ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism  (25)
  • Elsevier  (23)
  • Terra Antartica  (2)
  • Annual Reviews
  • 2005-2009  (25)
  • 1990-1994
  • 1985-1989
  • 1980-1984
  • 2008  (25)
Collection
Years
  • 2005-2009  (25)
  • 1990-1994
  • 1985-1989
  • 1980-1984
Year
  • 1
    Publication Date: 2020-11-19
    Description: We report on structural and anisotropy of magnetic susceptibility (AMS) results from the Upper Miocene sediments of the Amantea basin, located on the Tyrrhenian coast of the Calabrian Arc (Southern Italy). The stratigraphic succession of the basin is organized in three depositional sequences, separated by two major angular unconformities. Detailed geologica1 mapping and structural analysis demonstrate that the stratigraphic evolution of the Amantea basin is strongly controlled by a synsedimentary extensional tectonic regime. Severa1 NNE-SSW-trending norma1 fault arrays with large scatter in inclination values have been interpreted as due to a domino faulting mechanism, consistent with a WNW-ESE stretching direction. AMS data have been obtained for 13 sites, both in the not constrained in age first depositional sequence (3 sites), and in the upper Tortonian-lower Messinian clays from the second depositional sequence (10 sites). Al1 the sites show a strong magnetic foliation parallel to the bedding planes, and a well defined magnetic lineation subparallel to the local bedding dip directions. The magnetic lineations cluster around a WNW-ESE trend and are parallel to the stretching directions inferred by fault-slip analysis and basin architecture. These new data then confirm the possibility to use the magnetic lineation to map the strain trajectory in weakly deformed extensional sedimentary basins. Paleomagnetic data (from previous studies) show that the whole Calabrian block underwent a 15°-20° clockwise rotation probably in the Pleistocene, postdating the extensional tectonic events which controlled the Amantea basin geometry. Therefore we suggest for the Amantea basin an original E-W-oriented stretching direction, which may be considered as the older extensional direction characterizing the Late Miocene evolution of the southern Tyrrhenian Sea domain.
    Description: Published
    Description: 33-49
    Description: JCR Journal
    Description: reserved
    Keywords: magnetic fabric ; extentional tectonics ; Miocene ; Calabrian Arc ; Italy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-14
    Description: This paper presents a new methodology for studying the evolution of curved mountain belts by means of paleomagnetic analyses performed on analogue models. Eleven models were designed aimed at reproducing various tectonic settings in thin-skinned tectonics. Our models analyze in particular those features reported in the literature as possible causes for peculiar rotational patterns in the outermost as well as in the more internal fronts. In all the models the sedimentary cover was reproduced by frictional low-cohesion materials (sand and glass micro-beads), which detached either on frictional or on viscous layers. These latter were reproduced in the models by silicone. The sand forming the models has been previously mixed with magnetite-dominated powder. Before deformation, the models were magnetized by means of two permanent magnets generating within each model a quasi-linear magnetic field of intensity variable between 20 and 100 mT. After deformation, the models were cut into closely spaced vertical sections and sampled by means of 1x1-cm Plexiglas cylinders at several locations along curved fronts. Care was taken to collect paleomagnetic samples only within virtually undeformed thrust sheets, avoiding zones affected by pervasive shear. Afterwards, the natural remanent magnetization of these samples was measured, and alternating field demagnetization was used to isolate the principal components. The characteristic components of magnetization isolated were used to estimate the vertical-axis rotations occurring during model deformation. We find that indenters pushing into deforming belts from behind form non-rotational curved outer fronts. The more internal fronts show oroclinal-type rotations of a smaller magnitude than that expected for a perfect orocline. Lateral symmetrical obstacles in the foreland colliding with forward propagating belts produce non-rotational outer curved fronts as well, whereas in between and inside the obstacles a perfect orocline forms only when the ratio between obstacles’ distance and thickness of the cover is greater than 10. Finally, when a belt collides with an obstacle in the foreland oblique to the shortening direction the outer front displays rotations opposite in sign to oroclinal-type rotations, whereas the internal fronts seem to assume an "oroclinal type" rotational pattern. Furthermore rotation is easier in laterally unconfined models, i.e. when the wedge can "escape" laterally. The results from our models may be useful when compared to paleomagnetic rotations detected in natural arcs. In these cases, our results may allow for better understanding the tectonic setting controlling the genesis of curved mountain fronts, as is the case of the Gela Nappe of Sicily we compare with some of our models.
    Description: Published
    Description: 633-654
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; tectonic rotations ; physical models ; arcuate belts ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Tanguy, J.C., Principe, C., Arrighi, S., 2005. Comment on “Historical measurements of the Earth’s magnetic field compared with remanence directions from lava flows in Italy over the last four centuries”. In: Lanza, R., Meloni, A., Tema, E. (Eds.), Phys Earth Planet. Inter. 152, 116–120.
    Publication Date: 2017-04-04
    Description: A comparison of the geomagnetic directions derived from lava flows of Italian volcanoes with those derived from direct historical measurements of the Earth’s magnetic field (Lanza et al., 2005) yielded two main results: (1) The general agreement between the two data sets already noted by previous authors (Rolph et al., 1987; Incoronato et al., 2002; Tanguy et al., 2003) was better substantiated. (2) The thermal remanent magnetization (TRM) direction of most flows was shown to deviate from the corresponding historical direction by a small angle θ. In most cases, this angle was larger than the experimental error on the TRM direction as given by the α95 semi-angle of confidence of Fisher’s statistics, i.e. θ 〉 α95. The conclusion drawn from these results was straightforward: a better understanding of the causes of the TRM deviation is required if we are to fully exploit the precision of TRM data from Italian volcanoes when their α95 value is less than 2.5–3.0◦.
    Description: Published
    Description: 121-124
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Secular variation ; Historical magnetic measurements ; Thermal remanent magnetization ; Volcanic rocks ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The age of spreading of the Liguro–Provençal Basin is still poorly constrained due to the lack of boreholes penetrating the whole sedimentary sequence above the oceanic crust and the lack of a clear magnetic anomaly pattern. In the past, a consensus developed over a fast (20.5–19 Ma) spreading event, relying on old paleomagnetic data from Oligo–Miocene Sardinian volcanics showing a drift-related 30° counterclockwise (CCW) rotation. Here we report new paleomagnetic data from a 10-mthick lower–middle Miocene marine sedimentary sequence from southwestern Sardinia. Ar/Ar dating of two volcanoclastic levels in the lower part of the sequence yields ages of 18.94±0.13 and 19.20±0.12 Ma (lower–mid Burdigalian). Sedimentary strata below the upper volcanic level document a 23.3±4.6° CCW rotation with respect to Europe, while younger strata rapidly evolve to null rotation values. A recent magnetic overprint can be excluded by several lines of evidence, particularly by the significant difference between the in situ paleomagnetic and geocentric axial dipole (GAD) field directions. In both the rotated and unrotated part of the section, only normal polarity directions were obtained. As the global magnetic polarity time scale (MPTS) documents several geomagnetic reversals in the Burdigalian, a continuous sedimentary record would imply that (unrealistically) the whole documented rotation occurred in few thousands years only. We conclude that the section contains one (or more) hiatus(es), and that the minimum age of the unrotated sediments above the volcanic levels is unconstrained. Typical back-arc basin spreading rates translate to a duration ≥3 Ma for the opening of the Liguro–Provençal Basin. Thus, spreading and rotation of Corsica–Sardinia ended no earlier than 16 Ma (early Langhian). A 16–19 Ma, spreading is corroborated by other evidences, such as the age of the breakup unconformity in Sardinia, the age of igneous rocks dredged west of Corsica, the heat flow in the Liguro–Provençal Basin, and recent paleomagnetic data from Sardinian sediments and volcanics. Since Corsica was still rotating/drifting eastward at 16 Ma, it presumably induced significant shortening to the east, in the Apennine belt. Therefore, the lower Miocene extensional basins in the northern Tyrrhenian Sea and margins can be interpreted as synorogenic "intra-wedge" basins due to the thickening and collapse of the northern Apennine wedge.
    Description: Published
    Description: 231-251
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Paleomagnetism ; Corsica-Sardinia ; Liguro-Provençal Basin ; Back-arc spreading ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We report on new paleomagnetic results obtained from 27 sites sampled in the Plio-Pleistocene sequences at the external front of the central-northern Apennines. Previous analyses of Miocene (Messinian) sediments indicated that the present shape of the northern Apenninic arc is due to the oroclinal bending of an originally straight belt oriented around N320° and that vertical axis rotations accompanied the migration of the thrust fronts toward the Adriatic foreland [F. Speranza et al., J. Geophys. Res. 102 (1997) 3153-3166]. We tried to provide new paleomagnetic constraints for the timing and rates of the oroclinal bending process during the Pliocene and the Pleistocene. The results suggest that CCW rotations observed in the northern part of the studied area are possibly younger than 3 Ma. No regional rotation is recorded in the Pliocene and Pleistocene sediments from the southern part of the study area, analogously to the Messinian sediments of the 'Acquasanta' domain of Speranza et al. [F. Speranza et al., J. Geophys. Res. 102 (1997) 3153-3166]. A local significant CCW rotation (23° ± 10°) is identified in the Early Pleistocene sediments that crop out along the Adriatic coast between Ascoli and Pescara, indicating differential motion of the thrust sheets. This rotation must be younger than 1.43 Ma.
    Description: Published
    Description: 243-257
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: open
    Keywords: paleomagnetism ; Apennines ; tectonics ; Pliocene ; Pleistocene ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-03
    Description: Ocean Drilling Program holes 744Aand 748B represent key sections for calibration of Southern Ocean Eocene-Oligocene biostratigraphic zonations. Sites 744 and 748 were above the carbonate compensation depth throughout this time interval and contain good planktonic foraminiferal, calcareous nannofossil, and diatom biostratigraphic records. In particular, the Southern Ocean diatom biostratigraphic zonation for the Oligocene critically hinges on calibration of these two holes. Previous low-resolution magnetostratigraphic studies at these sites were hampered by limited sampling and technical difficulties, which prompted our high-resolution reinvestigation of the magnetostratigraphy. Magnetic polarity zonations for holes 744Aand 748B were constructed after inspection of vector component plots at 1-cm stratigraphic intervals from continuous u-channel measurements. The magnetizations are generally stable and a robust polarity stratigraphy has been obtained for both holes. The increased resolution of our study and identification of persistent secondary overprints, which were not recognised in previous studies, suggests that the previously published interpretations need to be revised. Our magnetostratigraphic interpretations for both holes are constrained by foraminiferal and calcareous nannofossil datums, as well as by Sr isotope ages. We have calibrated four diatom datums, which are synchronous at the two studied sites, to the geomagnetic polarity timescale, including the first occurrence (FO) of Lisitzinia ornata (27.8 Ma), the FO of Rocella vigilans var. B (27.8 Ma), the FO of Cavitatus jouseanus (30.9 Ma) and the FO of Rhizosolenia oligocaenica (33.8 Ma). The synchroneity of these datums suggests that diatom biostratigraphy has considerable potential for Palaeogene biostratigraphic correlation in the Southern Ocean. Although the ages of some datums are obscured by an unconformity in Hole 744A, our age model from Hole 748B suggests age estimates for the last common occurrence of Rocella vigilans var. A(~29.0 Ma), the FO of Rocella vigilans var. A(30.0 Ma) and the FO of Rhizosolenia antarctica (33.2 Ma). It should also be noted that the last occurrence of the calcareous nannofossil Chiasmolithus altus occurs in Chron C8r rather than C8n in our revised magnetostratigraphic interpretation, which indicates that this datum is not diachronous between low and mid latitudes as had previously been suggested. Significant unconformities are documented in both holes, in the middle Oligocene and in the middle late Oligocene, respectively, which probably resulted from periods of enhanced circumpolar deep-water circulation.
    Description: Published
    Description: 145-168
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Eocene ; Oligocene ; Ocean Drilling Program ; holes 744A and 748B ; Kerguelen Plateau ; Antarctica ; magnetostratigraphy ; biostratigraphy ; diatoms ; foraminifera ; calcareous nannofossils ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The Piànico-Sèllere is a lacustrine succession from northern Italy that records a sequence of climatic transitions across two Pleistocene glacial stages. The intervening interglacial stage is represented by well-preserved varves with calcitic (summer) and clastic (winter) laminae. There is a tight coupling between climate-driven lithologic changes and magnetic susceptibility variations, and stable paleomagnetic components were retrieved from all investigated lithologies including the largely diamagnetic calcite varves. These components were used to delineate a sequence of magnetic polarity reversals that was interpreted as a record of excursions of the Earth’s magnetic field. Comparison of the magnetostratigraphic results with previously published data allows discussion of two possible models which have generated controversy regarding the age of the Piànico Formation. The data indicates that the Piànico Formation magnetostratigraphy correlates to geomagnetic field excursions across the Brunhes/Matuyama transition, and consequently the Piànico interglacial correlates to marine isotope stage 19. This correlation option is substantially consistent with K-Ar radiometric age estimates recently obtained from a tepha layer interbedded in the Piànico Formation. The alternative option, considering the Piànico interglacial correlative to marine isotope stage 11 within the Brunhes Chron as supported by tephrochronological dating reported in the literature, is not supported by the magnetostratigraphic results.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Piànico Formation ; Pleistocene ; magnetostratigraphy ; polarity excursions ; Brunhes Chron ; Southern Alps ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Recent developments in paleomagnetism and environmental magnetism provide new tools for the detailed correlation of climatically induced magnetic mineralogy changes in sedimentary sequences. Studies of these changes contribute to the reconstruction of climate history for the glacial^interglacial cycles of the Late Pleistocene and to the delineation of the range of natural variability for global climate during the past hundred thousands years. Here we show that sharp coercivity minima observed in fine-grained sediments from the continental rise of the western Antarctic Peninsula correlate to the major rapid cooling events of the northern Atlantic (Heinrich layers). We interpret such an environmental magnetic signal in terms of variations in deep sea diagenetic processes of sulfide formation, which reflect changes in the input of detrital organic matter controlled by sea-ice extent. With the inherent uncertainties in age controls, the sedimentary paleoclimatic markers of the two hemispheres are almost contemporaneous, but interhemispheric time lags or leads of the order of 1-2 kyr (such as those recently reported from the Greenland and Antarctic ice cores) are also compatible with the data.
    Description: Published
    Description: 65-80
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; paleointensity ; Antarctica ; Heinrich events ; climatic correlation ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Many of the mountain belts displaying a curved shape are "oroclines", i.e. are produced after progressive bending of an originally straight fold and thrust belt. The bending process was previously explained as a consequence of several possible events taking place in the crustal orogenic wedge, such as occurrence of obstacles, non-coaxial deformation, and mouvements on wrench faults. Recent paleomagnetic results from the northern Apenninic Arc document that this belt is properly an orocline and results from Late Messinian-Early Pliocene bending of a Messinian straight belt-foredeep system. Tomographic images in turn show the presence of a high-velocity body, interpreted as subducted slab, in the upper mantle beneath the northern Apennines, between 35 and 670 km depth. Down to 100 km, this body displays an arcuate shape which closely mirrors the geological outlines, while it appears to be straight (and parallel to the Messinian pre-rotated belt) at depth. We explore here the possibility that the arcuate shape of the northern Apennines is a consequence, closely following in time, on much deeper processes than previously suggested, i.e. the lateral bending of the subducting Adriatic plate.
    Description: Published
    Description: 53-64
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; seismic tomography ; Northern Apennines ; orocline ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We report on the anisotropy of magnetic susceptibility (AMS) analyses of fine-grained sediments deposited during the Messinian in foredeep basins at the front of the northern Apenninic chain. The data refer to 32 sampling sites, mostly distributed in the fine-grained intervals of the Laga and Colombacci formations, extending along the belt for a total length of about 300 km. Rock magnetism analyses indicate that the magnetic susceptibility and its anisotropy are in most cases dominated by the paramagnetic minerals of the clay matrix. In order to delineate the contribution of the ferrimagnetic fraction to the overall susceptibility fabric, the anisotropy of the anhysteretic remanent magnetisation was investigated at some representative sites. The magnetic fabric of the studied sediments mostly reflects the effects of compaction, showing a predominant magnetic foliation parallel to the bedding piane. At all the sites a well distinct magnetic lineation was also found, which is parallel to the fold axes and thrust fronts, both at local and regional scales. This feature is maintained in sequences that differ for sedimentological character and age, implying that the magnetic lineation was produced by a mild tectonic overprint of the primary sedimentary-compactional fabric. The relationship between the magnetic lineation trends and the vertical axis rotations detected by Speranza et al. [Speranza, F., Sagnotti, L.. Mattei, M., 1997. J. Geophys. Res. 102, 3153-3166] indicates that the magnetic lineation formed during the compressive phases of the Messinian-early Pliocene, when the Apenninic front was almost rectilinear and oriented N32O°.
    Description: Published
    Description: 73-93
    Description: JCR Journal
    Description: reserved
    Keywords: magnetic anisotropy ; rock strain ; northern Apennines ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: A transect of three sites was drilled during Leg 188 of the Ocean Drilling Program (ODP), proximal to the East Antarctic Ice Sheet (EAIS) across the Prydz Bay continental shelf (Site 1166), slope (Site 1167), and rise (Site 1165). We present results of a palaeomagnetic and rock magnetic study of sediments recovered at sites 1165 and 1166. Magnetostratigraphic interpretations are presented for both holes and are mainly constrained by diatom and radiolarian biostratigraphies, interpreted in the light of recent refinements to Southern Ocean zonal schemes and datum calibrations for these microfossil groups. Site 1165 records a history of sedimentation on the continental rise extending back to earliest Miocene times (about 22 Ma). Several long-term changes characterise this record, including an overall trend of decreasing sedimentation rates from the bottom to the top of the hole. There is a progressive decrease in the sedimentation rate above about 308 mbsf (meters below sea floor), which is marked by a transition from dark-grey fissile claystones to greenish-grey diatom-bearing clays. At this transition, ice-rafted debris, sand grains, and total clay content also increase. The chronology presented here indicates a middle Miocene age (~14.3 Ma) for the lithological transition. Correlation to ODP Hole 747A from the Kerguelen Plateau suggests that this lithological transition coincides with the base of the Mi-3/3a δ18O event, which suggests palaeoclimatic control on middle Miocene sedimentation changes at Site 1165. Core recovery was poor at Site 1166. Consequently, the magnetostratigraphic data are of limited value. The deepest cores recovered at Site 1166 record brief intervals in the early history of the EAIS for the Prydz Bay region, extending back through the early stage of glaciation to pre-glacial times. An Early Cretaceous fluvio-lacustrine unit, lagoonal deposits and sandy fluvio-deltaic units of mid-late Eocene age contain a sporadic record of the transition from humid and mild conditions to cool temperate conditions.
    Description: Published
    Description: 69-100
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: magnetostratigraphy ; biostratigraphy ; Prydz Bay ; Antarctica ; Ocean Drilling Program ; sites 1165 and 1166 ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: Chronostratigraphic data available for the preliminary age model for the upper 700 m for the AND-1B drill core include diatom biostratigraphy, magnetostratigraphy, 40Ar/39Ar ages on volcanic material, 87Sr/86Sr ages on calcareous fossil material, and surfaces of erosion identified from physical appearance and facies relationships recognised in the AND-1B drill core. The available age data allow a relatively well-constrained age model to be constructed for the upper 700 m of the drill core. Available diatom biostratigraphic constraints and 40Ar/39Ar ages allow a unique correlation of ~70% of the AND-1B magnetic polarity stratigraphy with the Geomagnetic Polar Time Scale (GPTS). Unique correlation is not possible in several coarse diamictite intervals with closely spaced glacial surfaces of erosion and sparse microflora. However, the age model indicates relatively rapid (up to 1 m/k.y.) and continuous accumulation of intervening finer grained diatomaceous intervals punctuated by several half- to million-years hiatuses representing more than half of the last 7 m.y. in the AND-1B record. The mid- to late Pleistocene is represented by superimposed diamictite units separated from upper Pliocene alternating diamictites/diatomites by a ~1 m.y. hiatus co-incident with a regionally correlated seismic reflection surface. A c. 100 m-thick diatomite represents a significant portion of the early Pliocene record in the AND-1B drill core. Strata below ~620 m are late Miocene in age; however, biostratigraphic constraints are absent below 586 m and correlation with the GPTS is relatively unconstrained. At the the of writing, the only chronostratigraphic data available below 700 mbsf include three 40Ar/39Ar ages on volcanic clasts from near 1280 mbsf affording a maximum depositional age of 13.57 Ma for the base of the AND-1B drill core.
    Description: Published
    Description: 297-316
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: N/A or not JCR
    Description: reserved
    Keywords: Chronostratigraphy, ANDRILL, Antarctica ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-03
    Description: Direct measurements of the Earth’s magnetic field in Italy since 1640 a.d. have been used to check the remanence directions derived from historically dated volcanic rocks of Etna and Vesuvius. Direct measurements consist of the records of L’Aquila and Pola geomagnetic observatories, the repeat stations of the Italian Magnetic Network and the data base of the Historical Italian Geomagnetic Data Catalogue. All have been relocated to the same reference site (Viterbo — lat. 42.45◦N, long. 12.03◦E) in order to draw a reference secular variation (SV) curve. The direction of the Earth’s field at Viterbo has also been calculated from the historical records (2000–1600) of ref. [Jackson, A., Jonkers, A.R.T., Walker, M.R., 2000. Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. London, Ser. A 358, 957–990] database. The remanence directions from Etna show a general agreement with the trend of the SV curve, although their inclination is usually lower than that from the direct measurement. The directions from Vesuvius are more scattered. Large discrepancies occur at both volcanoes and in some cases have been ascribed in the literature to poor geographic information, making it difficult to identify the flows actually emplaced during the eruptions reported in the chronicles. Closer examination shows that the great majority of the best-defined remanence directions (semi-angle of confidence α95 〈 2.5◦) deviate significantly from the geomagnetic direction measured at the time of the emplacement, the angle between the two directions being larger than the α95 value. The value of 2.5–3.0◦ can thus be regarded as a conservative evaluation of the error when dealing with dating Etna and Vesuvius lava flows older than 17th century, even when the accuracy attained in remanence measurements is higher. In default of a SV curve for Italy derived from archaeological artefacts, a further error in dating is introduced when reference is made to SV curves of other countries, even if well-established, as these are from regions too far from Italy (〉600 km) to confidently relocate magnetic directions.
    Description: Published
    Description: 97-107
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Secular variation ; Historical magnetic measurements ; Thermal remanent magnetization ; Volcanic rocks ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: Preliminary palaeomagnetic data are presented for the AND-1B drill core. A total of 1309 samples were collected from the drill core immediately following recovery and splitting. Natural remanent magnetisation (NRM) and bulk magnetic susceptibility data were determined for all samples using a Molspin spinner magnetometer and Bartington Instruments susceptibility bridge, respectively, immediately after collection. Polarity was determined for the upper 700 m of the drill core from 615 stepwise alternating field (AF) and thermally demagnetized samples with an average sample spacing of ~80 cm between 32 and 240 mbsf and ~2 m between 240 and 700 mbsf. Stepwise demagnetised samples were measured on 2G Enterprises long-core cryogenic magnetometers at the University of Otago and the Istituto di Geofisica e Vulcanologia. A magnetic polarity zonation was constructed for the interval between 32.33 and 700 mbsf, with roughly equal normal and reversed polarity represented. Above 32.33 mbsf, poorly consolidated diamictite strata prevented sample collection. The remaining record was subdivided into 15 magnetozones (8 normal and 7 reversed). Magnetozone boundaries are defined at the midpoint between samples of opposite polarity or by samples with transitional polarity. It was not possible to isolate characteristic remanence (ChRM) directions on orthogonal component plots and hence polarity for several ~10 m intervals in the core. Future work will include determination of a polarity zonation for the lower 585 m of the drill core and halving data spacing between 240 and 700 mbsf.
    Description: Published
    Description: 289-296
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: N/A or not JCR
    Description: reserved
    Keywords: Magnetostratigraphy ; ANDRILL ; Antarctica ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: The analysis of the Messinian and Pliocene stratigraphy of the southern Bajo Segura Basin (Betic Cordillera, Spain) has revealed three highstand sedimentary phases (Messinian I, Messinian II, and Pliocene) bounded by two lowstand erosional surfaces (intra-Messinian and end-Messinian unconformities). The Messinian I highstand phase is characterized by the progradation of coastal and shallow marine sandstones (La Virgen Fm) over slope and pelagic-basin marls (Torremendo Fm). After this first phase, a fall in sea level brought about the intra-Messinian unconformity, a subaerial erosional surface with local accumulations of karstic breccias and caliche-like carbonate crusts. The Messinian II highstand phase is represented by sandy beaches and muddy lagoons (Garruchal Fm) correlative with shallow marine evaporites (San Miguel Fm); this second phase records the intra-Messinian reflooding of the basin, which characterizes the salinity crisis in the marginal basins of the Mediterranean. A new sea-level fall resulted in the end-Messinian unconformity, of which the most significant feature is the presence of a broad palaeovalley, c. 200 m deep, which, along its course, completely eroded the deposits of the Messinian II phase and part of the deposits of the Messinian I phase. The Pliocene highstand phase begins with coastal and shallow marine conglomerates and sandstones (La Pedrera Fm) which fill the deep part of the above-mentioned palaeovalley. These bottom deposits evolved gradually upwards towards pelagic marls (Hurchillo Fm), over which shallow marine and coastal sandstones prograded (Rojales Fm). This third phase records the flooding of the basin at the beginning of the Pliocene, when the salinity crisis ended in the marginal basins of the Mediterranean. The combination of calcareous nannoplankton biostratigraphy and magnetostratigraphy has confirmed that both the end of the sedimentation of the Messinian I phase, as well as the two lowstand erosional surfaces (intra- and end-Messinian unconformities) and also the onset of the Pliocene phase occurred in the chron C3r (c. 5.9–5.2 Ma). Under the assumption of the classical model of a desiccated deep basin, either of the two aforementioned erosional surfaces, or even both, could be correlative with the evaporites deposited in the abyssal parts of the Mediterranean.
    Description: Published
    Description: 267-288
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Stratigraphy ; Magnetobiostratigraphy ; Messinian ; Pliocene ; Salinity crisis ; Mediterranean region ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-04
    Description: This work represents the first attempt to use anisotropy of magnetic susceptibility (AMS) analysis for the characterization of the magnetic fabric of Plio-Pleistocene sediments in the southern Apennines of Italy. The area examined, the Sant’Arcangelo basin, has undergone mild deformation during the Pleistocene. Analysis was carried out on 182 cores sampled at 15 sites in unmetamorphosed, weakly deformed clays and marly clays. The data identify a magnetic fabric of clearly depositional—compactional origin even though a partial contribution of tectonic deformation to the AMS is also recognizable at many sites. The results presented here are compared with the existing structural and sedimentary data. In particular, a close consistency is found between the overall orientation of magnetic lineations and the compressional directions indicated by previous meso-structural analysis. We suggest that the magnetic fabric detected here arises from a limited overprint of strain effects related to compressional episodes on a primary, sedimentary, fabric. This interpretation allowed us to resolve the bedding attitude where the clayey units appear homogeneous in the field, and hence to suggest the appropriate bedding correction in concomitant paleomagnetic analysis, and to estimate the orientation and the relative degree of deformation at each sampling site.
    Description: Published
    Description: 165-176
    Description: JCR Journal
    Description: reserved
    Keywords: magnetic anisotropy ; rock strain ; Sant'Arcangelo basin ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-04-04
    Description: Piston core LC07, located west of the Sicily Strait in the Mediterranean Sea, unambiguously records the Matuyama/ Brunhes (M/B) and the upper Jaramillo polarity reversals, with similar average sediment accumulation rates (SARs) for the Brunhes Chron (2.29 cm/kyr) and late Matuyama Chron C1r.1r (2.19 cm/kyr). We report a relative paleointensity record for the interval spanning the M/B boundary down into the Jaramillo Subchron, which is unique in the Mediterranean because existing records from this basin cover only the last 80 kyr. The average SAR in core LC07 is used to translate the depth-related paleointensity record to the time domain; the ratio of anhysteretic remanent magnetization to low-field magnetic susceptibility is climatically sensitive and is used to tune the age model. This correlation produces a good fit to the global ice volume model derived for summer insolation at 65°N. With this age model, a paleointensity minimum in association with the M/B boundary has a duration of about 4-5 kyr, while the directional change has a duration of 〈3 kyr. A second paleointensity minimum of similar duration is found about 16 kyr below the M/B boundary. This feature (precursor or 'dip' in the literature) has previously been recognized at the same time interval in many marine records, which reinforces the validity of our age model. Other relative paleointensity minima are found within chron C1r.1r, and, within the uncertainties of the respective age models, these minima coincide with those observed from the few published coeval paleointensity records. In particular, there is good correspondence between the ages of minima at about 0.92 and 0.89 Ma, which probably correlate with two geomagnetic excursions (Santa Rosa and Kamikatsura, respectively) that have been recorded in lava flows and dated using the 40Ar/39Ar technique. In contrast, a recently dated excursion at 0.83 Ma from La Palma seems to correspond to a paleointensity maximum. This observation is opposite to that expected and this excursion needs to be confirmed. In contrast to some recently published paleointensity records, spectral analysis of the LC07 record does not reveal identification of significant power at the orbital obliquity frequency.
    Description: Published
    Description: 327-341
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: paleointensity ; magnetic field ; Matuyama Chron ; Jaramillo Subchron ; Brunhes Chron ; Mediterranean Sea ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-04-04
    Description: Drilling offshore from Cape Roberts, Antarctica, has enabled recovery of a 1472-m cumulative record of late Eocene–early Miocene history of sedimentary basin development and climate change in the Western Ross Sea. In this paper, we synthesize the results of palaeomagnetic analyses carried out on the CRP-1, CRP-2 and CRP-3 sediment cores, and present a chronology for the recovered Eocene–Miocene succession. Stepwise demagnetization data demonstrate that secondary overprints have been successfully removed and that characteristic remanent magnetizations (ChRMs) have been clearly identified in most of the samples. A close sampling interval has allowed a detailed magnetic polarity stratigraphy to be established for the composite succession. Correlation with the geomagnetic polarity time scale (GPTS) has been constrained by a number of 40Ar/39Ar and 87Sr/86Sr ages, as well as by a recently developed Antarctic siliceous microfossil zonation, and by calcareous nannoplankton biostratigraphy. The basal sediments of the Eocene–Miocene succession rest unconformably on Devonian sandstones of the Beacon Supergroup. A basal sandstone breccia, which probably represents the onset of rifting in the Victoria Land Basin (VLB), is overlain by a succession of sandstones that are interbedded with thin conglomerate beds. These sediments give way to more clearly glacially influenced mudstones and diamictite facies in the mid Oligocene, and, by the Oligocene–Miocene boundary, coincident with the Mi-1 glaciation, a permanent glacial dominance was imprinted on the sedimentary record. Average sediment accumulation rates were initially rapid in the late Eocene–early Oligocene (up to 60 cm/k.y.), but reduced to only a few cm/k.y. in the early Miocene as basin subsidence slowed.
    Description: Published
    Description: 207-236
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Antarctica ; Cape Roberts Project ; Cenozoic ; Chronology ; Magnetostratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-04
    Description: We present a high-resolution paleomagnetic record from 682 discrete samples from Eltanin 27–21 (69.03°S 179.83°E), a 16-meter long piston core recovered in 1968 at a water depth of 3456 m by the USNS Eltanin as part of Operation Deep Freeze. After removal of a low-coercivity overprint, most samples yield stable characteristic remanent magnetization directions. The downhole variation in the magnetic inclination provides a well-resolved magnetostratigraphy from the Brunhes Chron (0–0.781 Ma), through the Reunion Subchron (2.128–2.148 Ma), and into Chron C2r.2r. The sedimentation rates are sufficiently high that even short-term geomagnetic features, like the Cobb Mountain excursion, are resolved. The record from Eltanin 27–21 provides new insights into the behavior of the geomagnetic field at high latitudes, about which very little is currently known. Using the variability in the inclinations during stable polarity intervals, we estimate that the dispersion in the paleomagnetic pole position over the past ~2 Myr is 30.3°±4.3°, which is significantly greater than observed at low to mid latitude sites. The higher dispersion observed at Eltanin 27–21 is consistent with numerical modeling of the geodynamo. That modeling has shown that polar vortices can develop in the Earth's core within the tangent cylinder, defined as the cylinder coaxial with the Earth's rotation axis and tangent to the inner core/outer core boundary. The polar vortices produce vigorous fluid motion in the core, which creates greater geomagnetic field variability above the tangent cylinder at the surface of the Earth. The tangent cylinder intersects the Earth's surface in the polar regions at 79.1° latitude, which is relatively close to the latitude of Eltanin 27–21.
    Description: Published
    Description: 435-443
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; geomagnetism ; magnetostratigraphy ; Eltanin ; Ross Sea ; Antarctica ; tangent cylinder ; geodynamo ; Cobb Mountain Subchron ; Reunion Subchron ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-04-04
    Description: The Neogene Fortuna and Bajo Segura basins are located on the northeastern end of the Trans-Alborán Shear Zone (TASZ), on the eastern Betic cordillera. The stratigraphic study of the infilling of these basins has shown two major sedimentary discontinuities. The first one, represented by an erosive surface separating open marine marls from an overlying coastal conglomeratic unit, is linked to the onset of the activity along the TASZ, which in this area indicates the beginning of the Abanilla Thrust emplacement. In the Fortuna Basin, the Tortonian salinity crisis, registered over this older first discontinuity, was therefore related to tectonic processes of the eastern portion of the cordillera and consequently would not have an expression in the western basins. The age of the Tortonian Salinity Crisis has been established with nannofossil biostratigraphy as Latest Tortonian at a somewhat lower stratigraphic position than previously recognized. The second sedimentary discontinuity was developed in relation with the known Mediterranean-wide Messinian salinity crisis.
    Description: Published
    Description: 474-481
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Betic Cordillera ; Tortonian Salinity Crisis ; Messinian Salinity Crisis ; Trans-Alboran Shear Zone ; Fortuna Basin ; Spain ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2017-04-04
    Description: A new magnetic polarity stratigraphy is reported from 214 sampling sites representing 265 m of fluviatile red beds of the Buntsandstein facies succession from the Catalan Coastal Ranges (Riera de Sant Jaume, RSJ section). The Buntsandstein constitutes the lowermost of the six lithostratigraphic units in which the Triassic from the CCR is subdivided (also grouped into the typical three-fold subdivision of the Germanic Facies from the Tethys Realm: Buntsandstein, Muschelkalk and Keuper). Magnetostratigraphic data from four sections though the uppermost Buntsandstein facies located in the Molina de Aragón area in the Iberian Ranges (Rey, D., Turner, P., Ramos, A., 1996. Palaeomagnetism and Magnetostratigraphy of the Middle Triassic in the Iberian Ranges (Central Spain). In: Morris, A., Tarling, D.R. (Eds.), Palaeomagnetism and Tectonics of the Mediterranean Region, Geol. Soc. Sp. Pub. 105, 59–82) are also discussed in the light of a new biostratigraphic reappraisal of the palynoflora content presented herein. Characteristic magnetizations are carried mostly by hematite with minor contributions by magnetite for the Buntsandstein red beds. The magnetic polarity sequence at the RSJ section consists of 9 magnetozones (and one additional less reliable magnetozone) that are represented by more than two samples. A detailed study along a magnetic reversal indicates that the nature of the remanence in the studied red beds is partially controlled by a chemical magnetization process (delayed remanence acquisition), in addition to a detrital signature (the characteristic primary direction). Chronostratigraphic constraints are provided by conodont fauna from the overlying Muschelkalk facies that indicates a middle–late Pelsonian to late Illyrian age (middle–late Anisian) (Marquez-Aliaga, A., Valenzuela-Rios, J.I., Calvet, F., Budurov, K., 2000. Middle Triassic conodonts from northeastern Spain; biostratigraphic implications. Terra Nova 12, 77–83) and a few palynostratigraphic determinations in the Buntsandstein red beds. These biostratigraphic constraints and the magnetic polarity pattern allow an unambiguous correlation of the RSJ magnetostratigraphy to the conodont-ammonoid-calibrated magnetostratigraphy from the Tethys realm (Muttoni, G., Kent, D.V., Meco, S., Balini, M., Nicora, A., Rettori, R. Gaetani, M., Krystine, L., 1998. Towards a better definition of the Middle Triassic magnetostratigraphy and biostratigraphy of the Tethyan realm. Earth Planet. Sci. Lett. 164, 285–302; Muttoni, G., Gaetani, M., Budurov, K., Zagorchev, I., Trifonova, E., Ivanova, D., Petrounova, L., Lowrie, W., 2000. Middle Triassic paleomagnetic data from northern Bulgaria; constraints on Tethyan magnetostratigraphy and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 160, 223–237; Muttoni, G., Nicora, A., Brack, P., Kent, D.V., 2004a. Integrated Anisian–Ladinian boundary chronology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 208, 85–102; Muttoni, G., Kent, D.V., Olsen, P.E., Di Stefano, P., Lowrie, W., Bernasconi, S., Hernandez, F.M., 2004b. Tethyan magnetostratigraphy from Pizzo Mondello (Sicily) and correlation to the Late Triassic Newark astrochronological polarity time scale. Geol. Soc. Amer. Bull. 116, 1043–1058). The proposed correlation identifies for the first time in the Triassic from Iberia the Olenekian (Scythian)–Anisian stage boundary (245 Ma) within magnetozone N3 in the Riera de Sant Jaume units. Likewise, the new palynostratigraphic reconsideration allows the identification of the Anisian–Ladian stage (Illyrian–Fassanian substage) boundary (taken the option at the base of the Curionii ammonoid Zone favored by Muttoni et al. (2004a) [Muttoni, G., Nicora, A., Brack, P., Kent, D.V., 2004. Integrated Anisian–Ladinian boundary chronology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 208, 85–102] for this boundary within the upper part of the Rillo Mudstone and Sandstones Formation (RMS Formation) and the Fassanian–Longobardian substage boundary (Ladinian) within the Torete Multicoloured Mudstone and Sandstone Formation (TMMS Formation). Our data are consistent with the notion that the lower Muschelkalk transgression progressed from east to west (i.e., the Buntsandstein/Muschelkalk boundary is younger in the Iberian Ranges with respect to the Catalan Coastal Ranges). The Early/Middle Triassic paleopole for the Catalan Coastal Ranges is located at 55.18N 172.4E (Dp=1.4, Dm=2.7).and the Middle/Late Triassic paleopole for the Iberian Ranges is 558N 201E (Dp=1.7, Dm=3.1). These paleopoles are compatible with the general trend of the Iberian apparent polar wander path which indicates a northward motion during the Triassic related to the general northward translation of Pangea.
    Description: Published
    Description: 158-177
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Buntsandstein ; Olenekian–Anisian boundary ; Anisian–Ladinian boundary ; Palynostratigraphy ; Conodonts ; Catalan Coastal Ranges ; Iberian Ranges ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2017-04-04
    Description: In curved orogenic systems where thrusting and vertical-axis rotations have been documented, it is possible to determine whether the curvature is secondary or progressive based on the timing between the two motions. The South-Central Unit of the Southern Pyrenees provides an opportunity to investigate relationships between thrusting, folding, and vertical-axis rotation because of unusual preservation of Tertiary synorogenic sedimentary strata. Paleomagnetic samples were collected from 51 sites in the upper Eocene-lower Oligocene continental synorogenic strata of the Oliana anticline, a foreland fold along the eastern margin of the South-Central Unit. Site-mean characteristic remanent magnetization directions were determined from 17 sites through thermal demagnetization and principal component analysis. In addition, 72 samples were collected from 39 stratigraphic levels spanning the Upper Eocene marine marls and treated with thermal and alternating field demagnetization techniques. Of these, 53 samples yielded demagnetization trajectories that further constrained the rotation. Comparison of the observed mean paleomagnetic direction from the Oliana anticline with the expected direction indicates a counterclockwise rotation (R ± ΔR) of 20.3° ± 10.9°. Based on the stratigraphic horizons recording the rotation, the age of the rotation is younger than ~34 Ma (after deposition of Unit 3). Data covering the Upper Eocene-Lower Oligocene time interval indicate a similar magnitude of rotation, suggesting that late stage emplacement of thrust sheets hinterlandward of the Oliana anticline controlled the rotation, with rotation accommodated along regionally extensive evaporites. The well-constrained timing relationships between thrusting and rotation and the regional and local transport directions, suggest that the South-Central Unit is a progressive curve that formed through distributed shortening.
    Description: Published
    Description: 435-449
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Pyrenees ; Oliana anticline ; synorogenic strata ; paleomagnetism ; salients ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2017-04-04
    Description: Neogene intermontane basins in Almería Province, SE Spain, display excellent exposures of Messinian (Late Miocene) sequences. The Sorbas, Almería-Níjar and Vera basins maintained connection with the Mediterranean throughout the Messinian, except during the major desiccation phase leading to the formation of salt in the deep centre of the Western Mediterranean. These basins were part of the Western Mediterranean with no separate link to the Atlantic Ocean. The presence of normal marine sediments in these basins reflects the Western Mediterranean watermass. Messinian pre-evaporitic sediments in the basins of southeastern Almería do not show gradual change towards evaporite deposits. Instead they contain stenohaline invertebrates right up to a major erosion surface that separates them from overlying gypsum deposits. This contradicts suggestion of progressive salinity increase in this part of the Western Mediterranean prior to the Messinian Salinity Crisis (MSC); it also indicates that initiation of evaporite precipitation was not synchronous throughout the Mediterranean Basin. There is no major erosion surface within or at the top of the evaporites in these Almería basins, and the gypsum beds exhibit upward transition to siliciclastic and carbonate deposits. This is inconsistent with a model of Messinian Mediterranean evaporite formation whereby deposition of marginal evaporites was followed by their erosion during drawdown that resulted in formation of evaporites in the centre of the Western Mediterranean. The presence of stenohaline biotas in siliciclastic deposits interbedded with the gypsum and in the Messinian post-evaporitic sediments, challenges the view that a long-standing large body of brackish water (the Lago Mare) filled the Western Mediterranean following the MSC and prior to Early Pliocene flooding. It also contradicts the concept of many relatively small brackish basins spread across an otherwise desiccated Western Mediterranean basin. The basins of southeastern Almería record normal marine Early Messinian sedimentation that was abruptly interrupted by sealevel fall. This drawdown most likely resulted in precipitation of evaporites in the central deep Western Mediterranean basin. Following this episode, final marine reflooding of the Western Mediterranean took place during the Late Messinian, and the Mediterranean Sea rose to a level similar to, or higher than, that preceding the Salinity Crisis.
    Description: Published
    Description: 131-154
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Almería ; Evaporites ; Messinian Salinity Crisis ; Palaeoenvironments ; Western Mediterranean ; Spain ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-09-08
    Description: The Gran Sasso range is a striking salient formed by two roughly rectilinear E–W and N–S limbs. In the past ∼90° counterclockwise (CCW) rotations from the eastern Gran Sasso were reported [Tectonophysics 215 (1992) 335], suggesting west–east increase of rotation-related northward shortening along the E–W limb. In this paper, we report on paleomagnetic data from Meso-Cenozoic sedimentary dykes and strata cropping out at Corno Grande (central part of the E–W Gran Sasso limb), the highest summit of the Apennine belt. Predominant northwestward paleomagnetic declinations (in the normal polarity state) from both sedimentary dykes and strata are observed. When compared to the expected declination values for the Adriatic foreland, our data document no thrusting-related rotation at Corno Grande. The overall paleomagnetic data set coupled with the available geological information shows that the Gran Sasso arc is in fact a composite structure, formed by an unrotated-low shortening western (E–W trending) limb and a strongly CCW rotated eastern salient. Late Messinian and post-early Pliocene shortening episodes documented along the Gran Sasso front indicate that belt building and arc formation occurred during two distinct episodes. We suggest that the southern part of a late Messinian N–S front was reactivated during early–middle Pliocene time, forming a tight range salient due to CCW rotations and differential along-front shortening rates. The formation of a northward displacing bulge in an overall NW–SE chain is likely a consequence of the collision between the Latium-Abruzzi and Apulian carbonate platforms during northeastward propagation of the Apennine wedge, inducing lateral northward extrusion of Latium-Abruzzi carbonates towards ductile basinal sediment areas.
    Description: Published
    Description: 183-197
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Gran Sasso range ; Mountain front ; Central Apennines ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-05-30
    Description: We report on new palaeomagnetic and magnetic fabric analyses of mainly Upper Miocene sedimentary sequences from the external central Apennine fold and thrust belt (Molise area), where the principal compressive structures are clearly non-coaxial. The sampling was carried out on the E–W-oriented Matese–Frosolone thrust sheet, that for its geographical position and structural setting (superposition of thrusting, strike-slip and extensional tectonics since Late Miocene to present-day) represents a key structure for the comprehension of the Neogene–Quaternary evolution of the entire Molise area. Palaeomagnetic results suggest that the Matese–Frosolone thrust sheet counterclockwise rotated at least 35° after Messinian times. These data confirm that the present-day trend variability observed in the main compressional structures in the Apennine chain can be related to rotations about vertical axes rather than to changes in the stress field orientation, at least since Late Miocene times. Magnetic fabric analyses indicate that the studied sediments were subjected to very mild deformation, suggesting that the surface emergence of the thrust front of the Matese–Frosolone unit is located farther north, far from the studied area. Well-defined magnetic lineations of tectonic origin were only observed in sites close to localised belts of strike-slip deformation.
    Description: Published
    Description: 143-157
    Description: JCR Journal
    Description: reserved
    Keywords: Apennines ; palaeomagnetism ; anisotropy of magnetic susceptibility ; structural geology ; Neogene ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...