oxidation over reduction in anoxic waters are paradoxical but help to explain how anammox rates can be enhanced over denitrification in shallow anoxic waters (σθ 〈 26.4) at the edge of the ODZs but not within the ODZ core. Furthermore, nitrite oxidation may be the key to reconciliation of the perceived imbalance of the global fixed nitrogen loss budget.
    Description: This work was funded by National Science Foundation grants OCE–1029951 to B.B.W, BIO–1402109 to A.R.B., and OCE-1260373 to S.D.W. Additional financial support to A.R.B. was provided by Simons Foundation grant 622065 and the generous contributions of Dr. Bruce L. Heflinger.
    Keywords: Nitrogen cycling ; Oxygen deficient zones ; Nitrite oxidation ; Denitrification ; Anammox
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Finke, K., Jimenez-Esteve, B., Taschetto, A. S., Ummenhofer, C. C., Bumke, K., & Domeisen, D. I., V. Revisiting remote drivers of the 2014 drought in South-Eastern Brazil. Climate Dynamics, (2020), doi:10.1007/s00382-020-05442-9.
    Description: South-Eastern Brazil experienced a devastating drought associated with significant agricultural losses in austral summer 2014. The drought was linked to the development of a quasi-stationary anticyclone in the South Atlantic in early 2014 that affected local precipitation patterns over South-East Brazil. Previous studies have suggested that the unusual blocking was triggered by tropical Pacific sea surface temperature (SST) anomalies and, more recently, by convection over the Indian Ocean related to the Madden–Julian Oscillation. Further investigation of the proposed teleconnections appears crucial for anticipating future economic impacts. In this study, we use numerical experiments with an idealized atmospheric general circulation model forced with the observed 2013/2014 SST anomalies in different ocean basins to understand the dominant mechanism that initiated the 2014 South Atlantic anticyclonic anomaly. We show that a forcing with global 2013/2014 SST anomalies enhances the chance for the occurrence of positive geopotential height anomalies in the South Atlantic. However, further sensitivity experiments with SST forcings in separate ocean basins suggest that neither the Indian Ocean nor tropical Pacific SST anomalies alone have contributed significantly to the anomalous atmospheric circulation that led to the 2014 South-East Brazil drought. The model study rather points to an important role of remote forcing from the South Pacific, local South Atlantic SSTs, and internal atmospheric variability in driving the persistent blocking over the South Atlantic.
    Description: K.F. was partially supported by the GEOMAR Marine Meteorology research area. Support to D.D. and B.J-E. from the Swiss National Science Foundation through project PP00P2_170523 is gratefully acknowledged. This research was supported by a Research Fellowship by the Alexander von Humboldt Foundation and the Early Career Scientist Endowed Fund and The George E. Thibault Early Career Scientist Fund to C.C.U. A.S.T. is supported by the Australian Research Council FT160100495. Open access funding provided by Swiss Federal Institute of Technology Zurich.
    Keywords: Brazil 2014 drought ; Teleconnection ; ENSO ; Blocking ; MJO
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(15), (2020): e2020GL087266, doi:10.1029/2020GL087266.
    Description: Using a recently compiled global marine data set of dissolved helium isotopes and helium and neon concentrations, we make an estimate of the inventory of hydrothermal 3He in the Southern Ocean to be 4.9 ± 0.6 × 104 moles. Under the assumption that the bulk of the hydrothermally sourced 3He is upwelled there, we use recent estimates of the global hydrothermal 3He flux to determine an e‐folding residence time of 99 ± 18 years, depending on assumptions of water mass and upwelling boundaries. Our estimate is within the broad range of values obtained from recent Southern Ocean circulation models.
    Description: This work was funded under the auspices of the U.S. National Science Foundation's Grant OCE‐1756138.
    Description: 2021-02-04
    Keywords: Hydrothermal budgets ; Meridional overturning circulation ; Marine productivity ; Micronutrients ; Dissolved iron ; Southern Ocean upwelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ryan, S., Hellmer, H. H., Janout, M., Darelius, E., Vignes, L., & Schroeder, M. Exceptionally warm and prolonged flow of warm deep water toward the Filchner-Ronne Ice Shelf in 2017. Geophysical Research Letters, 47(13),(2020): e2020GL088119, doi:10.1029/2020GL088119.
    Description: The Filchner‐Ronne Ice Shelf, fringing the southern Weddell Sea, is Antarctica's second largest ice shelf. At present, basal melt rates are low due to active dense water formation; however, model projections suggest a drastic increase in the future due to enhanced inflow of open‐ocean warm water. Mooring observations from 2014 to 2016 along the eastern flank of the Filchner Trough (76°S) revealed a distinct seasonal cycle with inflow if Warm Deep Water during summer and autumn. Here we present extended time series showing an exceptionally warm and long inflow in 2017, with maximum temperatures exceeding 0.5°C. Warm temperatures persisted throughout winter, associated with a fresh anomaly, which lead to a change in stratification over the shelf, favoring an earlier inflow in the following summer. We suggest that the fresh anomaly developed upstream after anomalous summer sea ice melting and contributed to a shoaling of the shelf break thermocline.
    Description: The authors would like to express their gratitude to the officers and crews of RV Polarstern (cruises PS92 [Grant AWI_PS82_02], PS96 [Grant AWI_PS96_01], and PS111 [Grant AWI_PS111_01]), RRS Ernest Shackleton (Cruise ES060), and RSS James Clark Ross (Cruise JR16004) for their efficient assistance. E. D. received funding from the project TOBACO (267660), POLARPROG, Norges Forskningsrd.
    Keywords: Ocean-ice shelf interaction ; Weddell Sea ; Warm inflow ; Antarctic Slope Front ; Filchner-Ronne Ice Shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gu, S., Liu, Z., Oppo, D. W., Lynch-Stieglitz, J., Jahn, A., Zhang, J., & Wu, L. Assessing the potential capability of reconstructing glacial Atlantic water masses and AMOC using multiple proxies in CESM. Earth and Planetary Science Letters, 541, (2020): 11629, doi:10.1016/j.epsl.2020.116294.
    Description: Reconstructing the Atlantic Meridional Overturning Circulation (AMOC) during the Last Glacial Maximum (LGM) is essential for understanding glacial-interglacial climate change and the carbon cycle. However, despite many previous studies, uncertainties remain regarding the glacial water mass distributions in the Atlantic and the AMOC intensity. Here we use an isotope enabled ocean model with multiple geotracers (δ 13 C,E Νd,231 Pa/ 230Th,δ 18 Ο and Δ 14 C) and idealized water tracers to study the potential constraints on LGM ocean circulation from multiple proxies. Our model suggests that the glacial Atlantic water mass distribution can be accurately constrained by the air-sea gas exchange signature of water masses (δ13 C AS), but E Nd might overestimate the North Atlantic Deep Water (NADW) percentage in the deep Atlantic probably because of the boundary source of Nd. A sensitivity experiment with an AMOC of similar geometry but much weaker strength suggests that the correct AMOC geometry is more important than the AMOC strength for simulating the observed glacial δ13 C AS and E Nd and distributions. The kinematic tracer 231Pa/230Th is sensitive to AMOC intensity, but the interpretation might be complicated by the AMOC geometry and AABW transport changes during the LGM. δ 18 Ο in the benthic foraminifera (δ 18 Οc) from the Florida Straits provides a consistent measure of the upper ocean boundary current in the model, which potentially provides an unambiguous method to reconstruct glacial AMOC intensity. Finally, we propose that the moderate difference between AMOC intensity at LGM and PD, if any, is caused by the competition of the responses to CO2 forcing and continental ice sheet forcing.
    Description: We thank two anonymous reviewers for their useful and constructive comments. We also thank Editor Dr Laura F. Robinson for handling the manuscript. This work is supported by National Science Foundation of China No. 41630527, US National Science Foundation (NSF) P2C2 projects (1401778, 1401802, and 1566432). We would like to acknowledge the high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) and Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation and from Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology (Qingdao). Data used to produce the results in this study can be obtained from HPSS at CISL: /home/sgu28/CTRACE_decadal or by contacting the authors.
    Keywords: Last Glacial Maximum ; AMOC ; Water mass ; Multi-proxy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Earth Surface Processes and Landforms, Wiley, ISSN: 0197-9337
    Publication Date: 2022-10-21
    Description: Thaw slumps in ice‐rich permafrost can retreat tens of metres per summer, driven by the melt of subaerially exposed ground ice. However, some slumps retain an ice‐veneering debris cover as they retreat. A quantitative understanding of the thermal regime and geomorphic evolution of debris‐covered slumps in a warming climate is largely lacking. To characterize the thermal regime, we instrumented four debris‐covered slumps in the Canadian Low Arctic and developed a numerical conduction‐based model. The observed surface temperatures 20°C and steep thermal gradients indicate that debris insulates the ice by shifting the energy balance towards radiative and turbulent losses. After the model was calibrated and validated with field observations, it predicted sub‐debris ice melt to decrease four‐fold from 1.9 to 0.5 m as the thickness of the fine‐grained debris quadruples from 0.1 to 0.4 m. With warming temperatures, melt is predicted to increase most rapidly, in relative terms, for thick (~0.5‐1.0 m) debris covers. The morphology and evolution of the debris‐covered slumps were characterized using field and remote sensing observations, which revealed differences in association with morphology and debris composition. Two low‐angle slumps retreated continually despite their persistent fine‐grained debris covers. The observed elevation losses decreased from ~1.0 m/yr where debris thickness ~.2 m to 0.1 m/yr where thickness ~1.0 m. Conversely, a steep slump with a coarse‐grained debris veneer underwent short‐lived bursts of retreat, hinting at a complex interplay of positive and negative feedback processes. The insulative protection and behaviour of debris vary significantly with factors such as thickness, grain size and climate: debris thus exerts a fundamental, spatially variable influence on slump trajectories in a warming climate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-10-21
    Description: This paper investigates different methods for quantifying thaw subsidence using terrestrial laser scanning (TLS) point clouds. Thaw subsidence is a slow (millimetre to centimetre per year) vertical displacement of the ground surface common in ice‐rich permafrost‐underlain landscapes. It is difficult to quantify thaw subsidence in tundra areas as they often lack stable reference frames. Also, there is no solid ground surface to serve as a basis for elevation measurements, due to a continuous moss–lichen cover. We investigate how an expert‐driven method improves the accuracy of benchmark measurements at discrete locations within two sites using multitemporal TLS data of a 1‐year period. Our method aggregates multiple experts’ determination of the ground surface in 3D point clouds, collected in a web‐based tool. We then compare this to the performance of a fully automated ground surface determination method. Lastly, we quantify ground surface displacement by directly computing multitemporal point cloud distances, thereby extending thaw subsidence observation to an area‐based assessment. Using the expert‐driven quantification as reference, we validate the other methods, including in‐situ benchmark measurements from a conventional field survey. This study demonstrates that quantifying the ground surface using 3D point clouds is more accurate than the field survey method. The expert‐driven method achieves an accuracy of 0.1 ± 0.1 cm. Compared to this, in‐situ benchmark measurements by single surveyors yield an accuracy of 0.4 ± 1.5 cm. This difference between the two methods is important, considering an observed displacement of 1.4 cm at the sites. Thaw subsidence quantification with the fully automatic benchmark‐based method achieves an accuracy of 0.2 ± 0.5 cm and direct point cloud distance computation an accuracy of 0.2 ± 0.9 cm. The range in accuracy is largely influenced by properties of vegetation structure at locations within the sites. The developed methods enable a link of automated quantification and expert judgement for transparent long‐term monitoring of permafrost subsidence.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-01-07
    Description: The Q10 temperature coefficient, which is widely used in scientific literature, is a measure of the temperature sensitivity of chemical reaction rates or biological processes. However, the conclusions drawn from applying this coefficient to experimental data obtained from biological processes are not universal. In many biological processes, Q10 values are often discordant with the results predicted by the Arrhenius law. The hypothesis tested in the present study is that this problem arises mainly from the fact that the Q10 coefficient is defined by the ratio between rates described by exponential laws instead of power laws. Considering this hypothesis and the need to review the mathematical laws and models currently used to describe rates and Q10 coefficients, we propose a model beyond the usual Arrhenius theory or exponential decay law herein. The proposed mathematical model is based on the theory of deformed exponential functions, with the ordinary Q10 model representing the conventional exponential function. Therefore, all results following the standard model remain valid. Moreover, we include a Q10 free open-source code, written in Python, and compatible with Windows, Linux and macOS platforms. The validation of the proposed model and confirmation of the given hypothesis were performed based on the following temperature-dependent biological processes: soil organic carbon (SOC) decomposition (which is essential to forecast the impact of climate change on terrestrial ecosystems); the metabolism of Arctic zooplankton; physiological processes of the respiratory and cardiovascular systems; rate of oxygen consumption in mitochondria of the eurythermal killifish Fundulus heteroclitus, and leaf respiration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-01-07
    Description: Since 2010, the Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors the earth emission at L-Band. It provides the longest time series of Sea Surface Salinity (SSS) from space over the global ocean. However, the SSS retrieval at high latitudes is a challenge because of the low sensitivity L-Band radiometric measurements to SSS in cold waters and to the contamination of SMOS measurements by the vicinity of continents, of sea ice and of Radio Frequency Interferences. In this paper, we assess the quality of weekly SSS fields derived from swath-ordered instantaneous SMOS SSS (so called Level 2) distributed by the European Space Agency. These products are filtered according to new criteria. We use the pseudo-dielectric constant retrieved from SMOS brightness temperatures to filter SSS pixels polluted by sea ice. We identify that the dielectric constant model and the sea surface temperature auxiliary parameter used as prior information in the SMOS SSS retrieval induce significant systematic errors at low temperatures. We propose a novel empirical correction to mitigate those sources of errors at high latitudes. Comparisons with in-situ measurements ranging from 1 to 11 m depths spotlight huge vertical stratification in fresh regions. This emphasizes the need to consider in-situ salinity as close as possible to the sea surface when validating L-band radiometric SSS which are representative of the first top centimeter. SSS Standard deviation of differences (STDD) between weekly SMOS SSS and in-situ near surface salinity significantly decrease after applying the SSS correction, from 1.46 pss to 1.28 pss. The correlation between new SMOS SSS and in-situ near surface salinity reaches 0.94. SMOS estimates better capture SSS variability in the Arctic Ocean in comparison to TOPAZ reanalysis (STDD between TOPAZ and in-situ SSS = 1.86 pss), particularly in river plumes with very large SSS spatial gradients.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-01-07
    Description: It is a good method to utilize the grain size distribution curves and cumulative frequency curves of marine or river sediments to estimate the hydrodynamic conditions, transportation processes and sedimentary environment. However, researchers can only rely on Excel or Grapher to plot the curves one by one at the present day. The manual plotting procedures are complicated, and calculating the truncation points is time-consuming. To solve the aforementioned problems, we have developed a software tool to plot cumulative frequency curves and calculate the values of truncation points automatically. The software has the ability to plot curves of hundreds of samples accurately and rapidly, promoting researchers to analyze transport mechanisms and hydrodynamic environments. And it is convenient to apply the software to compare the processes of transportation and deposition between different samples.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-01-07
    Description: The exhumation of peridotite rocks in oceanic transform zones passes by the rheological transition between the ductile and brittle deformation until the complete emplacement in the oceanic lithosphere. The São Pedro and São Paulo Archipelago (SPSPA), in the Equatorial Atlantic, records the deformational products of ductile, brittle and the rocks/fluid interaction generating specific structures in each domain. The deformational stages are related to the transpressional and transtensional geodynamics of São Paulo Transform Fault. Firstly, during transpression, exhumation occurs associated with the ductile domain causing intense mylonitization in temperatures between ~700° and 800 °C, defined by olivine and orthopyroxene recrystallization. The interaction with fluids initially originated from the mantle generates amphibole and oxide-rich layers marking the passage to a semi-brittle deformation. The continuation of peridotite exhumation, associated with an NW-SE shortening and transpressional led to a higher availability of hydrothermal fluids. As a consequence, four serpentinization episodes are recorded, which are associated with semi-brittle to brittle transition under temperatures between 300° and 400 °C. Finally, the complete exhumation and establishment of brittle mechanisms led to carbonatation phase near the surface, with temperatures ranging from 300° to 150 °C. The active NW-SE tectonic stress generated E-W strike-slip faults that were filled by carbonates recording the final exhumation stage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Elsevier
    In:  Environmental Technology & Innovation, 17 . Art.-Nr.: 100567.
    Publication Date: 2022-01-07
    Description: The present state of constantly increasing plastic pollution is the major concern of scientific researchers. The conventional techniques applied (i.e., burning and landfilling) to get plastic degraded from the environment are inadequate due to harmful byproducts and limited to its recycling. In this review, we have recapitulated recent biotechnological approaches, including synthetic microbial consortia, systems biology tools, and genetic engineering techniques which can pave the path towards the plastic bioremediation and degradation. Moreover, potential plastic degrader microbes and their degradation pathways are also summarized. Lastly, this review focuses on enhancing the understanding of the degradation ability of microorganisms using contemporary biotechnological tools.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-01-07
    Description: Atmospheric deposition of aerosols to the ocean provides an important pathway for the supply of vital micronutrients, including trace metals. These trace metals are essential for phytoplankton growth, and therefore their delivery to marine ecosystems can strongly influence the ocean carbon cycle. The solubility of trace metals in aerosols is a key parameter to better constrain their potential impact on phytoplankton growth. To date, a wide range of experimental approaches and nomenclature have been used to define aerosol trace metal solubility, making data comparison between studies difficult. Here we investigate and discuss several laboratory leaching protocols to determine the solubility of key trace metals in aerosol samples, namely iron, cobalt, manganese, copper, lead, vanadium, titanium and aluminium. Commonly used techniques and tools are also considered such as enrichment factor calculations and air mass back-trajectory projections and recommendations are given for aerosol field sampling, laboratory processing (including leaching and digestion) and analytical measurements. Finally, a simple 3-step leaching protocol combining commonly used protocols is proposed to operationally define trace metal solubility in aerosols. The need for standard guidelines and protocols to study the biogeochemical impact of atmospheric trace metal deposition to the ocean has been increasingly emphasised by both the atmospheric and oceanographic communities. This lack of standardisation currently limits our understanding and ability to predict ocean and climate interactions under changing environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-01-07
    Description: Highlights • Regional brain iron concentrations are heterogenous. • Regional distribution of iron is most consistent with ferritin mRNA expression. • SEC-ICP-MS reveals the protein masses that cytosolic iron is associated with. • More than 50 % of cytosolic iron is associated with ferritin. Iron is essential for brain development and health where its redox properties are used for a number of neurological processes. However, iron is also a major driver of oxidative stress if not properly controlled. Brain iron distribution is highly compartmentalised and regulated by a number of proteins and small biomolecules. Here, we examine heterogeneity in regional iron levels in 10 anatomical structures from seven post-mortem human brains with no apparent neuropathology. Putamen contained the highest levels, and most case-to-case variability, of iron compared with the other regions examined. Partitioning of iron between cytosolic and membrane-bound iron was generally consistent in each region, with a slightly higher proportion (55 %) in the ‘insoluble’ phase. We expand on this using the Allen Human Brain Atlas to examine patterns between iron levels and transcriptomic expression of iron regulatory proteins and using quantitative size exclusion chromatography-inductively coupled plasma-mass spectrometry to assess regional differences in the molecular masses to which cytosolic iron predominantly binds. Approximately 60 % was associated with ferritin, equating to approximately 25 % of total tissue iron essentially in storage. This study is the first of its kind in human brain tissue, providing a valuable resource and new insight for iron biologists and neuroscientists, alike.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-01-07
    Description: The aim of this study was to investigate the syntrophic methanogenesis from the perspective of energy transfer and competition. Effects of redox materials and redox potential on direct interspecies electron transfer (DIET) were examined through thermodynamic analysis based on the energy distribution principle. Types of redox materials could affect the efficiency of DIET via changing the total energy supply of the syntrophic methanogenesis. Decreasing system redox potential could facilitate DIET through increasing the total available energy. The competition between hydrogenotrophic methanogens and DIET methanogens might be the reason for the low proportion of the DIET pathway in the syntrophic methanogenesis. A facilitation mechanism of DIET was proposed based on the energy distribution. Providing sufficient electrons, inhibiting hydrogenotrophic methanogens and adding more competitive redox couples to avoid hydrogen generation might be beneficial for the facilitation of DIET.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-01-07
    Description: Highlights • NH4NO3, Tris-HCl, and NH4CH3COO are optimal buffers for use in SEC-ICP-MS metalloprotein analyses. • Optimal range of buffer concentration is 50–200 mM in SEC-ICP-MS. • 100 mM concentration reduces both protein column interactions and ICP-MS maintenance. • Dextran-based columns are best suited for the analysis of apo-copper proteins. The correct identification of the metalloproteins present in human tissues and fluids is essential to our understanding of the cellular mechanisms underpinning a host of health disorders. Separation and analysis of biological samples are typically done via size exclusion chromatography hyphenated with inductively coupled plasma-mass spectrometry (SEC-ICP-MS). Although this technique can be extremely effective in identification of potential metalloproteins, the choice of mobile phase may have a marked effect on results, results by adversely affecting metal-protein bonds of the metalloproteins of interest. To assess the choice of mobile phase on SEC-ICP-MS resolution and the resulting metalloproteome pattern, we analysed several different sample types (brain homogenate; Cu/Zn-superoxide dismutase (SOD1); a molecular weight standard mix containing ferritin (Ft), ceruloplasmin (Cp), cytochrome c (CytC), vitamin B12 (B12) and thyroglobulin (Tg) using six different mobile phase conditions (200 mM, pH 7.5 solutions of ammonium salts nitrate, acetate, and sulfate; HEPES, MOPS and Tris-HCl). Our findings suggest that ammonium nitrate, ammonium acetate and Tris-HCl are optimal choices for the mobile phase, with the specific choice being dependent on both the number of samples and method of detection that is hyphenated with separation. Furthermore, we found that MOPS, HEPES and ammonium sulfate mobile phases all caused significant changes to peak resolution, retention time and overall profile shape. MOPS and HEPES, in particular, produced additional Fe peaks that were not detected with any of the other mobile phases that were investigated. As well as this, MOPS and HEPES both caused significant concentration dependent matrix suppression of the internal standard.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-01-07
    Description: Symbiotic relationships range from parasitic to mutualistic, yet all endosymbionts face similar challenges, including evasion of host immunity. Many symbiotic organisms have evolved similar mechanisms to face these challenges, including manipulation of the host's transforming growth factor-beta (TGFβ) pathway. Here we investigate the TGFβ pathway in scelaractinian corals which are dependent on symbioses with dinoflagellates from the family Symbiodiniaceae. Using the Caribbean coral, Orbicella faveolata, we explore the effects of enhancement and inhibition of the TGFβ pathway on host gene expression. Following transcriptomic analyses, we demonstrated limited effects of pathway manipulation in absence of immune stimulation. However, manipulation of the TGFβ pathway significantly affects the subsequent ability of host corals to mount an immune response. Enhancement of the TGFβ pathway eliminates transcriptomic signatures of host coral immune response, while inhibition of the pathway maintains the response. This is, to our knowledge, the first evidence of an immunomodulatory role for TGFβ in a scelaractinian coral. These findings suggest variation in TGFβ signaling may have implications in the face of increasing disease prevelance. Our results suggest that the TGFβ pathway can modulate tradeoffs between symbiosis and immunity. Further study of links between symbiosis, TGFβ, and immunity is needed to better understand the ecological implications of these findings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-01-07
    Description: Highlights • Microplastics act as anthropogenic vectors of trace metals in freshwaters. • Adsorption capacity of microplastics is enhanced by biofilms but is not strong as natural substrates. • Biofilms alter the adsorption kinetics and mechanisms of trace metals onto microplastics. • Microplastics enhance exchange rates of trace metals between water and solid materials. • Anthropogenic substrate is necessary in evaluation of migration and fate of trace metals. Microplastics (MPs) are ubiquitous in freshwater environments, and represent an emerging anthropogenic vector for contaminants, such as trace metals. In this study, virgin expanded polystyrene (PS) particles were placed in a eutrophic urban lake and a reservoir serving as the resource of domestic water for 4 weeks, to develop biofilms on the surface. For comparison, natural adsorbents in the form of suspended particles and surficial sediment were also sampled from these waterbodies. The trace metal adsorption properties of anthropogenic (virgin and biofilm covered microplastics) and natural substrates were investigated and compared via batch adsorption experiments. The adsorption isotherms fitted the Langmuir model, revealed that biofilms could enhance the trace metal adsorption capacity of MPs. However, natural substrates still had a greater adsorption capacity. Biofilms also alter the adsorption kinetics of trace metals onto MPs. The process of adsorption onto virgin MPs was dominated by intraparticle diffusion, whereas film diffusion governed adsorption onto biofilm covered microplastics and natural substrates. The trace metal adsorption of all the substrates was significantly dependent on pH and ionic strength. The adsorption mechanisms were further analyzed by SEM-EDS and FT-IR. The enhancement of adsorption was mainly attributed to complexation with functional groups contained in the biofilms, including carboxyl, amino, and phenyl-OH. Collectively, biofilm development intensifies the role of MPs in the migration and fate of trace metals in freshwater, since it does not give MPs an edge over natural substrates in adsorption.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-01-07
    Description: Highlights • New insights of CH4 and CO2 hydrates are explored using MD strategy. • The bubble evolution appears to be important over dissociation process. • RDF, MSD, AOP, and diffusion coefficient can be used to examine hydrate stability. • The most stable structure of CH4 and CO2 molecules in the gas hydrate is found. • A promising match is noticed between the MD and literature findings. A comprehensive knowledge and precise estimation of the dynamic, structural, and thermodynamic characteristics of hydrates are needed to assess the stability of gas hydrates. Thermodynamic model and experimental studies can be utilized to compute the physical and dynamic properties of hydrate structures. The use of molecular dynamic (MD) simulation is a well-established approach in gas hydrate studies at the atomic level where the properties of interest are obtained from the numerical solution of Newtonian equations. The present work uses MD simulations by employing the constant temperature-constant pressure (NPT), constant temperature-constant volume (NVT) conditions, and the consistent valence force field (CVFF) to monitor the stability and decomposition of methane and carbon dioxide gas hydrates with different compositions. The effects of temperature and composition on the hydrate stability are investigated. In this study, we also compute the radial distribution function, mean square displacement, diffusion coefficient, lattice parameter, potential energy, dissociation enthalpy as well as the density of methane and carbon dioxide under various thermodynamic and process conditions. The formation of methane and carbon dioxide bubbles is studied to investigate bubble evolution during hydrate dissociation. The sizes of methane and carbon dioxide bubbles are not the same due to different solubility conditions of methane and carbon dioxide in liquid water. In addition, the influences of pressure and temperature on the lattice parameter and density of clathrate hydrates are discussed. The obtained results are consistent with previous theoretical and experimental findings, implying that the methodology followed in this work is reliable. The most stable arrangement of methane and carbon dioxide molecules in the gas hydrate is found. The insights/findings of this study might be useful to further understand detailed transport phenomena (e.g., molecular interactions, gas production rate, carbon dioxide replacement, and carbon dioxide capture) involved in the process of carbon dioxide injection into gas hydrate reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-01-07
    Description: Deep-ocean islands have long been associated with the generation of oceanic eddies in their wakes. However, their interaction with incoming eddies has seldom been considered. This study focuses on the characterization of background and locally generated mesoscale eddies in the Cabo Verde archipelago between 2003 and 2014. Special attention is given to the interaction of incoming eddies with the bathymetry of the islands, along with their impacts on the local generation of eddies. Island-induced wind-shear effects are also considered. In addition, some examples of the biological response to background and locally generated eddies are discussed. This is achieved by combining remote-sensing satellite observations for wind, sea surface height, and chlorophyll-a (Chla) surface concentrations. The results show that the interaction between incoming background eddies and the archipelago is a recurrent phenomenon, which results in eddy deflection, splitting, merging, intensification, and termination (sorted by highest to lowest number of occurrences). Local island-induced disturbances are also significant, mainly due to atmospheric effects. Such processes result in the generation of island-induced eddies and in wind-mediated eddy intensification and confinement, more often observed in the leeward group. Nonetheless, it is strongly suggested that many of the locally generated eddies are a direct product or by-product of the interaction of background eddies with the islands. With respect to the biological realm, a locally generated cyclonic eddy is observed to originate a pronounced phytoplankton bloom in the vicinity of the tallest island. Nonetheless, background eddies generated off the African coast are often associated with enhanced Chla concentrations when they intersect the archipelago. Such observations challenge the idea that local biological productivity in deep oceanic islands is exclusively driven by island-induced mechanisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-01-07
    Description: In an era of electronics, recovering the precious metal such as gold from ever increasing piles of electronic-wastes and metal-ion infested soil has become one of the prime concerns for researchers worldwide. Biological mining is an attractive, economical and non-hazardous to recover gold from the low-grade auriferous ore containing waste or soil. This review represents the recent major biological gold retrieval methods used to bio-mine gold. The biomining methods discussed in this review include, bioleaching, bio-oxidation, bio-precipitation, bio-flotation, bio-flocculation, bio-sorption, bio-reduction, bio-electrometallurgical technologies and bioaccumulation. The mechanism of gold biorecovery by microbes is explained in detail to explore its intracellular mechanistic, which help it withstand high concentrations of gold without causing any fatal consequences. Major challenges and future opportunities associated with each method and how they will dictate the fate of gold bio-metallurgy from metal wastes or metal infested soil bioremediation in the coming future are also discussed. With the help of concurrent advancements in high-throughput technologies, the gold bio-exploratory methods will speed up our ways to ensure maximum gold retrieval out of such low-grade ores containing sources, while keeping the gold mining clean and more sustainable.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    Wiley
    In:  In: Bergey's Manual of Systematics of Archaea and Bacteria. Wiley, Chichester, p. 1.
    Publication Date: 2022-01-14
    Description: Rho.do.mi.cro' bi.um. Gr. neut. n. rhodon the rose; Gr. masc. adj. micros small; Gr. masc. n. bios life; N.L. neut. n. Rhodomicrobium red microbe. Proteobacteria / Alphaproteobacteria / Rhizobiales / Hyphomicrobiaceae / Rhodomicrobium Most characteristic for Rhodomicrobium species is the polar cell growth and the characteristic vegetative growth cycle which includes the formation of peritrichously flagellated swarmer cells and nonmotile “mother cells,” which form prosthecae from one to several times the length of the mother cell. Daughter cells originate as spherical buds at the end of the prosthecae and may undergo differentiation in various ways. They are Gram-negative ovoid to elongate-ovoid bacteria belonging to the Alphaproteobacteria. Internal photosynthetic membranes are of the lamellar type. Photosynthetic pigments are bacteriochlorophyll a and carotenoids of the spirilloxanthin series. The predominant cellular fatty acid is C18:1, which comprises more than 80% of the membrane-bound fatty acids. Ubiquinone and rhodoquinone with 10 isoprene units are present, and the lipopolysaccharides are characterized by a glucosamine-containing, phosphate-free lipid A with amide-bound C16:0 3 OH. DNA G + C content (mol%): 61.8–63.8. Type species: Rhodomicrobium vannielii Duchow and Douglas 1949.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Wiley
    In:  In: Bergey's Manual of Systematics of Archaea and Bacteria. Wiley, Chichester, p. 1.
    Publication Date: 2022-01-17
    Description: Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Blas.to.chlo'ris. Gr. masc. n. blastos bud shoot; Gr. masc. adj. chloros green; N.L. fem. n. Blastochloris green bud shoot. Proteobacteria / Alphaproteobacteria / Rhizobiales / Hyphomicrobiaceae / Blastochloris Blastochloris species are anoxygenic phototrophic Alphaproteobacteria that have bacteriochlorophyll b in their photosynthetic reaction centers. Crystals of the photosynthetic reaction centers of Blastochloris viridis were the first that have been studied in high-resolution structure analysis at 3 Å resolution. Internal photosynthetic membranes are present as lamellae underlying and parallel to the cytoplasmic membrane. Cells are rod shaped to ovoid and exhibit polar growth, budding, and asymmetric cell division and form rosette-like cell aggregates. They are motile by means of subpolar flagella and stain Gram-negative. Straight-chain monounsaturated C18:1 is the predominant component of cellular fatty acids. Ubiquinones and menaquinones are present, and the lipopolysaccharides are characterized by a 2,3-diamino-2,3-deoxy-d-glucose (DAG)-containing, phosphate-free lipid A with amide-bound C14:0 3OH. DNA G + C content (mol%): 63.8–68.3. Type species: Blastochloris viridis (Drews and Giesbrecht 1966) Hiraishi 1997 (Rhodopseudomonas viridis Drews and Giesbrecht 1966).
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Wiley
    In:  In: Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB). , ed. by Brenner, D. J., Krieg, N. R. and Staley, J. T. Wiley, New York, USA, pp. 506-507. ISBN 978-1-118-96060-8
    Publication Date: 2022-01-17
    Description: Rho.do.mi.cro' bi.um. Gr. neut. n. rhodon the rose; Gr. masc. adj. micros small; Gr. masc. n. bios life; N.L. neut. n. Rhodomicrobium red microbe. Proteobacteria / Alphaproteobacteria / Rhizobiales / Hyphomicrobiaceae / Rhodomicrobium Most characteristic for Rhodomicrobium species is the polar cell growth and the characteristic vegetative growth cycle which includes the formation of peritrichously flagellated swarmer cells and nonmotile “mother cells,” which form prosthecae from one to several times the length of the mother cell. Daughter cells originate as spherical buds at the end of the prosthecae and may undergo differentiation in various ways. They are Gram‐negative ovoid to elongate‐ovoid bacteria belonging to the Alphaproteobacteria. Internal photosynthetic membranes are of the lamellar type. Photosynthetic pigments are bacteriochlorophyll a and carotenoids of the spirilloxanthin series. The predominant cellular fatty acid is C18:1, which comprises more than 80% of the membrane‐bound fatty acids. Ubiquinone and rhodoquinone with 10 isoprene units are present, and the lipopolysaccharides are characterized by a glucosamine‐containing, phosphate‐free lipid A with amide‐bound C16:0 3 OH. DNA G + C content (mol%): 61.8–63.8. Type species: Rhodomicrobium vannielii Duchow and Douglas 1949.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-04-07
    Description: In times of accelerating climate change, species are challenged to respond to rapidly shifting environmental settings. Yet, faunal distribution and composition are still scarcely known for remote and little explored seas, where observations are limited in number and mostly refer to local scales. Here, we present the first comprehensive study on Eurasian-Arctic macrobenthos that aims to unravel the relative influence of distinct spatial scales and environmental factors in determining their large-scale distribution and composition patterns. To consider the spatial structure of benthic distribution patterns in response to environmental forcing, we applied Moran’s eigenvector mapping (MEM) on a large dataset of 341 samples from the Barents, Kara and Laptev Seas taken between 1991 and 2014, with a total of 403 macrobenthic taxa (species or genera) that were present in ≥ 10 samples. MEM analysis revealed three spatial scales describing patterns within or beyond single seas (broad: ≥ 400 km, meso: 100–400 km, and small: ≤ 100 km). Each scale is associated with a characteristic benthic fauna and environmental drivers (broad: apparent oxygen utilization and phosphate, meso: distance-to-shoreline and temperature, small: organic carbon flux and distance-to-shoreline). Our results suggest that different environmental factors determine the variation of Eurasian-Arctic benthic community composition within the spatial scales considered and highlight the importance of considering the diverse spatial structure of species communities in marine ecosystems. This multiple-scale approach facilitates an enhanced understanding of the impact of climate-driven environmental changes that is necessary for developing appropriate management strategies for the conservation and sustainable utilization of Arctic marine systems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-05-31
    Description: One of the best-known greenhouse gases, CO2, has been increasing in the last decade of about 1.7%. To overcome the well-known global problems related to this gas, researchers of all over the world are working very hard in order to develop any strategies to seriously solve this issue. In this chapter, the authors focus their attention on one of the possible solutions to the problem: bacteria that are CO2 capture cells which have carried out this task since ancient times. In our work we make an excursus on all the biochemical processes of CO2 capture carried out by bacteria, ending with a detailed comparison of the most studied enzymes. One of the alternatives will be to genetically modify the organisms known to date to speed up their conversion process.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-07-24
    Description: The availability of dissolved iron (dFe) exerts an important control on primary production. Recent ocean observation programs have provided information on dFe in many parts of the ocean, but knowledge is still limited concerning the rates of processes that control the concentrations and cycling of dFe in the ocean and hence the role of dFe as a determinant of global primary production. We constructed a three-dimensional gridded dataset of oceanic dFe concentrations by using both observations and a simple model of the iron cycle, and estimated the difference of processes among the ocean basins in controlling the dFe distributions. A Green's function approach was used to integrate the observations and the model. The reproduced three-dimensional dFe distribution indicated that iron influx from aeolian dust and from shelf sediment were 7.6 Gmol yr and 4.4 Gmol yr in the Atlantic Ocean and 0.4 Gmol yr and 4.1 Gmol yr in the Pacific Ocean. The residence times were estimated to be 12.2 years in the Atlantic and 80.4 years in the Pacific. These estimates imply large differences in the cycling of dFe between the two ocean basins that would need to be taken into consideration when projecting future iron biogeochemical cycling under different climate change scenarios. Although there is some uncertainty in our estimates, global estimates of iron cycle characteristics based on this approach can be expected to enhance our understanding of the material cycle and hence of the current and future rates of marine primary production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...