ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Female  (182)
  • Mice  (169)
  • Astrophysics
  • 2005-2009  (437)
  • 1995-1999
  • 2007  (437)
Collection
Years
  • 2005-2009  (437)
  • 1995-1999
Year
  • 1
    Publication Date: 2007
    Description: Electrical microstimulation can establish causal links between the activity of groups of neurons and perceptual and cognitive functions. However, the number and identities of neurons microstimulated, as well as the number of action potentials evoked, are difficult to ascertain. To address these issues we introduced the light-gated algal channel channelrhodopsin-2 (ChR2) specifically into a small fraction of layer 2/3 neurons of the mouse primary somatosensory cortex. ChR2 photostimulation in vivo reliably generated stimulus-locked action potentials at frequencies up to 50 Hz. Here we show that naive mice readily learned to detect brief trains of action potentials (five light pulses, 1 ms, 20 Hz). After training, mice could detect a photostimulus firing a single action potential in approximately 300 neurons. Even fewer neurons (approximately 60) were required for longer stimuli (five action potentials, 250 ms). Our results show that perceptual decisions and learning can be driven by extremely brief epochs of cortical activity in a sparse subset of supragranular cortical pyramidal neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425380/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425380/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, Daniel -- Petreanu, Leopoldo -- Ghitani, Nima -- Ranade, Sachin -- Hromadka, Tomas -- Mainen, Zach -- Svoboda, Karel -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Jan 3;451(7174):61-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18094685" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/physiology/radiation effects ; Algal Proteins/genetics/metabolism ; Animals ; Behavior, Animal/*physiology/*radiation effects ; Cerebral Cortex/cytology/*physiology/*radiation effects ; Electric Stimulation ; Learning/*physiology/radiation effects ; Mice ; Movement/*physiology ; Optics and Photonics ; Photic Stimulation ; Pyramidal Cells/metabolism/radiation effects ; Rhodopsins, Microbial/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007
    Description: Mating in many species induces a dramatic switch in female reproductive behaviour. In most insects, this switch is triggered by factors present in the male's seminal fluid. How these factors exert such profound effects in females is unknown. Here we identify a receptor for the Drosophila melanogaster sex peptide (SP, also known as Acp70A), the primary trigger of post-mating responses in this species. Females that lack the sex peptide receptor (SPR, also known as CG16752), either entirely or only in the nervous system, fail to respond to SP and continue to show virgin behaviours even after mating. SPR is expressed in the female's reproductive tract and central nervous system. The behavioural functions of SPR map to the subset of neurons that also express the fruitless gene, a key determinant of sex-specific reproductive behaviour. SPR is highly conserved across insects, opening up the prospect of new strategies to control the reproductive and host-seeking behaviours of agricultural pests and human disease vectors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yapici, Nilay -- Kim, Young-Joon -- Ribeiro, Carlos -- Dickson, Barry J -- England -- Nature. 2008 Jan 3;451(7174):33-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18066048" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Central Nervous System/metabolism ; Conserved Sequence ; Copulation/physiology ; Drosophila Proteins/chemistry/deficiency/genetics/*metabolism ; Drosophila melanogaster/cytology/*physiology ; Female ; Genitalia, Female/metabolism ; Male ; Nerve Tissue Proteins/metabolism ; Neurons/metabolism ; Peptides/chemistry/deficiency/genetics/*metabolism ; Sexual Behavior, Animal/*physiology ; Substrate Specificity ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007
    Description: Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, In-Hyun -- Zhao, Rui -- West, Jason A -- Yabuuchi, Akiko -- Huo, Hongguang -- Ince, Tan A -- Lerou, Paul H -- Lensch, M William -- Daley, George Q -- England -- Nature. 2008 Jan 10;451(7175):141-6. Epub 2007 Dec 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Hematology/Oncology, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18157115" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Cell Differentiation ; Cell Shape ; Cells, Cultured ; DNA Methylation ; DNA-Binding Proteins/genetics ; Embryonic Stem Cells/cytology/metabolism ; Fetus/cytology ; Fibroblasts/cytology ; Gene Expression Profiling ; HMGB Proteins/genetics/*metabolism ; Homeodomain Proteins/genetics ; Humans ; Infant, Newborn ; Kruppel-Like Transcription Factors/genetics/*metabolism ; Mice ; Octamer Transcription Factor-3/genetics/*metabolism ; Pluripotent Stem Cells/*cytology/*metabolism/transplantation ; Promoter Regions, Genetic/genetics ; Proto-Oncogene Proteins c-myc/genetics/*metabolism ; SOXB1 Transcription Factors ; Teratoma/pathology ; Transcription Factors/genetics/*metabolism ; Transplantation, Heterologous
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-03-17
    Description: Population dynamics and evolutionary change are linked by the fundamental biological processes of birth and death. This means that population growth may correlate with the strength of selection, whereas evolutionary change can leave an ecological signature. We decompose population growth in an age-structured population into contributions from variation in a quantitative trait. We report that the distribution of body sizes within a population of Soay sheep can markedly influence population dynamics, accounting for up to one-fifth of observed population growth. Our results suggest that there is substantial opportunity for evolutionary dynamics to leave an ecological signature and visa versa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pelletier, Fanie -- Clutton-Brock, Tim -- Pemberton, Josephine -- Tuljapurkar, Shripad -- Coulson, Tim -- P01 AG 22500/AG/NIA NIH HHS/ -- P01 AG022500/AG/NIA NIH HHS/ -- P01 AG022500-04/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2007 Mar 16;315(5818):1571-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology and the Natural Environment Research Council (NERC) Centre for Population Biology, Imperial College London, Silwood Park, Ascot, Berkshire, SL5 7PY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17363672" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Birth Weight ; Body Size/genetics ; Body Weight/genetics ; Ecology ; Environment ; Female ; *Genetic Variation ; Hindlimb/anatomy & histology ; Male ; Mathematics ; Population Dynamics ; Population Growth ; *Quantitative Trait, Heritable ; Scotland ; *Selection, Genetic ; *Sheep/anatomy & histology/genetics/growth & development ; Weather
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-04-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉International Stem Cell Forum Ethics Working Party -- Knoppers, Bartha Maria -- Revel, Michel -- Richardson, Genevra -- Kure, Josef -- Lotjonen, Salla -- Isasi, Rosario -- Mauron, Alexandre -- Wahlstrom, Jan -- Rager, Bracha -- Peng, Peng Lee Hin -- New York, N.Y. -- Science. 2007 Apr 20;316(5823):368-70; author reply 368-70.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17450633" target="_blank"〉PubMed〈/a〉
    Keywords: *Embryo Research/ethics ; *Embryonic Stem Cells ; Female ; *Guidelines as Topic ; Humans ; International Cooperation ; Oocyte Donation/*economics/ethics/standards ; Reimbursement Mechanisms
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-04-07
    Description: Pleckstrin homology (PH) domain-mediated protein recruitment to cellular membranes is of paramount importance for signal transduction. The recruitment of many PH domains is controlled through production and turnover of their membrane ligand, phosphatidylinositol 3,4,5-trisphosphate (PIP3). We show that phosphorylation of the second messenger inositol 1,4,5-trisphosphate (IP3) into inositol 1,3,4,5-tetrakisphosphate (IP4) establishes another mode of PH domain regulation through a soluble ligand. At physiological concentrations, IP4 promoted PH domain binding to PIP3. In primary mouse CD4+CD8+ thymocytes, this was required for full activation of the protein tyrosine kinase Itk after T cell receptor engagement. Our data suggest that IP4 establishes a feedback loop of phospholipase C-gamma1 activation through Itk that is essential for T cell development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Yina H -- Grasis, Juris A -- Miller, Andrew T -- Xu, Ruo -- Soonthornvacharin, Stephen -- Andreotti, Amy H -- Tsoukas, Constantine D -- Cooke, Michael P -- Sauer, Karsten -- AR048848/AR/NIAMS NIH HHS/ -- New York, N.Y. -- Science. 2007 May 11;316(5826):886-9. Epub 2007 Apr 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17412921" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/metabolism ; *Amino Acid Motifs ; Animals ; Diglycerides/metabolism ; Feedback, Physiological ; Inositol 1,4,5-Trisphosphate/metabolism ; Inositol Phosphates/*metabolism/pharmacology ; Lymphopoiesis ; Membrane Proteins/metabolism ; Mice ; Mice, Inbred C57BL ; Models, Biological ; Organ Culture Techniques ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C gamma/metabolism ; Phosphoproteins/metabolism ; Phosphorylation ; Protein Structure, Tertiary ; Protein-Tyrosine Kinases/chemistry/*metabolism ; Receptors, Antigen, T-Cell/immunology ; Second Messenger Systems ; Signal Transduction ; Solubility ; T-Lymphocytes/cytology/immunology/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-08-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koenig, Robert -- New York, N.Y. -- Science. 2007 Aug 17;317(5840):881.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17702915" target="_blank"〉PubMed〈/a〉
    Keywords: *Acquired Immunodeficiency Syndrome/drug therapy/epidemiology/prevention & ; control ; *Administrative Personnel ; Employment ; Female ; *Health Policy ; History, 21st Century ; Humans ; *Public Health Administration ; South Africa/epidemiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-04-14
    Description: The pre-B cell receptor (pre-BCR) serves as a checkpoint in B cell development. In the 2.7 angstrom structure of a human pre-BCR Fab-like fragment, consisting of an antibody heavy chain (HC) paired with the surrogate light chain, the "unique regions" of VpreB and lambda5 replace the complementarity-determining region 3 (CDR3) loop of an antibody light chain and appear to "probe" the HC CDR3, potentially influencing the selection of the antibody repertoire. Biochemical analysis indicates that the pre-BCR is impaired in its ability to recognize antigen, which, together with electron microscopic visualization of a pre-BCR dimer, suggests ligand-independent oligomerization as the likely signaling mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bankovich, Alexander J -- Raunser, Stefan -- Juo, Z Sean -- Walz, Thomas -- Davis, Mark M -- Garcia, K Christopher -- T32 AI007290/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2007 Apr 13;316(5822):291-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17431183" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Complementarity Determining Regions/chemistry/physiology ; Crystallography, X-Ray ; Humans ; Immunoglobulin Heavy Chains/chemistry/physiology ; Immunoglobulin Light Chains/chemistry/physiology ; Immunoglobulin Light Chains, Surrogate ; Membrane Glycoproteins/*chemistry/physiology/ultrastructure ; Mice ; Models, Molecular ; Pre-B Cell Receptors ; Protein Conformation ; Receptors, Antigen, B-Cell/*chemistry/physiology/ultrastructure ; Recombinant Proteins ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-05-19
    Description: Although clownfish sounds were recorded as early as 1930, the mechanism of sound production has remained obscure. Yet, clownfish are prolific "singers" that produce a wide variety of sounds, described as "chirps" and "pops" in both reproductive and agonistic behavioral contexts. Here, we describe the sonic mechanism of the clownfish Amphiprion clarkii.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parmentier, Eric -- Colleye, Orphal -- Fine, Michael L -- Frederich, Bruno -- Vandewalle, Pierre -- Herrel, Anthony -- New York, N.Y. -- Science. 2007 May 18;316(5827):1006.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratoire de Morphologie Fonctionnelle et Evolutive, Institut de Chimie, Batiment B6, Universite de Liege, B-4000 Liege, Belgique. E.Parmentier@ulg.ac.be〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17510359" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Jaw/physiology ; Ligaments/physiology ; Male ; Mouth/physiology ; Movement ; Perciformes/anatomy & histology/*physiology ; Tooth/anatomy & histology/physiology ; *Vocalization, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2007-10-27
    Description: Altruism-benefiting fellow group members at a cost to oneself-and parochialism-hostility toward individuals not of one's own ethnic, racial, or other group-are common human behaviors. The intersection of the two-which we term "parochial altruism"-is puzzling from an evolutionary perspective because altruistic or parochial behavior reduces one's payoffs by comparison to what one would gain by eschewing these behaviors. But parochial altruism could have evolved if parochialism promoted intergroup hostilities and the combination of altruism and parochialism contributed to success in these conflicts. Our game-theoretic analysis and agent-based simulations show that under conditions likely to have been experienced by late Pleistocene and early Holocene humans, neither parochialism nor altruism would have been viable singly, but by promoting group conflict, they could have evolved jointly.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Jung-Kyoo -- Bowles, Samuel -- New York, N.Y. -- Science. 2007 Oct 26;318(5850):636-40.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Economics and Trade, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17962562" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; *Altruism ; *Biological Evolution ; Computer Simulation ; Cooperative Behavior ; Female ; Game Theory ; *Hostility ; Humans ; Male ; Models, Psychological ; Reproduction ; *Social Behavior ; *Warfare
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...