ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.08. Volcanology  (4)
  • 04.06. Seismology  (1)
  • Creep observations and analysis
  • Software Engineering
  • Triticum aestivum
  • bic Book Industry Communication::J Society & social sciences::JN Education::JNF Educational strategies & policy
  • Elsevier  (3)
  • Springer  (2)
  • CLACSO
  • EGU - Copernicus
  • Nature PG
  • Wiley
  • Wiley-AGU
  • 2020-2024
  • 2015-2019  (5)
  • 2017  (5)
Collection
Keywords
Publisher
Years
  • 2020-2024
  • 2015-2019  (5)
Year
  • 1
    Publication Date: 2020-11-18
    Description: Volcanic crises are complex and especially challenging to manage. Volcanic unrest is characterised by uncertainty about whether an eruption will or will not take place, as well as its possible location, size and evolution. Planning is further complicated by the range of potential hazards and the variety of disciplines involved in forecasting and responding to volcanic emergencies. Effective management is favoured at frequently active volcanoes, owing to the experience gained through the repeated ‘testing’ of systems of communication. Even when plans have not been officially put in place, the groups involved tend to have an understanding of their roles and responsibilities and those of others. Such experience is rarely available at volcanoes that have been quiescent for several generations. Emergency responses are less effective, not only because of uncertainties about the volcanic system itself, but also because scientists, crisis directors, managers and the public are inexperienced in volcanic unrest. In such situations, tensions and misunderstandings result in poor communication and have the potential to affect decision making and delay vital operations. Here we compare experiences on communi- cating information during crises on volcanoes reawakening after long repose (El Hierro in the Canary Islands) and in frequent eruption (Etna and Stromboli in Sicily). The results provide a basis for enhancing commu- nication protocols during volcanic emergencies.
    Description: Published
    Description: 1-17
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: N/A or not JCR
    Keywords: Etna volcano ; Stromboli volcano ; Canary Islands ; volcanic emergencies ; communication ; volcanic crisis ; Procedures for Communications During Volcanic Emergencies ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-11
    Description: Telica volcano, in north-west Nicaragua, is a young stratovolcano of intermediate magma composition producing frequent Vulcanian to phreatic explosive eruptions. The Telica stratigraphic record also includes examples of (pre)historic sub-Plinian activity. To refine our knowledge of this very active volcano, weanalyzedmajor element composition and volatile content of melt inclusions fromsomestratigraphically significant Telica tephra deposits. These include: (1) the Scoria Telica Superior (STS) deposit (2000 to 200 years Before Present; Volcanic Explosive Index, VEI, of 2–3) and (2) pyroclasts from the post-1970s eruptive cycle (1982; 2011). Based on measurements with nanoscale secondary ion mass spectrometry, olivine-hosted (forsterite [Fo] N 80) glass inclusions fall into 2 distinct clusters: a group of H2O-rich (1.8–5.2 wt%) inclusions, similar to those of nearby Cerro Negro volcano, and a second group of CO2-rich (360–1700 μg/g CO2) inclusions (Nejapa, Granada). Model calculations show that CO2 dominates the equilibrium magmatic vapor phase in the majority of the primitive inclusions (XCO2 N 0.62–0.95). CO2, sulfur (generally b2000 μg/g) and H2O are lost to the vapor phase during deep decompression (P N 400 MPa) and early crystallization of magmas. Chlorine exhibits a wide concentration range (400–2300 μg/g) in primitive olivine-entrapped melts (likely suggesting variable source heterogeneity) and is typically enriched in the most differentiated melts (1000–3000 μg/g). Primitive, volatile-rich olivine-hosted melt inclusions (entrapment pressures, 5–15 km depth) are exclusively found in the largest-scale Telica eruptions (exemplified by STS in our study). These eruptions are thus tentatively explained as due to injection of deep CO2-rich mafic magma into the shallow crustal plumbing system. More recent (post-1970), milder (VEI 1–2) eruptions, instead, do only exhibit evidence for low-pressure (P b 50–60 MPa), volatile-poor (H2O b 0.3–1.7 wt%; CO2 b 23–308 μg/g) magmatic conditions. These are manifested as andesitic magmas, recording multiple magma mixing events, in pyroxene inclusions.Wepropose that post-1970s eruptions are possibly related to the high viscosity of resident magma in shallow plumbing system (b2.4 km), due to crystallization and degassing
    Description: Published
    Description: 131-148
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: Telica, Nicaragua ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-13
    Description: This study focuses on the interaction among deep volcanic/hydrothermal gases, groundwater and soil gases at Vulcano Island (Aeolian Archipelago, Italy). The chemical-physical parameters of the groundwater, the total dissolved inorganic carbon (TDIC) and the isotopic composition of the CO2 dissolved in groundwater are reported and discussed. Furthermore, a comparison between soil gases and groundwater indicates that groundwater and soil gases show the same qualitative information, giving a good overall picture of the main degassing zones of a volcanic system, whereas the soil gas discharge provides an evaluation of the mass released by the deep feeding system. This approach can be a useful tool both to characterize mixing and/or interaction processes among different sources and for a monitoring of degassing activity of a volcanic system.
    Description: Published
    Description: 116-119
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: Soil CO2 flux ; Dissolved gases ; Isotope composition of CO2 ; Groundwaters ; Vulcano Island ; 03.02. Hydrology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-24
    Description: In this study, we attempt to improve the standards in Probabilistic Seismic Hazard Assessment (PSHA) towards a time-dependent hazard assessment by using the most advanced methods and new databases for the Calabria region, Italy. In this perspective we improve the knowledge of the seismotectonic framework of the Calabrian region using geologic, tectonic, paleoseismological, and macroseismic information available in the literature. We built up a PSHA model based on the long-term recurrence behavior of seismogenic faults, together with the spatial distribution of historical earthquakes. We derive the characteristic earthquake model for those sources capable of rupturing the entire fault segment (full-rupture) independently with a single event of maximum magnitude. We apply the floating rupture model to those earthquakes whose location is not known sufficiently constrained. We thus associate these events with longer fault systems, assuming that any such earthquake can rupture anywhere within the particular fault system (floating partial-rupture) with uniform probability. We use a Brownian Passage Time (BPT) model characterized by mean recurrence, aperiodicity, or uncertainty in the recurrence distribution and elapsed time since the last characteristic earthquake. The purpose of this BPT model is to express the time-dependence of the seismic processes to predict the future ground motions in the region. Besides, we consider the influence on the probability of earthquake occurrence controlled by the change in static Coulomb stress (ΔCFF) due to fault interaction; to pursue this, we adopt a model built on the fusion of BPT model (BPT + ΔCFF). We present our results for both time-dependent (renewal) and time-independent (Poisson) models in terms of Peak Ground Acceleration (PGA) maps for 10% probability of exceedance in 50 years. The hazard may increase by more than 20% or decrease by as much as 50% depending on the different occurrence model. Seismic hazard in terms of PGA decreases about 20% in the Messina Strait, where a recent major earthquake took place, with respect to traditional time-independent estimates. PGA near the city of Cosenza reaches ~ 0.36 g for the time-independent model and 0.40 g for the case of the time-dependent one (i.e. a 15% increase). Both the time-dependent and time-independent models for the period of 2015–2065 demonstrate that the city of Cosenza and surrounding areas bear the highest seismic hazard in Calabria.
    Description: Published
    Description: 2497–2524
    Description: 5T. Modelli di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Probabilistic seismic hazard maps ; Time-dependent hazard ; Fault-based model ; Fault interaction ; Seismogenic sources ; Calabria-Italy ; 04.07. Tectonophysics ; 04.06. Seismology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-09
    Description: The carbon isotopic composition of dissolved C-bearing species is a powerful tool to discriminate the origin of carbon in thermal waters from volcanic and hydrothermal systems. However, the δ13C values of dissolved CO2 and TDIC (Total Dissolved Inorganic Carbon) are often different with respect to the isotopic signature that characterizes the potential carbon primary sources, i.e. deep hydrothermal reservoirs, magmatic gases and organic activity. The most commonly invoked explanation for such isotopic values is related to mixing processes between deep and shallow end-members. Nevertheless, experimental and empirical investigations demonstrated that isotopic fractionation due to secondary processes acting on the uprising fluids from the hydrothermal reservoirs is able to reproduce the measured isotopic values. In this paper,we investigated the chemistry of thermalwaters, collected at Campi Flegrei and Vulcano Island (southern Italy),whose origin is related to interaction processesamongmagmatic gases, meteoric water, seawater and hosting rocks. A special focus was dedicated to the δ13C values of dissolved CO2 (δ13CCO2(aq)) and total dissolved inorganic carbon (δ13CTDIC). The δ13CCO2(aq) and δ13CTDIC values in the water samples fromboth these systems ranged from(i) those measured in fumarolic gases, likely directly related to the deep hydrothermal-magmatic reservoir, and (ii) those typically characterizing biogenic CO2, i.e. produced by microbially-driven degradation of organic matter. A simple mixingmodel of the two end-members, apparently explaining these intermediate carbon isotopic values, contrastswith the chemical composition of the dissolved gases. On the contrary, isotopic fractionation due to secondary processes, such as calcite precipitation, affecting hydrothermal fluids during their underground circulation, seems to exhaustively justify both the chemical and isotopic data. If not recognized, these processes, which frequently occur in volcanic and hydrothermal systems, may lead to an erroneous interpretation of the carbon source, causing an underestimation of the contribution of the hydrothermal/magmatic fluids to the dissolved carbon species. These results pose extreme caution in the interpretation of intermediate δ13CCO2(aq) and δ13CTDIC values for the assessment of the carbon budget of hydrothermal- volcanic systems.
    Description: Published
    Description: 46–57
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Keywords: Thermal waters ; Carbon isotopes ; Dissolved CO2 ; TDIC ; Volcanic-hydrothermal systems ; Secondary fractionation processes ; 04.08. Volcanology ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...