ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2017-03-27
    Description: The Antarctic Roadmap Challenges (ARC) project identified critical requirements to deliver high priority Antarctic research in the 21st century. The ARC project addressed the challenges of enabling technologies, facilitating access, providing logistics and infrastructure, and capitalizing on international co-operation. Technological requirements include: i) innovative automated in situ observing systems, sensors and interoperable platforms (including power demands), ii) realistic and holistic numerical models, iii) enhanced remote sensing and sensors, iv) expanded sample collection and retrieval technologies, and v) greater cyber-infrastructure to process ‘big data’ collection, transmission and analyses while promoting data accessibility. These technologies must be widely available, performance and reliability must be improved and technologies used elsewhere must be applied to the Antarctic. Considerable Antarctic research is field-based, making access to vital geographical targets essential. Future research will require continent- and ocean-wide environmentally responsible access to coastal and interior Antarctica and the Southern Ocean. Year-round access is indispensable. The cost of future Antarctic science is great but there are opportunities for all to participate commensurate with national resources, expertise and interests. The scope of future Antarctic research will necessitate enhanced and inventive interdisciplinary and international collaborations. The full promise of Antarctic science will only be realized if nations act together.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Because of the paucity of exposed rock, the direct physical record of Antarctic Cenozoic glacial history has become known only recently and then largely from offshore shelf basins through seismic surveys and drilling. The number of holes on the continental shelf has been small and largely confined to three areas (McMurdo Sound, Prydz Bay, and Antarctic Peninsula), but even in McMurdo Sound, where Oligocene and early Miocene strata are well cored, the late Cenozoic is poorly known and dated. The latest Antarctic geological drilling program, ANDRILL, successfully cored a 1285-m-long record of climate history spanning the last 13 m.y. from subsea-floor sediment beneath the McMurdo Ice Shelf (MIS), using drilling systems specially developed for operating through ice shelves. The cores provide the most complete Antarctic record to date of ice-sheet and climate fluctuations for this period of Earth’s history. The 〉60 cycles of advance and retreat of the grounded ice margin preserved in the AND-1B record the evolution of the Antarctic ice sheet since a profound global cooling step in deep-sea oxygen isotope records ~14 m.y.a. A feature of particular interest is a ~90-m-thick interval of diatomite deposited during the warm Pliocene and representing an extended period (~200,000 years) of locally open water, high phytoplankton productivity, and retreat of the glaciers on land.
    Description: Published
    Description: Santa Barbara, California
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: open
    Keywords: ANDRILL ; Late Cenozoic climate history ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The Cenozoic evolution of the Antarctic cryosphere and fluctuations in its ice sheet cover are considered to be one of the major influences on low- and mid-latitude deep-sea sedimentary records. Long-term Cenozoic trends and short-term climate fluctuations (≤40 ka) alike are inferred to have been driven or modulated by changes in Antarctic ice sheet volume (Kennett, 1977; Imbrie and Imbrie, 1980; Zachos et al., 1997, 2001; Shackleton et al., 1999; Lear et al., 2000; Naish et al., 2001). Similarly, changes in sea level elevations at continental margins are also inferred to result from growth and decay in Antarctic ice sheet volume throughout the Cenozoic (Barrett et al., 1987; Haq et al., 1987). Yet, direct records of the Antarctic cryosphere and its ice sheets are sparse at best, and much of the inference remains untested. Recent efforts have begun to change this, and the last decade has seen several expeditions to the Antarctic and Southern Oceans, which have recovered new high-quality sedimentary core and seismic reflection records of Southern high-latitude Cenozoic ice sheets and climate. These include the Cape Roberts Project (CRP) (Cape Roberts Science Team, 1998; Hambrey et al., 1998; Cape Roberts Science Team, 1999; Barrett et al., 2000; Cape Roberts Science Team, 2000; Barrett et al., 2001; Davey et al., 2001), ODP Leg 177 (Gersonde et al., 1999, 2003), Leg 178 (Barker et al., 1999, 2002), Leg 182 (Feary et al., 2000; Hine et al., 2004), Leg 188 (O’Brien et al., 2001; Cooper et al., 2004), and Leg 189 (Exon et al., 2001, in press), and various RVIB NB Palmer and Polarstern cruises. Recent results from these expeditions were presented at a special session of the EGS–AGU Joint assembly held in Nice, France, in April 2003. The focus of the session was the many orders and scales of variation of Antarctic ice sheets and climate from Antarctic and sub-Antarctic records derived from outcrop studies, deep sea and continental margin drilling, and seismic reflection investigations. The session also included new modelling results utilizing new data from these recent expeditions and preliminary results of geophysical surveys defining sub-ice shelf and sea ice sedimentary basins identified as drilling targets in the near future under the ANDRILL program (Harwood et al., 2002; Florindo et al., 2003a).
    Description: Published
    Description: 1-7
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Antarctic climate evolution ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-03
    Description: A mixed-polarity zone, representing alternations between remagnetized and non-remagnetized strata, has been documented within the lower few metres of the CRP-1 core (Ross Sea, Antarctica). Detailed rock magnetic investigation of this interval indicates that the normal polarity remagnetization is carried by magnetostatically interacting single-domain particles of a ferrimagnetic iron sulphide mineral, while the reversed-polarity magnetization of non-remagnetized strata is carried by magnetite with a broad range of grain sizes and negligible magnetostatic interactions. Scanning electron microscope observations of polished sections indicate that the ferrimagnetic iron sulphide mineral is greigite (Fe3S4). Based on microtextural relationships, it is not possible to determine the relative timing of formation for much of the greigite. However, a significant proportion of the greigite has grown on the surface of authigenic siderite (FeCO3) grains that occur as microconcretions and as cement surrounding detrital matrix grains. In such cases, microtextural relationships indicate that siderite post-dates early diagenetic pyrite and that greigite post-dates the siderite. Siderite usually forms in environments with abundant dissolved iron and carbonate, but without dissolved pore water H2S. This set of geochemical conditions occurs in methanic settings below the sulphate reduction zone (in which early diagenetic pyrite forms).We interpret the observed remagnetization of the lower part of the CRP-1 core as due to a late diagenetic pore water migration event where abundant iron on the surface of siderite grains reacted with fluids containing limited dissolved sulphide, thereby causing precipitation of greigite. The distribution of siderite (and associated greigite) in the lower part of the CRP-1 core is patchy, which accounts for the apparent alternation of polarities. This study is part of a growing catalogue of remagnetizations involving greigite, which suggests that occurrences of greigite should be treated with caution in palaeomagnetic and environmental magnetic studies.
    Description: Published
    Description: 89-100
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Antarctica ; diagenesis ; greigite ; iron carbonate ; iron sulphide ; remagnetization ; siderite ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Because of the paucity of exposed rock the direct physical record of Antarctic Cenozoic glacial history has become known only recently and then largely from off-shore shelf basins through seismic surveys and drilling. The number of holes has been small and largely confined to three areas (McMurdo Sound, Prydz Bay and Antarctic Peninsula), but even in McMurdo Sound, where Oligocene and early Miocene strata are well-cored, the Late Cenozoic is poorly known and dated. The latest Antarctic geological drilling program, ANDRILL, successfully cored a 1285m-long record of climate history spanning the last 13 m.y. from sub-sea floor sediment beneath the McMurdo Ice Shelf (MIS), using drilling systems specially developed for operating through ice shelves. The cores provide the most complete Antarctic record to date of ice sheet and climate fluctuations for this period of Earth’s history. The 〉60 cycles of advance and retreat of the grounded ice margin preserved in the AND¬1B record the evolution of the Antarctic ice sheet since a profound global cooling step in deep sea oxygen isotope records ~14 m.y. ago. A feature of particular interest is a ~90m-thick interval of diatomite deposited during the warm Pliocene, and representing an extended period (~200,000 years) of locally open water, high phytoplankton productivity and retreat of the glaciers on land.
    Description: USGS - National Academy
    Description: Published
    Description: Santa Barbara USA
    Description: 3.8. Geofisica per l'ambiente
    Description: open
    Keywords: climate history ; ANDRILL ; 02. Cryosphere::02.01. Permafrost::02.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Preliminary palaeomagnetic data are presented for the AND-1B drill core. A total of 1309 samples were collected from the drill core immediately following recovery and splitting. Natural remanent magnetisation (NRM) and bulk magnetic susceptibility data were determined for all samples using a Molspin spinner magnetometer and Bartington Instruments susceptibility bridge, respectively, immediately after collection. Polarity was determined for the upper 700 m of the drill core from 615 stepwise alternating field (AF) and thermally demagnetized samples with an average sample spacing of ~80 cm between 32 and 240 mbsf and ~2 m between 240 and 700 mbsf. Stepwise demagnetised samples were measured on 2G Enterprises long-core cryogenic magnetometers at the University of Otago and the Istituto di Geofisica e Vulcanologia. A magnetic polarity zonation was constructed for the interval between 32.33 and 700 mbsf, with roughly equal normal and reversed polarity represented. Above 32.33 mbsf, poorly consolidated diamictite strata prevented sample collection. The remaining record was subdivided into 15 magnetozones (8 normal and 7 reversed). Magnetozone boundaries are defined at the midpoint between samples of opposite polarity or by samples with transitional polarity. It was not possible to isolate characteristic remanence (ChRM) directions on orthogonal component plots and hence polarity for several ~10 m intervals in the core. Future work will include determination of a polarity zonation for the lower 585 m of the drill core and halving data spacing between 240 and 700 mbsf.
    Description: Published
    Description: 289-296
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: N/A or not JCR
    Description: reserved
    Keywords: Magnetostratigraphy ; ANDRILL ; Antarctica ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Drilling offshore from Cape Roberts, Antarctica, has enabled recovery of a 1472-m cumulative record of late Eocene–early Miocene history of sedimentary basin development and climate change in the Western Ross Sea. In this paper, we synthesize the results of palaeomagnetic analyses carried out on the CRP-1, CRP-2 and CRP-3 sediment cores, and present a chronology for the recovered Eocene–Miocene succession. Stepwise demagnetization data demonstrate that secondary overprints have been successfully removed and that characteristic remanent magnetizations (ChRMs) have been clearly identified in most of the samples. A close sampling interval has allowed a detailed magnetic polarity stratigraphy to be established for the composite succession. Correlation with the geomagnetic polarity time scale (GPTS) has been constrained by a number of 40Ar/39Ar and 87Sr/86Sr ages, as well as by a recently developed Antarctic siliceous microfossil zonation, and by calcareous nannoplankton biostratigraphy. The basal sediments of the Eocene–Miocene succession rest unconformably on Devonian sandstones of the Beacon Supergroup. A basal sandstone breccia, which probably represents the onset of rifting in the Victoria Land Basin (VLB), is overlain by a succession of sandstones that are interbedded with thin conglomerate beds. These sediments give way to more clearly glacially influenced mudstones and diamictite facies in the mid Oligocene, and, by the Oligocene–Miocene boundary, coincident with the Mi-1 glaciation, a permanent glacial dominance was imprinted on the sedimentary record. Average sediment accumulation rates were initially rapid in the late Eocene–early Oligocene (up to 60 cm/k.y.), but reduced to only a few cm/k.y. in the early Miocene as basin subsidence slowed.
    Description: Published
    Description: 207-236
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Antarctica ; Cape Roberts Project ; Cenozoic ; Chronology ; Magnetostratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We synthesize environmental magnetic results for sediments from the Victoria Land Basin (VLB), which span a total stratigraphic thickness of 2.6 km and a ~17 Myr age range. We assess how magnetic properties record paleoclimatic, tectonic, and provenance variations or mixtures of signals resulting from these processes. The magnetic properties are dominated by large-scale magnetite concentration variations. In the late Eocene and early Oligocene, magnetite concentration variations coincide with detrital smectite concentration and crystallinity variations, which reflect paleoclimatic control on magnetic properties through influence on weathering regime; high magnetite and smectite concentrations indicate warmer and wetter climates and vice versa. During the early Oligocene, accelerated uplift of the Transantarctic Mountains gave rise to magnetic signatures that reflect progressive erosion of the Precambrian-Mesozoic metamorphic, intrusive, and sedimentary stratigraphic cover succession associated with unroofing of the adjacent Transantarctic Mountains. From the early Oligocene to the early Miocene, a consistent fining upward of magnetite particles through the recovered composite record likely reflects increased physical weathering with glacial grinding contributing to progressively finer grained Ferrar Dolerite-sourced magnetite. After 24 Ma, the magnetic properties of VLB sediments are primarily controlled by the weathering and erosion of McMurdo Volcanic Group rocks; increased volcanic glass contents contribute to the fining upward of magnetite grain size. Overall, long-term magnetic property variations record the first-order geological processes that controlled sedimentation in the VLB, including paleoclimatic, tectonic, provenance, and volcanic influences.
    Description: Published
    Description: 1845–1861
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: environmental magnetism ; Antarctica ; paleoclimate ; volcanism ; Ross Sea ; Cenozoic ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.05. Geomagnetism::04.05.09. Environmental magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3IAntarctica : a keystone in a changing world : proceedings of the 10th International Symposium on Antarctic Earth Sciences, Santa Barbara, California, August 26 to September 1, 2007 / edited by Alan K Cooper; National Research Council (U.S.). Polar Resear, pp. 71-82, ISBN: 978-0-309-11854-5
    Publication Date: 2014-04-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...