ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,060)
  • Lunar and Planetary Science and Exploration  (472)
  • Meteorology and Climatology  (455)
  • Composite Materials  (133)
  • Statistical physics
  • 2015-2019
  • 2010-2014  (1,060)
  • 2012  (1,060)
Collection
Source
Years
  • 2015-2019
  • 2010-2014  (1,060)
Year
  • 1
    Publication Date: 2018-06-11
    Description: There is a lack of data available for the stability of clathrate hydrates in the presence of ammonia for low-to-moderate pressures in the 0-10 MPa range. Providing such data will allow for a better understanding of natural mass transfer processes on celestial bodies like Titan and Enceladus, on which destabilization of clathrates may be responsible for replenishment of gases in the atmosphere. The experimental process utilizes a custom-built gas handling system (GHS) and a cryogenic calorimeter to allow for the efficient testing of samples under varying pressures and gas species.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years. These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally. Determining the composition of this rainfall is an important step in understanding the "methanological" cycle on Titan. I use data from Cassini VIMS to complete a spectroscopic investigation of multiple rain-wetted areas. I compute "before-and-after" spectral ratios of any areas that show either deposition or evaporation of rain. By comparing these spectral ratios to a model of liquid ethane, I find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. I show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, I show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: This project compares design and proposal elements from multiple proposals and presents conclusions and recommendations for sampling systems. Contributions from this project include a list of common evaluation themes, concept and proposal-related strengths and weaknesses and ways in which self-identified risks relate the evaluation of the mission.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the EEV (Earth Entry Vehicle) performed a hard landing on Earth. Because of the foreseen damage to the stratigraphy of the cores, it is important to evaluate each core for rock quality. However, because no core sample return mission has yet been conducted to another planetary body, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the mechanical quality of any rock cores returned from Mars (or other planetary bodies). We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing).
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: The Martian missions of Spirit, Opportunity, and many others have sparked high interest in Mars which has led to Curiosity to answer questions that we have sought after for years. Has life ever existed on Mars? Through the collection and analyzation of samples, it will help to answer questions about the possibilities of life that may have existed on Mars, and we will gain valuable data about the planet Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-11
    Description: Climate models are deterministic, mathematical descriptions of the physics of climate. Confidence in predictions of future climate is increased if the physics are verifiably correct. A necessary, (but not sufficient) condition is that past and present climate be simulated well. Quantify the likelihood that a (summary statistic computed from a) set of observations arises from a physical system with the characteristics captured by a model generated time series. Given a prior on models, we can go further: posterior distribution of model given observations.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Description: The presentation is divided into three parts. Part I is an overview of early expeditions to the High Arctic, and their political consequences at the time. The focus then shifts to the Geological Survey of Canada s mapping program in the North (Operation Franklin), and to the Polar Continental Shelf Project (PCSP), a unique organization that resides within the Government of Canada s Department of Natural Resources, and supports mapping projects and science investigations. PCSP is highlighted throughout the presentation so a description of mandate, budgets, and support infrastructure is warranted. In Part II, the presenter describes the planning required in advance of scientific deployments carried out in the Canadian High Arctic from the perspective of government and university investigators. Field operations and challenges encountered while leading arctic field teams in fly camps are also described in this part of the presentation, with particular emphasis on the 2008 field season. Part III is a summary of preliminary results obtained from a Polar Survey questionnaire sent out to members of the Arctic research community in anticipation of the workshop. The last part of the talk is an update on the analog program at the Canadian Space Agency, specifically, the Canadian Analog Research Network (CARN) and current activities related to Analog missions, 2009-2010.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 20, 173-203; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Aware of the increasing impact of human activities on the Earth system, Belgian Science Policy Office (Belspo) launched in 1997 a research programme in support of a sustainable development policy. This umbrella programme included the Belgian Scientific Programme on Antarctic Research. The International Polar Foundation, an organization led by the civil engineer and explorer Alain Hubert, was commissioned by the Belgian Federal government in 2004 to design, construct and operate a new Belgian Antarctic Research Station as an element under this umbrella programme. The station was to be designed as a central location for investigating the characteristic sequence of Antarctic geographical regions (polynia, coast, ice shelf, ice sheet, marginal mountain area and dry valleys, inland plateau) within a radius of 200 kilometers (approx.124 miles) of a selected site. The station was also to be designed as "state of the art" with respect to sustainable development, energy consumption, and waste disposal, with a minimum lifetime of 25 years. The goal of the project was to build a station and enable science. So first we needed some basic requirements, which I have listed here; plus we had to finance the station ourselves. Our most important requirement was that we decided to make it a zero emissions station. This was both a philosophical choice as we thought it more consistent with Antarctic Treaty obligations and it was also a logistical advantage. If you are using renewable energy sources, you do not have to bring in all the fuel.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 14, 238-292; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-11
    Description: Dr. Albert's current research is centered on transfer processes in porous media, including air-snow exchange in the Polar Regions and in soils in temperate areas. Her research includes field measurements, laboratory experiments, and theoretical modeling. Mary conducts field and laboratory measurements of the physical properties of natural terrain surfaces, including permeability, microstructure, and thermal conductivity. Mary uses the measurements to examine the processes of diffusion and advection of heat, mass, and chemical transport through snow and other porous media. She has developed numerical models for investigation of a variety of problems, from interstitial transport to freezing of flowing liquids. These models include a two-dimensional finite element code for air flow with heat, water vapor, and chemical transport in porous media, several multidimensional codes for diffusive transfer, as well as a computational fluid dynamics code for analysis of turbulent water flow in moving-boundary phase change problems.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 12, 204-228; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-11
    Description: The purpose for this workshop can be summed up by the question: Are there relevant analogs to planetary (meaning the Moon and Mars) to be found in polar exploration on Earth? The answer in my opinion is yes or else there would be no reason for this workshop. However, I think some background information would be useful to provide a context for my opinion on this matter. As all of you are probably aware, NASA has been set on a path that, in its current form, will eventually lead to putting human crews on the surface of the Moon and Mars for extended (months to years) in duration. For the past 50 V 60 years, starting not long after the end of World War II, exploration of the Antarctic has accumulated a significant body of experience that is highly analogous to our anticipated activities on the Moon and Mars. This relevant experience base includes: h Long duration (1 year and 2 year) continuous deployments by single crews, h Established a substantial outpost with a single deployment event to support these crews, h Carried out long distance (100 to 1000 kilometer) traverses, with and without intermediate support h Equipment and processes evolved based on lessons learned h International cooperative missions This is not a new or original thought; many people within NASA, including the most recent two NASA Administrators, have commented on the recognizable parallels between exploration in the Antarctic and on the Moon or Mars. But given that level of recognition, relatively little has been done, that I am aware of, to encourage these two exploration communities to collaborate in a significant way. [Slide 4] I will return to NASA s plans and the parallels with Antarctic traverses in a moment, but I want to spend a moment to explain the objective of this workshop and the anticipated products. We have two full days set aside for this workshop. This first day will be taken up with a series of presentations prepared by individuals with experience that extends back as far as the late 1940s and includes contemporary experience. The people presenting bring a variety of points of view, including not only U.S. but international, although most, if not all, have collaborated on international teams. The second day will consist of a series of small focused group interactions centered on those elements likely to be needed for traverse missions, such as mobility, habitation, and extravehicular activity (EVA, aka space suits). Our invited participants will be talking with people that specialize in these elements so that we can foster more direct interaction and exchange of experiences between these two exploration communities. After the workshop we will be preparing a report documenting these presentations and the essence of the focused interactions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 58-71; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-11
    Description: Slide 1] The Desert Research and Technology Studies (DRATS) include large scale field tests of manned lunar surface exploration systems; these tests are sponsored by the Director s Office of Integration (DOI) [sic, Directorate Integration Office (DIO)] within the Constellation Program and they include geological exploration objectives along well designed traverses. These traverses are designed by the Traverse Team, an ad hoc group of some 10 geologists form NASA and academia, as well as experts in mission operation who define the operational constraints applicable to specific simulation scenarios. [Slide 2] These DRATS/DOI tests focus on 1) the performance of major surface systems, such as rovers, mobile habitats, communication architecture, navigation tools, earth-moving equipment, unmanned reconnaissance robots etc. under realistic field conditions and 2) the development of operational concepts that integrate all of these systems into a single, optimized operation. The participation of science is currently concentrating on geological sciences, with the objective of developing suitable tools and documentation protocols to sample representative rocks for Earth return, and to generate some conceptual understanding of the ground support structure that will be needed for the real time science-support of a lunar surface crew. [Slide 3] Major surface systems exercised in the June 2008 analog tests at the Moses Lake site, WA. [Upper left] The Chariot Rover (developed at Johnson Space Center) is an unpressurized vehicle driven by fully suited crews. [Upper right] Mobile Habitat provided by the Jet Propulsion Laboratory. Chariot is the more nimble and mobile vehicle and the idea is to drive the habitat remotely to some rendezvous place where Chariot would catch up - after a lengthy traverse - at the end of the day. [Lower left] The K-10 remotely operated robot (provided by NASA Ames Research Center) conducting scientific/geologic reconnaissance of the prospective traverse region, locating specific sites for more detailed exploration by Chariot and its crew. [Lower right] This earth-moving equipment (provided by NASA KSC) can be attached to Chariot and is envisioned to, for example, level an outpost site or to mine lunar soi
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 17, 161-172; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-11
    Description: Objectives (Slides 2, 12, 21-22) To explore as much as possible of 1 million km2 of unexplored territory. We were the first expedition to winter in Antarctica between 95 E and 57 W - nearly half the coastline of Antarctica. It was understood that we must be self-sufficient in every respect for 2 years. There could be no firm or detailed plans for inland exploration until we found where it was possible to make a landing. Geology (Slide 20) Our two geologists traveled far from the Advance Base during both field seasons. Carrying fuel supplies (dog food) for a month, man food (dehydrated) and rock specimens acquired along the way, they covered a vast area. The surveyor drove his own dogs with the geophysicist as assistant. While the geologists were hacking away at rocks, the survey team lugged a theodolite up peaks to extend a triangulation network. Glaciology (Slides 21-22) The glaciologists each had an assistant from the support staff, so they could either travel together or divided into two parties to cover more ground. At each camp they dug a pit to determine the rate of snow accumulation, drilled (by hand) to a depth of 10 m to measure ice temperatures, and in places set up and surveyed ice-movement markers to be resurveyed the following season. Geophysics (Slides 33, 34-36, 38) The principal object was to determine the thickness of ice by seismic sounding the only means known at the time. After experiments as far as the Advance Base in the 1950-51 summer, both Weasels were devoted to a seismic sounding traverse in 1951-52 as far inland as supplies would allow. The party reached 620 km inland and found ice thicknesses of 2,500 m.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 19, 72-97; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: The science on Apollo missions was overseen by the Science Working Panel (SWP), but done by multiple PIs. There were two types of science, packages like the Apollo Lunar Surface Experiment Package (ALSEP) and traverse science. Traverses were designed on Earth for the astronauts to execute. These were under direction of the Lunar Surface PI, but the agreed traverse was a cooperation between the PI and SWP. The landing sites were selected by a different designated committee, not the SWP, and were based on science and safety.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 18, 153-160; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Dr Charles Bentley is the A.P. Crary Professor Emeritus of Geophysics, Department of Geology and Geophysics, University of Wisconsin-Madison. Dr. Bentley joined the Arctic Institute of North America in 1956 to participate in International Geophysical Year (IGY)-related activities in the Antarctic. He wintered over consecutively in 1957 and 1958 at Byrd Station, a station in the interior of West Antarctica that housed 24 men each winter - 12 Navy support people and 12 civilian scientists/technicians. During the austral summers, he also participated in over-snow traverses, first as co-leader, then leader (the other coleader went home after the first year). These traverses consisted of six men and three vehicles, and lasted several months. These traverses covered more than 1609 kilometers (1000 miles) of largely unmapped and unphotographed terrain. During these traverses, connections to Byrd Station were by radio (daily, when the transmission conditions were good enough) and roughly every 2 weeks by resupply flight.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 13, 98-122; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-11
    Description: Mr. Gruener received an M.S. in physical science, with an emphasis in planetary geology, from the University of Houston-Clear Lake in 1994. He then began working with NASA JSC.s Solar System Exploration Division on the development of prototype planetary science instruments, the development of a mineral-based substrate for nutrient delivery to plant growth systems in bio-regenerative life support systems, and in support of the Mars Exploration Rover missions in rock and mineral identification. In 2004, Mr. Gruener again participated in a renewed effort to plan and design missions to the Moon, Mars, and beyond. He participated in many exploration planning activities, including NASA.s Exploration Systems Architecture Study (ESAS), Global Exploration Strategy Workshop, Lunar Architecture Team 1 and 2, Constellation Lunar Architecture Team, the Global Point of Departure Lunar Exploration Team, and the NASA Advisory Council (NAC) Workshop on Science Associated with the Lunar Exploration Architecture. Mr. Gruener has also been an active member of the science team supporting NASA.s Desert Research and Technology Studies (RATS).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 16, 229-237; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Dr. Cameron joined the Arctic Institute of North America in 1956 to participate in IGY-related activities in Antarctica. He served as Chief Glaciologist at Wilkes Station, on the coast of East Antarctica. This was a joint Navy-civilian operation consisting of 17 Navy personnel and 10 scientists. Specifically, his glaciological team consisted of two colleagues with whom he had worked before - Olav Loken in Norway in the summer of 1953, and John Molholm in Greenland in the summer of 1954. This team spent much of its time at a remote station established 80 kilometers (50 miles) inland, where they conducted both meteorological and glaciological studies. One of the glaciological studies entailed digging a 35-meter (approx.115-foot) vertical pit to study snow densification and stratigraphy. The assignment for the Navy Seabees was to first establish a joint US-NZ base at Cape Hallett and then go along the coast of East Antarctica and set up Wilkes Station.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 15, 123-152; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-11
    Description: The next generation of missions in NASA's Human Space Flight program focuses on the development and deployment of highly complex systems (e.g., Orion Multi-Purpose Crew Vehicle, Space Launch System, 21st Century Ground System) that will enable astronauts to venture beyond low Earth orbit and explore the moon, near-Earth asteroids, and beyond. Architecting these highly complex system-of-systems requires formal systems engineering techniques for managing the evolution of the technical features in the information exchange domain (e.g., data exchanges, communication networks, ground software) and also, formal correlation of the technical architecture to stakeholders' programmatic concerns (e.g., budget, schedule, risk) and design development (e.g., assumptions, constraints, trades, tracking of unknowns). This paper will describe how the authors have applied System Modeling Language (SysML) to implement model-based systems engineering for managing the description of the End-to-End Information System (EEIS) architecture and associated development activities and ultimately enables stakeholders to understand, reason, and answer questions about the EEIS under design for proposed lunar Exploration Missions 1 and 2 (EM-1 and EM-2).
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-27
    Description: Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter with the following main objectives: (1) Develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration. (2) Explore the three icy moons of Jupiter -- Callisto, Ganymede, and Europa -- and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M12-2125 , 12th International Symposium on Materials in the Space Environment; 24-28 Sept. 20112; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-27
    Description: We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN5365 , Concepts and Approaches for Mars Exploration; 12 Hyb, 2912; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-27
    Description: The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere. Recent work has revealed an ENSO-induced wave-1 anomaly in observed tropical tropospheric column ozone. This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this feature using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years. An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region. We will show composition sensitivity in observations from NASA s Aura satellite Microwave Limb Sounder (MLS) and the Tropospheric Emissions Spectrometer (TES) and a simulation to provide insight into the vertical structure of these ENSO-induced ozone changes. The ozone changes due to the Quasi-Biennial Oscillation (QBO) in the extra-polar upper troposphere and lower stratosphere in MLS measurements will also be discussed.
    Keywords: Meteorology and Climatology
    Type: GSFC.CPR.7383.2012 , Aura Science Team Meeting; 1--3 Oct. 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-27
    Description: No abstract available
    Keywords: Composite Materials
    Type: JSC-CN-26776
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-27
    Description: AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6383.2012 , GSFC.CP.6786.2012 , GSFC.CPR.6944.2012 , SPIE Optics + Photonics 2012 Conference; Aug 08, 2012 - Aug 19, 2012; San Diego, CA; United States|SPIE Optics and Photonics 2012; 16-Dec; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-27
    Description: Iron redox systematics of the high FeO shergottitic liquids are poorly known, yet have a fundamental control on stability of phases such as magnetite, ilmenite, and pyroxenes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26749 , The Mantle of Mars Workshop; 10-12 Sept. 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-19
    Description: The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of the new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides a review of the SHM concept, the advantages it provides, trajectory assessments related to use of a high specific impulse space based propulsion system, advances in mission planning and new mass estimates.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27203 , International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-19
    Description: Titan's thick atmosphere and volatile surface cause it to respond to big impacts like the one that produced the prominent Menrva impact basin in a somewhat Earth-like manner. Menrva was big enough to raise the surface temperature by 100 K. If methane in the regolith is generally as abundant as it was at the Huygens landing site, Menrva would have been big enough to double the amount of methane in the atmosphere. The extra methane would have drizzled out of the atmosphere over hundreds of years. Conditions may have been favorable for clathrating volatiles such as ethane. Impacts can also create local crater lakes set in warm ice but these quickly sink below the warm ice; whether the cryptic waters quickly freeze by mixing with the ice crust or whether they long endure under the ice remains a open question. Bigger impacts can create shallow liquid water oceans at the surface. If Titan's crust is made of water ice, the putative Hotei impact (a possible 800-1200 km diameter basin, Soderblom et al 2009) would have raised the average surface temperature to 350-400 K. Water rain would have fallen and global meltwaters would have averaged 50 m to as much as 500 m deep. The meltwaters may not have lasted more than a few decades or centuries at most, but are interesting to consider given Titan's organic wealth.
    Keywords: Meteorology and Climatology
    Type: ARC-E-DAA-TN6859 , American Geophysical Union Fall 2012 Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-19
    Description: The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.
    Keywords: Meteorology and Climatology
    Type: M12-2058 , American Geophysical Union (AGU) 45th Annual Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-19
    Description: In order to understand the effect of the charging environment on and around structures on the lunar surface, we have exposed basic structural shapes to electrons and Vacuum Ultra-Violet (VUV) radiation. The objects were, in separate runs, isolated, grounded, and placed on dielectric surfaces. In this presentation, the effects of electron energy, VUV flux, and sample orientation, on the charging of the objects will be examined. The potential of each of the object surfaces was monitored in order to determine the magnitude of the ram and wake effects under different orientations relative to the incoming beams (solar wind). This is a part of, and complementary to, the study of the group at USC under Dr. J. Wang, the purpose of which is to model the effects of the charging environment on structures on the lunar surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M12-2013 , American Geophysical Union Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-19
    Description: An 8-10 station Lightning Mapping Array (LMA) network is being deployed in the vicinity of Sao Paulo to create the SP-LMA for total lightning measurements in association with the international CHUVA [Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the GPM (Global Precipitation Measurement)] field campaign. Besides supporting CHUVA science/mission objectives and the Sao Luiz do Paraitinga intensive operation period (IOP) in November-December 2011, the SP-LMA will support the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), both sensors on the NOAA Geostationary Operational Environmental Satellite-R (GOES-R), presently under development and scheduled for a 2015 launch. The proxy data will be used to develop and validate operational algorithms so that they will be ready for use on "day1" following the launch of GOES-R. A preliminary survey of potential sites in the vicinity of Sao Paulo was conducted in December 2009 and January 2010, followed up by a detailed survey in July 2010, with initial network deployment scheduled for October 2010. However, due to a delay in the Sao Luiz do Paraitinga IOP, the SP-LMA will now be installed in July 2011 and operated for one year. Spacing between stations is on the order of 15-30 km, with the network "diameter" being on the order of 30-40 km, which provides good 3-D lightning mapping 150 km from the network center. Optionally, 1-3 additional stations may be deployed in the vicinity of Sao Jos dos Campos.
    Keywords: Meteorology and Climatology
    Type: M12-2060 , American Geophysical Union 45th Annual Meeting; Dec 03, 2012 - Dec 10, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-19
    Description: The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of the promising aspects and challenges encountered in utilizing objective tracking and GLM proxy data, as well as recent results that demonstrate the value added information gained by combining the lightning jump concept with traditional meteorological measurements.
    Keywords: Meteorology and Climatology
    Type: M12-2230 , 37th National Weather Association (NWA) Annual Meeting; Oct 06, 2012 - Oct 11, 2012; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-19
    Description: The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer will be presented to assess the potential added-value of the SPoRT datasets and data assimilation methodology compared to a WRF configuration without the unique datasets and data assimilation.
    Keywords: Meteorology and Climatology
    Type: M12-1901 , 2012 American Meteorological Society (AMS), 26th Conference on Severe Local Storms; Nov 05, 2012 - Nov 08, 2012; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: Following successful science operations at Vesta, the Dawn spacecraft is headed for an encounter with Ceres in 2015. What have we learned at Vesta? And, what do we expect to learn by comparing Vesta and Ceres? We will address these questions from the standpoint of geochemistry. Dawn's Gamma Ray and Neutron Detector (GRaND) is sensitive to the elemental composition of surface materials to depths of a few decimeters [1]. Gamma rays and neutrons, produced by the steady bombardment of galactic cosmic rays and by the decay of naturally ]occurring radioisotopes (K, Th, U), provide a chemical fingerprint of the regolith. Analysis of planetary radiation emissions enables mapping of specific elements (such as Fe, Mg, Si, Cl, and H) and compositional parameters (such as average atomic mass), which provide information about processes that shaped the planet1s surface and interior. Dawn has exceeded operational goals for GRaND at Vesta, accumulating an abundance of nadir-pointed data during five months in a 210 km, low altitude mapping orbit around Vesta (265-km mean radius). Chemical information from gamma ray and neutron measurements was used to test the connection between Vesta and the howardite, eucrite, and diogenite (HED) meteorites [2]. Additionally, GRaND searched for evolved, igneous lithologies [3], mantle and upper crustal materials exposed in large impact basins, mesosiderite compositions, and hydrogen in Vesta1s bulk regolith. Results of our analyses and their implications for thermal evolution and regolith-processes will be presented. The possibility of a subcrustal ocean [4, 5] and lack of cerean meteorites makes water-rich Ceres a compelling target of exploration [6]. If Ceres underwent aqueous differentiation, then crustal overturn or gas driven volcanism may have significantly modified its primitive surface; and products of aqueous alteration (e.g. [7]) would detectable by GRaND [1]. For example, the presence of Cl in salts, associated with liquid-water-processes, would have a profound effect on the thermal neutron leakage flux. GRaND is sensitive to H and H-layering, which may be in the form of endogenic water ice or hydrous minerals on Ceres. Ammonia ice (e.g., from recent cryovolcanism) would produce a distinctly different neutron signature than water ice [1]. Prospective results for GRaND at Ceres will be presented in the context of what we have learned about Vesta.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27224 , American Geophysical Union Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: As part of an effort by the Lunar Data Node (LDN) we are restoring data returned by the Apollo Dust, Thermal, and Radiation Engineering Measurements (DTREM) packages emplaced on the lunar surface by the crews of Apollo 11, 12, 14, and 15. Also commonly known as the Dust Detector experiments, the DTREM packages measured the outputs of exposed solar cells and thermistors over time. They operated on the surface for up to nearly 8 years, returning data every 54 seconds. The Apollo 11 DTREM was part of the Early Apollo Surface Experiments Package (EASEP), and operated for a few months as planned following emplacement in July 1969. The Apollo 12, 14, and 15 DTREMs were mounted on the central station as part of the Apollo Lunar Surface Experiments Package (ALSEP) and operated from deployment until ALSEP shutdown in September 1977. The objective of the DTREM experiments was to determine the effects of lunar and meteoric dust, thermal stresses, and radiation exposure on solar cells. The LDN, part of the Geosciences Node of the Planetary Data System (PDS), operates out of the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. The goal of the LDN is to extract lunar data stored on older media and/or in obsolete formats, restore the data into a usable digital format, and archive the data with PDS and NSSDC. For the DTREM data we plan to recover the raw telemetry, translate the raw counts into appropriate output units, and then apply calibrations. The final archived data will include the raw, translated, and calibrated data and the associated conversion tables produced from the microfilm, as well as ancillary supporting data (metadata) packaged in PDS format.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.OVPR.6672.2012 , NASA Lunar Science Forum; Jul 16, 2012 - Jul 19, 2012; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: The Gravity Recovery and Interior Laboratory (GRAIL) Mission is a component of the NASA Discovery Program. GRAIL is a twin-spacecraft lunar gravity mission that has two primary objectives: to determine the structure of the lunar interior, from crust to core; and to advance understanding of the thermal evolution of the Moon. GRAIL launched successfully from the Cape Canaveral Air Force Station on September 10, 2011, executed a low-energy trajectory to the Moon, and inserted the twin spacecraft into lunar orbit on December 31, 2011 and January 1, 2012. A series of maneuvers brought both spacecraft into low-altitude (55-km), near-circular, polar lunar orbits, from which they perform high-precision satellite-to-satellite ranging using a Ka-band payload along with an S-band link for time synchronization. Precise measurements of distance changes between the spacecraft are used to map the lunar gravity field. GRAIL completed its primary mapping mission on May 29, 2012, collecting and transmitting to Earth 〉99.99% of the possible data. Spacecraft and instrument performance were nominal and has led to the production of a high-resolution and high-accuracy global gravity field, improved over all previous models by two orders of magnitude on the nearside and nearly three orders of magnitude over the farside. The field is being used to understand the thickness, density and porosity of the lunar crust, the mechanics of formation and compensation states of lunar impact basins, and the structure of the mantle and core. GRAIL s three month-long-extended mission will initiate on August 30, 2012 and will consist of global gravity field mapping from an average altitude of 22 km.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6785.2012 , 44th Annual Meeting Division for Planetary Sciences (DPS); Oct 14, 2012 - Oct 19, 2012; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-19
    Description: Observations of sinuous and branching channels on planets have long driven a debate about their origin, fluvial or volcanic processes. In some cases planetary conditions rule out fluvial activity (e.g. the Moon, Venus, Mercury). However, the geology of Mars leads to suggestions that liquid water existed on the surface in the past. As a result, some sinuous and branching channels on Mars are cited as evidence of fluvial erosion. Evidence for a fluvial history often focuses on channel morphologies that are unique from a typical lava channel, for instance, a lack of detectable flow margins and levees, islands and terraces. Although these features are typical, they are not necessarily diagnostic of a fluvial system. We conducted field studies in Hawaii to characterize similar features in lava flows to better define which characteristics might be diagnostic of fluvial or volcanic processes. Our martian example is a channel system that originates in the Ascraeus Mons SW rift zone from a fissure. The channel extends for approx.300 km to the SE/E. The proximal channel displays multiple branches, islands, terraces, and has no detectable levees or margins. We conducted field work on the 1859 and 1907 Mauna Loa flows, and the Pohue Bay flow. The 51-km-long 1859 Flow originates from a fissure and is an example of a paired a a and pahoehoe lava flow. We collected DGPS data across a 500 m long island. Here, the channel diverted around a pre-existing obstruction in the channel, building vertical walls up to 9 m in height above the current channel floor. The complicated emplacement history along this channel section, including an initial a a stage partially covered by pahoehoe overflows, resulted in an appearance of terraced channel walls, no levees and diffuse flow margins. The 1907 Mauna Loa flow extends 〉 20 km from the SW rift zone. The distal flow formed an a a channel. However the proximal flow field comprises a sheet that experienced drainage and sagging of the crust following the eruption. The lateral margins of the proximal sheet, past which all lava flowed to feed the extensive channel, currently display a thickness of 〈 20 cm. Were this area covered by a dust layer, as is the Tharsis region on Mars, the margins would be difficult to identify. The Pohue Bay flow forms a lava tube. Open roof sections experienced episodes of overflow and spill out. In several places the resultant surface flows appear to have moved as sheet flows that inundated the preexisting meter scale features. Here the flows developed pathways around topographic highs, and in so doing accreted lava onto those features. The results are small islands within the multiple branched channels that display steep, sometimes overhanging walls. None of these features alone proves that the martian channel networks are the result of volcanic processes, but analog studies such as these are the first step towards identifying which morphologies are truly diagnostic of fluvial and volcanic channels.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6760.2012 , AGU Chapman Conference on Atmospheric Water Vapor and Its Role in Climate; Aug 20, 2012 - Aug 24, 2012; Kona, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-19
    Description: Past and present efforts by the authors to further understanding of the ceramic matrix composite (CMC) material used in the valve components of the Orion Launch Abort System (LAS) Attitude Control Motor (ACM) will be presented. The LAS is designed to quickly lift the Orion Crew Exploration Vehicle (CEV) away from its launch vehicle in emergency abort scenarios. The ACM is a solid rocket motor which utilizes eight throttleable nozzles to maintain proper orientation of the CEV during abort operations. Launch abort systems have not been available for use by NASA on manned launches since the last Apollo ]Saturn launch in 1975. The CMC material, carbon-carbon/silicon-carbide (C/C-SiC), is manufactured by Fiber Materials, Inc. and consists of a rigid 4-directional carbon-fiber tow weave reinforced with a mixed carbon plus SiC matrix. Several valve and full system (8-valve) static motor tests have been conducted by the motor vendor. The culmination of these tests was the successful flight test of the Orion LAS Pad Abort One (PA ]1) vehicle on May 6, 2010. Due to the fast pace of the LAS development program, NASA Marshall Space Flight Center assisted the LAS community by performing a series of material and component evaluations using fired hardware from valve and full ]system development motor tests, and from the PA-1 flight ACM motor. Information will be presented on the structure of the C/C-SiC material, as well as the efficacy of various non ]destructive evaluation (NDE) techniques, including but not limited to: radiography, computed tomography, nanofocus computed tomography, and X-ray transmission microscopy. Examinations of the microstructure of the material via scanning electron microscopy and energy dispersive spectroscopy will also be discussed. The findings resulting from the subject effort are assisting the LAS Project in risk assessments and in possible modifications to the final ACM operational design.
    Keywords: Composite Materials
    Type: M11-0243 , 2011 National Space and Missile Materials Symposium (NSMMS); Jun 27, 2011 - Jul 01, 2011; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-19
    Description: Global Precipitation Measurement (GPM) is an international satellite mission to provide nextgeneration observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Building upon the successful legacy of the Tropical Rainfall Measuring Mission (TRMM), GPM's next-generation global precipitation data will lead to scientific advances and societal benefits within a range of hydrologic fields including natural hazards, ecology, public health and water resources. This talk will highlight some examples from TRMM's IS-year history within these applications areas as well as discuss some existing challenges and present a look forward for GPM's contribution to applications in hydrology.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.7478.2012 , American Geophysical Union (AGU) Fall Meeting - Remote Sensing Application in Hydrology; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: We report ongoing results of a program to measure the lunar sodium exospheric line profile from near the lunar limb out to two lunar radii (approx 3500 km). These observations are conducted from the National Solar Observatory McMath-Pierce telescope using a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,600 (1.7 km/s) to measure line widths and velocity shifts of the Na D2 (5889 950 A) emission line in equatorial and polar regions at different lunar phases. The typical field of view (FOV) is 3 arcmin (approx 360 km) with an occasional smaller 1 arcmin FOV used right at the limb edge. The first data were obtained from full Moon to 3 days following full Moon (waning phase) in March 2009 as part of a demonstration run aimed at establishing techniques for a thorough study of temperatures and velocity variations in the lunar sodium exosphere. These data indicate velocity displacements from different locations off the lunar limb range between 150 and 600 m/s from the lunar rest velocity with a precision of +/- 20 to +/- 50 m/s depending on brightness. The measured Doppler line widths for observations within 10.5 arcmin of the east and south lunar limbs for observations between 5 deg and 40 deg lunar phase imply temperatures ranging decreasing from 3250 +/- 260K to 1175 +/- 150K. Additional data is now being collected on a quarterly basis since March 2011 and preliminary results will be reported.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.7441.2012 , Lunar Science Forum 2012; Jul 17, 2012 - Jul 19, 2012; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-19
    Description: Sodium in the lunar exosphere is easily observed from the Earth's surface due to its strong resonance emission lines in the visible region of the spectrum. Although sodium is a trace element, it is easily ejected from the surface by a number of processes. The variation of this exospheric constituent both spatially and temporally can help to constrain these sources and the loss processes and their timescales. Due to a revival of interest in the Moon and its volatiles, observations of the lunar exosphere obtained at the McMath-Pierce solar telescope in 1998 and 1999 have recently been reduced and analyzed. In addition, observations of the lunar sodium exosphere obtained with the Mt. Lemmon Lunar Coronagraph on Mt. Lemmon, Arizona, have also been published. We combine these new data with data previously published and reanalyzed by Sarantos et al. This comprehensive data set will be modeled using both a simple Chamberlain exosphere model and a comprehensive Monte Carlo model.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.7443.2012 , Lunar Science Forum 2012; Jul 17, 2012 - Jul 19, 2012; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-19
    Description: We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007, during which a suite of aerosol data from satellite observations and ground-based remote sensing and in-situ measurements have become available. We analyze the long-term global and regional aerosol optical depth and concentration trends and their relationship to the changes of emissions" and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world, including the major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions, dust and biomass burning regions that have large interannual variabilities, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.7358.2012 , IGAC 2012 Science Conference; Sep 17, 2012 - Sep 21, 2012; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-19
    Description: In August 2009 Titan passed through northern spring equinox, and the southern hemisphere passed into fall. Since then, the moon's atmosphere has been closely watched for evidence of the expected seasonal reversal of stratospheric circulation, with increased northern insolation leading to upwelling, and consequent downwelling at southern high latitudes. If the southern winter mirrors the northern winter, this circulation will be traced by increases in short-lived gas species advected downwards from the upper atmosphere to the stratosphere. The Cassini spacecraft in orbit around Saturn carries on board the Composite Infrared Spectrometer (CIRS), which has been actively monitoring the trace gas populations through measurement of the intensity of their infrared emission bands (7-1000 micron). In this presentation we will show fresh evidence from recent CIRS measurements in June 2012, that the shortest-lived and least abundant minor species (C3H4, C4H2, C6H6, HC3N) are indeed increasing dramatically southwards of 50S in the lower stratosphere. Intriguingly, the more stable gases (C2H2, HCN, CO2) have yet to show this trend, and continue to exhibit their 'summer' abundances, decreasing towards the south pole. Possible chemical and dynamical explanations of these results will be discussed , along with the potential of future CIRS measurements to monitor and elucidate these seasonal changes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.7310.2012 , 44th annual meeting of the Division for Planetary Sciences of the American Astronomical Society; Oct 14, 2012 - Oct 19, 2012; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-19
    Description: The Sample Analysis at Mars (SAM) suite of instruments on the Curiosity Rover of Mars Science Laboratory Mission is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The goals of the science investigation enabled by the gas chromatograph mass spectrometer and tunable laser spectrometer instruments of SAM are to work together with the other MSL investigations is to quantitatively assess habitability through a series of chemical and geological measurements. We describe the multi-column gas chromatograph system employed on SAM and the approach to extraction and analysis of organic compounds that might be preserved in ancient martian rocks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6684.2012 , 32nd Annual Minnesota Chromootography Forum (MCF) Spring Symposium; May 09, 2012 - May 10, 2012; Brooklyn Center, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-19
    Description: Continental-scale offline simulations with a land surface model are used to address two important issues in the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which the downscaling of seasonal precipitation forecasts, if it could be done accurately, would improve streamflow forecasts. The reduction in streamflow forecast skill (with forecasted streamflow measured against observations) associated with adding noise to a soil moisture field is found to be, to first order, proportional to the average reduction in the accuracy of the soil moisture field itself. This result has implications for streamflow forecast improvement under satellite-based soil moisture measurement programs. In the second and more idealized ("perfect model") analysis, precipitation downscaling is found to have an impact on large-scale streamflow forecasts only if two conditions are met: (i) evaporation variance is significant relative to the precipitation variance, and (ii) the subgrid spatial variance of precipitation is adequately large. In the large-scale continental region studied (the conterminous United States), these two conditions are met in only a somewhat limited area.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.7320.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: Permanently shadowed regions (PSRs) of the Moon have been identified as unique environments of extreme cold and comprise a natural cold trap for sequestering volatiles [Paige et al. 2010]. The diverse chemical composition of the LCROSS impact plume provided evidence for a volatile-rich and chemically-complex PSR environment [Cola prete et al. 2010, Schultz et al. 2010]. Additionally, the polar electrostatic environment is highly complex, with the possibility of strong, localized electric fields that divert solar wind ions directly into polar cold traps [Farrell et al. 2010, Zimmerman et al. 2011]. Thus, regional plasma physics processes couple directly with volatile sequestration. In the present work, kinetic simulations show that recursive plasma wake structure arises in the presence of step-like topographic features (Le. doubly-shadowed craters). Combining the plasma code with a numerical sputtering model demonstrates that solar wind protons can be either a hydrogen source via implantation or a volatile loss mechanism via sputtering, depending on properties of the regolith and solar wind. The present model provides a novel theoretical pathway toward understanding the lunar surface/solar wind physical and chemical interactions for complex topography near the poles.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.7442.2012 , NASA Lunar Science Forum 2012; Jul 17, 2012 - Jul 19, 2012; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: Magnetospheric radiation drives surface and near-surface chemistry on Europa, but below a few meters Europa's chemistry is hidden from direct observation . As an example, surface radiation chemistry converts H2O and SO2 into H2O2 and (SO4)(sup 2-), respectively, and these species will be transported downward for possible thermally-driven reactions. However, while the infrared spectra and radiation chemistry of H2O2-containing ices are well documented, this molecule's thermally-induced solid-phase chemistry has seldom been studied. Here we report new results on thermal reactions in H2O + H2O2 + SO2 ices at 50 - 130 K. As an example of our results, we find that warming H2O + H2O2 + SO2 ices promotes SO2 oxidation to (SO4)(sup 2-). These results have implications for the survival of H2O2 as it descends, with modification, towards a subsurface ocean on Europa. We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.7312.2012 , 42nd Annual Meeting of the Division for Planetary Sciences (DPS) of the American Astronomical Society; Oct 14, 2012 - Oct 19, 2012; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: Research has shown that the snow season in the Northern Hemisphere has been getting shorter in recent decades, consistent with documented global temperature increases. Specifically, the snow is melting earlier in the spring allowing for a longer growing season and associated land-cover changes. Here we focus on North America. Using the Moderate-Resolution Imaging Radiometer (MODIS) cloud-gap-filled standard snow-cover data product we can detect a trend toward earlier spring snowmelt in the approx 12 years since the MODIS launch. However, not all areas in North America show earlier spring snowmelt over the study period. We show examples of springtime snowmelt over North America, beginning in March 2000 and extending through the winter of 2012 for all of North America, and for various specific areas such as the Wind River Range in Wyoming and in the Catskill Mountains in New York. We also compare our approx 12-year trends with trends derived from the Rutgers Global Snow Lab snow cover climate-data record.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.7286.2012 , 69th Eastern Snow Conference (ESC); Jun 05, 2012 - Jun 07, 2012; Claryville, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (〉10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.7242.2012 , National Taiwan University International Science Conference on Climate Change: Multidecadal and Beyond; Sep 17, 2012 - Sep 21, 2012; Taipei; Taiwan, Province of China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: This presentation discusses an approach to estimate model error using observation residuals. Based on the sequential fixed-lag smoother; we introduce a diagnostic procedure to allow estimating model error over a dense observing system. Optimality considerations are examined in light of the sequential results. The procedure is re-interpreted in the language of variational assimilation, such as 4d-Var. Illustrations of the approach are given by studying both identical-twin and fraternal-twin experimental settings for a system governed by Lorenz-type dynamics. Preliminary results by looking at observation residual statistics for the ECMWF data assimilation system are also shown. The presentation will be part of a series of discussions on issues related to four-dimensional data assimilation under weak-constraint and methodologies to estimate model error.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6075.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: Dr. Nancy Maynard was invited by the Alaska Forum on the Environment to participate in a Panel Discussion to discuss (1) background about what the US NCA and International IPCC assessments are, (2) the impact the assessments have on policy-making, (3) the process for participation in both assessments, (4) how we can increase participation by Indigenous Peoples such as Native Americans and Alaska Natives, (5) How we can increase historical and current impacts input from Native communities through stories, oral history, "grey" literature, etc. The session will be chaired by Dr. Bull Bennett, a cochair of the US NCA's chapter on "Native and Tribal Lands and Resources" and Dr. Maynard is the other co-chair of that chapter and they will discuss the latest activities under the NCA process relevant to Native Americans and Alaska Natives. Dr. Maynard is also a Lead Author of the "Polar Regions" chapter of the IPCC WG2 (5th Assessment) and she will describes some of the latest approaches by the IPCC to entrain more Indigenous peoples into the IPCC process.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6181.2012 , Alaska Forum on the Environment; Mar 14, 2012 - Mar 17, 2012; Copenhagen; Denmark
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-19
    Description: The Short-term Prediction Research and Transition (SPoRT) Center located at NASA Marshall Space Flight Center has been conducting testbed activities aimed at transitioning satellite products to National Weather Service operational end users for the last 10 years. SPoRT is a NASA/NOAA funded project that has set the bar for transition of products to operational end users through a paradigm of understanding forecast challenges and forecaster needs, displaying products in end users decision support systems, actively assessing the operational impact of these products, and improving products based on forecaster feedback. Aiming for quality partnerships rather than a large quantity of data users, SPoRT has become a community leader in training operational forecasters on the use of up-and-coming satellite data through the use of legacy instruments and proxy data. Traditionally, SPoRT has supplied satellite imagery and products from NASA instruments such as the Moderate-resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS). However, recently, SPoRT has been funded by the GOES-R and Joint Polar Satellite System (JPSS) Proving Grounds to accelerate the transition of selected imagery and products to help improve forecaster awareness of upcoming operational data from the Visible Infrared Imager Radiometer Suite (VIIRS), Cross-track Infrared Sounder (CrIS), Advanced Baseline Imager (ABI), and Geostationary Lightning Mapper (GLM). This presentation provides background on the SPoRT Center, the SPoRT paradigm, and some example products that SPoRT is excited to work with forecasters to evaluate.
    Keywords: Meteorology and Climatology
    Type: M12-1669 , 3rd National Oceanic and Atmospheric Administration Testbed and Proving Ground Workshop; May 01, 2012 - May 03, 2012; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-19
    Description: An accurate representation of spatial and temporal variability of the Upper Troposphere Lower Stratosphere (UTLS) ozone is essential for understanding both the tropospheric ozone budget and ozone s contribution to radiative forcing. The complex, dynamically driven structure of trace gas fields in the UTLS presents a challenge to data-based and modelling studies. Small features are not fully resolved in data from limb-sounding instruments such as the Microwave Limb Sounder on EOS-Aura (the EOS-MLS), but are captured in assimilation of those data as vertical structure is added from the assimilated meteorology. This will be demonstrated using a multi-year assimilation of EOS-MLS observations in the Goddard Earth Observing System, Version 5 (GEOS-5) data assimilation system. The results demonstrate the realism of the seasonal and year to year variability of laminar structures in the mid-latitudinal ozone field between years 2005-2007, for which independent validation data are available from the HIRDLS instrument. The analysis is done in the context of the underlying large scale dynamics. The lifetimes of most research instruments are too short for them to be used throughout the duration of long-term (at least 3 decades) reanalyses. For example, the EOS-MLS instrument has operated since mid-2004 until present. By contrast, Solar Backscatter Ultra Violet (SBUV) measurements provide continuous data since late 1978, but their vertical resolution is insufficient to represent the profile shape in the UTLS. Assimilation of these SBUV/2 observations in the GEOS-5 data assimilation system has hitherto not captured a realistic ozone structure in the UTLS, even though transport studies using GEOS-5 wind fields do show such structures. We show that careful construction of the background error covariance structure in GEOS-5 can lead to more realistic UTLS ozone fields when assimilating SBUV/2 observations. The reasoning behind this will be discussed, emphasizing the need to retain the sharp gradient of ozone concentrations across the tropopause. We analyze the UTLS ozone distributions in multi-year SBUV/2 assimilation experiments, comparing the results against the independent HIRDLSdataset and, for a longer period, with the MLS assimilation and discuss the consequences for tropospheric ozone and radiative forcing.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6951.2012 , American Geophysical Union Conference; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-19
    Description: To recover the size of a space debris object from photometric measurements, it is necessary to determine its albedo and basic shape: if the albedo is known, the reflective area can be calculated; and if the shape is known, the shape and area taken together can be used to estimate a characteristic dimension. Albedo is typically determined by inferring the object s material type from filter photometry or spectroscopy and is not the subject of the present study. Object shape, on the other hand, can be revealed from a time-history of the object s brightness response. The most data-rich presentation is a continuous light-curve that records the object s brightness for an entire sensor pass, which could last for tens of minutes to several hours: from this one can see both short-term periodic behavior as well as brightness variations with phase angle. Light-curve interpretation, however, is more art than science and does not lend itself easily to automation; and the collection method, which requires single-object telescope dedication for long periods of time, is not well suited to debris survey conditions. So one is led to investigate how easily an object s brightness phase function, which can be constructed from the more survey-friendly point photometry, can be used to recover object shape. Such a recovery is usually attempted by comparing a phase-function curve constructed from an object s empirical brightness measurements to analytically-derived curves for basic shapes or shape combinations. There are two ways to accomplish this: a simple averaged brightness-versus phase curve assembled from the empirical data, or a more elaborate approach in which one is essentially calculating a brightness PDF for each phase angle bin (a technique explored in unpublished AFRL/RV research and in Ojakangas 2011); in each case the empirical curve is compared to analytical results for shapes of interest. The latter technique promises more discrimination power but requires more data; the former can be assembled in its essentials from fewer measurements but will be less definitive in its assignments. The goal of the present study is to evaluate both techniques under debris survey conditions to determine their relative performance and, additionally, to learn precisely how a survey should be conducted in order to maximize their performance. Because the distendedness of objects has more of an effect than their precise shape in calculating a characteristic dimension, one is interested in the techniques discrimination ability to distinguish between an elongated rectangular prism and a short rectangular prism or cube, or an elongated cylinder from a squat cylinder or sphere. Sensitivity studies using simulated data will be conducted to determine discrimination power for both techniques as a function of amount of data collected and range (and specific region) of phase angles sampled. Empirical GEODSS photometry data for distended objects (dead payloads with solar panels, rocket bodies) and compact objects (cubesats, calibration spheres, squat payloads) will also be used to test this discrimination ability. The result will be a recommended technique and data collection paradigm for debris surveys in order to maximize this type of discrimination.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26117 , 13th Annual Advanced Maui Optical and Space (AMOS) Conference; Sep 11, 2012 - Sep 14, 2012; Maui, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-19
    Description: During the Mid-latitude Continental Convective Cloud Experiment (MC3E), NASA's GPM GV Disdrometer and Radar Observations of Precipitation (DROP) Facility deployed an array of disdrometers and rain gauges in northern Oklahoma to sample, with high resolution, the drop size distribution for use in development of precipitation retrieval algorithms for the GPM core satellites. The DROP Facility instruments deployed during MC3E consisted of 16 autonomous Parsivel units, 5 two-dimensional video disdrometers (2dvds), a vertically pointing K band radar, and 32 tipping bucket rain gauges. There were several rainfall events during MC3E in which rain drops exceeding 6 mm in diameter were recorded. The disdrometer array revealed large rain drops with diameters exceeding 6 mm and 8 mm during two separate stratiform and convective rainfall events, respectively. The NPOL radar, which was scanning in high resolution RHI mode (every 40 sec) over the disdrometer array during the stratiform event, indicated a 1 km thick bright band with a differential reflectivity column of 2-3 dB extending below the melting layer to the surface where the large drops were recorded by the 2dvds. These large drops are important for GPM since they can have a great impact upon satellite precipitation retrieval, especially near the ground and below heavy convective rainfall cores where satellites have had problems depicting the rainfall.
    Keywords: Meteorology and Climatology
    Type: M11-1435 , 18th Conference on Satellite Meteorology; Jan 22, 2012 - Jan 26, 2012; New Orleand, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-19
    Description: The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Greenness Vegetation Fraction (GVF) dataset, which is updated daily using swaths of Normalized Difference Vegetation Index data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data aboard the NASA-EOS Aqua and Terra satellites. NASA SPoRT started generating daily real-time GVF composites at 1-km resolution over the Continental United States beginning 1 June 2010. A companion poster presentation (Bell et al.) primarily focuses on impact results in an offline configuration of the Noah land surface model (LSM) for the 2010 warm season, comparing the SPoRT/MODIS GVF dataset to the current operational monthly climatology GVF available within the National Centers for Environmental Prediction (NCEP) and Weather Research and Forecasting (WRF) models. This paper/presentation primarily focuses on individual case studies of severe weather events to determine the impacts and possible improvements by using the real-time, high-resolution SPoRT-MODIS GVFs in place of the coarser-resolution NCEP climatological GVFs in model simulations. The NASA-Unified WRF (NU-WRF) modeling system is employed to conduct the sensitivity simulations of individual events. The NU-WRF is an integrated modeling system based on the Advanced Research WRF dynamical core that is designed to represents aerosol, cloud, precipitation, and land processes at satellite-resolved scales in a coupled simulation environment. For this experiment, the coupling between the NASA Land Information System (LIS) and the WRF model is utilized to measure the impacts of the daily SPoRT/MODIS versus the monthly NCEP climatology GVFs. First, a spin-up run of the LIS is integrated for two years using the Noah LSM to ensure that the land surface fields reach an equilibrium state on the 4-km grid mesh used. Next, the spin-up LIS is run in two separate modes beginning on 1 June 2010, one continuing with the climatology GVFs while the other uses the daily SPoRT/MODIS GVFs. Finally, snapshots of the LIS land surface fields are used to initialize two different simulations of the NU-WRF, one running with climatology LIS and GVFs, and the other running with experimental LIS and NASA/SPoRT GVFs. In this paper/presentation, case study results will be highlighted in regions with significant differences in GVF between the NCEP climatology and SPoRT product during severe weather episodes.
    Keywords: Meteorology and Climatology
    Type: M11-1132 , 92nd American Meteorological Society''s Annual Meeting; Jan 22, 2012 - Jan 26, 2012; Nre Orleans, LA; United States|16th Symposium on Integrated Observing and Assimilation Systems for Atmosphere,; Jan 22, 2012 - Jan 26, 2012; Nre Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: The NASA Short-term Prediction Research and Transition (SPoRT) Center, in collaboration with the Cooperative Institute for Research in the Atmosphere (CIRA), is providing red-green-blue (RGB) color composite imagery to several of NOAA s National Centers and National Weather Service forecast offices as a demonstration of future capabilities of the Advanced Baseline Imager (ABI) to be implemented aboard GOES-R. Forecasters rely upon geostationary satellite imagery to monitor conditions over their regions of responsibility. Since the ABI will provide nearly three times as many channels as the current GOES imager, the volume of data available for analysis will increase. RGB composite imagery can aid in the compression of large data volumes by combining information from multiple channels or paired channel differences into single products that communicate more information than provided by a single channel image. A standard suite of RGB imagery has been developed by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), based upon the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The SEVIRI instrument currently provides visible and infrared wavelengths comparable to the future GOES-R ABI. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the NASA Terra and Aqua satellites can be used to demonstrate future capabilities of GOES-R. This presentation will demonstrate an overview of the products currently disseminated to SPoRT partners within the GOES-R Proving Ground, and other National Weather Service forecast offices, along with examples of their application. For example, CIRA has used the channels of the current GOES sounder to produce an "air mass" RGB originally designed for SEVIRI. This provides hourly imagery over CONUS for looping applications while demonstrating capabilities similar to the future ABI instrument. SPoRT has developed similar "air mass" RGB imagery from MODIS, and through a case study example, synoptic-scale features evident in single-channel water vapor imagery are shown in the context of the air mass product. Other products, such as the "nighttime microphysics" RGB, are useful in the detection of low clouds and fog. Nighttime microphysics products from MODIS offer some advantages over single-channel or spectral difference techniques and will be discussed in the context of a case study. Finally, other RGB products from SEVIRI are being demonstrated as precursors to GOES-R within the GOES-R Proving Ground. Examples of "natural color" and "dust" imagery will be shown with relevant applications.
    Keywords: Meteorology and Climatology
    Type: M11-0959 , Eighth Annual Symposium on Future Operational Environmental Satellite Systems; Jan 24, 2012 - Jan 25, 2012; New Orleans, LA; United States|92nd American Meteorological Society (AMS) Annual Meeting; Jan 22, 2012 - Jan 26, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-19
    Description: Over the past three decades we have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. Some carbonaceous and ordinary chondrites have been altered by interactions with liquid water within the first 10 million years after formation of their parent asteroids. Millimeter to centimeter-sized aggregates of purple halite containing aqueous fluid inclusions were found in the matrix of two freshly-fallen brecciated H chondrite falls, Monahans (1998, hereafter simply "Monahans") (H5) and Zag (H3-6) (Zolensky et al., 1999; Whitby et al., 2000; Bogard et al., 2001) In order to understand origin and evolution of the aqueous fluids inside these inclusions we much measure the actual fluid composition, and also learn the O and H isotopic composition of the water. It has taken a decade for laboratory analytical techniques to catch up to these particular nanomole-sized aqueous samples. We have recently been successful in (1) measuring the isotopic composition of H and O in the water in a few fluid inclusions from the Zag and Monahans halite, (2) mineralogical characterization of the solid mineral phases associated with the aqueous fluids within the halite, and (3) the first minor element analyses of the fluid itself. A Cameca ims-1270 equipped with a cryo-sample-stage of Hokkaido University was specially prepared for the O and H isotopic measurements. The cryo-sample-stage (Techno. I. S. Corp.) was cooled down to c.a. -190 C using liquid nitrogen at which the aqueous fluid in inclusions was frozen. We excavated the salt crystal surfaces to expose the frozen fluids using a 15 keV Cs+ beam and measured negative secondary ions. The secondary ions from deep craters of approximately 10 m in depth emitted stably but the intensities changed gradually during measurement cycles because of shifting states of charge compensation, resulting in rather poor reproducibility of multiple measurements of standard fluid inclusions of +/- 90 0/00(2 sigma) for delta D, and +/- 29 0/00 (2 sigma) for delta O-18. On the other hand, the reproducibility of Delta O-17 is plus or minus 8 /00 (2 sigma ) because the observed variations of isotope ratios follow a mass dependent fractionation law. Variations of delta D of the aqueous fluids range over sog,a 330(90; 2 sigma ) to +1200(90) 0/00 for Monahans and delta 300(96) 0/00 to +90(98)0/00 for Zag. Delta O-17 of aqueous fluids range over delta 16(22) 0/00 to +18(10) 0/00 for Monahans and +3(10) 0/00 to +27(11) 0/00 for Zag. These variations are larger than the reproducibility of standard analyses and suggest that isotope equilibria were under way in the fluids before trapping into halite. The mean values of delta D and Delta O-17 are +290 0/00 and +9 0/00, respectively. The mean values and the variations of these fluids are different from the representative values of ordinary chondrites, verifying our working hypothesis that the fluid inclusion-bearing halites were not indigenous to the H chondrite parent-asteroid but rather represent exogenous material delivered onto the asteroid from a separate cryovolcanically-active body. This initial isotopic work has demonstrated the feasibility of the measurements, but also revealed sample processing and analytical shortcomings that are now being addressed. Examination of solid mineral inclusions within Monahans and Zag halite grains by confocal Raman spectroscopy at the Carnegie Geophysical Laboratory has revealed them to be metal, magnetite, forsteritic olivine (Fo.98), macromolecular carbon (MMC), pyroxenes, feldspar with Raman spectral affinity to anorthoclase and, probably, fine-grained lepidocrocite (FeO(OH)). In addition, one inclusion features aliphatic material with Raman spectral features consistent with a mixture of short-chain aliphatic compounds. We have initiated analyses of the bulk composition of the fluids within the inclusions in Zag and Monahans halites at Virginia Tech by LA ICPMS using angilent 7500ce quadrupole ICPMS and a Lambda Physik GeoLas 193 nm excimer laser ablation system. Preliminary results reveal that the inclusion aqueous fluids contain highly charged cations of Ca, Mg and Fe. The minerals and compounds discovered thus far within Monahans/Zag halites are indicative of an originating body at least partly composed of unequilibrated anhydrous materials (high Fo olivine, pyroxenes, feldspars, possibly the metal) which were subjected to aqueous alteration (the halite parent brine) and containing a light organic component (the short-chain aliphatic compounds). This material was ejected from the originating body with little or no disruption, as evidenced with the presence of fluid inclusions. An actively geysering body similar to modern Enceladus (Postberg et al., 2011) may be a reasonable analogue in this respect. Also, the originating body should have been within close proximity to the H chondrite parent in order to generate the number of halite grains seen in Monahans and Zag. Other candidates for Monahans/Zag halite parent bodie(s) may include a young Ceres with its possible liquid ocean, or Main Belt comets.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26166 , Pan-American Current Research on Fluid Inclusions (PACROFI-XI); Jun 18, 2012 - Jun 20, 2012; Ontario, Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-19
    Description: The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 ~m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6910.2012 , American Geophysical Union Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The Earth's climate is changing rapidly. In some respects, the rate of change is outpacing the predictions of only a few years ago. The challenge to Earth Science is to put forward credible projections of possible future climates so that the public and policy makers can make science-based decisions about energy development strategies. Models, observations and experiments all play strong roles in improving knowledge and increasing confidence in our predictions. The models have progressed from simple, coarse-resolution descriptions of atmospheric dynamics and physics only twenty years ago, to full-up Earth System models (ESMs) that include complete descriptions of the oceans and cryosphere. It has been convincingly argued that such complexity - the construction of realistic "toy" Earth's - is necessary to address the complex processes involved in climate change, including not only the physical atmosphere, oceans and cryosphere, but also the carbon cycle - both its natural and anthropogenic components - and the biosphere. Observations, particularly satellite observations, have more or less kept pace with the demands of the modelers, being able to observe progressively more and different facets of the Earth system, but the global satellite fleet is in need of an overhaul very soon. Lastly, field experiments and process studies confront the models with facts and allow us to develop more sophisticated and accurate satellite data algorithms. The challenges facing our relatively small Earth and planetary science communities are considerable and the stakes are significant. The stakeholders, now numbering 7 billion but soon to be 10 billion, will be relying on our results and capabilitie's to guide them into the future.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6908.2012 , American Geophysical Union''s 45th annual Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-19
    Description: Early climate modeling studies predicted that the Arctic Ocean and surrounding circumpolar land masses would heat up earlier and faster than other parts of the planet as a result of greenhouse gas-induced climate change, augmented by the sea-ice albedo feedback effect. These predictions have been largely borne out by observations over the last thirty years. However, despite constant improvement, global climate models have greater difficulty in reproducing the current climate in the Arctic than elsewhere and the scatter between projections from different climate models is much larger in the Arctic than for other regions. Biogeochemical cycle (BGC) models indicate that the warming in the Arctic-Boreal Zone (ABZ) could lead to widespread thawing of the permafrost, along with massive releases of CO2 and CH4, and large-scale changes in the vegetation cover in the ABZ. However, the uncertainties associated with these BGC model predictions are even larger than those associated with the physical climate system models used to describe climate change. These deficiencies in climate and BGC models reflect, at least in part, an incomplete understanding of the Arctic climate system and can be related to inadequate observational data or analyses of existing data. A workshop was held at NASA/GSFC, May 22-24 2012, to assess the predictive capability of the models, prioritize the critical science questions; and make recommendations regarding new field experiments needed to improve model subcomponents. This presentation will summarize the findings and recommendations of the workshop, including the need for aircraft and flux tower measurements and extension of existing in-situ measurements to improve process modeling of both the physical climate and biogeochemical cycle systems. Studies should be directly linked to remote sensing investigations with a view to scaling up the improved process models to the Earth System Model scale. Data assimilation and observing system simulation studies should be used to guide the deployment pattern and schedule for inversion studies as well. Synthesis and integration of previously funded Arctic-Boreal projects (e.g., ABLE, BOREAS, ICESCAPE, ICEBRIDGE, ARCTAS) should also be undertaken. Such an effort would include the integration of multiple remotely sensed products from the EOS satellites and other resources.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6909.2012 , American Geophysical Union''s 45th annual Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: Measurements of transiting exoplanets that target extremes in parameter space offer the best chance to disentangle the structure and composition of the atmospheres of hot Jupiters. WASP-19b is one of the hottest exoplanets discovered to date, while WASP-17b has a much lower equilibrium temperature but has one of the largest atmospheric radii of known transiting planets. We discuss results from HST/WFC3 grism 1.1-1.7 micron spectroscopy of these planets during transit. We compare our integrated-light transit depths to previous IR transit photometry, and derive the 1.4-micron water absorption spectrum. We discuss implications for the atmospheric composition and structure of these hot Jupiters, and outline future observations that will further expand on these results.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.5720.2011 , Exoclimes 2012: The Diversity of Planetary Atmospheres; Jan 16, 2012 - Jan 20, 2012; Aspen, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-19
    Description: Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address deficiencies in numerical weather prediction and climate models due to improper treatment of L-A interactions, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land-PBL coupling at the process-level. In this study, a diagnosis of the nature and impacts oflocalland-atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of2006-7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation are examined for the dry/wet regimes of this region, along with the behavior and accuracy of different land-PBL scheme couplings under these conditions. In addition, we examine the impact of improved specification ofland surface states, anomalies, and fluxes that are obtained through the use of a hew optimization and uncertainty module in LIS, on the L-A coupling in WRF forecasts. Results demonstrate how LoCo diagnostics can be applied to coupled model components in the context of their integrated impacts on the process-chain connecting the land surface to the PBL and support of hydrological anomalies.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.5611.2011 , 26th AMS Conference on Hydrology; Jan 22, 2012 - Jan 26, 2012; New Orleans, LA; United States|24th AMS Conference on Climate Variability and Change; Jan 22, 2012 - Jan 26, 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: Approximately 10% of the solar insolation reaches the surface of Titan through atmospheric spectral windows. We will discuss a filter based imaging system for a future Titan orbiter that will exploit these windows mapping surface features, cloud regions, polar storms. In the near-infrared (NIR), two filters (1.28 micrometer and 1.6 micrometer), strategically positioned between CH1 absorption bands, and InSb linear array pixels will explore the solar reflected radiation. We propose to map the mid, infrared (MIR) region with two filters: 9.76 micrometer and 5.88-to-6.06 micrometers with MCT linear arrays. The first will map MIR thermal emission variations due to surface albedo differences in the atmospheric window between gas phase CH3D and C2H4 opacity sources. The latter spans the crossover spectral region where observed radiation transitions from being dominated by thermal emission to solar reflected light component. The passively cooled linear arrays will be incorporated into the focal plane of a light-weight thin film stretched membrane 10 cm telescope. A rad-hard ASIC together with an FPGA will be used for detector pixel readout and detector linear array selection depending on if the field-of-view (FOV) is looking at the day- or night-side of Titan. The instantaneous FOV corresponds to 3.1, 15.6, and 31.2 mrad for the 1, 5, and 10 micrometer channels, respectively. For a 1500 km orbit, a 5 micrometer channel pixel represents a spatial resolution of 91 m, with a FOV that spans 23 kilometers, and Titan is mapped in a push-broom manner as determined by the orbital path. The system mass and power requirements are estimated to be 6 kg and 5 W, respectively. The package is proposed for a polar orbiter with a lifetime matching two Saturn seasons.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6395.2012 , Titan2 Workshop; Apr 03, 2012 - Apr 05, 2012; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-19
    Description: The discovery of very heavy ions (Coates et al., 2007) in Titan's thermosphere has dramatically altered our understanding of the processes involved in the formation of the complex organic aerosols that comprise Titan's characteristic haze. Before Cassini's arrival, it was believed that aerosol production began in the stratosphere where the chemical processes were predominantly initiated by FUV radiation. This understanding guided the design of Titan atmosphere simulation experiments. However, the energy environment of the thermosphere is significantly different than the stratosphere; in particular there is a greater flux of EUV photons and energetic particles available to initiate chemical reactions, including the destruction of N2. in the upper atmosphere. Using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), we have obtained in situ composition measurements of aerosol particles (so'called "tholins") produced in CH4/N2 gas mixtures subjected to either FUV radiation (deuterium lamp, 115-400 nm) (Trainer et al., 2012) or a spark discharge. A comparison of the composition of tholins produced using the two different energy sources will be presented, in particular with regard to the variation in nitrogen content of the two types of tholin. Titan's aerosols are known to contain significant amounts of nitrogen (Israel et al., 2005) and therefore understanding the role of nitrogen in the aerosol chemistry is important to further our knowledge of the formation and evolution of aerosols in Titan's atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6397.2012 , Titan through Time 2 Workshop; Apr 03, 2012 - Apr 05, 2012; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-19
    Description: Using a high-resolution non-hydrostatic version of GEOS-5 with the cubed-sphere finite-volume dynamical core, the impact of spatial and temporal resolution on cloud properties will be evaluated. There are indications from examining convective cluster development in high resolution GEOS-5 forecasts that the temporal resolution within the model may playas significant a role as horizontal resolution. Comparing modeled convective cloud clusters versus satellite observations of brightness temperature, we have found that improved. temporal resolution in GEOS-S accounts for a significant portion of the improvements in the statistical distribution of convective cloud clusters. Using satellite simulators in GEOS-S we will compare the cloud optical properties of GEOS-S at various spatial and temporal resolutions with those observed from MODIS. The potential impact of these results on tropical cyclone formation and intensity will be examined as well.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6499.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-19
    Description: The presentation is divided into two major components. First, I will give an overview of space weather phenomenon and their associated impacts. Then I will describe the comprehensive list of products and tools that NASA Space Weather Center has developed by leveraging more than a decade long modeling experience enabled by the Community Coordinated Modeling Center (CCMC) and latest scientific research results from the broad science community. In addition, a summary of the space weather activities we have been engaged in and our operational experience will be provided.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6354.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-19
    Description: For the preparation of ITRF2008, the IDS processed data from 1993 to 2008, including data from TOPEX/Poseidon, the SPOT satellites and Envisat in the weekly solutions. Since the development of ITRF2008, the IDS has been engaged in a number of efforts to try and improve the reference frame solutions. These efforts include (i) assessing the contribution of the new DORIS satellites, Jason-2 and Cryosat2 (2008-2011), (ii) individually analyzing the DORIS satellite contributions to geocenter and scale, and (iii) improving orbit dynamics (atmospheric loading effects, satellite surface force modeling. . . ). We report on the preliminary results from these research activities, review the status of the IDS combination which is now routinely generated from the contributions of the IDS analysis centers, and discuss the prospects for continued improvement in the DORIS contribution to the next international reference frame.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.00121.2012 , European Geosciences Union General Assembly 2012; Apr 22, 2012 - Apr 27, 2012; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-19
    Description: Both NLDAS Phase 1 (1996-2007) and Phase 2 (1979-present) datasets have been evaluated against in situ observational datasets, and NLDAS forcings and outputs are used by a wide variety of users. Drought indices and drought monitoring from NLDAS were recently examined by Mo et al. (2010) and Sheffield et al. (2010). In this poster, we will present results analyzing NLDAS Phase 2 forcings and outputs for 3 North American Case studies being analyzed as part of the NOAA MAPP Drought Task Force: (1) Western US drought (1998- 2004); (2) plains/southeast US drought (2006-2007); and (3) Current Texas-Mexico drought (2011-). We will examine percentiles of soil moisture consistent with the NLDAS drought monitor.
    Keywords: Meteorology and Climatology
    Type: GSFS.ABS.00230.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-19
    Description: Precipitation, including rain and snow, is a critical part of the Earth's energy and hydrology cycles. Precipitation impacts latent heating profiles locally while global circulation patterns distribute precipitation and energy from the equator to the poles. For the hydrological cycle, falling snow is a primary contributor in northern latitudes during the winter seasons. Falling snow is the source of snow pack accumulations that provide fresh water resources for many communities in the world. Furthermore, falling snow impacts society by causing transportation disruptions during severe snow events. In order to collect information on the complete global precipitation cycle, both liquid and frozen precipitation must be collected. The challenges of estimating falling snow from space still exist though progress is being made. These challenges include weak falling snow signatures with respect to background (surface, water vapor) signatures for passive sensors over land surfaces, unknowns about the spherical and non-spherical shapes of the snowflakes, their particle size distributions (PSDs) and how the assumptions about the unknowns impact observed brightness temperatures or radar reflectivities, differences in near surface snowfall and total column snow amounts, and limited ground truth to validate against. While these challenges remain, knowledge of their impact on expected retrieval results is an important key for understanding falling snow retrieval estimations. Since falling snow from space is the next precipitation measurement challenge from space, information must be determined in order to guide retrieval algorithm development for these current and future missions. This information includes thresholds of detection for various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types. For example, can a lake effect snow system with low (approx 2.5 km) cloud tops having an ice water content (IWC) at the surface of 0.25 g / cubic m and dendrite snowflakes be detected? If this information is known, we can focus retrieval efforts on detectable storms and concentrate advances on achievable results. Here, the focus is to determine thresholds of detection for falling snow for various snow conditions over land and lake surfaces. The results rely on simulated Weather Research Forecasting (WRF) simulations of falling snow cases since simulations provide all the information to determine the measurements from space and the ground truth. Sensitivity analyses were performed to better ascertain the relationships between multifrequency microwave and millimeter-wave sensor observations and the falling snow/underlying field of view. In addition, thresholds of detection for various sensor channel configurations, snow event system characteristics, snowflake particle assumptions, and surface types were studied. Results will be presented for active radar at Ku, Ka, and W-band and for passive radiometer channels from 10 to 183 GHz.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.00238.2012 , 12th Specialist Meeting on MicroRad (Microwave Radiometry and Remote Sensing of the Environment).; Mar 05, 2012 - Mar 09, 2012; Frascati; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-19
    Description: In this talk, I will present recent results from a project led at NASA/GSFC, in collaboration with NASA/MSFC and JHU, focused on the development and application of an observation-driven integrated modeling system that represents aerosol, cloud, precipitation and land processes at satellite-resolved scales. The project, known as the NASA Unified WRF (NU-WRF), is funded by NASA's Modeling and Analysis Program, and leverages prior investments from the Air Force Weather Agency and NASA's Earth Science Technology Office (ESTO). We define "satellite-resolved" scales as being within a typical mesoscale atmospheric modeling grid (roughly 1-25 km), although this work is designed to bridge the continuum between local (microscale), regional (mesoscale) and global (synoptic) processes. NU-WRF is a superset of the standard NCAR Advanced Research WRF model, achieved by fully integrating the GSFC Land Information System (LIS, already coupled to WRF), the WRF/Chem enabled version of the Goddard Chemistry Aerosols Radiation Transport (GOCART) model, the Goddard Satellite Data Simulation Unit (SDSU), and boundary/initial condition preprocessors for MERRA and GEOS-5 into a single software release (with source code available by agreement with NASA/GSFC). I will show examples where the full coupling between aerosol, cloud, precipitation and land processes is critical for predicting local, regional, and global water and energy cycles, including some high-impact phenomena such as floods, hurricanes, mesoscale convective systems, droughts, and monsoons.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.00229.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-19
    Description: The modelers point of view is that the aerosol problem is one of sources, evolution, and sinks. Relative to evolution and sink processes, enormous attention is given to the problem of aerosols sources, whether inventory based (e.g., fossil fuel emissions) or dynamic (e.g., dust, sea salt, biomass burning). On the other hand, aerosol losses in models are a major factor in controlling the aerosol distribution and lifetime. Here we shine some light on how aerosol sinks are treated in modern chemical transport models. We discuss the mechanisms of dry and wet loss processes and the parameterizations for those processes in a single model (GEOS-5). We survey the literature of other modeling studies. We additionally compare the budgets of aerosol losses in several of the ICAP models.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.00296.2012 , International Cooperative for Aerosol Prediction (ICAP)/Aerocast Workshop
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-19
    Description: Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.00392.2012 , International Conference on Natural Disaster Prevention, Early Warning, and Mitigation; Jun 27, 2012 - Jun 29, 2012; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-19
    Description: Seven years after Cassini's Saturn orbit insertion, we have in hand almost a complete picture of the stratospheric evolution within a Titanian year by combining Voyager 1 Infrared Radiometer Spectrometer (IRIS) measurements from 1980, Cassini Composite Infrared Spectrometer (CIRS) continuous recordings from 2004 to 2010 and the intervening ground-based and space-borne observations with ISO (Coustenis et al 2003). We have re-analyzed the Voyager l/IRIS data acquired during the 1980 encounter, 30 years (one Titan revolution) before 2010, with the most recent spectroscopic data releases and haze descriptions (Vinatier et al 2010, 2012) by using our radiative transfer code (ART). The re-analysis confirms the Vl/IRIS retrievals by Coustenis and Bezard (1995) and updates the abundances for all molecules and latitudes based on new temperature, haze and spectroscopic parameters. ART was also applied to all available CIRS spectral averages corresponding to more than 70 flybys binned over 10 deg in latitude for both medium (2.5 cm(exp -1) and higher (0.5 cm(exp -1) resolutions and from nadir and limb data both. In these spectra, we search for variations in temperature (following the method in Achterberg et al 2011) and composition at northern (around 50 deg N), equatorial and southern (around 50 deg S) latitudes as the season on Titan progresses and compare them to the new Vl/IRIS, ISO and other ground-based reported composition values (Coustenis et al., 2012, in prep). Other latitudes were examined in previous papers (e.g. Coustenis et al 2010).
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.00145.2012 , Titan2 Workshop; Apr 03, 2012 - Apr 05, 2012; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-19
    Description: The Moon can be considered a giant tape recorder containing the history of the solar system and Universe. The lunar regolith (soil) has recorded the early history of the Moon, Earth, the solar system and Universe. A major goal of future lunar exploration should be to find and play back existing fragments of that tape . By reading the lunar tape, we can uncover a record of planetary bombardment, as well as solar and stellar variability. The Moon can tell us much about our place in the Universe. The lunar regolith has likely recorded the original meteoritic bombardment of Earth and Moon, a violent cataclysm that may have peaked around 4 Gyr, and the less intense bombardment occurring since that time. This impact history is preserved on the Moon as regolith layers, ejecta layers, impact melt rocks, and ancient impact breccias. The impact history of the Earth and Moon possibly had profound effects on the origin and development of life. Decrease in meteor bombardment allowed life to develop on Earth. Life may have developed first on another body, such as Mars, then arrived via meteorite on Earth. The solar system may have experienced bursts of severe radiation from the Sun, other stars, or from unknown sources. The lunar regolith has recorded this radiation history in the form of implanted solar wind, solar flare materials and radiation damage. Lunar soil can be found sandwiched between layers of basalt or pyroclastic deposits. This filling constitutes a buried time capsule that is likely to contain well-preserved ancient regolith. Study of such samples will show us how the solar system has evolved and changed over time. The lunar tape recorder can provide detailed information on specific portions of solar and stellar variability. Data from the Moon also offers clues as to whether so-called fundamental constants have changed over time.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26420 , JSC-CN-26150 , International Astronomical Union General Assembly; Aug 20, 2012 - Aug 31, 2012; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: Microelectronics Reliability and Qualification Workshop; Dec 11, 2012 - Dec 12, 2012; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: 2012 EUMETSAT Meteorological Satellite Conference; Sep 03, 2012 - Sep 07, 2012; Sopot; Poland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone, but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are suggested that could take advantage of these features. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA SPACE 2012 Conference & Exposition; Sep 11, 2012 - Sep 13, 2012; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: The Diviner Lunar Radiometer is the first multispectral thermal instrument to globally map the surface of the Moon. After over three years in operation, this unprecedented dataset has revealed the extreme nature of the Moon's thermal environment, thermophysical properties, and surface composition.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Annual Meeting of the Lunar Exploration Analysis Group; Oct 22, 2012 - Oct 24, 2012; Greenbelt, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: Diverse vulnerabilities of Bangladesh's agricultural sector in 16 sub-regions are assessed using experiments designed to investigate climate impact factors in isolation and in combination. Climate information from a suite of global climate models (GCMs) is used to drive models assessing the agricultural impact of changes in temperature, precipitation, carbon dioxide concentrations, river floods, and sea level rise for the 2040-2069 period in comparison to a historical baseline. Using the multi-factor impacts analysis framework developed in Yu et al. (2010), this study provides new sub-regional vulnerability analyses and quantifies key uncertainties in climate and production. Rice (aman, boro, and aus seasons) and wheat production are simulated in each sub-region using the biophysical Crop Environment REsource Synthesis (CERES) models. These simulations are then combined with the MIKE BASIN hydrologic model for river floods in the Ganges-Brahmaputra-Meghna (GBM) Basins, and the MIKE21Two-Dimensional Estuary Model to determine coastal inundation under conditions of higher mean sea level. The impacts of each factor depend on GCM configurations, emissions pathways, sub-regions, and particular seasons and crops. Temperature increases generally reduce production across all scenarios. Precipitation changes can have either a positive or a negative impact, with a high degree of uncertainty across GCMs. Carbon dioxide impacts on crop production are positive and depend on the emissions pathway. Increasing river flood areas reduce production in affected sub-regions. Precipitation uncertainties from different GCMs and emissions scenarios are reduced when integrated across the large GBM Basins' hydrology. Agriculture in Southern Bangladesh is severely affected by sea level rise even when cyclonic surges are not fully considered, with impacts increasing under the higher emissions scenario.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN8883 , Global Environmental Change; 23; 1; 338-350
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregn, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN8896 , Agricultural and Forest Meteorology; 170; 166-182
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft has made the first high-spatial-resolution observations of exospheric calcium at Mercury. We use a Monte Carlo model of the exosphere to track the trajectories of calcium atoms ejected from the surface until they are photoionized, escape from the system, or stick to the surface. This model permits an exploration of exospheric source processes and interactions among neutral atoms, solar radiation, and the planetary surface. The MASCS data have suggested that a persistent, high-energy source of calcium that was enhanced in the dawn, equatorial region of Mercury was active during MESSENGER's three flybys of Mercury and during the first seven orbits for which MASCS obtained data. The total Ca source rate from the surface varied between 1.2x10(exp 23) and 2.6x10(exp 23) Ca atoms/s, if its temperature was 50,000 K. The origin of this high-energy, asymmetric source is unknown, although from this limited data set it does not appear to be consistent with micrometeoroid impact vaporization, ion sputtering, electron-stimulated desorption, or vaporization at dawn of material trapped on the cold nightside.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN7441 , Journal of Geophysical Research; 117; E-12; E00L11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 micron aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1 deg X 1 deg resolution versus corresponding/co-incident 0.550 micron AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. In the absence of sunlight, since passive radiometric AOD retrievals rely overwhelmingly on scattered radiances, the model represents one of the few practical global estimates available from which to attempt such a validation. Daytime comparisons, though, provide useful context. Regional-mean CALIOP vertical profiles of night/day 0.532 micron extinction coefficient are compared with 0.523/0.532 micron ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalised 1 deg. X 1 deg. bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalised bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach +/- 20 %. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalised bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at these latitudes. Root mean square deviation between CALIOP and NAAPS varies between 0.1 and 0.3 globally during both day/night. Averaging of CALIOP along-track AOD data points within a single NAAPS grid bin improves correlation and RMSD, though day/night and land/ocean biases persist and are believed systematic. Vertical profiles of extinction coefficient derived in the Caribbean compare well with ground-based lidar observations, though potentially anomalous selection of a priori lidar ratios for CALIOP retrievals is likely inducing some discrepancies. Mean effective aerosol layer top heights are stable between day and night, indicating consistent layer-identification diurnally, which is noteworthy considering the potential limiting effects of ambient solar noise during day.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN11670 , Atmosheric Measurement Techniques (ISSN 1867-1381); 5; 9; 2143-2160
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: Meteorological measurements within urban areas are becoming increasingly important due to the accentuating effects of climate change upon the Urban Heat Island (UHI). However, ensuring that such measurements are representative of the local area is often difficult due to the diversity of the urban environment. The evaluation of sites is important for both new sites and for the relocation of established sites to ensure that long term changes in the meteorological and climatological conditions continue to be faithfully recorded. Site selection is traditionally carried out in the field using both local knowledge and visual inspection. This paper exploits and assesses the use of lidar-derived digital surface models (DSMs) to quantitatively aid the site selection process. This is acheived by combining the DSM with a solar model, first to generate spatial maps of sky view factors and sun-hour potential and second, to generate site-specific views of the horizon. The results show that such a technique is a useful first-step approach to identify key sites that may be further evaluated for the location of meteorological stations within urban areas.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN11583 , Meteorological Applications; 20; 3; 379-384
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of 2.0Wm(exp2 for direct forcing including contributions from sulfate (2.0Wm2), nitrate (0.2Wm(exp2), organic carbon (0.2Wm(exp2), and black carbon (+0.4Wm(exp2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp2) direct and 1.0Wm(exp2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9210 , Atmospheric Chemistry and Physics; 12; 7; 3333-3348
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: The latest neutron spectrometer measurements with the Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) are presented. It covers more than 1 year of mapping phase starting on 15 September 2009. In our analyses we have created global maps showing regional variations in the flux of thermal (energy range 〈 0.015 eV) and fast neutrons (〉0.5 MeV), and compared these fluxes to variances in soil elemental composition, and with previous results obtained by the Lunar Prospector Neutron Spectrometer (LPNS). We also processed data from LEND collimated detectors and derived a value for the collimated signal of epithermal neutrons based on the comparative analysis with the LEND omnidirectional detectors. Finally, we have compared our final (after the data reduction) global epithermal neutron map with LPNS data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN9082 , Journal of Geophysical Research Planets (ISSN 2169-9100); 117; E12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: Here we report the measurement of water vapor in Titan's stratosphere using the Cassini Composite Infrared Spectrometer (CIRS). CIRS senses water emissions in the far infrared spectral region near 50 micron, which we have modeled using two independent radiative transfer codes. From the analysis of nadir spectra we have derived a mixing ratio of 0.14 +/- 0.05 ppb at an altitude of 97 km, which corresponds to an integrated (from 0 to 600 km) surface normalized column abundance of 3.7 +/- 1.3 1014 molecules/cm2. In the latitude range 80S to 30N we see no evidence for latitudinal variations in these abundances within the error bars. Using limb observations, we obtained mixing ratios of 0.13 +/- 0.04 ppb at an altitude of 115 km and 0.45 +/- 0.15 ppb at an altitude of 230 km, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models. We have also fitted our data using scaling factors of 0.1-0.6 to these photochemical model profiles, indicating that the models over-predict the water abundance in Titan's lower stratosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN11425 , Icarus; 220; 2; 855-862
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN9344 , Journal of Geophysical Research Planets (ISSN 0148-0227); 117; E12; E00L12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9414 , Journal of Atmospheric Sciences; 69; 1; 236-257
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: The nucleus of comet Tempel 1 has been investigated at close range during two spacecraft missions separated by one comet orbit of the Sun, 5 1/2 years. The combined imaging covers 70% of the surface of this object which has a mean radius of 2.83 +/- 0.1 km. The surface can be divided into two terrain types: rough, pitted terrain and smoother regions of varying local topography. The rough surface has round depressions from resolution limits (10 m/pixel) up to 1 km across, spanning forms from crisp steep-walled pits, to subtle albedo rings, to topographic rings, with all ranges of morphologic gradation. Three gravitationally low regions of the comet have smoother terrain, parts of which appear to be deposits from minimally modified flows, with other parts likely to be heavily eroded portions of multiple layer piles. Changes observed between the two missions are primarily due to backwasting of scarps bounding one of these probable flow deposits. This style of erosion is also suggested by remnant mesa forms in other areas of smoother terrain. The two distinct terrains suggest either an evolutionary change in processes, topographically- controlled processes, or a continuing interaction of erosion and deposition.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN9320 , Icarus; 222; 2; 453-466
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: ARTEMIS observes pickup ions around the Moon, at distances of up to 20,000 km from the surface. The observed ions form a plume with a narrow spatial and angular extent, generally seen in a single energy/angle bin of the ESA instrument. Though ARTEMIS has no mass resolution capability, we can utilize the analytically describable characteristics of pickup ion trajectories to constrain the possible ion masses that can reach the spacecraft at the observation location in the correct energy/angle bin. We find that most of the observations are consistent with a mass range of approx. 20-45 amu, with a smaller fraction consistent with higher masses, and very few consistent with masses below 15 amu. With the assumption that the highest fluxes of pickup ions come from near the surface, the observations favor mass ranges of approx. 20-24 and approx. 36-40 amu. Although many of the observations have properties consistent with a surface or near-surface release of ions, some do not, suggesting that at least some of the observed ions have an exospheric source. Of all the proposed sources for ions and neutrals about the Moon, the pickup ion flux measured by ARTEMIS correlates best with the solar wind proton flux, indicating that sputtering plays a key role in either directly producing ions from the surface, or producing neutrals that subsequently become ionized.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN9051 , Journal of Geophysical Research; 117; E6; E06006
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: As an airless body in space with no global magnetic field, the Moon is exposed to both solar ultraviolet radiation and ambient plasmas. Photoemission from solar UV radiation and collection of ambient plasma are typically opposing charging currents and simple charging current balance predicts that the lunar dayside surface should charge positively; however, the two ARTEMIS probes have observed energydependent loss cones and high-energy, surface-originating electron beams above the dayside lunar surface for extended periods in the magnetosphere, which are indicative of negative surface potentials. In this paper, we compare observations by the ARTEMIS P1 spacecraft with a one dimensional particle-in-cell simulation and show that the energy-dependent loss cones and electron beams are due to the presence of stable, non-monotonic, negative potentials above the lunar surface. The simulations also show that while the magnitude of the non-monotonic potential is mainly driven by the incoming electron temperature, the incoming ion temperature can alter this magnitude, especially for periods in the plasma sheet when the ion temperature is more than twenty times the electron temperature. Finally, we note several other plasma phenomena associated with these non-monotonic potentials, such as broadband electrostatic noise and electron cyclotron harmonic emissions, and offer possible generation mechanisms for these phenomena.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN9069 , Geophysical Research Letters; 39; 1; L01102
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: Electron distributions measured by Lunar Prospector above the dayside lunar surface in the solar wind often have an energy dependent loss cone, inconsistent with adiabatic magnetic reflection. Energy dependent reflection suggests the presence of downward parallel electric fields below the spacecraft, possibly indicating the presence of a standing electrostatic structure. Many electron distributions contain apparent low energy (〈100 eV) upwardgoing conics (58% of the time) and beams (12% of the time), primarily in regions with non-zero crustal magnetic fields, implying the presence of parallel electric fields and/or wave-particle interactions below the spacecraft. Some, but not all, of the observed energy dependence comes from the energy gained during reflection from a moving obstacle; correctly characterizing electron reflection requires the use of the proper reference frame. Nonadiabatic reflection may also play a role, but cannot fully explain observations. In cases with upward-going beams, we observe partial isotropization of incoming solar wind electrons, possibly indicating streaming and/or whistler instabilities. The Moon may therefore influence solar wind plasma well upstream from its surface. Magnetic anomaly interactions and/or non-monotonic near surface potentials provide the most likely candidates to produce the observed precursor effects, which may help ensure quasi-neutrality upstream from the Moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN9023 , Planetary and Space Science; 64; 2; 73-82
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: NASA Langley Research Center obtained a composite helicopter cabin structure in 2010 from the US Army's Survivable Affordable Repairable Airframe Program (SARAP) that was fabricated by Sikorsky Aircraft Corporation. The cabin had been subjected to a vertical drop test in 2008 to evaluate a tilting roof concept to limit the intrusion of overhead masses into the fuselage cabin. Damage to the cabin test article was limited primarily to the roof. Consequently, the roof area was removed and the remaining structure was cut into test specimens including a large subfloor section and a forward framed fuselage section. In 2011, NASA and Sikorsky entered into a cooperative research agreement to study the impact responses of composite airframe structures and to evaluate the capabilities of the explicit transient dynamic finite element code, LS-DYNA, to simulate these responses including damage initiation and progressive failure. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from accelerometers and full-field photogrammetry. The focus of this paper will be to document impact testing and simulation results for the longitudinal impact of the subfloor section and the vertical drop test of the forward framed fuselage section.
    Keywords: Composite Materials
    Type: NF1676L-17752 , International LS-DYNA Users Conference; Jun 03, 2014 - Jun 05, 2014; Dearborn, MI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: A unique microphysical structure of rainfall is observed by the surface laser optical Particle Size and Velocity (Parsivel) disdrometers on 25 April 2011 during Midlatitude Continental Convective Clouds Experiment (MC3E). According to the systematic differences in rainfall rate and bulk effective droplet radius, the sampling data can be divided into two groups; the rainfall mostly from the deep convective clouds has relatively high rainfall rate and large bulk effective droplet radius, whereas the reverse is true for the rainfall from the shallow wrm clouds. The Weather Research and Forecasting model coupled with spectral bin microphysics (WRF-SBM) successfully reproduces the two distinct modes in the observed rainfall microphysical structure. The results show that the up-to-date model can demonstrate how the cloud physics and the weather condition on the day are involved in forming the unique rainfall characteristic.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9401 , Geophysical Research Letters (ISSN 1944-8007); 38; 24; L24805
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Ensembles of numerical model forecasts are of interest to operational early warning forecasters as the spread of the ensemble provides an indication of the uncertainty of the alerts, and the mean value is deemed to outperform the forecasts of the individual models. This paper explores two ensembles on a severe weather episode in Spain, aiming to ascertain the relative usefulness of each one. One ensemble uses sensible choices of physical parameterizations (precipitation microphysics, land surface physics, and cumulus physics) while the other follows a perturbed initial conditions approach. The results show that, depending on the parameterizations, large differences can be expected in terms of storm location, spatial structure of the precipitation field, and rain intensity. It is also found that the spread of the perturbed initial conditions ensemble is smaller than the dispersion due to physical parameterizations. This confirms that in severe weather situations operational forecasts should address moist physics deficiencies to realize the full benefits of the ensemble approach, in addition to optimizing initial conditions. The results also provide insights into differences in simulations arising from ensembles of weather models using several combinations of different physical parameterizations.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9398 , Journal of Applied Meteorology; 51; 3; 489-504
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: An algorithm for linear estimation of aerosol bulk properties such as particle volume, effective radius and complex refractive index from multiwavelength lidar measurements is presented. The approach uses the fact that the total aerosol concentration can well be approximated as a linear combination of aerosol characteristics measured by multiwavelength lidar. Therefore, the aerosol concentration can be estimated from lidar measurements without the need to derive the size distribution, which entails more sophisticated procedures. The definition of the coefficients required for the linear estimates is based on an expansion of the particle size distribution in terms of the measurement kernels. Once the coefficients are established, the approach permits fast retrieval of aerosol bulk properties when compared with the full regularization technique. In addition, the straightforward estimation of bulk properties stabilizes the inversion making it more resistant to noise in the optical data. Numerical tests demonstrate that for data sets containing three aerosol backscattering and two extinction coefficients (so called 3 + 2 ) the uncertainties in the retrieval of particle volume and surface area are below 45% when input data random uncertainties are below 20 %. Moreover, using linear estimates allows reliable retrievals even when the number of input data is reduced. To evaluate the approach, the results obtained using this technique are compared with those based on the previously developed full inversion scheme that relies on the regularization procedure. Both techniques were applied to the data measured by multiwavelength lidar at NASA/GSFC. The results obtained with both methods using the same observations are in good agreement. At the same time, the high speed of the retrieval using linear estimates makes the method preferable for generating aerosol information from extended lidar observations. To demonstrate the efficiency of the method, an extended time series of observations acquired in Turkey in May 2010 was processed using the linear estimates technique permitting, for what we believe to be the first time, temporal-height distributions of particle parameters.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9397 , Atmospheric Measurement Techniques; 5; 5; 1135-1145
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9558 , Journal of Geophysical Research - Atmospheres; 117; D23; D23301
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: This work presents the first analysis of longterm correlative day-to-night columnar aerosol optical properties. The aim is to better understand columnar aerosol dynamic from ground-based observations, which are poorly studied until now. To this end we have used a combination of sun-and-star photometry measurements acquired in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) from 2007 to 2010. For the whole study period, mean aerosol optical depth (AOD) around 440 nm (+/-standard deviation) is 0.18 +/- 0.10 and 0.19 +/- 0.11 for daytime and nighttime, respectively, while the mean Angstrom exponent (alpha ) is 1.0 +/- 0.4 and 0.9 +/- 0.4 for daytime and nighttime. The ANOVA statistical tests reveal that there are no significant differences between AOD and obtained at daytime and those at nighttime. Additionally, the mean daytime values of AOD and obtained during this study period are coherent with the values obtained in the surrounding AERONET stations. On the other hand, AOD around 440 nm present evident seasonal patterns characterised by large values in summer (mean value of 0.20 +/- 0.10 both at daytime and nighttime) and low values in winter (mean value of 0.15 +/- 0.09 at daytime and 0.17 +/- 0.10 at nighttime). The Angstrom exponents also present seasonal patterns, but with low values in summer (mean values of 0.8 +/- 0.4 and 0.9 +/- 0.4 at dayand night-time) and relatively large values in winter (mean values of 1.2 +/- 0.4 and 1.0 +/- 0.3 at daytime and nighttime). These seasonal patterns are explained by the differences in the meteorological conditions and by the differences in the strength of the aerosol sources. To take more insight about the changes in aerosol particles between day and night, the spectral differences of the Angstrom exponent as function of the Angstrom exponent are also studied. These analyses reveal increases of the fine mode radius and of the fine mode contribution to AOD during nighttime, being more remarkable in the summer seasons. These variations are explained by the changes of the local aerosol sources and by the meteorological conditions between daytime and nighttime, as well as aerosol aging processes. Case studies during summer and winter for different aerosol loads and types are also presented to clearly illustrate these findings.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9356 , Atmospheric Chemistry and Physics; 12; 20; 9719-9738
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: A simplied framework is presented for assessing the qualitative sensitivities of computed microwave properties, satellite brightness temperatures, and radar reflectivities to assumptions concerning the physical properties of ice-phase hydrometeors. Properties considered included the shape parameter of a gamma size distribution andthe melted-equivalent mass median diameter D0, the particle density, dielectric mixing formula, and the choice of complex index of refraction for ice. We examine these properties at selected radiometer frequencies of 18.7, 36.5, 89.0, and 150.0 GHz; and radar frequencies at 2.8, 13.4, 35.6, and 94.0 GHz consistent with existing and planned remote sensing instruments. Passive and active microwave observables of ice particles arefound to be extremely sensitive to the melted-equivalent mass median diameter D0 ofthe size distribution. Similar large sensitivities are found for variations in the ice vol-ume fraction whenever the geometric mass median diameter exceeds approximately 1/8th of the wavelength. At 94 GHz the two-way path integrated attenuation is potentially large for dense compact particles. The distribution parameter mu has a relatively weak effect on any observable: less than 1-2 K in brightness temperature and up to 2.7 dB difference in the effective radar reflectivity. Reversal of the roles of ice and air in the MaxwellGarnett dielectric mixing formula leads to a signicant change in both microwave brightness temperature (10 K) and radar reflectivity (2 dB). The choice of Warren (1984) or Warren and Brandt (2008) for the complex index of refraction of ice can produce a 3%-4% change in the brightness temperature depression.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9094 , Journal of Applied Meteorology and Climatology; 51; 12; 2152-2171
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: Magnetic fields measured by the satellite Lunar Prospector show large scale features resulting from remanently magnetized crust. Vector data synthesized at satellite altitude from a spherical harmonic model of the lunar crustal field, and the radial component of the magnetometer data, have been used to produce spatially continuous global magnetization models for the lunar crust. The magnetization is expressed in terms of localized basis functions, with a magnetization solution selected having the smallest root-mean square magnetization for a given fit to the data, controlled by a damping parameter. Suites of magnetization models for layers with thicknesses between 10 and 50 km are able to reproduce much of the input data, with global misfits of less than 0.5 nT (within the uncertainties of the data), and some surface field estimates. The magnetization distributions show robust magnitudes for a range of model thicknesses and damping parameters, however the magnetization direction is unconstrained. These global models suggest that magnetized sources of the lunar crust can be represented by a 30 km thick magnetized layer. Average magnetization values in magnetized regions are 30-40 mA/m, similar to the measured magnetizations of the Apollo samples and significantly weaker than crustal magnetizations for Mars and the Earth. These are the first global magnetization models for the Moon, providing lower bounds on the magnitude of lunar crustal magnetization in the absence of multiple sample returns, and can be used to predict the crustal contribution to the lunar magnetic field at a particular location.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN9233 , Journal of Geophysical Research-Planets; 117; E8; E08001
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...