ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology
  • General Chemistry
  • Inorganic Chemistry
  • Life Sciences (General)
  • Organic Chemistry
  • 2015-2019  (104)
  • 2000-2004
  • 1985-1989
  • 2016  (104)
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-07-08
    Description: Author: Phil Szuromi
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-07-08
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-05-27
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-07-15
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-07-22
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-06-24
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-07-01
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-06-10
    Description: Transition metal–catalyzed arylation of C–H bonds has been intensively studied for forming C–C bonds in complex-molecule synthesis (1). An acidic C–H bond (for example, one near a double bond or an O atom) is cleaved to form a carbon–metal bond, which then couples to arene. Many of these organometallic species can be generated catalytically. Much less research has dealt with unreactive nonacidic sp3 C–H bond functionalization (3). On page 1304 of this issue, Shaw et al. (3) report an efficient and general method that focuses on arylation of sp3 C–H bonds at carbon atoms adjacent to amines and to cyclic ethers by combining nickel, visible-light photoredox, and hydrogen-atom transfer (HAT) catalysis. Author: Corinne Fruit
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-06-10
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-09-09
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-09-07
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-05-20
    Description: Antibiotics have been taking it on the chin lately. Not only has resistance to the anti-infective medications been growing, but drug companies have been dropping antibiotic research programs, because the drugs are difficult and expensive to make. Now, new help is on the way. Researchers report this week that they've found a way to churn out new members of one of the most widely used classes of antibiotics. These drugs, called macrolides, were first developed in the 1950s and now represent a major bulwark against infections. A bevy of possible new drugs in this class could lead to new weapons against antibiotic-resistant infections, and possibly save millions of lives. Author: Robert F. Service
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-04-22
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-04-29
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-05-13
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-04-01
    Description: The SN2 nucleophilic substitution reaction, X− + RY → XR + Y−, is a paradigm reaction in organic chemistry (1). The modern understanding of the SN2 reaction mechanism is based on work of Hughes and Ingold (2), who proposed that the nucleophile (X−) approaches the carbon atom that bears the leaving group (Y−). As a result, the bond between the carbon atom and the leaving group becomes weakened. As this bond breaks and a new bond forms between the nucleophile and the carbon atom, the configuration of the carbon atom is inverted. Analyses of gas-phase reaction rates led to the suggestion of a potential energy surface (PES) with two wells connected by a central barrier transition state (3). Electronic structure calculations have confirmed this picture for some SN2 reactions (4), but recent studies have shown that the actual reaction dynamics may be considerably more complex (see the figure) (5–8). Authors: Jing Xie, William L. Hase
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-04-01
    Description: Author: Julia Fahrenkamp-Uppenbrink
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-11-18
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-11-18
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-09-09
    Description: Author: Jake Yeston
    Keywords: Inorganic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-12-09
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-10-21
    Description: Author: Jake Yeston
    Keywords: Organic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2016-11-11
    Description: Author: Jake Yeston
    Keywords: Inorganic Chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-26
    Description: Future long duration missions outside the protection of the Earth's magnetosphere, or unshielded exposures to solar particle events, achieves total doses capable of causing cancellous bone loss. Cancellous bone loss caused by ionizing radiation occurs quite rapidly in rodents: Initially, radiation increases the number and activity of bone-resorbing osteoclasts, followed by decrease in bone forming osteoblast cells. Here we report that Dried Plum (DP) diet completely prevented cancellous bone loss caused by ionizing radiation (Figure 1). DP attenuated marrow expression of genes related to bone resorption (Figure 2), and protected the bone marrow-derived pre-osteoblasts ex vivo from total body irradiation (Figure 3). DP is known to inhibit resorption in models of aging and ovariectomy-induced osteopenia; this is the first report that dietary DP is radioprotective.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28133 , NASA Human Research Program Investigators’ Workshop (HRP IWS 2016) ; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-19
    Description: Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing radiation.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN27437 , Biophysical Society Annual Meeting; Feb 27, 2016 - Mar 02, 2016; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-19
    Description: This status report corresponds to two studies tied to an animal experiment being executed at the University of California Davis (Charles Fuller's laboratory). The animal protocol uses the well-documented rat hindlimb suspension (HLS) model, to examine the relationship between cephalic fluid shifts and the regulation of intracranial (ICP) and intraocular (IOP) pressures as well as visual system structure and function. Long Evans rats are subjected to HLS durations of 7, 14, 28 and 90 days. Subgroups of the 90-day animals are studied for recovery periods of 7, 14, 28 or 90 days. All HLS subjects have age-matched cage controls. Various animal cohorts are planned for this study: young males, young females and old males. In addition to the live measures (ICP by telemetry, IOP and retinal parameters by optical coherence tomography) which are shared with the Fuller study, the specific outcomes for this study include: -Gene expression analysis of the retina -Histologic analysis - Analysis of the microvasculature of retina flat mounts by NASA's VESsel GENeration Analysis (VESGEN) Software. To date, the young male and female cohorts are being completed. Due to the need to keep technical variation to a minimum, the histologic and genomic analyses have been delayed until all samples from each cohort are available and can be processed in a single batch per cohort. The samples received so far correspond to young males sacrificed at 7,14, 28 and 90 days of HLS and at 90 days of recovery; and from young females sacrificed at 7, 14 and 28 of HLS. A complementary study titled: "A gene expression and histologic approach to the study of cerebrospinal fluid (CSF) production and outflow in hindlimb suspended rats" seeks to study the molecular components of CSF production and outflow modulation as a result of HLS, bringing a molecular and histologic approach to investigate genome wide expression changes in the arachnoid villi and choroid plexus of HLS rats compared to rats in normal posture.
    Keywords: Life Sciences (General)
    Type: JSC-CN-34661 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-19
    Description: The translational Vestibulo-Ocular Reflex (tVOR) is an important otolith-mediated response to stabilize gaze during natural locomotion. One goal of this study was to develop a measure of the tVOR using a simple hand-operated chair that provided passive vertical motion. Binocular eye movements were recorded with a tight-fitting video mask in ten healthy subjects. Vertical motion was provided by a modified spring-powered chair (swopper.com) at approximately 2 Hz (+/- 2 cm displacement) to approximate the head motion during walking. Linear acceleration was measured with wireless inertial sensors (Xsens) mounted on the head and torso. Eye movements were recorded while subjects viewed near (0.5m) and far (approximately 4m) targets, and then imagined these targets in darkness. Subjects also provided perceptual estimates of target distances. Consistent with the kinematic properties shown in previous studies, the tVOR gain was greater with near targets, and greater with vision than in darkness. We conclude that this portable chair system can provide a field measure of otolith-ocular function at frequencies sufficient to elicit a robust tVOR.
    Keywords: Life Sciences (General)
    Type: JSC-CN-34422 , Association for Research in Otolaryngology; Feb 20, 2016 - Feb 24, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-20
    Description: Established research has illustrated that moderate exposure to stress in the womb influences both adult phonotype and genotype for several physiological pathways, especially in males. Proposed explanations include adaptions made by the fetus resulting from a limited supply of nutrients, referred to as the thrifty phenotype. In this study, we examine this fetal programming effect on the appetite control and energy expenditure pathways in prenatally stressed adult male offspring. Subjects were male rats born from time-mated female rats exposed to unpredictable, variable prenatal stress (UVPS) throughout gestation. An analysis of the adult male rat offspring genetic expression of epididymal fat pads and the plasma concentrations of hormones involved in appetite control and energy expenditure pathways showed a significantly diminished expression of leptin and adiponectin compared to unstressed controls. Leptin and adiponectin are both major hormones involved in the appetite control and energy expenditure pathways, with leptin regulating energy balance due to its function as an inhibitor of hunger, and adiponectin modulating glucose levels and fatty acid breakdown. We observed higher leptin concentrations within the prenatally stressed male plasma, and lower expression of leptin (OB) and adiponectin (ADIPOQ) genes from the epididymal fat pads. We suggest that elevated leptin in the plasma elicited a negative feedback effect on OB expression levels, decreasing their quantification compared to control animals. Further analysis will include plasma quantification of insulin and glucose, as well as expression of ghrelin, a peptide which acts on the central nervous system and the bodys perception of hunger.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN33060 , International Society for Development Psychobiology (ISDP) Annual Meeting; Nov 09, 2016 - Nov 11, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-20
    Description: From a micro-biology perspective, directed evolution is a technique that uses controlled environmental pressures to select for a desired phenotype. Directed evolution has the distinct advantage over rational design of not needing extensive knowledge of the genome or pathways associated with a microorganism to induce phenotypes. However, there are currently limitations to the applicability of this technique including being time-consuming, error-prone, and dependent on existing assays that may lack selectivity for the given phenotype. The AADEC (Autonomous Adaptive Directed Evolution Chamber) system is a proof-of-concept instrument to automate and improve the technique such that directed evolution can be used more effectively as a general bioengineering tool. A series of tests using the automated system and comparable by-hand survival assay measurements have been carried out using UV-C radiation and Escherichia coli cultures in order to demonstrate the advantages of the AADEC versus traditional implementations of directed evolution such as random mutagenesis. AADEC uses UV-C exposure as both a source of environmental stress and mutagenesis, so in order to evaluate the UV-C tolerance obtained from the cultures, a manual UV-C exposure survival assay was developed alongside the device to compare the survival fractions at a fixed dosage. This survival assay involves exposing E. coli to UV-C radiation using a custom-designed exposure hood to control the flux and dose. Surviving cells are counted then transferred to the next iteration and so on for several iterations to calculate the survival fractions for each exposure iteration.This survival assay primarily serves as a baseline for the AADEC device, allowing quantification of the differences between the AADEC system over the manual approach. The primary data of comparison is survival fractions; this is obtained by optical density and plate counts in the manual assay and by optical density growth curve fits pre- and post-exposure in the automated case. This data can then be compiled to calculate trends over the iterations to characterize increasing UV-C resistance of the E.coli strains. The observed trends are statistically indistinguishable through several iterations from both sources.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37497 , American Geophysical Union Fall Meeting (AGU 2016); Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-19
    Description: Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hypergravity demonstrated significantly increased (8-15) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported the same outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes using our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats. Time-mated female rats were exposed throughout their 22-day pregnancy to UVPS consisting of white noise, strobe light, and tube restraint individually once per day on an unpredictable schedule for 15, 30 or 60 min. To control for potential changes in postnatal maternal care, newborn pups were fostered to non-manipulated, newly parturient dams. At 90-days of age, we analyzed plasma concentrations of hormones involved in appetite control and energy expenditure (leptin and adiponectin), and quantified expression of key genes in epididymal fat pads harvested from adult male offspring and controls. Leptin regulates energy balance by inhibiting hunger, and adiponectin modulates glucose levels and fatty acid breakdown. Our findings indicate significantly elevated plasma leptin concentrations and reduced expression of epididymal fat leptin (OB) and adiponectin (ADIPOQ) genes compared to controls. Analyses presently underway include quantification of plasma insulin and glucose, and the expression of ghrelin, a peptide that acts on the central nervous system and the body's perception of hunger. Collectively, these findings will further understanding of the consequences of UVPS on body weight regulation and metabolism, and provide further insight into the effect of gravity modulation on mammalian fetal development.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN33631 , Annual Meeting American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36807 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hyper-gravity demonstrated significantly increased (8-15%) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported a similar outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes and the plasma of animals treated with our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36744 , Annual Meeting of the American Society of Gravitational and Space Research (ASGSR) 2016; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1ap21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23 decrease in bone fraction (p0.005) and 11.91 decrease in bone thickness (p0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n10) and vivarium controls (n10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36752 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: During adaptation to the microgravity environment, adult mammals experience stress mediated by the Hypothalamic-Pituitary-Adrenal axis. In our previous studies of pregnant rats exposed to 2-g hypergravity via centrifugation, we reported decreased corticosterone and increased body mass and leptin in adult male, but not female, offspring. In this study, we utilized Unpredictable Variable Prenatal Stress to simulate the stressors of spaceflight by exposing dams to different stressors. Stress response modulation occurs via both positive and negative feedback in the hypothalamus, anterior pituitary gland, and adrenal cortex resulting in the differential release of corticosterone (CORT), a murine analog to human cortisol.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36746 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group phenotype. This analysis contributes to the first NASA long-duration study of rodent behavior, providing evidence for the emergence of a distinctive, organized group behavior unique to the weightless space environment.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36632 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photo-assimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be up-regulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS (Auxin-Regulated Gene Involved in Organ Size)-like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm up-regulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36715 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: JSC-CN-37455 , International Astronautical Congress (IAC); Sep 26, 2016 - Sep 30, 2016; Guadalajara; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: Information on nest temperatures of the American Alligator (Alligator mississippiensis) constructed in the wild is limited. Nesting temperatures during a critical thermal sensitive period determine the sex of alligators and are therefore critical in establishing the sex biases in recruitment efforts of alligators within a given community. Nest components, varying environmental conditions, and global warming could have a significant impact on nest temperatures, thus affecting future generations of a given population. One hundred and seventy four programmable thermistors were inserted into fifty eight nests from 2010 through 2015 nesting cycles. Three thermistors were placed inside each nest cavity (one on top of the eggs, one in the middle of the eggs, and one at the bottom of the clutch of the eggs) to collect temperature profiles in the incubation chamber and throughout the entire incubation period. One thermistor was also placed near or above these nests to obtain an ambient air temperature profile. Once retrieved, data from these thermistors were downloaded to examine temperature profiles throughout the incubation period as well as during the period of sexual determination. These data would help establish survival rates related to nest temperature and predict sex ratio of recruited neonates at the Kennedy Space Center. Over three million temperatures have been recorded since 2010 for the alligator thermistor study giving us insight to the recruitment efforts found here. Precipitation was the largest influence on nesting temperatures outside of daily photoperiod, with immediate changes of up to eight degrees Celsius.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN31423 , Working Meeting of the Crocodile Specialist Group; May 23, 2016 - May 27, 2016; Sakuza; South Africa
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: Growing vegetable crops in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop yield, there is also recent interest in analyzing the subtle effects of additional wavelengths on plant growth. For instance, since plants often look purplish gray under red and blue LEDs, the addition of green light allows easy recognition of disease and the assessment of plant health status. However, it is important to know if wavelengths outside the traditional red and blue wavebands have a direct effect on enhancing or hindering the mechanisms involved in plant growth. In this experiment, a comparative study was performed on two short cycle crops of red romaine lettuce (Lactuca sativa cv. "Outredgeous") and radish (Raphanus sativa cv. 'Cherry Bomb'), which were grown under two light treatments. The first treatment being red (630 nm) and blue (450 nm) LEDs alone, while the second treatment consisted of daylight tri-phosphor fluorescent lamps (CCT approximately 5000 K) at equal photosynthetic photon flux (PPF). The treatment effects were evaluated by measuring the fresh biomass produced, plant morphology and leaf dimensions, leaf chlorophyll content, and adenosine triphosphate (ATP) within plant leaf/storage root tissues.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN30693 , International Symposium on Light in Horticulture; May 22, 2016 - May 26, 2016; East Lansing, MI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-12
    Description: The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-12
    Description: A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Long duration space exploration will require the capability for crews to grow their own food. Growing food is desirable from a mass-efficiency standpoint, as it is currently not feasible to carry enough prepackaged food on spacecraft to sustain crews for long duration missions. Nutritionally, fresh produce provides key nutrients that are not preserved well in pre-packaged meals (e.g. vitamins C and K) and those that are able to counteract detrimental effects of space flight, such as antioxidants to combat radiation exposure and lutein for decreasing macular degeneration. Additionally, there are significant psychological benefits of maintaining gardens, one being an indicator for the passage of time.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN33920
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-19
    Description: International Space Station (ISS) assembly complete ushered a new era focused on utilization of this state-of-the-art orbiting laboratory to advance science and technology research in a wide array of disciplines, with benefits to Earth and space exploration. ISS enabling capability for research in cellular and molecular biology includes equipment for in situ, on-orbit analysis of biomolecules. Applications of this growing capability range from biomedicine and biotechnology to the emerging field of Omics. For example, Biomolecule Sequencer is a space-based miniature DNA sequencer that provides nucleotide sequence data for entire samples, which may be used for purposes such as microorganism identification and astrobiology. It complements the use of WetLab-2 SmartCycler"TradeMark", which extracts RNA and provides real-time quantitative gene expression data analysis from biospecimens sampled or cultured onboard the ISS, for downlink to ground investigators, with applications ranging from clinical tissue evaluation to multigenerational assessment of organismal alterations. And the Genes in Space-1 investigation, aimed at examining epigenetic changes, employs polymerase chain reaction to detect immune system alterations. In addition, an increasing assortment of tools to visualize the subcellular distribution of tagged macromolecules is becoming available onboard the ISS. For instance, the NASA LMM (Light Microscopy Module) is a flexible light microscopy imaging facility that enables imaging of physical and biological microscopic phenomena in microgravity. Another light microscopy system modified for use in space to image life sciences payloads is initially used by the Heart Cells investigation ("Effects of Microgravity on Stem Cell-Derived Cardiomyocytes for Human Cardiovascular Disease Modeling and Drug Discovery"). Also, the JAXA Microscope system can perform remotely controllable light, phase-contrast, and fluorescent observations. And upcoming confocal microscopy capability will allow for optical sectioning of biological tissues to determine microanatomical localization of biomarkers. Furthermore, NASA's geneLAB effort addresses integration of genomic, epigenomic, transcriptomic, proteomic and metabolomic datasets, by applying an innovative open source science platform for multi-investigator high throughput utilization of the ISS. In sum, the expanding ISS capability for analysis of biomolecules is enabling innovative research in a broad spectrum of areas such as cellular and molecular biology, biotechnology, tissue engineering, biomedicine, and Omics, providing manifold benefits for humanity.
    Keywords: Life Sciences (General)
    Type: JSC-CN-36567 , Annual Meeting of the American Society for Gravitational and Space Research; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-19
    Description: The NASA Decadal Survey (2011) emphasized the importance of long duration rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware and science capabilities supporting mouse studies in space were developed at Ames Research Center. Here we present a video-based behavioral analysis of ten C57BL6 female adult mice exposed to a total of 37 days in space compared with identically housed Ground Controls. Flight and Control mice exhibited the same range of behaviors, including feeding, drinking, exploratory behavior, grooming, and social interactions. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another. Overall activity was greater in Flt as compared to GC mice. Spontaneous, organized circling or race-tracking behavior emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. I will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral phenotyping revealed important insights into the overall health and adaptation of mice to the space environment, and identified unique behaviors that can guide future habitat development and research on rodents in space.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN32780 , Life in Space for Life on Earth 2016; Jun 05, 2016 - Jun 10, 2016; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: After spaceflight, the number of immune cells is reduced in humans. In other research models, including Drosophila, not only is there a reduction in the number of plasmatocytes, but expression of immune-related genes is also changed after spaceflight. These observations suggest that the immune system is compromised after exposure to microgravity. It has also been reported that there is a change in virulence of some bacterial pathogens after spaceflight. We recently observed that samples of gram-negative S. marcescens retrieved from spaceflight is more virulent than ground controls, as determined by reduced survival and increased bacterial growth in the host. We were able to repeat this finding of increased virulence after exposure to simulated microgravity using the rotating wall vessel, a ground based analog to microgravity. With the ground and spaceflight samples, we looked at involvement of the Toll and Imd pathways in the Drosophila host in fighting infection by ground and spaceflight samples. We observed that Imd-pathway mutants were more susceptible to infection by the ground bacterial samples, which aligns with the known role of this pathway in fighting infections by gram-negative bacteria. When the Imd-pathway mutants were infected with the spaceflight sample, however, they exhibited the same susceptibility as seen with the ground control bacteria. Interestingly, all mutant flies show the same susceptibility to the spaceflight bacterial sample as do wild type flies. This suggests that neither humoral immunity pathway is effectively able to counter the increased pathogenicity of the space-flown S. marcescens bacteria.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36470 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR) 2016; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: Ionizing radiation-induced bone loss appears to be a two-stage process: first an early increase in pro-resorption cytokines and increased bone resorption by osteoclasts, followed by a decrease in bone formation by osteoblasts. This results in a net loss of mass in mineralized bone tissue. The molecular mechanisms underlying the imbalance in bone remodeling caused by exposure to radiation are not fully understood. We hypothesized that the radiation-induced rise in reactive oxygen species (ROS) damages osteoblast progenitors, leading to a decrease in number and activity of differentiated progeny. We have shown that a diet high in antioxidant capacity prevents radiation-induced bone loss in adult mice (Schreurs et al. 2016) by reducing the early increase in pro-resotption cytokines. Here, we investigated the damaging effects of radiation exposure on cells in the osteoblast lineage, testing if addition of the exogenous antioxidant enzyme, superoxide dismutase (SOD) can mitigate radiation damage. Osteoprogenitors were grown in vitro from the marrow of 16wk old, male C57Bl/6 mice. Cells were irradiated 3 days after plating (day 0) with either gamma (Cs-137, 0.1-5Gy) or iron (Fe-56, 600 MeV/n, 0.5-2Gy), and then grown until day 10. SOD or vehicle was added 2 hours before irradiation (SOD at 200U/ml), twice a day and up to day 5, for a total of 2 days treatment. Cell behavior was assessed by: (a) colony number (counted on day 7), (b) DNA content (surrogate for cell number) to assess cell growth (percent change between day 3 and day 10) and (c) alkaline phosphatase activity (osteoblast differentiation marker). Results show that SOD protected cells from the adverse effects of low-LET ionizing radiation, but not high-LET radiation. These novel results provide an interesting platform to explore further diverse effects and damages caused by low-LET and high-LET, pointing toward different mechanisms and possible intervention strategies for radiation-induced bone loss.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36265 , American Society for Cell Biology (ASCB) Meeting 2016; Dec 03, 2016 - Dec 07, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: The NASA Decadal Survey (2011), Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era, emphasized the importance of expanding NASA life sciences research to long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities supporting mouse studies in space were developed at NASA Ames Research Center. The first flight experiment carrying mice, Rodent Research Hardware and Operations Validation (Rodent Research-1), was launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4, exposing the mice to a total of 37 days in space. Ground control groups were maintained in environmental chambers at Kennedy Space Center. Mouse health and behavior were monitored for the duration of the experiment via video streaming. Here we present behavioral analysis of two groups of five C57BL/6 female adult mice viewed via fixed camera views compared with identically housed Ground Controls. Flight (Flt) and Ground Control (GC) mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another, and they quickly learned to anchor themselves using tails and/or paws. Overall activity was greater in Flt as compared to GC mice, with spontaneous ambulatory behavior including the development of organized circling or race-tracking behavior that emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. We quantified the bout frequency, duration and rate of circling with respect to characteristic behaviors observed in the varying stages of the progressive development of circling: flipping utilizing two sides of the habitat, circling, multi-lap circling and group-circling. Once begun, mice did not regress to flipping behavior or other previous behavioral milestones for the remainder of flight. An overall upward trend in circling frequency, rate, duration, participation, and organization was observed over the course of the 37-day spaceflight experiment. In this presentation, we will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral analyses provide important insights into the overall health and adaptation of mice to the space environment, and identify unique behaviors and social interactions to guide future habitat development and research on rodents in space.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28255 , 2016 Human Research Program Investigators Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: Living organisms control their cellular biological clocks to maintain functional oscillation of the redox cycle, also called the "metabolic cycle" or "respiratory cycle". Organization of cellular processes requires parallel processing on a synchronized time-base. These clocks coordinate the timing of all biochemical processes in the cell, including energy production, DNA replication, and RNA transcription. When this universal time keeping function is perturbed by exogenous induction of reactive oxygen species (ROS), the rate of metabolism changes. This causes oxidative stress, aging and mutations. Therefore, good temporal coordination of the redox cycle not only actively prevents chemical conflict between the reductive and oxidative partial reactions; it also maintains genome integrity and lifespan. Moreover, this universal biochemical rhythm can be disrupted by ROS induction in vivo. This in turn can be achieved by blocking the electron transport chain either endogenously or exogenously by various metabolites, e.g. hydrogen sulfide (H2S), highly diffusible drugs, and carbon monoxide (CO). Alternatively, the electron transport in vivo can be attenuated via a coherent or interfering transfer of energy from exogenous ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) fields, suggesting that-on Earth-such ambient fields are an omnipresent (and probably crucially important) factor for the time-setting basis of universal biochemical reactions in living cells. Our work demonstrated previously un-described evidence for quantum effects in biology by electromagnetic coupling below thermal noise at the universal electron transport chain (ETC) in vivo.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28270 , 2016 Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: Our overarching goal is to discover how the structure of the genotypic space of RNA polymers affects their ability to evolve. Specifically, we will address several fundamental questions that, so far, have remained largely unanswered. Was the genotypic space explored globally or only locally? Was the outcome of early evolution predictable or was it, instead, govern by chance? What was the role of neutral mutations in the evolution of increasing complex systems? As the first step, we study the problem in the example of RNA ligases. We obtain the complete, empirical fitness landscapes for short ligases and examine possible evolutionary paths for RNA molecules that are sufficiently long to preclude exhaustive search of the genotypic space.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36547 , NoR HGT & LUCA Conference; Nov 03, 2016 - Nov 04, 2016; Milton, Keynes; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-20
    Description: The conditions encountered during spaceflight place unique stresses on physiological processes that oftentimes lead to deleterious effects. Identifying these effects and better understanding their molecular mechanisms will be essential in enabling long-duration space travel by humans. Studies in Saccharomyces cerevisiae suggest an aging model that involves the accumulation of toxic components, such as excess extrachromosomal rDNA and damaged mitochondria. This build-up then limits the replicative lifespan (the number of times a mother cell can form a new daughter cell). Remarkably, each new daughter cell emerges completely renewed from the senescing mother cell through an asymmetric distribution of aging determinants via mechanisms that are intricately linked to the budding process. When exposed to simulated microgravity, S. cerevisiae undergoes an altered budding process characterized by a breakdown in bud scar polarity. Because the budding process is critical to replicative aging, we hypothesize that the replicative lifespan may be affected by microgravity as well. To measure relative replicative aging rates, we will construct a strain of yeast in which daughter cells are inviable. In this strain, the Cre recombinase will be expressed under the control of the daughter cell specific promoter, pSCW11, and LoxP sites will be inserted at both flanks of two essential genes involved in the cell cycle, UBC9 and CDC20, using a CRISPRCas9 system. Thus, UBC9 and CDC20 will be excised from daughter cells, leading to cell-cycle arrest and eventual death. To mimic the low shear conditions encountered in microgravity, this strain will be grown in rotating wall vessels. The number of viable mother cells will be monitored over time, and this rate will be compared to cells growing in standard conditions. Because asymmetric division also occurs in mammalian cells (e.g. in neural stem cells), this study will provide insight into how cellular aging rates may change in mammals and will help empower humans to thrive in space for extended and even indefinite periods of time.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN34927 , Yale UnderGrad Research Showcase; 9 Sept. 2016; New Haven, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-20
    Description: Cell and animal studies conducted onboard the International Space Station and formerly on Shuttle flights have provided groundbreaking data illuminating the deleterious biological response of bone to mechanical unloading. However the intercellular communicative mechanisms associated with the regulation of bone synthesis and bone resorption cells are still largely unknown. Connexin-43 (CX43), a gap junction protein, is hypothesized to play a significant role in osteoblast and osteocyte signaling. The purpose of this investigation was to evaluate within a novel three-dimensional microenvironment how the osteocyte-osteoblast gap-junction expression changes when cultures are exposed to exaggerated mechanical load. MLO-Y4 osteocyte-like cells were cultured on a 3D-Biotek polystyrene insert and placed in direct contact with an MC3T3-E1 pre-osteoblast co-cultured monolayer and exposed to 48 h of mechanical stimulation (pulsatile fluid flow (PFF) or monolayer cyclic stretch (MCS)) then evaluated for viability, proliferation, metabolism, and CX43 expression. Mono-cultured MLO-Y4 and MC3T3-E1 control experiments were conducted under PFF and MCS stimulation to observe how strain application stimuli (PFF cell membrane shear or MCS cell focal adhesionattachment loading) initiates different signaling pathways or downstream regulatory controls. TotalLive cell count, viability and metabolic reduction (Trypan Blue, LIVEDead and Alamar Blue analysis respectively) indicate that mechanical activation of MC3T3-E1 cells inhibits proliferation while maintaining an average 1.04E4 reductioncell metabolic rate, *p0.05 n4. MLO-Y4s in monolayer culture increase in number when exposed to MCS loading but the percent of live cells within the population is low (46.3 total count, *p0.05 n4), these results may indicate an apoptotic signaling cascade. PFF stimulation of the three-dimensional co-cultures elicits a universal increase in CX43 in MLO-Y4 and MC3T3-E1 cells, illustrated by immunohistological observation. Increased CX43 expression is also observed with the three-dimensional co-cultures with MC3T3-E1 MCS stimulation but the increased gap-junction protein presence was limited to the osteoblast-osteocyte interface region. Previously reported PCR evaluation of osteogenic markers further corroborate that the co-cultured populations communicative networks play a role in translating mechanical signals to molecular messaging. These findings suggests an osteocyte-osteoblast gap-junction signaling feedback mechanism may regulate mechanotransduction of apoptosis initiation and transcription of cytokine signaling proteins responsible for stem cell niche recruitment much more directly than previously believed.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36753 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-20
    Description: Spaceflight has deleterious effects on skeletal structure and function, specifically causingprofound loss in bone mass, density, and strength, as well as changes in expression levels of genes related to oxidative stress [Hyeon et al., Smith et al.]. It is known that bone resorption remains elevated after spaceflight and that bone density and strength fail to recover completely even years following spaceflight [Smith et al., Carpenter et al.]. However, our current understanding of the signaling pathways and molecular mechanisms that control bone loss and that link oxidative stress, bone resorption, and mechanical unloading of skeletal tissue is incomplete. Here, we aim to examine skeletal responses to simulated long-duration spaceflight on bone loss using the ground-based hindlimb unloading (HU) model in adult (9 months old) male rats. We hypothesized that simulated microgravity leads to the temporal regulation of oxidative-defense genes and pro-osteoclastogenic factors, showing progression and eventual plateau during long-term unloading, and that transient changes at early timepoints in these pathways precede skeletal adaptations to long-duration unloading. We will identify oxidativestress and bone resorption-related changes using global gene expression analysis (Affymetrix arrays) for both acute (within 14 days) and long-term timepoints (90 days). We will also use quantitative PCR to examine changes in expression of genes related to oxidative metabolism (e.g. Nrf2, SOD-1), bone turnover (resorption and formation markers, e.g. TRAP, osteocalcin respectively, SOST), and osteoclastogenesis (e.g. RANKL, OPG) at both early and late timepoints. We will then use detailed microarchitectural and structural analysis through microcomputed tomography to relate gene expression changes with structural changes in bone, expecting that plateaus in gene expression correlate with long-term changes in bone microarchitecture.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN33598 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-20
    Description: Space radiation and micro-gravity are the two major obstacles impeding human exploration of Mars and beyond. Long-duration space flights expose astronauts to high doses of high linear energy transfer (LET) radiation as well as prolonged periods of skeletal disuse due to weightlessness. One important consequence of both radiation exposure and micro-gravity is acute bone loss. However, biological responses to different radiation types and combined radiation and micro-gravity environments remain unknown. Thus, the purpose of this study is to compare the acute effects of different radiation species and simulated weightlessness on bone degeneration for the purpose of developing accurate risk assessments of prolonged space flight. Mouse models were used to simulate space flight-relevant doses of different radiation types as well as weightlessness via hind-limb unloading. Three groups of mice (n 9) were irradiated with 1 Gy (Gray) H+, 1 Gy 56Fe, and 1 Gy combined H+ and 56Fe (dual ion) respectively and compared to sham irradiated (n 9) and 2 Gy 56Fe irradiated positive controls (n 6). Two groups of mice (n 9) were hind-limb unloaded for three days and then either sham irradiated or dual ion irradiated respectively, followed by subsequent hind-limb unloading for 11 days. Cancellous tissue from tibiae metaphyses were harvested 11 days post-irradiation for ex vivo micro-computed tomography analysis. Microarchitecture parameters including bone volume to total volume ratio (BVTV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular spacing (Tb.S), and connectivity density (Conn.D) will be quantified using a novel automated segmentation procedure developed in our lab. The anticipated results will be instrumental in developing counter-measures against micro-gravity and radiation-induced bone loss. Moreover, possible synergistic effects may provide insight into underlying mechanisms mediating biological response.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN34526 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-20
    Description: NASAs PowerCell payload on the DLR (Deutsches Zentrum fur Luft- und Raumfahrt, i.e. German Aerospace Center) Eu:CROPIS satellite will compare the effect of multiple simulated gravity regimes on basic processes required for synthetic biology in space including growth, protein production, and genetic transformation of the bacterium Bacillus subtilis. In addition, it will pioneer the use of a cyanobacterially-produced feedstock for microbial growth in space, a concept we call PowerCell. The PowerCell experiment system will be integrated using the Spaceflight Secondary Payload System with the German Space Agency's (DLR's) Euglena and Combined Regenerative Organic-food Production In Space (Eu:CROPIS) satellite, to be launched during the summer of 2017. In order to simulate the gravitational gradient of different celestial bodies, the Eu:CROPIS satellite will establish artificial microgravity, lunar, and Martian gravity levels prior to conducting each set of biological experiments, with experimental results compared to ground controls. Experiments will be carried out in microfluidics cards with experimental progress measured through absorbance as detected by the LED-based optical system. Here we describe the ground studies that led to these experiments, along with a description of the flight hardware and its performance. The results of this mission will provide foundational data for the use and production of genetically engineered organisms for extraterrestrial missions.
    Keywords: Life Sciences (General)
    Type: SSC-16-XI-04 , ARC-E-DAA-TN32950 , AIAA/USU Conference on Small Satellites; Aug 08, 2016 - Aug 13, 2016; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-20
    Description: The Ames Life Science Data Archive (ALSDA) at NASA Ames Research Center is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and biospecimens collected from life science spaceflight experiments and matching ground control experiments. They are stored in the Ames biobank, which is located in the Biospecimen Storage Facility (BSF). The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). The BSF maintains both fixed and frozen spaceflight and ground tissues, collected from recent and past spaceflight missions. Due to the ever increasing demand for space to preserve current and future flight biospecimens, the ALSDA has initiated the development of a culling plan for biospecimens currently stored in the BSF. Culling enables the ALSDA to assess the quality of archived samples, and supports the development of standardized culling procedures that improve the operational efficiency of the BSF. The culling plan focuses on generating disposition recommendations for samples in the BSF, and currently is based on measuring ribonucleic acid (RNA) integrity number (RIN). The culling process includes (1) sorting and identification of candidate samples for RIN analysis, (2) completion of RIN analysis on select samples, and (3) development of disposition recommendations for specimens based on the RIN values. Furthermore, our approach allows for unique scientific opportunities, including development of a RIN-based methodology for culling, and temporal assessment of the quality of the tissues that have been stored in BSF since the 1980s. Results of this work will also support NASA open science initiatives.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37076 , International Society for Biological and Environmental Repositories (ISBER) Regional Meeting; Nov 07, 2016 - Nov 08, 2016; Bethesda, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: Altered gravity conditions, such as experienced by organisms during spaceflight, is known to cause transcriptomic and proteomic changes. We describe the proteomic changes in the whole body of adult Drosophila melanogaster (fruit fly), but focus specifically on the localized changes in the adult head in response to chronic hypergravity (3G) treatment. Canton S adult female flies (2-3 days old) were exposed to chronic hypergravity for 9 days and compared with parallel 1G controls. After hypergravity treatment, whole flies and fly heads were separated, and evaluated for quantitative comparison of the two gravity conditions using an isobaric tagging liquid chromatography-tandem mass spectrometry approach. Data revealed a total of 1948 (whole flies) and 1480 (head) proteins to be differentially present in hypergravity-treated flies. Gene Ontology analysis of head specific proteomics revealed host immune response and humoral stress proteins were significantly upregulated. Proteins related to calcium signaling, ion transport and ATPase were decreased. Enhanced expression of cuticular proteins may suggest an alteration in chitin metabolism and in chitin-based cuticle development. We therefore present a comprehensive quantitative survey of proteomic changes in response to chronic hypergravity in Drosophila, which will help elucidate the underlying molecular mechanisms associated with altered gravity environments.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN31697
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-20
    Description: Evidence from spaceflight and ground-based missions demonstrate that sleep loss and circadian desynchronization occur among astronauts, leading to reduced performance and, increased risk of injuries and accidents. We conducted a comprehensive literature review to determine the optimal sleep environment for lighting, temperature, airflow, humidity, comfort, intermittent and erratic sounds, privacy and security in the sleep environment. We reviewed the design and use of sleep environments in a wide range of cohorts including among aquanauts, expeditioners, pilots, military personnel, and ship operators. We also reviewed the specifications and sleep quality data arising from every NASA spaceflight mission, beginning with Gemini. We found that the optimal sleep environment is cool, dark, quiet, and is perceived as safe and private. There are wide individual differences in the preferred sleep environment; therefore modifiable sleeping compartments are necessary to ensure all crewmembers are able to select personalized configurations for optimal sleep.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN56624 , International Conference on Applied Human Factors; Jul 27, 2016 - Jul 31, 2016; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-20
    Description: Human immune response is compromised and bacteria can become more antibiotic resistant in space microgravity (MG). We report that under low-shear modeled microgravity (LSMMG) stationary-phase uropathogenic Escherichia coli (UPEC) become more resistant to gentamicin (Gm). UPEC causes urinary tract infections (UTIs), reported to afflict astronauts; Gm is a standard treatment, so these findings could impact astronaut health. Because LSMMG has been shown to differ from MG, we report here preparations to examine UPEC's Gm sensitivity during spaceflight using the E. coli Anti-Microbial Satellite (EcAMSat) on a free flying nanosatellite in low Earth orbit. Within EcAMSats payload, a 48-microwell fluidic card contains and supports study of bacterial cultures at constant temperature; optical absorbance changes in cell suspensions are made at three wavelengths for each microwell and a fluid-delivery system provides growth medium and predefined Gm concentrations. Performance characterization is reported for spaceflight prototypes of this payload system. Using conventional microtiter plates, we show that Alamar Blue (AB) absorbance changes due to cellular metabolism accurately reflect E. coli viability changes: measuring AB absorbance onboard EcAMSat will enable telemetry of spaceflight data to Earth. Laboratory results using payload prototypes are consistent with wellplate and flask findings of differential sensitivity of UPEC and its delta rpoS strain to Gm. Space MG studies using EcAMSat should clarify inconsistencies from previous space experiments on bacterial antibiotic sensitivity. Further, if sigma (sup s) plays the same role in space MG as in LSMMG and Earth gravity, EcAMSat results would facilitate utilizing our previously developed terrestrial UTI countermeasures in astronauts.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN35487
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: In order to maximize the amount of omics data returned from space flight experiments, the GeneLab project can collaborate with Space Biology funded PIs. Here, we outline the process by which these collaborations take place.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36421 , Annual American Society for Gravitational and Space Research (ASGSR); Oct 25, 2016 - Oct 28, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: APEX is Advanced Plant Experiments on Orbit which is a series of investigations which focus on fundamental plant biology.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN33927 , MSFC Payload Operations Integration Working Group (POIWG) Meeting; Jan 26, 2016 - Jan 28, 2016; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: Bacterial growth at low pressure is a new research area with implications for predicting microbial activity in clouds, the bulk atmosphere on Earth, and for modeling the forward contamination of planetary surfaces like Mars. Here we describe experiments on the recovery and identification of 23 species of bacterial hypobarophiles (def., growth under hypobaric conditions of approximately 1-2 kPa) in 11 genera capable of growth at 0.7 kPa. Hypobarophilic bacteria, but not archaea or fungi, were recovered from soil and non-soil ecosystems. The highest numbers of hypobarophiles were recovered from Arctic soil, Siberian permafrost, and human saliva. Isolates were identified through 16S rRNA sequencing to belong to the genera Carnobacterium, Exiguobacterium, Leuconostoc, Paenibacillus, and Trichococcus. The highest population of culturable hypobarophilic bacteria (5.1 x 104 cfu/g) was recovered from Colour Lake soils from Axel Heiberg Island in the Canadian arctic. In addition, we extend the number of hypobarophilic species in the genus Serratia to 6 type-strains that include S. ficaria, S. fonticola, S. grimesii, S. liquefaciens, S. plymuthica, and S. quinivorans. Microbial growth at 0.7 kPa suggests that pressure alone will not be growth-limiting on the martian surface, or in Earth's atmosphere up to an altitude of 34 km.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28724 , Astrobiology (ISSN 1531-1074) (e-ISSN 1557-8070); 16; 5; 335-347
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-13
    Description: Join top 10 New York Times Bestseller The Sports Gene author David Epstein and NASA Twins Study investigator Christopher E. Mason, Ph.D., in the debate as old as physical competitionnature versus nurture. From personal experience, Epstein tackles the great debate and traces how far science has come in solving this timeless riddle, and how genetics has entered into the field of sports. Hes an investigative science reporter for ProPublica and longtime contributor to Sports Illustrated. Epstein will share insights into performance-enhancing drugs, the lucky genetics that separate a professional athlete from a less talented athlete, and his research into the death of a friend with Hypertrophic Cardiomyopathy (HCM).From an epigenomic viewpoint, Mason examines the benefits and risks for astronauts who face extreme spaceflight conditions and what it means for the future of human space travel. He is an associate professor in the Department of Physiology and Biophysics, The Feil Family Brain and Mind Research Institute (BMRI) & The Institute for Computational Biomedicine at Weill Cornell Medicine. He is also part of the Tri-Institutional Program on Computational Biology and a Medicine Fellow of Genomics, Ethics, and Law in the Information Society Project at Yale Law School.The study of omics shows tremendous potential in prevention, diagnosis and treatment of injuries and diseases but genetic discrimination and molecular privacy concerns are raised in both sports and space.
    Keywords: Life Sciences (General)
    Type: JSC-CN-37971 , Human Research Program Investigators'' Workshop; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-13
    Description: The GeneLab project is a science initiative to maximize the scientific return of omics data collected from spaceflight and from ground simulations of microgravity and radiation experiments, supported by a data system for a public bioinformatics repository and collaborative analysis tools for these data. The mission of GeneLab is to maximize the utilization of the valuable biological research resources aboard the ISS by collecting genomic, transcriptomic, proteomic and metabolomic (so-called omics) data to enable the exploration of the molecular network responses of terrestrial biology to space environments using a systems biology approach. All GeneLab data are made available to a worldwide network of researchers through its open-access data system. GeneLab is currently being developed by NASA to support Open Science biomedical research in order to enable the human exploration of space and improve life on earth. Open access to Phase 1 of the GeneLab Data Systems (GLDS) was implemented in April 2015. Download volumes have grown steadily, mirroring the growth in curated space biology research data sets (61 as of June 2016), now exceeding 10 TB/month, with over 10,000 file downloads since the start of Phase 1. For the period April 2015 to May 2016, most frequently downloaded were data from studies of Mus musculus (39) followed closely by Arabidopsis thaliana (30), with the remaining downloads roughly equally split across 12 other organisms (each 10 of total downloads). GLDS Phase 2 is focusing on interoperability, supporting data federation, including integrated search capabilities, of GLDS-housed data sets with external data sources, such as gene expression data from NIHNCBIs Gene Expression Omnibus (GEO), proteomic data from EBIs PRIDE system, and metagenomic data from Argonne National Laboratory's MG-RAST. GEO and MG-RAST employ specifications for investigation metadata that are different from those used by the GLDS and PRIDE (e.g., ISA-Tab). The GLDS Phase 2 system will implement a Google-like, full-text search engine using a Service-Oriented Architecture by utilizing publicly available RESTful web services Application Programming Interfaces (e.g., GEO Entrez Programming Utilities) and a Common Metadata Model (CMM) in order to accommodate the different metadata formats between the heterogeneous bioinformatics databases. GLDS Phase 2 completion with fully implemented capabilities will be made available to the general public in September 2017.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36073 , American Society for Gravitational and Space Research (ASGSR) Conference; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-13
    Description: The Biological Research in Canisters - LED (BRIC-LED) is a biological research system that is being designed to complement the capabilities of the existing BRIC-Petri Dish Fixation Unit (PDFU) for the Space Life and Physical Sciences (SLPS) Program. A diverse range of organisms can be supported, including plant seedlings, callus cultures, Caenorhabditis elegans, microbes, and others. In the event of a launch scrub, the entire assembly can be replaced with an identical back-up unit containing freshly loaded specimens.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN33102 , 2016 ISS R & D Conference; Jul 12, 2016 - Jul 14, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-08-20
    Description: The growth of plants aboard the International Space Station (ISS) will play a pivotal role in advancing human space exploration to further uncharted destinations. Not only will plants be useful for oxygen production and carbon dioxide reduction, they will also serve as a supplemental food source for the astronaut diet. Research indicates that the most efficient way for these crops to be grown is by using electric lighting specifically light-emitting diodes (LED) due to their several unique advantages. One of these advantages includes the potential for selecting certain wavelengths. By isolating certain lights, the effects of specific wavelengths on plant growth can be made clearer. This research project examined plant morphology, chlorophyll, biomass production, and nutrient synthesis in Outredgeous red romaine lettuce grown under six LED light treatments of white (W), W + blue (B), W + green (G), W + red (R), W + far red (FR), and a Heliospectra lamp (Helio) (-composed of B+G+R+FR LEDs without W LEDS-). It was consistently found that the lettuce grown under the Helio, W + FR, W + R, and W + G treatments all showed improved physiology in terms of shoot length, shoot diameter, fresh mass, and dry mass relative to the W control. The Helio, W + FR, and W + G treatments exhibited significantly larger leaf areas while the Helio and W + FR treatments also produced more leaves on average at 28 days after planting (DAP). The W (control) and W + B treatments showed the highest accumulation of chlorophyll at 28 DAP. In conclusion, lettuce grown under the Helio treatment may be the overall most beneficial for supplementing the astronaut diet in terms of total edible biomass produced in a 28 day crop cycle.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN33188
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-13
    Description: Long duration spaceflight causes a negative calcium balance and reduces bone density in astronauts. The underlying mechanisms of spaceflight-induced bone loss and the possible influences of both microgravity and radiation are not fully understood although emerging evidence suggests that these two factors may interact to result in increased bone loss. Previously, gene expression analysis of hair follicles from astronauts, as well as skin from space-flown mice, revealed changes in the expression of genes related to DNA damage and oxidative stress responses. These results resemble the responses of bone to spaceflight-like radiation and simulated weightlessness by hindlimb unloading (HU). Hence in this study, we initiated studies to determine whether skin can be used to predict the responses of bone to simulated microgravity and radiation. We examined oxidative stress and growth arrest pathways in mouse skin and long bones by measuring gene expression levels via quantitative polymerase chain reaction (qPCR). To investigate the effects of irradiation andor HU on gene expression, we used skin and femora (cortical shaft) from the following treatment groups: control (normally loaded, sham-irradiated) (CT), hindlimb unloading (HU), 56Fe radiation (IR) and both HU+IR. Animals were euthanized 11 days post-IR, and results were analyzed by 1-way ANOVA. In skin samples, Cdkn1a was decreased to the same extent in HU and HU+IR (47 of CT). In addition, HU reduced FoxO3 expression (46 of CT) and IR increased Gadd45g expression 135 compared CT in skin. But in bone, HU increased FoxO3 expression 31 compared the level of CT. These results suggest that radiation and simulated weightlessness regulated simliar oxidative stress and cell cycle arrest genes in both skin and bone, although the time course and direction of changes may differ. This research may lead to the development of a relatively simple diagnostic tool for bone loss with the advantage that hair follicles and skin are relatively easy to acquire from subjects.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28123 , 2016 Human Research Prgoram Investigators Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-13
    Description: Provide discrete illumination to biological specimens contained in 60mm Petri dishes that are subjected to a microgravity environment.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN33122 , 2016 ISS R & D Conference; Jul 12, 2016 - Jul 14, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-01-08
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: JPL-CL-16-3504 , JAXA JPL Discussions; Feb 25, 2016; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: For over 3 decades, NASA has sponsored research on crops for human life support in space. Specialized watering techniques have even been tested for weightless settings, but most studies used conventional watering, such as hydroponics, which should work well on surface settings of the Moon or Mars. NASAs testing has spanned a wide range of crops and studied innovative techniques to increase yields, reduce power, minimize growing volume, and recycle water and nutrients. These issues closely parallel challenges faced in terrestrial controlled environment agriculture, which is expanding around the world.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN35164 , International Controlled Environment Conference / AusPheno 2016; Sep 18, 2016 - Sep 23, 2016; Canberra; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: In 2014, an international group of scholars from various fields analysed the "societal dimensions" of synthetic biology in an interdisciplinary summer school. Here, we report and discuss the biologists' observations on the general perception of synthetic biology by non-biologists who took part in this event. Most attendees mainly associated synthetic biology with contributions from the best-known public figures of the field, rarely mentioning other scientists. Media extrapolations of those contributions appeared to have created unrealistic expectations and irrelevant fears that were widely disconnected from the current research in synthetic biology. Another observation was that when debating developments in synthetic biology, semantics strongly mattered: depending on the terms used to present an application of synthetic biology, attendees reacted in radically different ways. For example, using the term "GMOs" (genetically modified organisms) rather than the term "genetic engineering" led to very different reactions. Stimulating debates also happened with participants having unanticipated points of view, for instance biocentrist ethicists who argued that engineered microbes should not be used for human purposes. Another communication challenge emerged from the connotations and inaccuracies surrounding the word "life", which impaired constructive debates, thus leading to misconceptions about the abilities of scientists to engineer or even create living organisms. Finally, it appeared that synthetic biologists tend to overestimate the knowledge of non-biologists, further affecting communication. The motivation and ability of synthetic biologists to communicate their work outside their research field needs to be fostered, notably towards policymakers who need a more accurate and technical understanding of the field to make informed decisions. Interdisciplinary events gathering scholars working in and around synthetic biology are an effective tool in addressing those issues.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN31985 , NanoEthics (ISSN 1871-4757) (e-ISSN 1871-4765); 10; 3; 327-336
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: M16-5437 , International Training Implementation Working Group; Jul 11, 2016 - Jul 15, 2016; Moscow; Russia|Russia/NASA Joint Research Payload Operations Technical Interchange Meeting; Jul 11, 2016 - Jul 15, 2016; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN33974 , Payload Operations Integration Working Group (POIWG) Meeting; Jul 26, 2016 - Jul 28, 2016; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: Purpose: In diabetes, the impaired vasoreparative function of Circulating Angiogenic Cells (CACs) is believed to contribute to the progression of diabetic retinopathy (DR). Accumulating evidence suggests that the protective arm of renin-angiotensin system (RAS) ACE2 Angiotensin-(1-7) Mas plays an important role in restoring the function of diabetic CACs. We examined the protective RAS in CACs in diabetic individuals with different stages of retinopathy. Methods: Study subjects (n43) were recruited as controls or diabetics with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR). Fundus photography and fluorescein angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects. CD34+ CACs were isolated from peripheral blood of diabetics and control subjects. RAS gene expressions in CACs were measured by qPCR. The vasoreparative function of CACs was assessed by migration ability toward CXCL12 using the QCM 5M 96-well chemotaxis cell migration assay. Results: ACE2 gene is a key enzyme converting the deleterious Angiotensin II to the beneficial Angiotensin-(1-7). ACE2 expression in CACs from diabetic subjects without DR was increased compared to controls, suggestive of compensation (p0.0437). The expression of Mas (Angiotensin-(1-7) receptor) in CACs was also increased in diabetics without DR, while was reduced in NPDR compared to controls (p0.0002), indicating a possible loss of compensation of the protective RAS at this stage of DR. The presence of even mild NPDR was associated with CD34+ CAC migratory dysfunction. When pretreating CACs of DR subjects with Angiotensin-(1-7), migratory ability to a chemoattractant CXCL12 was restored (p0.0008). By VESGEN analysis, an increase in small vessel density was observed in NPDR subjects when compared with the controls. Conclusions: These data suggest the protective RAS axis within diabetic CACs may help maintain their vasoreparative potential. The VESGEN analysis supports the presence of retinal repair in small vessels. The loss of the protective arm of RAS may predict the progression of DR.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN31942 , ARVO 2016 Annual Meeting; May 01, 2016 - May 05, 2016; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations of the effects of space flight on small specimens. The BRIC 100 mm petri dish vacuum containment unit (BRIC-100VC) has supported Dugesia japonica (flatworm) within spring under normal atmospheric conditions for 29 days in space and Hemerocallis lilioasphodelus L. (daylily) somatic embryo development within a 5% CO2 gaseous environment for 4.5 months in space. BRIC-100VC is a completely sealed, anodized-aluminum cylinder (Fig. 1) providing containment and structural support of the experimental specimens. The top and bottom lids of the canister include rapid disconnect valves for filling the canister with selected gases. These specialized valves allow for specific atmospheric containment within the canister, providing a gaseous environment defined by the investigator. Additionally, the top lid has been designed with a toggle latch and O-ring assembly allowing for prompt sealing and removal of the lid. The outside dimensions of the BRIC-100VC canisters are 16.0 cm (height) x 11.4 cm (outside diameter). The lower portion of the canister has been equipped with sufficient storage space for passive temperature and relative humidity data loggers. The BRIC- 100VC canister has been optimized to accommodate standard 100 mm laboratory petri dishes or 50 mL conical tubes. Depending on storage orientation, up to 6 or 9 canisters have been flown within an International Space Station (ISS) stowage locker.
    Keywords: Life Sciences (General)
    Type: SP-2015-07-291-KSC , KSC-E-DAA-TN30962 , Space Symposium; Apr 11, 2016 - Apr 14, 2016; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36074 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR) 2016; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Low pressure cold plasma, using breathing air as the plasma gas, has been shown to be effective at precision cleaning aerospace hardware at Kennedy Space Center.Both atmospheric and low pressure plasmas are relatively new technologies being investigated for disinfecting agricultural commodities and medical instruments.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN36614 , Annual Meeting of American Society for Gravitational and Space Research; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: Future long-duration space exploration beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure causes progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36340 , Radiation Research Conference; Oct 16, 2016 - Oct 19, 2016; Big Island, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: The WetLab-2 system was developed by NASA Ames Research Center to offer new capabilities to researchers. The system can lyse cells and extract RNA (Ribonucleic Acid) on-orbit from different sample types ranging from microbial cultures to animal tissues. The purified RNA can then either be stabilized for return to Earth or can be used to conduct on-orbit quantitative Reverse Transcriptase PCR (Polymerase Chain Reaction) (qRT-PCR) analysis without the need for sample return. The qRT-PCR results can be downlinked to the ground a few hours after the completion of the run. The validation flight of the WetLab-2 system launched on SpaceX-8 on April 8, 2016. On orbit operations started on April 15th with system setup and was followed by three quantitative PCR runs using an E. coli genomic DNA template pre-loaded at three different concentrations. These runs were designed to discern if quantitative PCR functions correctly in microgravity and if the data is comparable to that from the ground control runs. The flight data showed no significant differences compared to the ground data though there was more variability in the values, this was likely due to the numerous small bubbles observed. The capability of the system to process samples and purify RNA was then validated using frozen samples prepared on the ground. The flight data for both E. coli and mouse liver clearly shows that RNA was successfully purified by our system. The E. coli qRT-PCR run showed successful singleplex, duplex and triplex capability. Data showed high variability in the resulting Cts (Cycle Thresholds [for the PCR]) likely due to bubble formation and insufficient mixing during the procedure run. The mouse liver qRT-PCR run had successful singleplex and duplex reactions and the variability was slightly better as the mixing operation was improved. The ability to purify and stabilize RNA and to conduct qRT-PCR on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. The ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. The WetLab-2 Project is supported by the Research Integration Office in the ISS Program.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36714 , Annual American Society for Gravitational and Space Research Conference; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photoassimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be upregulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm upregulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36565-2 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photoassimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASAs GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be upregulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS like protein (potentially affecting cell elongation in the leaves), and an F-boxkelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm upregulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASAs VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36565-1 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: The Biological Research in Canisters (BRIC) is an anodized-aluminum cylinder used to provide passive stowage for investigations evaluating the effects of space flight on small organisms. Specimens flown in the BRIC 60 mm petri dish (BRIC-60) hardware include Lycoperscion esculentum (tomato), Arabidopsis thaliana (thale cress), Glycine max (soybean) seedlings, Physarum polycephalum (slime mold) cells, Pothetria dispar (gypsy moth) eggs and Ceratodon purpureus (moss).
    Keywords: Life Sciences (General)
    Type: SP-2015-07-289-KSC , KSC-E-DAA-TN30950 , Space Symposium; Apr 11, 2016 - Apr 14, 2016; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Biotube was developed for plant gravitropic research investigating the potential for magnetic fields to orient plant roots as they grow in microgravity. Prior to flight, experimental seeds are placed into seed cassettes, that are capable of containing up to 10 seeds, and inserted between two magnets located within one of three Magnetic Field Chamber (MFC). Biotube is stored within an International Space Station (ISS) stowage locker and provides three levels of containment for chemical fixatives. Features include monitoring of temperature, fixative/ preservative delivery to specimens, and real-time video imaging downlink. Biotube's primary subsystems are: (1) The Water Delivery System that automatically activates and controls the delivery of water (to initiate seed germination). (2) The Fixative Storage and Delivery System that stores and delivers chemical fixative or RNA later to each seed cassette. (3) The Digital Imaging System consisting of 4 charge-coupled device (CCD) cameras, a video multiplexer, a lighting multiplexer, and 16 infrared light-emitting diodes (LEDs) that provide illumination while the photos are being captured. (4) The Command and Data Management System that provides overall control of the integrated subsystems, graphical user interface, system status and error message display, image display, and other functions.
    Keywords: Life Sciences (General)
    Type: SP-2016-03-084-KSC , KSC-E-DAA-TN30949 , Space Symposium; Apr 11, 2016 - Apr 14, 2016; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN37016 , Resilience Emerging from Scarcity and Abundance (2016 Annual Meeting); Nov 06, 2016 - Nov 09, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the cancellous tibia. Treatment caused bone loss in wildtype mice, as expected. Treatment also caused deficits in microarchitecture of mCAT mice, although less severe than wildtype mice in some parameters (percent bone volume, structural model index and cortical area). In conclusion, our results indicate that endogenous ROS signaling in both osteoblast and osteoclast lineage cells contributes to skeletal growth and remodeling, and quenching oxidative damage could play a role in bone loss prevention.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN35747 , ASBMR 2016 American Society for Bone and Mineral Research Annual Meeting; Sep 16, 2016 - Sep 19, 2016; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: NASAs Rodent Research (RR) project is playing a critical role in advancing biomedical research on the physiological effects of space environments. Due to the limited resources for conducting biological experiments aboard the International Space Station (ISS), it is imperative to use crew time efficiently while maximizing high-quality science return. NASAs GeneLab project has as its primary objectives to 1) further increase the value of these experiments using a multi-omics, systems biology-based approach, and 2) disseminate these data without restrictions to the scientific community. The current investigation assessed viability of RNA, DNA, and protein extracted from archived RR-1 tissue samples for epigenomic, transcriptomic, and proteomic assays. During the first RR spaceflight experiment, a variety of tissue types were harvested from subjects, snap-frozen or RNAlater-preserved, and then stored at least a year at -80OC after return to Earth. They were then prioritized for this investigation based on likelihood of significant scientific value for spaceflight research. All tissues were made available to GeneLab through the bio-specimen sharing program managed by the Ames Life Science Data Archive and included mouse adrenal glands, quadriceps, gastrocnemius, tibialis anterior, extensor digitorum longus, soleus, eye, and kidney. We report here protocols for and results of these tissue extractions, and thus, the feasibility and value of these kinds of omics analyses. In addition to providing additional opportunities for investigation of spaceflight effects on the mouse transcriptome and proteome in new kinds of tissues, our results may also be of value to program managers for the prioritization of ISS crew time for rodent research activities. Support from the NASA Space Life and Physical Sciences Division and the International Space Station Program is gratefully acknowledged.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36210 , ASGSR 2016 Meeting; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: It may come as a surprise, but NASA has been a long-standing sponsor of controlled environment agriculture (CEA) research. This is based on the potential for using plants (crops) for life support systems in space. Through photosynthesis, crops could produce food and oxygen for humans, while removing CO2. In addition, plant transpiration could help purify waste water. NASAs interest in bioregenerative life support dates back to the late 1950s. At that time, much of the testing focused on algae, but over the years moved toward higher plants as CEA techniques improved. Throughout the 1980s and 90s, extensive testing was carried out at different universities to gather horticultural data for a range of crops, including wheat, soybean, lettuce, potato, sweet potato, cowpea, rice and more. These studies examined different electric light sources, mineral nutrition, recirculating hydroponics, effects of CO2, temperature, photosynthetic photon flux (PPF), and photoperiod on the crops, and identified cultivars that would be useful for space. Findings from these studies were then used to conduct large scale (20 sq m), closed atmosphere tests at Kennedy Space Center, and later at NASA Johnson Space Center, where plant growth chambers were linked to human habitats. Results showed that with high light input and careful horticultural management, about 20-25 sq m of crops under continuous cultivation could produce the O2 for one person, and about 40-50 sq m could produce enough dietary calories. The ability to sustain these production levels and accurately assess system costs and failures needs further study. In all likelihood, the use of plants for life support will evolve, where for early missions like the International Space Station, crops will be grown in small chambers to provide supplemental fresh foods. As mission durations and distances increase, the systems could expand to assume more of the life support burden. But the constraints of space travel require that these approaches be efficient in terms of mass, volume, and energy, which are similar to challenges facing terrestrial CEA, such as vertical agriculture systems.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN36424 , Purdue University Department of Horticulture Seminar; Oct 20, 2016; West Lafayette, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-12-11
    Description: NASA Ames Research Centers WetLab-2 system brings new capabilities to the ISS for researchers. The system can lyse cells and extract RNA on-orbit from different sample types ranging from microbial cultures to animal tissues. Our purification method has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The purified RNA can then either be stabilized for return to Earth or can be used to conduct on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. qRT-PCR reactions are performed by dispensing the RNA into reaction tubes that contain all lyophilized reagents needed to perform the analysis. The system uses a Cepheid SmartCycler that allows for multiplexing of assays, this can be used to normalize for RNA concentration and integrity and to study multiple genes of interest in each tube. There are a total of 16 independent PCR modules each capable of detecting up to four fluorescent channels. The WetLab- 2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to purify and stabilize RNA on-orbit can eliminate the confounding effects of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of some samples. It also has the benefit of minimizing the needed downmass. Conducting qRT-PCR and generating results on-orbit is also an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also provide benchmarking prior to sample return. The system can also be used for analysis of air, surface, water, and clinical samples to monitor environmental pathogens and crew health. The validation flight of the WetLab-2 system using E. coli bacteria and mouse liver is scheduled to launch on SpaceX-8 this spring. Pending operations, the preliminary results from the validation flight will be presented. To support the needs of future researchers, we are adapting our system to purify RNA from two additional sample types: fibrous tissue such as muscle and mammalian adherent cells grown on alginate beads. Progress of this work will also be presented. The WetLab-2 Project is supported by the Research Integration Office in the ISS Program.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN30191 , International Space Station R&D Conference; Jul 12, 2016 - Jul 14, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: Numerous spaceflight experiments have been conducted to investigate alterations in microbial responses resulting from culture during spaceflight and spaceflight-analogs. However, recent studies investigating spaceflight-associated alterations in microbial virulence have initiated the review and production of evidence to better understand the impact these alterations would have on the incidence of infectious disease during a spaceflight exploration mission. The preponderance of evidence indicates that alterations in microbial gene expression and phenotype (including virulence) are occurring; however, the clinical implications of such changes are still unclear. Greater knowledge is required including a better understanding of the mechanism behind unique spaceflight-associated microbial responses to determine how this environmental stimulus impacts various microorganisms, their diversity and concentration in the spacecraft and crew microbiome, their impact on the vehicle and crew, and their resistance to current mitigation and antibiotic regimens. This knowledge will enable us to determine requirements, guidelines, and processes for design and monitoring of the next generation vehicles.
    Keywords: Life Sciences (General)
    Type: JSC-CN-38050
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-12
    Description: This study aimed to quantitate fourteen perfluoroalkyl acids (PFAAs) in 125 adult American alligators at twelve sites across the southeastern US. Of those fourteen PFAAs, nine were detected in 65% - 100% of the samples: PFOA, PFNA, PFDA, PFUnA, PFDoA, PFTriA, PFTA, PFHxS, and PFOS. Males (across all sites) showed significantly higher concentrations of four PFAAs: PFOS (p = 0.01), PFDA (p = 0.0003), PFUnA (p = 0.021), and PFTriA (p = 0.021). Concentrations of PFOS, PFHxS, and PFDA in plasma were significantly different among the sites in each sex. Alligators at Merritt Island National Wildlife Refuge and Kiawah Nature Conservancy both exhibited some of the highest PFOS concentrations (medians 99.5 ng/g and 55.8 ng/g respectively) in plasma measured to date in a crocodilian species. A number of positive correlations between PFAAs and snout-vent length (SVL) were observed in both sexes suggesting PFAA body burdens increase with increasing size. In addition, several significant correlations among PFAAs in alligator plasma may suggest conserved sources of PFAAs at each site throughout the greater study area. This study is the first to report PFAAs in American alligators, reveals potential PFAA hot spots in Florida and South Carolina, and provides and additional contaminant of concern when assessing anthropogenic impacts on ecosystem health.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN31157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-12
    Description: We present year round meteorological and conductivity measurements of colonized hypolithic rocks in the Arava Valley, Negev Desert, Israel. The data indicate that while dew is common in the Negev it is not an important source of moisture for hypolithic organisms at this site. The dominance of cyanobacteria in the hypolithic community are consistent with predictions that cyanobacteria are confined to habitats supplied by rain. To monitor the presence of liquid water under the small Negev rocks we developed and tested a simple field conductivity system based on two wires placed about 0.5 cm apart. Based on 21 replicates recorded for one year in the Negev we conclude that in natural rains (0.25 mm to 6 mm) the variability between sensor readings is between 20 and 60% decreasing with increasing rain amount. We conclude that the simple small electrical conductivity system described here can be used effectively to monitor liquid water levels in lithic habitats. However, the natural variability of these sensors indicates that several replicates should be deployed. The results and method presented have use in arid desert reclamation programs.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN30317
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-08-26
    Description: The present invention relates generally to cinnamate crosslinkers. Specifically, the present invention relates to gels, biochips, and functionalized surfaces useful as probes, in assays, in gels, and for drug delivery, and methods of making the same using a newly-discovered crosslinking configuration.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-26
    Description: Methods and systems for detecting viable bacterial endospores in a sample and related methods to quantify viable bacterial endospores in a sample.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-19
    Description: Eye movements generally have both reflexive and voluntary aspects, but torsional eye movements are usually thought of as a reflexive response to image rotation around the line of sight (torsional OKN) or to head roll (torsional VOR). In this study we asked whether torsional responses could be modulated by attention in a case where two stimuli rotated independently, and whether attention would influence the latency of responses. The display consisted of rear-projected radial "pinwheel" gratings, with an inner annulus segment extending from the center to 22 degrees eccentricity, and an outer annulus segment extending from 22 degrees out to 45 degrees eccentricity. The two segments rotated around the center in independent random walks, stepping randomly 4 degrees clockwise or counterclockwise at 60 Hz. Subjects were asked to attend to one or the other while keeping fixation steady at the center of the display. To encourage attention on one or the other segment of the display, subjects were asked to move a joystick in synchrony with the back and forth rotations of one part of the image while ignoring the other. Eye torsion was recorded with the scleral search coil technique, sampled at 500 Hz. All four subjects showed roughly 50% stronger torsion responses to the attended compared to unattended segments. Latency varied from 100 to 150 msec across subjects and was unchanged by attention. These findings suggest that attention can influence eye movement responses that are not typically under voluntary control.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN32215 , 2016 Vision Sciences Society Annual Meeting; May 13, 2016 - May 18, 2016; St. Petersburg, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-19
    Description: Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1a/p21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23% decrease in bone fraction (p=0.005) and 11.91% decrease in bone thickness (p=0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl/6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n=10) and vivarium controls (n=10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36190 , ASGSR 2016 Annual Meeting of the American Society for Gravitational and Space Research; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-19
    Description: Weightlessness and radiation, two unique elements of space, profoundly decreases bone mass. This bone loss is attributed to increased activity of bone-resorbing osteoclasts and functional changes in bone-forming osteoblasts, cells that give rise to mature osteocytes. Our long-term goal is to identify signaling pathways that may be targeted to mitigate bone loss in scenarios of space exploration, radiotherapy and accidental radiation exposure. We have previously shown that exposure of MLO-Y4 osteocyte-like cells to simulated space radiation (56Fe) increased the expression of the pro-osteoclastogenic gene rankl and decreased protein levels of LC3B-II, a key player in autophagy. In this current study, we aimed to further elucidate the role of autophagy in maintaining structural integrity of the skeleton. We hypothesize that loss of autophagy in bone leads to an imbalance in pro-osteoclastogenic and pro-osteogenic signals, resulting in net bone loss. To test our hypothesis we performed global postnatal deletion of Atg12 using tamoxifeninducible Cre recombinase under the control of the CAG promoter. Six-week-old CAGCreERT2/ FloxAtg12 animals were treated daily with Tamoxifen or Vehicle (Control, oil only) for five days and euthanasia performed two weeks after the onset of treatment. Percent change in body weights (prior to treatment and at euthanasia) was not significantly different between treatment groups within the same gender. Compared to Vehicle (Control) groups, Tamoxifen (Atg12 iKO) groups showed decreased LC3B-I to II conversion and increased p62 protein levels, consistent with loss of autophagy. Quantitative PCR revealed increased expression of proosteoclastogenic cytokines mcp1 and rankl in bone and marrow respectively in male iKOs compared to male controls. Expression levels of these genes were not significantly altered in the Atg12 iKO females compared to females controls. Microcomputed tomography of tibiae revealed decreased cortical bone volume, cortical thickness and periosteal perimeter consistent with bone loss; and a longer primary spongiosa in male Atg12 iKOs display compared to male controls. These decrements were less pronounced in the female Atg12 iKOs. Cancellous bone structure was not significantly different between iKOs and controls in both genders. Histological analysis also revealed that compared to male controls, male iKOs showed a profound increase in chondrocyte column length of the growth plate with hyper-expansion of both proliferating and hypertrophic zones. Taken together, these findings indicate that autophagy plays an important role in the maintenance of bone structural integrity by mediating the production of proosteoclastogenic signals and regulating chondrocyte proliferation and differentiation.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN34974 , American Society for Cell Biology; Dec 03, 2016 - Dec 07, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-19
    Description: Cell and animal studies conducted onboard the International Space Station and formerly on Shuttle flights have provided groundbreaking data illuminating the deleterious biological response of bone to mechanical unloading. However the intercellular communicative mechanisms associated with the regulation of bone synthesis and bone resorption cells are still largely unknown. Connexin-43 (CX43), a gap junction protein, is hypothesized to play a significant role in osteoblast and osteocyte signaling. The purpose of this investigation was to evaluate within a novel three-dimensional microenvironment how the osteocyte-osteoblast gap-junction expression changes when cultures are exposed to exaggerated mechanical load. MLO-Y4 osteocyte-like cells were cultured on a 3D-Biotek polystyrene insert and placed in direct contact with an MC3T3-E1 pre-osteoblast co-cultured monolayer and exposed to 48 h of mechanical stimulation (pulsatile fluid flow (PFF) or monolayer cyclic stretch (MCS)) then evaluated for viability, proliferation, metabolism, and CX43 expression. Mono-cultured MLO-Y4 and MC3T3-E1 control experiments were conducted under PFF and MCS stimulation to observe how strain application stimuli (PFF cell membrane shear or MCS cell focal adhesion/attachment loading) initiates different signaling pathways or downstream regulatory controls. TotalLive cell count, viability and metabolic reduction (Trypan Blue, LIVEDead and Alamar Blue analysis respectively) indicate that mechanical activation of MC3T3-E1 cells inhibits proliferation while maintaining an average 1.04E4 reductioncell metabolic rate, *p0.05 n4. MLO-Y4s in monolayer culture increase in number when exposed to MCS loading but the percent of live cells within the population is low (46.3 total count, *p0.05 n4), these results may indicate an apoptotic signaling cascade. PFF stimulation of the three-dimensional co-cultures elicits a universal increase in CX43 in MLO-Y4 and MC3T3-E1 cells, illustrated by immunohistological observation. Increased CX43 expression is also observed with the three-dimensional co-cultures with MC3T3-E1 MCS stimulation but the increased gap-junction protein presence was limited to the osteoblast-osteocyte interface region. Previously reported PCR evaluation of osteogenic markers further corroborate that the co-cultured populations communicative networks play a role in translating mechanical signals to molecular messaging. These findings suggests an osteocyte-osteoblast gap-junction signaling feedback mechanism may regulate mechanotransduction of apoptosis initiation and transcription of cytokine signaling proteins responsible for stem cell niche recruitment much more directly than previously believed.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36188 , ASGSR 2016 Annual Meeting of the American Society for Gravitational and Space Research; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-19
    Description: The BioSentinel mission was selected to launch as a secondary payload onboard NASA Exploration Mission 1 (EM-1) in 2018. In BioSentinel, the budding yeast Saccharomyces cerevisiae will be used as a biosensor to measure the long-term impact of deep-space radiation to living organisms. In the 4U-payload, desiccated yeast cells from different strains will be stored inside microfluidic cards equipped with 3-color LED optical detection system to monitor cell growth and metabolic activity. At different times throughout the 12-month mission, these cards will be filled with liquid yeast growth media to rehydrate and grow the desiccated cells. The growth and metabolic rates of wild-type and radiation-sensitive strains in deep-space radiation environment will be compared to the rates measured in the ground- and microgravity-control units. These rates will also be correlated with measurements obtained from onboard physical dosimeters. In our preliminary long-term desiccation study, we found that air-drying yeast cells in 10% trehalose is the best method of cell preservation in order to survive the entire 18-month mission duration (6-month pre-launch plus 12-month full-mission periods). However, our study also revealed that desiccated yeast cells have decreasing viability over time when stored in payload-like environment. This suggests that the yeast biosensor will have different population of cells at different time points during the long-term mission. In this study, we are characterizing genomic and phenotypic changes in our yeast biosensor due to long-term storage and desiccation. For each yeast strain that will be part of the biosensor, several clones were reisolated after long-term storage by desiccation. These clones were compared to their respective original isolate in terms of genomic composition, desiccation tolerance and radiation sensitivity. Interestingly, clones from a radiation-sensitive mutant have better desiccation tolerance compared to their original isolate without losing radiation sensitivity. We employed Next-Generation Sequencing technology to better understand this phenotypic variation. Current effort is focusing on the analysis of high-throughput sequencing data to look for genomic changes in these reisolated clones compared to their original isolate.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36195 , ASGSR 2016 Annual Meeting of the American Society for Gravitational and Space Research; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-19
    Description: The emerging field of Translational Research aims to coalesce interdisciplinary findings from basic science for biomedical applications. To complement spaceflight research using human subjects, translational studies can be designed to address aspects of space-related human health risks and help develop countermeasures to prevent or mitigate them, with therapeutical benefits for analogous conditions experienced on Earth. Translational research with cells and model organisms is being conducted onboard the International Space Station (ISS) in connection with various human systems impacted by spaceflight, such as the cardiovascular, musculoskeletal, and immune systems. Examples of recent cell-based translational investigations on the ISS include the following. The JAXA investigation Cell Mechanosensing seeks to identify gravity sensors in skeletal muscle cells to develop muscle atrophy countermeasures by analyzing tension fluctuations in the plasma membrane, which changes the expression of key proteins and genes. Earth applications of this study include therapeutic approaches for some forms of muscular dystrophy, which appear to parallel aspects of muscle wasting in space. Spheroids is an ESA investigation examining the system of endothelial cells lining the inner surface of all blood vessels in terms of vessel formation, cellular proliferation, and programmed cell death, because injury to the endothelium has been implicated as underpinning various cardiovascular and musculoskeletal problems arising during spaceflight. Since endothelial cells are involved in the functional integrity of the vascular wall, this research has applications to Earth diseases such as atherosclerosis, diabetes, and hypertension. The goal of the T-Cell Activation in Aging NASA investigation is to understand human immune system depression in microgravity by identifying gene expression patterns of candidate molecular regulators, which will provide further insight into factors that may play a critical role in immune function loss during aging. In addition, Omics investigations with cells have synergistic applications ranging from the evaluation of pharmacological countermeasures to drug discovery. Thus, cell-based translational research onboard the ISS is bidirectionally bridging cutting-edge cellular and molecular approaches with space bioastronautics and human health methodologies on Earth.
    Keywords: Life Sciences (General)
    Type: JSC-CN-36499 , Conference on Space Biology and Medicine; Dec 05, 2016 - Dec 08, 2016; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. The GeneLab Data System (GLDS) is NASAs premier open-access omics data platform for biological experiments. GLDS houses standards-compliant, high-throughput sequencing and other omics data from spaceflight-relevant experiments. The GeneLab project at NASA-Ames Research Center is developing the database, and also partnering with spaceflight projects through sharing or augmentation of experiment samples to expand omics analyses on precious spaceflight samples. The partnerships ensure that the maximum amount of data is garnered from spaceflight experiments and made publically available as rapidly as possible via the GLDS. GLDS Version 1.0, went online in April 2015. Software updates and new data releases occur at least quarterly. As of October 2016, the GLDS contains 80 datasets and has search and download capabilities. Version 2.0 is slated for release in September of 2017 and will have expanded, integrated search capabilities leveraging other public omics databases (NCBI GEO, PRIDE, MG-RAST). Future versions in this multi-phase project will provide a collaborative platform for omics data analysis. Data from experiments that explore the biological effects of the spaceflight environment on a wide variety of model organisms are housed in the GLDS including data from rodents, invertebrates, plants and microbes. Human datasets are currently limited to those with anonymized data (e.g., from cultured cell lines). GeneLab ensures prompt release and open access to high-throughput genomics, transcriptomics, proteomics, and metabolomics data from spaceflight and ground-based simulations of microgravity, radiation or other space environment factors. The data are meticulously curated to assure that accurate experimental and sample processing metadata are included with each data set. GLDS download volumes indicate strong interest of the scientific community in these data. To date GeneLab has partnered with multiple experiments including two plant (Arabidopsis thaliana) experiments, two mice experiments, and several microbe experiments. GeneLab optimized protocols in the rodent partnerships for maximum yield of RNA, DNA and protein from tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected on the ground. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and as well as yield terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space environments.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37772 , ASCB Annual Meeting; Dec 03, 2016 - Dec 07, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...