ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (793)
  • Astronomy  (414)
  • Technology Utilization and Surface Transportation  (379)
  • 2005-2009  (793)
  • 2000-2004
  • 1955-1959
  • 2009  (426)
  • 2007  (367)
  • 1
    Publication Date: 2018-06-06
    Description: We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: Eta Car, with its historical outbursts, visible ejecta and massive, variable winds, continues to challenge both observers and modelers. In just the past five years over 100 papers have been published on this fascinating object. We now know it to be a massive binary system with a 5.54-year period. In January 2009, Car underwent one of its periodic low-states, associated with periastron passage of the two massive stars. This event was monitored by an intensive multi-wavelength campaign ranging from -rays to radio. A large amount of data was collected to test a number of evolving models including 3-D models of the massive interacting winds. August 2009 was an excellent time for observers and theorists to come together and review the accumulated studies, as have occurred in four meetings since 1998 devoted to Eta Car. Indeed, Car behaved both predictably and unpredictably during this most recent periastron, spurring timely discussions. Coincidently, WR140 also passed through periastron in early 2009. It, too, is a intensively studied massive interacting binary. Comparison of its properties, as well as the properties of other massive stars, with those of Eta Car is very instructive. These well-known examples of evolved massive binary systems provide many clues as to the fate of the most massive stars. What are the effects of the interacting winds, of individual stellar rotation, and of the circumstellar material on what we see as hypernovae/supernovae? We hope to learn. Topics discussed in this 1.5 day Joint Discussion were: Car: the 2009.0 event: Monitoring campaigns in X-rays, optical, radio, interferometry WR140 and HD5980: similarities and differences to Car LBVs and Eta Carinae: What is the relationship? Massive binary systems, wind interactions and 3-D modeling Shapes of the Homunculus & Little Homunculus: what do we learn about mass ejection? Massive stars: the connection to supernovae, hypernovae and gamma ray bursters Where do we go from here? (future directions) The Science Organizing Committee: Co-chairs: Augusto Damineli (Brazil) & Theodore R. Gull (USA). Members: D. John Hillier (USA), Gloria Koenigsberger (Mexico), Georges Meynet (Switzerland), Nidia Morrell (Chile), Atsuo T. Okazaki (Japan), Stanley P. Owocki (USA), Andy M.T. Pol- lock (Spain), Nathan Smith (USA), Christiaan L. Sterken (Belgium), Nicole St Louis (Canada), Karel A. van der Hucht (Netherlands), Roberto Viotti (Italy) and GerdWeigelt (Germany)
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: We report the discovery with XMM-Newton of correlated spectral and timing behavior in the ultraluminous X-ray source (ULX) NGC 5408 X-1. An approx. 100 ksec pointing with XMM/Newton obtained in January, 2008 reveals a strong 10 mHz QPO in the 〉 1 keV flux, as well as flat-topped, band limited noise breaking to a power law. The energy spectrum is again dominated by two components, a 0.16 keV thermal disk and a power-law with an index of approx. 2.5. These new measurements, combined with results from our previous January 2006 pointing in which we first detected QPOs, show for the first time in a ULX a pattern of spectral and temporal correlations strongly analogous to that seen in Galactic black hole sources, but at much higher X-ray luminosity and longer characteristic time-scales. We find that the QPO frequency is proportional to the inferred disk flux, while the QPO and broad-band noise amplitude (root mean squared, rms) are inversely proportional to the disk flux. Assuming that QPO frequency scales inversely with black hole mass at a given power-law spectral index we derive mass estimates using the observed QPO frequency - spectral index relations from five stellar-mass black hole systems with dynamical mass constraints. The results from all sources are consistent with a mass range for NGC 5408 X-1 from 1000 - 9000 Stellar mass. We argue that these are conservative limits, and a more likely range is from 2000 - 5000 Stellar mass. Moreover, the recent relation from Gierlinski et al. that relates black hole mass to the strength of variability at high frequencies (above the break in the power spectrum), and the variability plane results of McHardy et al. and Koerding et al., are also suggestive of such a. high mass for NGC 5408 X-1. Importantly, none of the above estimates appears consistent with a black hole mass less than approx. 1000 Stellar mass for NGC 5408 X-1. We argue that these new findings strongly support the conclusion that NGC 5408 X-1 harbors an intermediate mass black hole.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: The James Webb Space Telescope (JWST) is the infrared successor to the Hubble Space Telescope. It is a cryogenic infrared space observatory with a 25 sq. m aperture (6 m telescope yielding diffraction limited angular resolution at a wavelength of 2 micron. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band imagery, coronagraphy, as well as multi object and integral-field spectroscopy over the 0.6 〈 0 〈 5.0 micron spectrum. An actively cooled mid-infrared instrument provides broad-band imagery, coronagraphy, and integral-field spectroscopy over the 5.0 〈 0 〈 29 micron spectrum. The JWST is being developed by NASA, in partnership with the European and Canadian Space Agencies, as a general user facility with science observations to be proposed by the international astronomical community in a manner similar to the Hubble Space Telescope. Technology development and mission design are complete, and construction is underway in all areas of the program. The JWST is on schedule to reach launch readiness during 2014.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: One of the most prominent, yet controversial associations derived from the ensemble of prompt-phase observations of gamma-ray bursts (GRBs) is the apparent correlation in the source frame between the peak energy (E(sub peak)) of the nuF(nu) spectrum and the isotropic radiated energy, E(sub iso). Since most gamma-ray bursts (GRBs) have E(sub peak) above the energy range (15-150 keV) of the Burst Alert Telescope (BAT) on Swift, determining accurate E(sub peak) values for large numbers of Swift bursts has been difficult. However, by combining data from Swift/BAT and the Suzaku Wide-band All-Sky Monitor (WAM), which covers the energy range from 50-5000 keV, for bursts which are simultaneously detected ; one can accurately fit E(sub peak) and E(sub iso) and test the relationship between them for the Swift sample. Between the launch of Suzaku in July 2005 and the end of March 2009, there were 45 gamma-ray bursts (GRBs) which triggered both Swift/BAT and WAM and an additional 47 bursts which triggered Swift and were detected by WAM, but did not trigger. A BAT-WAM team has cross-calibrated the two instruments using GRBs, and we are now able to perform joint fits on these bursts to determine spectral parameters. For those bursts with spectroscopic redshifts.. we can also calculate the isotropic energy. Here we present the results of joint Swift/BAT-Suzaku/WAM spectral fits for 86 of the bursts detected by the two instruments. We show that the distribution of spectral fit parameters is consistent with distributions from earlier missions and confirm that Swift, bursts are consistent with earlier reported relationships between Epeak and isotropic energy. We show through time-resolved spectroscopy that individual burst pulses are also consistent with this relationship.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft began taking observations in September 2006 and has now collected more than a full Martian year of data. Retrievals performed using the near-infrared spectra obtained by CRISM are used to characterize the seasonal and spatial variation of the column abundance of water vapor and the column-averaged mixing ratio of carbon monoxide. CRISM retrievals show nominal behavior in water vapor during northern hemisphere spring and summer with maximum abundance reaching 50 precipitable micrometers. Water vapor abundance during the southern hemisphere spring and summer appears significantly reduced compared to observations by other instruments taken during previous years. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be 700 ppm, but with strong seasonal variations at high latitudes. The summertime near-polar carbon monoxide mixing ratio falls to 200 ppm in the south and 400 ppm in the north as carbon dioxide sublimates from the seasonal polar ice caps and dilutes noncondensable species including carbon monoxide. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure.
    Keywords: Astronomy
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of the infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 10(exp 40) erg/s would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shocks likely contribute very little, if at all, to the high-excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on the predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst systems containing black hole binaries.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: An overview of the Fermi Gamma-ray Space Telescope's first 6 months in operation is provided. The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy rage 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. It contains a Large Area Telescope capable of viewing the entire sky every 3 hours and a Gamma-ray Burst Monitor for viewing the entire unocculted sky. Since its launch on June 11, 2008 Fermi has provided information on pulsars, gamma ray bursts, relativistic jets, the active galactic nucleus, and a globular star cluster. This presentation describes Fermi's development, mission, instruments and recent findings.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: GRB 090417B was an unusually long burst with a T(sub 90) duration of at least 2130 s and a multi-peaked light curve at energies of 15-150 keV. It was optically dark and has been convincingly associated with a bright star-forming galaxy at a redshift of 0.345 that is broadly similar to the Milky Way. This is one of the few cases where a host galaxy has been clearly identified for a dark gamma-ray burst and thus an ideal candidate for studying the origin of dark bursts. We find that the dark nature of GRB 090417B can not be explained by high redshift, incomplete observations, or unusual physics in the production of the afterglow. The Swift/XRT X-ray data are consistent with the afterglow being obscured by a dense, localized sheet of dust approximately 30-80 pc from the burst along the line of sight. Assuming the standard relativistic fireball model for the afterglow we find that the optical flux is at least 2.5 mag fainter than predicted by the X -ray flux. We are able to explain the lack of an optical afterglow, and the evolution of the X -ray spectrum, by assuming that there is a sheet of dust along the line of sight approximately 30-80 pc from the progenitor. Our results suggest that this dust sheet imparts an extinction of A(sub v)〉 or = 12 mag, which is sufficient to explain the missing optical flux. GRB 090417B is an example of a gamma-ray burst that is dark due to the localized dust structure in its host galaxy.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-05
    Description: Water vapor absorption is ubiquitous in the infrared wavelength range where photoacoustic trace gas detectors operate. This technique allows for discontinuous wavelength tuning by temperature-jumping a laser diode from one range to another within a time span suitable for photoacoustic calibration. The use of an internal calibration eliminates the need for external calibrated reference gases. Commercial applications include an improvement of photoacoustic spectrometers in all fields of use.
    Keywords: Technology Utilization and Surface Transportation
    Type: NASA Tech Briefs, September 2009; 25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-06
    Description: We presen the first Spitzer Infrared Spectrograph (IRS) observations of the [O IV] 25.89 um emission line detected from the ultraluminous X-ray source (ULX) in Holmberg II. This line is a well established signature of high excitation usually associated with AGN. Its detection suggests that the ULX has a strong impact on the surrounding gas. A Spitzer high resolution spectral map shows that the [O IV] is coincident with the X-ray position of the ULX. The ratios of the [O IV] to lower ionization lines are similar to those observed in AGN, suggesting that a strong UV and X-ray source is responsible for the, photoionization. The best XMM-Newton data is used to model the X-ray band which is then extrapolated into the UV. We perform infrared and ultraviolet photometry, and use its previously published optical and radio data to construct the full SED for the ULX and its companion. The preferred model to describe the SED includes an accretion disk which dominates the soft X-rays but contributes little at UV and optical wavelengths. The optical counterpart is consistent with a B supergiant as previously suggested in other studies. The bolometric luminosity of the ULX suggests the presence of an intermediate-mass black hole with mass 〉85 M for sub-Eddington accretion or, alternatively, a stellar-mass black hole that is accreting at super-Eddington rates. In a follow-up second paper we perform detailed photoionization modeling of the infrared lines in order to constrain the bolometric luminosity of the ULX.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of they infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 1040 erg per second would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shacks likely contribute very little, if at all, to the high excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on they predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] hi some starburst systems containing black hole binaries.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Kepler is a Discovery-class mission designed to determine the frequency of Earth-size planets in and near the habitable zone of solar-like stars. The instrument consists of a 0.95 m aperture photometer designed to obtain high precision photometric measurement of 〉 100,000 stars to search for patterns of transits. The focal plane of the Schmidt-telescope contains 42 CCDs with at total of 95 mega pixels that cover 116 square degrees of sky. The photometer was launched into an Earth-trailing heliocentric orbit on March 6, 2009, finished its commissioning on May 12, and is now in the science operations mode. During the commissioning of the Kepler photometer, data were obtained at a 30 minute cadence for 53,000 stars for 9.7 days. Although the data have not yet been corrected for the presence of systematic errors and artifacts, the data show the presence of hundreds of eclipsing binary stars and variable stars of amazing variety. To provide some estimate of the capability of the photometer, a quick analysis of the photometric precision was made. Analysis of the commissioning data also show transits, occultations and light emitted from the known exoplanet HAT-P7b. The data show a smooth rise and fall of light: from the planet as it orbits its star, punctuated by a drop of 130 +/- 11 ppm in flux when the planet passes behind its star. We interpret this as the phase variation of the dayside thermal emission plus reflected light from the planet as it orbits its star and is occulted. The depth of the occultation is similar in amplitude to that expected from a transiting Earth-size planet and demonstrates that the Mission has the precision necessary to detect such planets.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN937
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: We review our Suzaku observations of Broad-Line Radio Galaxies (BLRGs). The continuum above 2 approx.keV in BLRGs is dominated by emission from an accretion flow, with little or no trace of a jet, which is instead expected to emerge at GeV energies and be detected by Fermi. Concerning the physical conditions of the accretion disk, BLRGs are a mixed bag. In some sources the data suggest relatively high disk ionization, in others obscuration of the innermost regions, perhaps by the jet base. While at hard X-rays the distinction between BLRGs and Seyferts appears blurry, one of the cleanest observational differences between the two classes is at soft X-rays, where Seyferts exhibit warm absorbers related to disk winds while BLRGs do not. We discuss the possibility that jet formation inhibits disk winds, and thus is related to the remarkable dearth of absorption features at soft X-rays in BLRGs and other radio-loud AGN.
    Keywords: Astronomy
    Type: Accretion and Ejection in AGN: A Global View; Jun 22, 2009 - Jun 26, 2009; Como; Italy|The Energetic Cosmos: from Suzaku to Astro-H; Jun 29, 2009 - Jul 02, 2009; Otaru; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: At redshifts, z〉l, the rest-frame mid-UV is brought into view of large, ground-based telescopes. Here, we report on a study of the potential of the rest-frame UV spectrum for deriving the age since the last major episode of star formation in a galaxy. We base this investigation on wide-band (0.2-1.0 microns), low-resolution (R-1000) spectra of single stars in Hubble's Next Generation Spectral Library (NGSL). We find that a combination of mid-UV spectral indices and colors can indeed yield the age of a stellar population, but only if light from the stellar population is unreddened.
    Keywords: Astronomy
    Type: International Astronomical Union (IAU) XXVII; Aug 03, 2009 - Aug 14, 2009; Rio de Janeiro; Brazil|VIIth Marseille International Cosmology Conference. Harvesting the Desrt: The Universe betrween Redshifts 1 and 3; Jun 29, 2009 - Jul 03, 2009; Marseille; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The International X-Ray Observatory, a joint NASA-ESA-JAXA effort, is a next generation X-ray telescope that will answer many fundamental questions in contemporary astrophysics such as how do supermassive black holes influence galaxy evolution and how do galaxy clusters evolve (and how does this constrain dark energy and dark matter)? As a powerful astronomical observatory, IXO will also address questions ranging from the neutron star equation of state to the distribution and dynamical state of intergalactic material. X-ray spectroscopy, polarimetry, and timing studies provided by IXO's instruments will give detailed measures of abundances, temperatures, densities, magnetic fields and gravitational potentials. These measurements will be complementary to the next generation of observatories such as ALMA, JWST, and future ground-based optical-NIR telescopes. This mission will be ready for launch in the 2020-2021 timeframe and will launch on an Atlas V or Ariane V launch vehicle to L2. It employs a deployable optical bench to achieve the 20 meter focal length and a suite of five instruments. This talk will describe the motivating science for this mission as well as the spacecraft, instruments and optics
    Keywords: Astronomy
    Type: Steward Colloquium; Apr 15, 2009 - Apr 17, 2009; Arizona; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electro~nagnetic counterparts, will be highlighted.
    Keywords: Astronomy
    Type: Observational Signatures of Black Hole Mergers Meeting; Mar 30, 2009 - Apr 01, 2009; Maryland; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-19
    Description: The Laser Interferometer Space Antenna (LISA) is expected to detect gravitational radiation from the inspiral and merger of massive black hole binaries at high redshifts with large signal-to-noise ratios (SNRs). These high-SNR observations will make it possible to extract physical parameters such as hole masses and spins, luminosity distance, and sky position from the observed waveforms. LISA'S effectiveness as a tool for astrophysics will be influenced by the precision with which these parameters can be measured. In addition, the practicality of coordinated observations with other instruments will be affected by the temporal evolution of parameter errors such as sky position. We present estimates of parameter errors for the special case of non-spinning black holes. Our focus is on the contribution of the late inspiral and merger portions of the waveform, a regime which typically dominates the SNR but has not been extensively studied due to the historic lack of a precise description of the waveform. Advances in numerical relativity have recently made such studies possible. Initial results suggest that the portion of the waveform beyond the Schwarzchild inner-most stable circular orbit can reduce parameter uncertainties by up to a factor of two.
    Keywords: Astronomy
    Type: 2009 Meeting of the American Physical Society; May 02, 2009 - May 05, 2009; Colorado; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The author presents the current status of the RXTE/PCA Calibration, with emphasis on recent updates to the energy scale and the background subtraction. A new treatment of the Xenon K-escape line removes the largest remaining residual in the previously distributed matrices. Observations of Sco X-1 made simultaneously with Swift XRT, expressly for the purpose of cross calibrating the response to bright sources, are presented.
    Keywords: Astronomy
    Type: 4th International Astronomical Consortium for High Energy Calibration; Apr 25, 2009 - Apr 30, 2009; Tokyo; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The James Webb Space Telescope is the successor to Hubble and will be launched into space in 2013. It is not only bigger than Hubble, but is cooled to 225 degrees below zero Centigrade in order to detect the infrared light, or heat radiation, from distant stars and galaxies. I will discuss how Webb's scientific discoveries will take us beyond Hubble, and describe some of the recent progress we have made in its construction.
    Keywords: Astronomy
    Type: Museum of Natural History: Exhibit; Jan 30, 2009 - Jan 31, 2009; Michigan; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to 〉300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.
    Keywords: Astronomy
    Type: Optical Fabrication and Testing; Jan 14, 2009; Pennsylvania; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-19
    Description: Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission.
    Keywords: Astronomy
    Type: Third Workshop on Titan Chemistry - Observations, Experiments, Computations, and Modeling; Feb 26, 2009 - Feb 28, 2009; San Juan; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-19
    Description: Spitzer has been used to monitor the mid-IR evolution of SN 1987A over a 5 year period as it develops into a supernova remnant through interaction with its surrounding environment. This interaction is dominated by the collision of the ejecta with the pre-existing equatorial ring. The mid-IR continuum indicates an increasing mass of shock-heated silicate dust, but without any significant change in temperature of the dust grains. Comparison of the IR and X-ray evolution of the remnant can be used to infer plasma conditions and the processing of the dust in the shock-heated X-ray emitting gas.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.
    Keywords: Astronomy
    Type: Satellite Workshop: Dynamics of Outer Planetary Systems; Nov 09, 2009 - Nov 11, 2009; Edinburgh, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-19
    Description: Inspired by a recent paper (Kirsch et al. 2005) on possible use of the Crab Nebula as a standard candle for calibrating X-ray response func tions, we examine possible consequences of intrinsic departures from a single (absorbed) power law upon such calibrations. We limited our analyses to three more modern X-ray instruments -- the ROSAT/PSPC, th e RXTE/PCA, and the XMM-Newton/EPIC-pn. The results are unexpected an d indicate a need to refine two of the three response functions studi ed. The implications for Chandra will be discussed.
    Keywords: Astronomy
    Type: M09-0752 , Chandra Calibration Workshop; Sep 21, 2009; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: We report the detection of several molecular gas-phase and ice absorption features in three photometrically-selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO2 (15.0 microns), C2H2 (13.7 microns) and HCN (14.0 microns). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 microns CO2 ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH3OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observa.tions demonstra.te the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.
    Keywords: Astronomy
    Type: GSFC.CP.4828.2011 , The Galactic Center: A Window to the Nuclear Environment of Disk Galaxies; Oct 19, 2009 - Oct 23, 2009; Shanghai; China|ASP Conference Series; 439; 115-118
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: A normal outburst of the Be/X-ray binary system A0535+26 has taken place in August 2009. It is the fourth in a series of normal outbursts that have occurred around the periastron passage of the source. but is unusual by starting at an earlier orbital phase and by presenting a peculiar double-peaked light curve. A first "flare" (lasting about 9 days from M.ID 55043 on) reached a flux of 440 mCrab. The flux then decreased to less than 220 mCrab. and increased again reaching 440 mCrab around the periastron at MJD 55057. Target of Opportunity observations have been performed with INTEGRAL. RXTE and Suzaku. First results of these observations are presented. with special emphasis on the cyclotron lines present in the X-ray spectrum of the source. as well as in the pulse period and energy dependent pulse profiles of the source
    Keywords: Astronomy
    Type: The Extreme Sky: Sampling the Universe above 10 keV; Oct 13, 2009 - Oct 17, 2009; Otranto; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: We present new results of Cassini s T9 flyby with complementary observations from T18. Based on Cassini plasma spectrometer (CAPS) and Cassini magnetometer (MAG), compositional evidence shows the upstream flow for both T9 and T18 appears composed of light ions (H+ and H2+), with external pressures approx.30 times lower than that for the earlier TA flyby where heavy ions dominated the magnetospheric plasma. When describing the plasma heating and sputtering of Titan s atmosphere, T9 and T18 can be considered interactions of low magnetospheric energy input. On the other hand, T5, when heavy ion fluxes are observed to be higher than typical (i.e., TA), represents the limiting case of high magnetospheric energy input to Titan s upper atmosphere. Beyond this distance the corona forms a neutral torus that surrounds Saturn. The T9 flyby unexpectedly resulted in observation of two wake crossings referred to as Events 1 and 2. Event 2 was evidently caused by draped magnetosphere field lines, which are scavenging pickup ions from Titan s induced magnetopause boundary with outward flux approx.2 x 10(exp 6) ions/sq cm/s. The composition of this out flow is dominated by H2+ and H+ ions. Ionospheric flow away from Titan with ion flux approx7 x 10(exp 6) ion/sq cm/s is observed for Event 1. In between Events 1 and 2 are high energy field aligned flows of magnetosphere protons that may have been accelerated by the convective electric field across Titan s topside ionosphere. T18 observations are much closer to Titan than T9, allowing one to probe this type of interaction down to altitudes approx.950 km. Comparisons with previously reported hybrid simulations are made.
    Keywords: Astronomy
    Type: Planetary and Space Science; 58; 3; 327-350
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-12
    Description: This new technology report will describe the laboratory development of a new and innovative solution for the removal and destruction of PCBs found in painted structures or within the binding or caulking material on structures. The technology incorporates a Bimetallic Treatment System (BTS) that extracts and degrades only the PCBs found on the facilities, leaving in most cases the structure virtually unaltered.
    Keywords: Technology Utilization and Surface Transportation
    Type: KSC-12878 , KSC-2009-074
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-12
    Description: We present new HST far-UV spectroscopy of two dozen hot evolved stars in NGC 2808, a massive globular cluster with a large population of "blue-hook" stars. The blue-hook stars are found in ultraviolet color-magnitude diagrams of the most massive globular clusters, where they fall at luminosities immediately below the hot end of the horizontal branch (HB), in a region of the HR diagram unexplained by canonical stellar evolution theory. Using new theoretical evolutionary and atmospheric models, we have shown that these subluminous HB stars are very likely the progeny of stars that undergo extensive internal mixing during a late He-core flash on the white dwarf cooling curve. This flash mixing leads to hotter temperatures and an enormous enhancement of the surface He and C abundances; the hotter temperatures and associated decrease in the hydrogen opacity shortward of the Lyman limit makes the stars brighter in the extreme UV but appear sub luminous in the UV and optical. Our far-UV spectroscopy demonstrates that, relative to normal HB stars at the same color, the blue-hook stars of NGC 2808 are hotter and greatly enhanced in He and C, thus providing unambiguous evidence of flash mixing in the subluminous population. Although the C abundance in the blue-hook stars is orders of magnitude larger than that in the normal HB stars, the atmospheric C abundance in both the blue-hook and normal HB stars appears to be affected by gravitational settling. The abundance variations seen in C, Si, and the Fe-peak elements indicate that atmospheric diffusion is at play in our sample, with all of our hot subdwarfs at 25,000 K to 50,000 K exhibiting large enhancements of the iron-peak elements. The hottest subdwarfs in our blue-hook sample may be pulsators, given that they fall in the temperature range of newly-discovered pulsating subdwarfs in omega Cen.
    Keywords: Astronomy
    Type: GSFC.JA.5514.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for NASA's EOS missions. Two nearly identical copies have flown on the Terra and Aqua spacecraft for more than 9 years and 6 years since their launch in December 1999 and May 2002, respectively. MODIS observations and associated data products have been widely used by the science community and users worldwide for studies of Earth's system of land, oceans, and atmosphere. MODIS was developed based on the desire of the science community to extend and enhance heritage sensors' data records. It was designed with enhancements made over its heritage sensors in terms of its spectral, spatial, and radiometric characteristics. It is a cross-track scanning radiometer, that uses a two-sided scan mirror, collecting data in 36 spectral bands covering spectral regions of visible (VIS), near-infrared (NIR), short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR). The VIS, NIR, and SWIR bands (bands 1-19 and 26), which make measurements of daytime surface reflected radiances, are referred to as the reflective solar bands (RSB). The MWIR and LWIR bands (20-25 and 27-36), which measure both the daytime and nighttime scene emissive radiances, are thus referred to as the thermal emissive bands (TEB). In this paper, we provide an overview of MODIS instrument calibration and characterization methodologies, activities, and results from pre-launch to post launch, with emphasis on the lessons learned from its design to on-orbit operation. Currently, both instruments are operated normally and all the on-orbit calibration activities are performed on a regular basis with some at slightly reduced frequencies. The TEB responses have been extremely stable with less than 0.3% change per year. For the RSB, the changes are wavelength and scan angle dependent with the largest changes in the VIS spectral bands. As both Terra and Aqua MODIS continue to operate beyond their prime missions, constant effort is still needed to maintain instrument and calibration and data product quality. This paper shows that the lessons from Terra MODIS design, test, and operation, have greatly benefitted Aqua MODIS. Because of this, Aqua MODIS overall performance is better than Terra MODIS. It is not surprising that lessons from MODIS calibration and characterization, from methodologies to on-orbit implementation, have also provided valuable information for the design and development of future earth observing missions/sensors, such as VHRS on the NPP and NPOESS, ABI on GOES-R, OLI on LDCM, and the reflective solar sensor on CLARREO.
    Keywords: Astronomy
    Type: 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS); Jul 12, 2009 - Jul 17, 2009; Cape Town; South Africa
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: We present deep GALEX ultraviolet (135 - 280 nm) images of the Northern Middle Lobe (NML) of the nearby radio galaxy Centaurus A. We find that the ultraviolet emission appears to have a complex interaction with soft X-ray, H-alpha emission, and radio emission, which should help constrain various models of energy transport in the NML. We also present new 90cm VLA images of the NML. The radio morphology at this wavelength is indicative of a more complex system than either a straightforward flaring jet (Morganti et al. 1999) or a bubble with trailing stem (Saxton et al. 2001). New limits are placed on the lack of radio emission from any corresponding southern counterpart to the NML.
    Keywords: Astronomy
    Type: GALEX Helpdesk and GI Program - Inquiries 24/7 Worldwide Conference; Jun 22, 2009 - Jul 06, 2009; Sydney; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Band-limited masks have become the baseline design for what is now called "classical TPF" and also the N|RCamcomnagraphonJW8 .This technology remains one of the most promising paths for direct detection ofmxop|anedm and disks. I'll describe some of the latest progress in the implementation of this technique and what we have learned about where it can and can not be effectively applied.
    Keywords: Astronomy
    Type: New Technologies of Probing the Diversity of Brown Dwarfs and Exoplanets; Jul 19, 2009 - Jul 24, 2009; Shanghai; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-19
    Description: The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the telescopes for that observation. Any change in color reflects a real change in the debris surface. We will compare our observations with models and laboratory measurements of selected surfaces.
    Keywords: Astronomy
    Type: JSC-CN-18152 , AMOS Technical Conference; Sep 01, 2009 - Sep 04, 2009; Maui, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: 400 years ago, Galileo first turned a telescope to the sky, and to honor that historic moment, 2009 has been designated the International Year of Astronomy (IYA2009). This session will feature two scientists who have used the telescope to understand our solar system and well beyond to yield fantastic new discoveries. Jennifer Wiseman will share the work she does with NASA, presenting beautiful and tantalizing images from the Hubble Space Telescope and discussing how space astronomy can inspire all ages.
    Keywords: Astronomy
    Type: The Evolution of Dust in the Local and Early Universe; Mar 06, 2009 - Mar 08, 2009; New York City, NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: An extrasolar planet sculpts the famous debris disk around Fomalhaut; probably many other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks---difficult processes to model simultaneously. The author describes new 3-D models of debris disk dynamics, Drag-o-llision models, that incorporate both collisions and resonant trapping of dust for the first time. The author also discusses the implications of these models for coronagraphic imaging with Gemini and other telescopes.
    Keywords: Astronomy
    Type: 2nd Subaru International Conference - Exoplanets and Disks: Their Formation and Diversity; Mar 04, 2009 - Mar 12, 2009; Hawaii; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-19
    Description: The history of the universe in a nutshell, from the Big Bang to now, and on to the future - John Mather will tell the story of how we got here, how the Universe began with a Big Bang, how it could have produced an Earth where sentient beings can live, and how those beings are discovering their history. Mather was Project Scientist for NASA s Cosmic Background Explorer (COBE) satellite, which measured the spectrum (the color) of the heat radiation from the Big Bang, discovered hot and cold spots in that radiation, and hunted for the first objects that formed after the great explosion. He will explain Einstein s biggest mistake, show how Edwin Hubble discovered the expansion of the universe, how the COBE mission was built, and how the COBE data support the Big Bang theory. He will also show NASA s plans for the next great telescope in space, the James Webb Space Telescope. It will look even farther back in time than the Hubble Space Telescope, and will look inside the dusty cocoons where stars and planets are being born today. Planned for launch in 2013, it may lead to another Nobel Prize for some lucky observer.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-19
    Description: After one year of survey observations and more than 70 billion triggers, Fermi is revealing an unprecedented view of the high energy gamma-ray sky. The observatory carries two instruments, the Gamma-ray Burst Monitor (GBM, 8 keV - 40 MeV) and the Large Area Telescope (LAT, 20 MeV - X300 GeV), which in combination cover over 7 orders of magnitude in energy. The LAT provides substantially more sensitivity than previous instruments in this waveband and has opened up the energy window from 10-100 GeV. This is particularly relevant for the study of gamma-ray sources in the Galaxy. The first year data have revealed new classes of Galactic emitters as well as providing spectacular detail on some old friends. I'll review the fascinating range of Galactic emission now seen - from pulsars their nebulae to X-ray binaries and supernova remnants - with particular emphasis on the impact of the Fermi pulsars.
    Keywords: Astronomy
    Type: A First Year View of the Galaxy with the Fermi Gamma-ray Space Telescope; Sep 28, 2009 - Sep 30, 2009; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-19
    Description: Enceladus has taken its place as one of the most remarkable moons in the solar system. When Voyager encountered Enceladus it was noted that its surface showed signs of recent activity with the observations of a large province, which was characterized by smooth sparsely cratered terrain. Even the heavily cratered areas of Enceladus showed a lower crater density than other Saturnian satellites. Moreover, its extraordinarily high albedo hinted at past cryovolcanic resurfacing events. Ground-based observations further demonstrated that Saturn's diffuse E-ring is concentrated at the orbit of EnceladLis, making the moon, the likely source of E-ring particles. However the short estimated lifetime of E-ring particles requires that new particles must constantly be fed to the Ering, implying more recent activity on Enceladus. Recently, in 2005 the Cassini spacecraft provided definitive proof that Enceladus is currently geologically active when multiple Cassini instruments detected plumes of gas and ice particles emanating from a series of warm fractures centered on the south pole, dubbed the "tiger stripes." Enceladus is the second cryovolcanically active icy satellite that has been identified (Triton is the only other known active icy satellite) and can be used to study active processes that are thought to have once played a role in shaping the surfaces of other icy satellites. These processes include tidal heating, cryovolcanism, and ice tectonism, which all can be studied as they currently happen on Enceladus, Moreover, the plume source region on Enceladus samples a warm, chemically rich, environment that may facilitate complex organic chemistry and biological processes. For these reasons, Enceladus science is highly relevant to NASA's goals.
    Keywords: Astronomy
    Type: 41st annual meeting of the Division of Planetary Sciences of the American Astronomical Society; Oct 04, 2009 - Oct 10, 2009; Fajardo; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-19
    Description: Given the non-spherical shape of Enceladus, the satellite may experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical Libration would produce a diurnal oscillation in the longitude of Enceladus' tidal bulge, which could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus' libration amplitude, small amplitude librations may have geologically significant consequences. For example, a physical libration will affect heat production. along the tiger stripes as produced by tidal shear heating. We have modeled the expected power en-litted along the tiger stripes for various types of physical libration and have quantified which types of physical libration best reproduce the observed power flux as detailed in Cassini CIRS data. We find that including a physical libration does allow better fits to the observations and we have identified regions of the libration phase space that where these fits are optimized. A physical libration has important implications for tidal dissipation within Enceladus and if identified may provide an additional constraint on its interior mass distribution.
    Keywords: Astronomy
    Type: 41st annual meeting of the Division for Planetary Sciences of the American Astronomical Society; Oct 04, 2009 - Oct 10, 2009; Fajardo; Puerto Rico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: A brief historical introduction to the development of observational astronomy will be presented. The close historical relationship between the successful application of mathematical concepts and advances in astronomy will be presented. A variety of simple physical demonstrations, hands-on group activities, and puzzles will be used to understand how the properties of light can be used to understand the contents of our universe.
    Keywords: Astronomy
    Type: National Radio Astronomy Observatory Conference; Jan 30, 2009 - Jan 31, 2009; Martinsville, WV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of 13-field lines, in the geometric context of polar cap (PC), slot gap (SG), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by SG and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or SG / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor f(_, _, P) for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Prior to the launch of Fermi, only weak gamma-ray pulsations from a single millisecond pulsar, PSR J0218+4232, had been reported. A firm detection of gamma rays from a member of this class of pulsar having periods near neutron star break-up and magnetic dipole moments well below those of normal pulsars would provide new insights into pulsar acceleration and emission. Using accurate ephemerides obtained from several radio telescopes as well as the unprecedented accuracy of the GPS-derived clocks used by Fermi and the LAT, we have searched for gamma-ray pulsations from known pulsars over a broad range of timing parameters. We will present some results from our search for pulsed gamma rays from millisecond pulsars.
    Keywords: Astronomy
    Type: 213th American Astronomical Society Meeting; Jan 04, 2009 - Jan 08, 2009; California; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: The delivery of amino acids to the early Earth by comets and their fragments could have been a significant source of the early Earth's prebiotic organic inventory that led to the emergence of life (Chyba and Sagan, 1992). Over 20 organic molecules including methane, ethane, ammonia, cyanic acid, formaldehyde, formamide, acetaldehyde, acetonitrile, and methanol have been identified by radio spectroscopic observations of the comae of comets Hale-Bopp and Hyakutake (Crovisier et al. 2004). These simple molecules could have provided the organic reservoir to allow the formation of more complex prebiotic organic compounds such as amino acids. After a 7-year mission, the Stardust spacecraft returned to Earth samples from comet Wild 2 on January 15, 2006 providing the opportunity to analyze the organic composition and isotopic distribution of cometary material with state-of-the-art laboratory instrumentation. The Preliminary Examination Team analyses of organics in samples returned by Stardust were largely focused on particles that impacted the collector aerogel and aluminum foil (Sandford et al. 2006). However, it is also possible that Stardust returned a "diffuse" sample of gas-phase organic molecules that struck the aerogel directly or diffused away from the grains after impact. To test this possibility, samples of Stardust flight aerogel and foil were carried through a hot water extraction and acid hydrolysis procedure to see if primary amine compounds were present in excess of those seen in controls. Here we report highly sensitive liquid chromatography time-of-flight mass spectrometry measurements of amino acids and amines in samples returned from a comet (Glavin et al. 2008). A suite of amino acids and amines including glycine, L-alanine, methylamine (MA), and ethylamine (EA) were identified in the Stardust bulk aerogel. With the exception of MA and EA, all other primary amines detected in comet-exposed aerogels were also present in the aerogel witness tile that was not exposed to Wild 2, suggesting that most amines are terrestrial in origin. However, the enhanced abundances of MA, EA, and possibly glycine in comet-exposed aerogel compared to controls, coupled with MA to EA ratios (1 to 2) that are distinct from preflight aerogels (7 to 10), suggest that these amines were captured from Wild 2. It is possible that MA and EA were formed on energetically processed icy grains containing methane, ethane, and ammonia. The presence of cometary amines in Stardust material supports the hypothesis that comets were an important source of prebiotic organics on the early Earth. To better understand their origin, a systematic compound specific carbon isotopic analysis (C-CSIA) via gas chromatography quadrupole mass spectrometry in with parallel with combustion isotope ratio mass spectrometry (GCQMS/ IRMS) is being conducted. We will discuss our latest C-CSIA measurements and what they indicate about the origin of amino acids extracted from Stardust samples.
    Keywords: Astronomy
    Type: Origins of Life and Evolution of the Biosphere; 39; 179-392
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.
    Keywords: Astronomy
    Type: Pathways Towards Habitable Planets; Aug 14, 2009 - Aug 18, 2009; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Primordial Inflation Polarization Explorer is a balloon-borne instrument to measure the polarization of the cosmic microwave background in order to detect the characteristic signature of gravity waves created during an inflationary epoch in the early universe. PIPER combines cold /I.G K\ optics, 5120 bolometric detectors, and rapid polarization modulation using VPM grids to achieve both high sensitivity and excellent control of systematic errors. I will discuss the current status and plans for the PIPER instrument.
    Keywords: Astronomy
    Type: The Path to CMBPol: Upcoming Measurements of CMB Polarization; Jul 01, 2009 - Jul 03, 2009; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: In addition to probing inflationary cosmology, PIPER will measure the polarized dust emission from the Galaxy. PIPER will be capable of full (I,0,U,V) measurement over four frequency bands ' These measurements will provide insight into the physics of dust grains and a probe of the Galactic magnetic field on large and intermediate scales.
    Keywords: Astronomy
    Type: The Path to CMBP0l: Upcoming Measurements of DMB Polarizaiton; Jul 01, 2009 - Jul 03, 2009; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: We report on a study of approx.20,000 luminous red galaxies (LRG's) at z=0.4-0.5 observed by the Sloan Digital Sky Survey. In order to differentiate among them, we measured restframe magnitudes, u (3000-3500 A), b (4200-4800 A), and y (5700-6300 A) from the spectra themselves. The galaxies show a significant range in restframe colors and absolute magnitudes. We binned the spectra according to the restframe u-b color and y-band absolute magnitude in order to increase the S/N. We used 3 approaches to estimate the ages and metal content of these binned spectra: via their spectral energy distributions, from spectral-line indices, and by full spectral fitting. The three methods usually produce discordant results
    Keywords: Astronomy
    Type: VIIth Marseille International Cosmology Conference. Harvesting the Desert: The Universe between Redshift 1 and 3; Jun 29, 2009 - Jul 03, 2009; Marseille; France|International Astronomical Union (IAU) XXVII; Aug 03, 2009 - Aug 14, 2009; Rio de Janeiro; Brazil|Bridging Laboratory and Astrophysics: From the Infrared to the Submm; Jun 08, 2009 - Jun 10, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-19
    Description: Recently the Advanced Thin Ionization Calorimeter (ATIC) balloon experiment reported observations of high energy cosmic ray electrons over the energy range 300 to 800 GeV, indicating a feature or "bump" in the otherwise smoothly decreasing energy spectrum. The severe energy losses that occur as these high energy particles traverse the galaxy render the cosmic ray electron spectrum sensitive to local (a few kiloparsecs) sources and hence very interesting. The ATIC results are the first time that such a cosmic ray spectrum anomaly has been observed at high energy. Potential sources of this electron excess include pulsars, microquasars, supernovae remnants as well as the annihilation of exotic dark matter candidate particles. ATIC has had three successful high altitude flights over the continent of Antarctica 2000-2001, 2002-2003 and 2007-2008. Only results from the first two flights have been reported so far. During this talk we will discuss the ATIC experiment, the electron observations (including preliminary results from the most recent ATIC flight), examine the merits of the various source models and compare the ATIC observations with other recent measurements.
    Keywords: Astronomy
    Type: M09-0288 , April meeting of the APS; May 02, 2009 - May 05, 2009; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.
    Keywords: Astronomy
    Type: 213th Meeting of the American Astronomical Society with HAD and HEAD; Jan 04, 2009 - Jan 08, 2009; California; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, Herschel, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future balloon programs, paving the way for interferometric observations of exoplanets.
    Keywords: Astronomy
    Type: Low Cost Access to Near Space 2009; Oct 25, 2009 - Oct 28, 2009; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-19
    Description: Direct infrared imaging and spectroscopy of exoplanets will allow for detailed characterization of the atmospheric constituents of more than 200 nearby Earth-like planets, more than is possible with any other method under consideration. A flagship mission based on larger passively cooled infrared telescopes and formation flying technologies would have the highest angular resolution of any concept under consideration. The 2008 Exoplanet Forum committee on Direct Infrared Imaging of Exoplanets recommends: (1) a vigorous technology program including component development, integrated testbeds, and end-to-end modeling in the areas of formation flying and mid-infrared nulling; (2) a probe-scale mission based on a passively cooled structurally connected interferometer to be started within the next two to five years, for exoplanetary system characterization that is not accessible from the ground, and which would provide transformative science and lay the engineering groundwork for the flagship mission with formation flying elements. Such a mission would enable a complete exozodiacal dust survey (〈1 solar system zodi) in the habitable zone of all nearby stars. This information will allow for a more efficient strategy of spectral characterization of Earth-sized planets for the flagship missions, and also will allow for optimization of the search strategy of an astrometric mission if such a mission were delayed due to cost or technology reasons. (3) Both the flagship and probe missions should be pursued with international partners if possible. Fruitful collaboration with international partners on mission concepts and relevant technology should be continued. (4) Research and Analysis (R&A) should be supported for the development of preliminary science and mission designs. Ongoing efforts to characterize the the typical level of exozodiacal light around Sun-like stars with ground-based nulling technology should be continued.
    Keywords: Astronomy
    Type: Missions for Exoplanets 2010-2020; Apr 20, 2009 - Apr 24, 2009; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-19
    Description: The International X-ray Observatory requires mirror assemblies with unprecedented characteristics that cannot be provided by existing optical technologies. In the past several years, the project has supported a vigorous mirror technology development program. This program includes the fabrication of lightweight mirror segments by slumping commercially available thin glass sheets, the support and mounting of these thin mirror segments for accurate metrology, the mounting and attachment of these mirror segments for the purpose of X-ray tests, and development of methods for aligning and integrating these mirror segments into mirror assemblies. This paper describes our efforts and developments in these areas.
    Keywords: Astronomy
    Type: 213th Meeting of the American Astronomical Society; Jan 04, 2009 - Jan 09, 2009; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-19
    Description: I will give an overview talk about flight software systems, robotics technologies and modeling for energy minimization as applied to vehicles and buildings infrastructures. A dominant issue in both design and operations of robotic spacecraft is the minimization of energy use. In the design and building of spacecraft increased power is acquired only at the cost of additional mass and volumes and ultimately cost. Consequently, interplanetary spacecrafts are designed to have the minimum essential power and those designs often incorporate careful timing of all power use. Operationally, the availability of power is the most influential constraint for the use of planetary surface robots, such as the Mars Exploration Rovers. The amount of driving done, the amount of science accomplished and indeed the survivability of the spacecraft itself is determined by the power available for use. For the Mars Exploration Rovers there are four tools which are used: (1) models of the rover and it s thermal and power use (2) predictive environmental models of power input and thermal environment (3) fine grained manipulation of power use (4) optimization modeling and planning tools. In this talk I will discuss possible applications of this methodology to minimizing power use on Earth, especially in buildings.
    Keywords: Technology Utilization and Surface Transportation
    Type: ARC-E-DAA-TN563 , NASA Research Park and Ames Research Center Exploration and Sustainability Expo; Apr 21, 2009; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-19
    Description: We have resolved the outer structures of the massive binary interacting wind of Eta Carinae using the HST/STIS. They extend as much as 0.7' (1600AU) and are highly distorted due to the very elliptical orbit of the binary system. Observations conducted from 1998.0 to 2004.3 show spatial and temporal variations consistent with a massive, low excitation wind, seen by spatially resolved, velocity-broadened [Fe II], and a high excitation extended wind interaction region, seen by[Fe III], in the shape of a distorted paraboloid. The highly excited [Fe III] structure is visible for 90% of the 5.5-year period, but disappears as periastron occurs along with the drop of X-Rays as seen by RXTE. Some components appear in [Fe II] emission across the months long minimum. We will discuss the apparent differences between the bowshock orientation derived from the RXTE light curve and these structures seen by HST/STIS. Monitoring the temporal variations with phase using high spatial resolution with appropriate spectral dispersions proves to be a valuable tool for understanding massive wind interactions.
    Keywords: Astronomy
    Type: 213th Meeting of the American Astronomical Society with HAD and HEAD: 2009 International Year of Astronomy; Jan 04, 2009 - Jan 08, 2009; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-19
    Description: Space-based astronomy is going through a renaissance, with three Great Observatories currently flying: Hubble in the visible and ultraviolet, Spitzer in the infrared and Chandra in X-rays. The future looks equally bright. The final servicing mission to Hubble will take place in February 2009 and promises to make the observatory more capable than ever with two new cameras, and refurbishment that will allow it to last at least five years. The upcoming launch of the Herschel Space Telescope will open the far-infrared to explore the cool and dusty Universe. Finally, we look forward to the launch of the James Webb Space Telescope in 2013, which wil provide a successor to both Hubble and Spitzer. In this talk, the author discusses some of the highlights of scientific discovery in the last 10 years and reveals the promise to the next 10 years.
    Keywords: Astronomy
    Type: Opening Ceremonies of the 2009 International Year of Astronomy; Jan 13, 2009 - Jan 17, 2009; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: The scientific capabilities of the James Webb Space Telescope fall into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the universe. The Assembly of Galaxies theme seeks to determine how galaxies and dark matter, gas, stars, metals morphological structures, and active nuclei within them evolved from the epoch of reionization to the present. The Birth of Stars and Protoplanetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems around nearby stars and of our own, and investigate the potential for life in those systems. A comprehensive, top-level review of JWST sciences was published in the journal Space Science Reviews (Gardner et al. 2006, SSR, 123, 485). That paper gives details of the 4 JWST science themes, and describes the design of the observatory and ground system. Since that paper was published, the JWST Science Working Group, working with members of the astronomical community, has continued to develop the science case for JWST, giving more details in a series of white papers. In this poster, the main science themes and white papers are reviewed.
    Keywords: Astronomy
    Type: 213th Meetin gof the American Astronomical Society with HAD and HEAD; Jan 04, 2008 - Jan 08, 2008; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The James Webb Space Telescope (JWST) is a large aperture (6.5 meter), cryogenic space telescope with a suite of near and mid-infrared instruments covering the wavelength range of 0.6 pm to 28 pm. JWST's primary science goal is to detect and characterize the first galaxies. It will also study the assembly of galaxies, star formation, and the formation of evolution of planetary systems. We will present an overview of the Observatory's current design following the Mission Preliminary Design Review, (PDR). Recent progress in hardware development for the observatory will be presented, including a discussion of the status of JWST's optical system and Beryllium mirror fabrication, progress with sunshield prototypes, and recent changes in the integration and test configuration. We also review the expected scientific performance of the observatory based on the mission PDR design.
    Keywords: Astronomy
    Type: 2008 International Year Astronomy - AAS; Jan 04, 2009 - Jan 08, 2009; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-26
    Description: NASA-funded researchers produced an ethylene reduction device for a plant growth unit. KES Science & Technology Inc., a Kennesaw, Georgia-based company specializing in sustaining perishable foods, licensed the ethylene scrubbing technology. KES partnered with Akida Holdings, of Jacksonville, Florida, which now markets the NASA-developed technology as AiroCide. According to the company, it is the only air purifier that completely destroys airborne bacteria, mold, fungi, mycotoxins, viruses, volatile organic compounds (like ethylene), and odors. What?s more, the devices have no filters that need changing and produce no harmful byproducts, such as the ozone created by some filtration systems.
    Keywords: Technology Utilization and Surface Transportation
    Type: Spinoff 2009; 80-81; NASA/NP-2009-09-607-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-24
    Description: Topics covered include: Cryogenic Chamber for Servo-Hydraulic Materials Testing; Apparatus Measures Thermal Conductance Through a Thin Sample from Cryogenic to Room Temperature; Rover Attitude and Pointing System Simulation Testbed; Desktop Application Program to Simulate Cargo-Air-Drop Tests; Multimodal Friction Ignition Tester; Small-Bolt Torque-Tension Tester; Integrated Spacesuit Audio System Enhances Speech Quality and Reduces Noise; Hardware Implementation of a Bilateral Subtraction Filter; Simple Optoelectronic Feedback in Microwave Oscillators; Small X-Band Oscillator Antennas; Free-Space Optical Interconnect Employing VCSEL Diodes; Discrete Fourier Transform Analysis in a Complex Vector Space; Miniature Scroll Pumps Fabricated by LIGA; Self-Assembling, Flexible, Pre-Ceramic Composite Preforms; Flight-speed Integral Image Analysis Toolkit; Work Coordination Engine; Multi-Mission Automated Task Invocation Subsystem; Autonomously Calibrating a Quadrupole Mass Spectrometer; Determining Spacecraft Reaction Wheel Friction Parameters; Composite Silica Aerogels Opacified with Titania; Multiplexed Colorimetric Solid-Phase Extraction; Detecting Airborne Mercury by Use of Polymer/Carbon Films; Lattice-Matched Semiconductor Layers on Single Crystalline Sapphire Substrate; Pressure-Energized Seal Rings to Better Withstand Flows; Rollerjaw Rock Crusher; Microwave Sterilization and Depyrogenation System; Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images; NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells; Critical Coupling Between Optical Fibers and WGM Resonators; Microwave Temperature Profiler Mounted in a Standard Airborne Research Canister; Alternative Determination of Density of the Titan Atmosphere; Solar Rejection Filter for Large Telescopes; Automated CFD for Generation of Airfoil Performance Tables; Progressive Classification Using Support Vector Machines; Active Learning with Irrelevant Examples; A Data Matrix Method for Improving the Quantification of Element Percentages of SEM/EDX Analysis; Deployable Shroud for the International X-Ray Observatory; Improved Model of a Mercury Ring Damper; Optoelectronic pH Meter: Further Details; X-38 Advanced Sublimator; and Solar Simulator Represents the Mars Surface Solar Environment.
    Keywords: Technology Utilization and Surface Transportation
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The Innovative Partnerships Program (IPP) Office at NASA's Kennedy Space Center is dedicated to forming partnerships that can positively contribute to -- and benefit from -- NASA's research and development (R&D) and technology innovations. This document discusses the IPP-driven impacts of NASA in Florida.
    Keywords: Technology Utilization and Surface Transportation
    Type: KSC-2009-125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-12
    Description: We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of ~ 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and ill emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of ~ 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.
    Keywords: Astronomy
    Type: GSFC.JA.6941.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-12
    Description: We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keY photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 deg Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 ke V emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the ISM, and to the birth of stars.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-12
    Description: We report on the first Suzaku observation of IGR J16318-4848, the most extreme example of a new group of highly absorbed X-ray binaries that have recently been discovered by the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The Suzaku observation was carried out between 2006 August 14 and 17, with a net exposure time of 97 ks. The average X-ray spectrum of the source can be well described (chi-square (sub red)= 0.99) with a continuum model typical for neutron stars i.e., a strongly absorbed power law continuum with a photon index of 0.676(42) and an exponential cutoff at 20.5(6) keY. The absorbing column is N(sub H) = 1.95(3) X 10(exp 24)/square cm. Consistent with earlier work, strong fluorescent emission lines of Fe K-alpha, Fe K-beta, and Ni K-alpha are observed. Despite the large N(sub H), no Compton shoulder is seen in the lines, arguing for a non-spherical and inhomogeneous absorber. Seen at an average 5-60 keV absorbed flux of 3.4 x 10(exp -10) erg/square cm/second, the source exhibits significant variability on timescales of hours.
    Keywords: Astronomy
    Type: Astronomy and Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-12
    Description: Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-12
    Description: We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory, The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx. 19 keV. Additionally, using the narrow CCD response of Suzaku near 6 ke V allows us to study in detail the Fe K bandpass and to quantify the Fe Kp line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of N(sub H) approx. 2 x 10(exp 22)/sq cm, consistent with a wind accreting geometry, and a high Fe abundance (approx. 3 - 4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-12
    Description: Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning
    Keywords: Astronomy
    Type: ARC-E-DAA-TN395
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-12
    Description: Many atmospheric research aircraft use a standard canister design to mount instruments, as this significantly facilitates their electrical and mechanical integration and thereby reduces cost. Based on more than 30 years of airborne science experience with the Microwave Temperature Profiler (MTP), the MTP has been repackaged with state-of-the-art electronics and other design improvements to fly in one of these standard canisters. All of the controlling electronics are integrated on a single 4 ~5-in. (.10 ~13- cm) multi-layer PCB (printed circuit board) with surface-mount hardware. Improved circuit design, including a self-calibrating RTD (resistive temperature detector) multiplexer, was implemented in order to reduce the size and mass of the electronics while providing increased capability. A new microcontroller-based temperature controller board was designed, providing better control with fewer components. Five such boards are used to provide local control of the temperature in various areas of the instrument, improving radiometric performance. The new stepper motor has an embedded controller eliminating the need for a separate controller board. The reference target is heated to avoid possible emissivity (and hence calibration) changes due to moisture contamination in humid environments, as well as avoiding issues with ambient targets during ascent and descent. The radiometer is a double-sideband heterodyne receiver tuned sequentially to individual oxygen emission lines near 60 GHz, with the line selection and intermediate frequency bandwidths chosen to accommodate the altitude range of the aircraft and mission.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-46737 , NASA Tech Briefs, November 2009; 31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-12
    Description: A fully functional, microgravity-compatible microwave sterilization and depyrogenation system (MSDS) prototype was developed that is capable of producing medical-grade water (MGW) without expendable supplies, using NASA potable water that currently is available aboard the International Space Station (ISS) and will be available for Lunar and planetary missions in the future. The microwave- based, continuous MSDS efficiently couples microwaves to a single-phase, pressurized, flowing water stream that is rapidly heated above 150 C. Under these conditions, water is rapidly sterilized. Endotoxins, significant biological toxins that originate from the cell walls of gram-negative bacteria and which represent another defining MGW requirement, are also deactivated (i.e., depyrogenated) albeit more slowly, with such deactivation representing a more difficult challenge than sterilization. Several innovations culminated in the successful MSDS prototype design. The most significant is the antenna-directed microwave heating of a water stream flowing through a microwave sterilization chamber (MSC). Novel antenna designs were developed to increase microwave transmission efficiency. These improvements resulted in greater than 95-percent absorption of incident microwaves. In addition, incorporation of recuperative heat exchangers (RHxs) in the design reduced the microwave power required to heat a water stream flowing at 15 mL/min to 170 C to only 50 W. Further improvements in energy efficiency involved the employment of a second antenna to redirect reflected microwaves back into the MSC, eliminating the need for a water load and simplifying MSDS design. A quick connect (QC) is another innovation that can be sterilized and depyrogenated at temperature, and then cooled using a unique flow design, allowing collection of MGW at atmospheric pressure and 80 C. The final innovation was the use of in-line mixers incorporated in the flow path to disrupt laminar flow and increase contact time at a given flow rate. These technologies can be employed in small-scale systems for efficient production of MGW in the laboratory or in a range of larger systems that meet various industrial requirements. The microwave antennas can also be adapted to selectively sterilize vulnerable connections to ultra-pure water production facilities or biologically vulnerable systems where microorganisms may intrude.
    Keywords: Technology Utilization and Surface Transportation
    Type: LEW-18455-1 , NASA Tech Briefs, November 2009; 27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-12
    Description: Two recipes for ensuring critical coupling between a single-mode optical fiber and a whispering-gallery-mode (WGM) optical resonator have been devised. The recipes provide for phase matching and aperture matching, both of which are necessary for efficient coupling. There is also a provision for suppressing intermodal coupling, which is detrimental because it drains energy from desired modes into undesired ones. According to one recipe, the tip of the single-mode optical fiber is either tapered in diameter or tapered in effective diameter by virtue of being cleaved at an oblique angle. The effective index of refraction and the phase velocity at a given position along the taper depend on the diameter (or effective diameter) and the index of refraction of the bulk fiber material. As the diameter (or effective diameter) decreases with decreasing distance from the tip, the effective index of refraction also decreases. Critical coupling and phase matching can be achieved by placing the optical fiber and the resonator in contact at the proper point along the taper. This recipe is subject to the limitation that the attainable effective index of refraction lies between the indices of refraction of the bulk fiber material and the atmosphere or vacuum to which the resonator and fiber are exposed. The other recipe involves a refinement of the previously developed technique of prism coupling, in which the light beam from the optical fiber is collimated and focused onto one surface of a prism that has an index of refraction greater than that of the resonator. Another surface of the prism is placed in contact with the resonator. The various components are arranged so that the collimated beam is focused at the prism/resonator contact spot. The recipe includes the following additional provisions:
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-45462 , NASA Tech Briefs, November 2009; 30-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-12
    Description: The MER (Mars Exploration Rover) Attitude and Pointing System Simulation Testbed Environment (RAPSSTER) provides a simulation platform used for the development and test of GNC (guidance, navigation, and control) flight algorithm designs for the Mars rovers, which was specifically tailored to the MERs, but has since been used in the development of rover algorithms for the Mars Science Laboratory (MSL) as well. The software provides an integrated simulation and software testbed environment for the development of Mars rover attitude and pointing flight software. It provides an environment that is able to run the MER GNC flight software directly (as opposed to running an algorithmic model of the MER GNC flight code). This improves simulation fidelity and confidence in the results. Further more, the simulation environment allows the user to single step through its execution, pausing, and restarting at will. The system also provides for the introduction of simulated faults specific to Mars rover environments that cannot be replicated in other testbed platforms, to stress test the GNC flight algorithms under examination. The software provides facilities to do these stress tests in ways that cannot be done in the real-time flight system testbeds, such as time-jumping (both forwards and backwards), and introduction of simulated actuator faults that would be difficult, expensive, and/or destructive to implement in the real-time testbeds. Actual flight-quality codes can be incorporated back into the development-test suite of GNC developers, closing the loop between the GNC developers and the flight software developers. The software provides fully automated scripting, allowing multiple tests to be run with varying parameters, without human supervision.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-46288 , NASA Tech Briefs, November 2009; 5-6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-12
    Description: A short document discusses the general problem of mathematical modeling of the three-dimensional rotational dynamics of rigid bodies and of the use of Euler parameters to eliminate the singularities occasioned by the use of Euler angles in such modeling. The document goes on to characterize a Hamiltonian model, developed by the authors, that utilizes the Euler parameters and, hence, is suitable for use in computational simulations that involve arbitrary rotational motion. In this formulation unlike in prior Euler-parameter-based formulations, there are no algebraic constraints. This formulation includes a general potential energy function, incorporates a minimum set of momentum variables, and takes an explicit state-space form convenient for numerical implementation. Practical application of this formulation has been demonstrated by the development of a new and simplified model of the rotational motion of a rigid rotor to which is attached a partially filled mercury ring damper. Models like this one are used in guidance and control of spin-stabilized spacecraft and gyroscope-stabilized seekers in guided missiles.
    Keywords: Technology Utilization and Surface Transportation
    Type: MSC-23830-1 , NASA Tech Briefs, November 2009; 37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-12
    Description: A method of automated computational fluid dynamics (CFD) has been invented for the generation of performance tables for an object subject to fluid flow. The method is applicable to the generation of tables that summarize the effects of two-dimensional flows about airfoils and that are in a format known in the art as C81. (A C81 airfoil performance table is a text file that lists coefficients of lift, drag, and pitching moment of an airfoil as functions of angle of attack for a range of Mach numbers.) The method makes it possible to efficiently generate and tabulate data from simulations of flows for parameter values spanning all operational ranges of actual or potential interest. In so doing, the method also enables filling of gaps and resolution of inconsistencies in C81 tables generated previously from incomplete experimental data or from theoretical calculations that involved questionable assumptions.
    Keywords: Technology Utilization and Surface Transportation
    Type: ARC-15649-1 , NASA Tech Briefs, November 2009; 33-34
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-12
    Description: Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).
    Keywords: Technology Utilization and Surface Transportation
    Type: MSC-23850-1 , NASA Tech Briefs, November 2009; 20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-12
    Description: To reject solar radiation photons at the front aperture for large telescopes, a mosaic of large transmission mode filters is placed in front of the telescope or at the aperture of the dome. Filtering options for effective rejection of sunlight include a smaller filter down-path near the focus of the telescope, and a large-diameter filter located in the front of the main aperture. Two types of large filters are viable: reflectance mode and transmittance mode. In the case of reflectance mode, a dielectric coating on a suitable substrate (e.g. a low-thermal-expansion glass) is arranged to reflect only a single, narrow wavelength and to efficiently transmit all other wavelengths. These coatings are commonly referred to as notch filter. In this case, the large mirror located in front of the telescope aperture reflects the received (signal and background) light into the telescope. In the case of transmittance mode, a dielectric coating on a suitable substrate (glass, sapphire, clear plastic, membrane, and the like) is arranged to transmit only a single wavelength and to reject all other wavelengths (visible and near IR) of light. The substrate of the large filter will determine its mass. At first glance, a large optical filter with a diameter of up to 10 m, located in front of the main aperture, would require a significant thickness to avoid sagging. However, a segmented filter supported by a structurally rugged grid can support smaller filters. The obscuration introduced by the grid is minimal because the total area can be made insignificant. This configuration can be detrimental to a diffraction- limited telescope due to diffraction effects at the edges of each sub-panel. However, no discernable degradation would result for a 20 diffraction-limit telescope (a photon bucket). Even the small amount of sagging in each subpanel should have minimal effect in the performance of a non-diffraction limited telescope because the part has no appreciable optical power. If the front aperture filter is integrated with the telescope dome, it will reject heat from the dome and will significantly reduce dome temperature regulation requirements and costs. Also, the filter will protect the telescope optics from dust and other contaminants in the atmosphere. It will be simpler to clean or replace this filter than the telescope primary mirror. It may be necessary to paint the support grid with a highly reflective material to avoid overheating.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-40421 , NASA Tech Briefs, November 2009; 32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-12
    Description: A document discusses a heat rejection device for transferring heat from a space vehicle by venting water into space through the use of a novel, two-stage water distribution system. The system consists of two different, porous media that stop water-borne contaminants from clogging the system and causing operational failures. Feedwater passes through a small nozzle, then into a porous disk made of sintered stainless steel, and then finally into large-pore aluminum foam. The smaller pore layer of the steel disk controls the pressure drop of the feedwater. The ice forms in the foam layer, and then sublimates, leaving any contaminants behind. The pore-size of the foam is two orders of magnitude larger than the current porous plate sublimators, allowing for a greater tolerance for contaminants. Using metallic fibers in the foam also negates problems with compression seen in the use of poly(tetrafluoroethylene) felt.
    Keywords: Technology Utilization and Surface Transportation
    Type: MSC-24207-1 , NASA Tech Briefs, November 2009; 37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-12
    Description: The multimodal friction ignition tester (MFIT) is a testbed for experiments on the thermal and mechanical effects of friction on material specimens in pressurized, oxygen-rich atmospheres. In simplest terms, a test involves recording sensory data while rubbing two specimens against each other at a controlled normal force, with either a random stroke or a sinusoidal stroke having controlled amplitude and frequency. The term multimodal in the full name of the apparatus refers to a capability for imposing any combination of widely ranging values of the atmospheric pressure, atmospheric oxygen content, stroke length, stroke frequency, and normal force. The MFIT was designed especially for studying the tendency toward heating and combustion of nonmetallic composite materials and the fretting of metals subjected to dynamic (vibrational) friction forces in the presence of liquid oxygen or pressurized gaseous oxygen test conditions approximating conditions expected to be encountered in proposed composite material oxygen tanks aboard aircraft and spacecraft in flight. The MFIT includes a stainless-steel pressure vessel capable of retaining the required test atmosphere. Mounted atop the vessel is a pneumatic cylinder containing a piston for exerting the specified normal force between the two specimens. Through a shaft seal, the piston shaft extends downward into the vessel. One of the specimens is mounted on a block, denoted the pressure block, at the lower end of the piston shaft. This specimen is pressed down against the other specimen, which is mounted in a recess in another block, denoted the slip block, that can be moved horizontally but not vertically. The slip block is driven in reciprocating horizontal motion by an electrodynamic vibration exciter outside the pressure vessel. The armature of the electrodynamic exciter is connected to the slip block via a horizontal shaft that extends into the pressure vessel via a second shaft seal. The reciprocating horizontal motion can be chosen to be random with a flat spectrum over the frequency range of 10 Hz to 1 kHz, or to be sinusoidal at any peak-to-peak amplitude up to 0.8 in. (.2 cm) and fixed or varying frequency up to 1 kHz. The temperatures of the specimen and of the vessel are measured by thermocouples. A digital video camera mounted outside the pressure vessel is aimed into the vessel through a sapphire window, with its focus fixed on the interface between the two specimens. A position transducer monitors the displacement of the pneumatic-cylinder shaft. The pressure in the vessel is also monitored. During a test, the output of the video camera, the temperatures, and the pneumatic-shaft displacement are monitored and recorded. The test is continued for a predetermined amount of time (typically, 10 minutes) or until either (1) the output of the position transducer shows a sudden change indicative of degradation of either or both specimens, (2) ignition or another significant reaction is observed, or (3) pressure in the vessel increases beyond a pre-set level that triggers an automatic shutdown.
    Keywords: Technology Utilization and Surface Transportation
    Type: MFS-32613-1 , NASA Tech Briefs, November 2009; 6-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-12
    Description: Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.
    Keywords: Technology Utilization and Surface Transportation
    Type: GSC-15684-1 , NASA Tech Briefs, November 2009; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: The DSS Application is a computer program comprising a Windows version of the UNIX-based Decelerator System Simulation (DSS) coupled with an Excel front end. The DSS is an executable code that simulates the dynamics of airdropped cargo from first motion in an aircraft through landing. The bare DSS is difficult to use; the front end makes it easy to use. All inputs to the DSS, control of execution of the DSS, and postprocessing and plotting of outputs are handled in the front end. The front end is graphics-intensive. The Excel software provides the graphical elements without need for additional programming. Categories of input parameters are divided into separate tabbed windows. Pop-up comments describe each parameter. An error-checking software component evaluates combinations of parameters and alerts the user if an error results. Case files can be created from inputs, making it possible to build cases from previous ones. Simulation output is plotted in 16 charts displayed on a separate worksheet, enabling plotting of multiple DSS cases with flight-test data. Variables assigned to each plot can be changed. Selected input parameters can be edited from the plot sheet for quick sensitivity studies.
    Keywords: Technology Utilization and Surface Transportation
    Type: MSC-24014-1 , NASA Tech Briefs, November 2009; 6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-12
    Description: A computer program autonomously manages the calibration of a quadrupole ion mass spectrometer intended for use in monitoring concentrations and changes in concentrations of organic chemicals in the cabin air of the International Space Station. The instrument parameters calibrated include the voltage on a channel electron multiplier, a discriminator threshold, and an ionizer current. Calibration is achieved by analyzing the mass spectrum obtained while sweeping the parameter ranges in a heuristic procedure, developed by mass spectrometer experts, that involves detection of changes in signal trends that humans can easily recognize but cannot necessarily be straightforwardly codified in an algorithm. The procedure includes calculation of signal-to-noise ratios, signal-increase rates, and background-noise-increase rates; finding signal peaks; and identifying peak patterns. The software provides for several recovery-from-error scenarios and error-handling schemes. The software detects trace amounts of contaminant gases in the mass spectrometer and notifies associated command- and-data-handling software to schedule a cleaning. Furthermore, the software autonomously analyzes the mass spectrum to determine whether the parameters of a radio-frequency ramp waveform are set properly so that the peaks of the mass spectrum are at expected locations.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-45364 , NASA Tech Briefs, November 2009; 18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: A bilateral subtraction filter has been implemented as a hardware module in the form of a field-programmable gate array (FPGA). In general, a bilateral subtraction filter is a key subsystem of a high-quality stereoscopic machine vision system that utilizes images that are large and/or dense. Bilateral subtraction filters have been implemented in software on general-purpose computers, but the processing speeds attainable in this way even on computers containing the fastest processors are insufficient for real-time applications. The present FPGA bilateral subtraction filter is intended to accelerate processing to real-time speed and to be a prototype of a link in a stereoscopic-machine- vision processing chain, now under development, that would process large and/or dense images in real time and would be implemented in an FPGA. In terms that are necessarily oversimplified for the sake of brevity, a bilateral subtraction filter is a smoothing, edge-preserving filter for suppressing low-frequency noise. The filter operation amounts to replacing the value for each pixel with a weighted average of the values of that pixel and the neighboring pixels in a predefined neighborhood or window (e.g., a 9 9 window). The filter weights depend partly on pixel values and partly on the window size. The present FPGA implementation of a bilateral subtraction filter utilizes a 9 9 window. This implementation was designed to take advantage of the ability to do many of the component computations in parallel pipelines to enable processing of image data at the rate at which they are generated. The filter can be considered to be divided into the following parts (see figure): a) An image pixel pipeline with a 9 9- pixel window generator, b) An array of processing elements; c) An adder tree; d) A smoothing-and-delaying unit; and e) A subtraction unit. After each 9 9 window is created, the affected pixel data are fed to the processing elements. Each processing element is fed the pixel value for its position in the window as well as the pixel value for the central pixel of the window. The absolute difference between these two pixel values is calculated and used as an address in a lookup table. Each processing element has a lookup table, unique for its position in the window, containing the weight coefficients for the Gaussian function for that position. The pixel value is multiplied by the weight, and the outputs of the processing element are the weight and pixel-value weight product. The products and weights are fed to the adder tree. The sum of the products and the sum of the weights are fed to the divider, which computes the sum of products the sum of weights. The output of the divider is denoted the bilateral smoothed image. The smoothing function is a simple weighted average computed over a 3 3 subwindow centered in the 9 9 window. After smoothing, the image is delayed by an additional amount of time needed to match the processing time for computing the bilateral smoothed image. The bilateral smoothed image is then subtracted from the 3 3 smoothed image to produce the final output. The prototype filter as implemented in a commercially available FPGA processes one pixel per clock cycle. Operation at a clock speed of 66 MHz has been demonstrated, and results of a static timing analysis have been interpreted as suggesting that the clock speed could be increased to as much as 100 MHz.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-45906 , NASA Tech Briefs, November 2009; 9-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of 〈1 m. Such tight tolerances cannot be achieved easily by conventional machining of high-aspect-ratio structures like those of scroll-pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-21161 , NASA Tech Briefs, November 2009; 15-16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The Flightspeed Integral Image Analysis Toolkit (FIIAT) is a C library that provides image analysis functions in a single, portable package. It provides basic low-level filtering, texture analysis, and subwindow descriptor for applications dealing with image interpretation and object recognition. Designed with spaceflight in mind, it addresses: Ease of integration (minimal external dependencies) Fast, real-time operation using integer arithmetic where possible (useful for platforms lacking a dedicated floatingpoint processor) Written entirely in C (easily modified) Mostly static memory allocation 8-bit image data The basic goal of the FIIAT library is to compute meaningful numerical descriptors for images or rectangular image regions. These n-vectors can then be used directly for novelty detection or pattern recognition, or as a feature space for higher-level pattern recognition tasks. The library provides routines for leveraging training data to derive descriptors that are most useful for a specific data set. Its runtime algorithms exploit a structure known as the "integral image." This is a caching method that permits fast summation of values within rectangular regions of an image. This integral frame facilitates a wide range of fast image-processing functions. This toolkit has applicability to a wide range of autonomous image analysis tasks in the space-flight domain, including novelty detection, object and scene classification, target detection for autonomous instrument placement, and science analysis of geomorphology. It makes real-time texture and pattern recognition possible for platforms with severe computational restraints. The software provides an order of magnitude speed increase over alternative software libraries currently in use by the research community. FIIAT can commercially support intelligent video cameras used in intelligent surveillance. It is also useful for object recognition by robots or other autonomous vehicles
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-46871 , NASA Tech Briefs, November 2009; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: SiGe is an important semiconductor alloy for high-speed field effect transistors (FETs), high-temperature thermoelectric devices, photovoltaic solar cells, and photon detectors. The growth of SiGe layer is difficult because SiGe alloys have different lattice constants from those of the common Si wafers, which leads to a high density of defects, including dislocations, micro-twins, cracks, and delaminations. This innovation utilizes newly developed rhombohedral epitaxy of cubic semiconductors on trigonal substrates in order to solve the lattice mismatch problem of SiGe by using trigonal single crystals like sapphire (Al2O3) as substrate to give a unique growth-orientation to the SiGe layer, which is automatically controlled at the interface upon sapphire (0001). This technology is different from previous silicon on insulator (SOI) or SGOI (SiGe on insulator) technologies that use amorphous SiO2 as the growth plane. A cubic semiconductor crystal is a special case of a rhombohedron with the inter-planar angle, alpha = 90 deg. With a mathematical transformation, all rhombohedrons can be described by trigonal crystal lattice structures. Therefore, all cubic lattice constants and crystal planes (hkl) s can be transformed into those of trigonal crystal parameters. These unique alignments enable a new opportunity of perfect lattice matching conditions, which can eliminate misfit dislocations. Previously, these atomic alignments were thought to be impossible or very difficult. With the invention of a new x-ray diffraction measurement method here, growth of cubic semiconductors on trigonal crystals became possible. This epitaxy and lattice-matching condition can be applied not only to SiGe (111)/sapphire (0001) substrate relations, but also to other crystal structures and other materials, including similar crystal structures which have pointgroup rotational symmetries by 120 because the cubic (111) direction has 120 rotational symmetry. The use of slightly miscut (less than plus or minus 10 deg.) sapphire (0001) substrate can be used to improve epitaxial relationships better by providing attractive atomic steps in the epitaxial process.
    Keywords: Technology Utilization and Surface Transportation
    Type: LAR-16868-1 , NASA Tech Briefs, November 2009; 21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-12
    Description: A proposed method of stabilizing microwave and millimeter-wave oscillators calls for the use of feedback in optoelectronic delay lines characterized by high values of the resonance quality factor (Q). The method would extend the applicability of optoelectronic feedback beyond the previously reported class of optoelectronic oscillators that comprise two-port electronic amplifiers in closed loops with high-Q feedback circuits.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-40144 , NASA Tech Briefs, November 2009; 10-11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-12
    Description: Software was developed to characterize the drag in each of the Cassini spacecraft's Reaction Wheel Assemblies (RWAs) to determine the RWA friction parameters. This tool measures the drag torque of RWAs for not only the high spin rates (greater than 250 RPM), but also the low spin rates (less than 250 RPM) where there is a lack of an elastohydrodynamic boundary layer in the bearings. RWA rate and drag torque profiles as functions of time are collected via telemetry once every 4 seconds and once every 8 seconds, respectively. Intermediate processing steps single-out the coast-down regions. A nonlinear model for the drag torque as a function of RWA spin rate is incorporated in order to characterize the low spin rate regime. The tool then uses a nonlinear parameter optimization algorithm based on the Nelder-Mead simplex method to determine the viscous coefficient, the Dahl friction, and the two parameters that account for the low spin-rate behavior.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-44712 , NASA Tech Briefs, November 2009; 18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: Multi-Mission Automated Task Invocation Subsystem (MATIS) is software that establishes a distributed data-processing framework for automated generation of instrument data products from a spacecraft mission. Each mission may set up a set of MATIS servers for processing its data products. MATIS embodies lessons learned in experience with prior instrument- data-product-generation software. MATIS is an event-driven workflow manager that interprets project-specific, user-defined rules for managing processes. It executes programs in response to specific events under specific conditions according to the rules. Because requirements of different missions are too diverse to be satisfied by one program, MATIS accommodates plug-in programs. MATIS is flexible in that users can control such processing parameters as how many pipelines to run and on which computing machines to run them. MATIS has a fail-safe capability. At each step, MATIS captures and retains pertinent information needed to complete the step and start the next step. In the event of a restart, this information is retrieved so that processing can be resumed appropriately. At this writing, it is planned to develop a graphical user interface (GUI) for monitoring and controlling a product generation engine in MATIS. The GUI would enable users to schedule multiple processes and manage the data products produced in the processes. Although MATIS was initially designed for instrument data product generation,
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-45630 , NASA Tech Briefs, November 2009; 17-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: An improved active learning method has been devised for training data classifiers. One example of a data classifier is the algorithm used by the United States Postal Service since the 1960s to recognize scans of handwritten digits for processing zip codes. Active learning algorithms enable rapid training with minimal investment of time on the part of human experts to provide training examples consisting of correctly classified (labeled) input data. They function by identifying which examples would be most profitable for a human expert to label. The goal is to maximize classifier accuracy while minimizing the number of examples the expert must label. Although there are several well-established methods for active learning, they may not operate well when irrelevant examples are present in the data set. That is, they may select an item for labeling that the expert simply cannot assign to any of the valid classes. In the context of classifying handwritten digits, the irrelevant items may include stray marks, smudges, and mis-scans. Querying the expert about these items results in wasted time or erroneous labels, if the expert is forced to assign the item to one of the valid classes. In contrast, the new algorithm provides a specific mechanism for avoiding querying the irrelevant items. This algorithm has two components: an active learner (which could be a conventional active learning algorithm) and a relevance classifier. The combination of these components yields a method, denoted Relevance Bias, that enables the active learner to avoid querying irrelevant data so as to increase its learning rate and efficiency when irrelevant items are present. The algorithm collects irrelevant data in a set of rejected examples, then trains the relevance classifier to distinguish between labeled (relevant) training examples and the rejected ones. The active learner combines its ranking of the items with the probability that they are relevant to yield a final decision about which item to present to the expert for labeling. Experiments on several data sets have demonstrated that the Relevance Bias approach significantly decreases the number of irrelevant items queried and also accelerates learning speed.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-44094 , NASA Tech Briefs, November 2009; 35
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: A simple 2D M N matrix involving sample preparation enables the microanalyst to peer below the noise floor of element percentages reported by the SEM/EDX (scanning electron microscopy/ energy dispersive x-ray) analysis, thus yielding more meaningful data. Using the example of a 2 3 sample set, there are M = 2 concentration levels of the original mix under test: 10 percent ilmenite (90 percent silica) and 20 percent ilmenite (80 percent silica). For each of these M samples, N = 3 separate SEM/EDX samples were drawn. In this test, ilmenite is the element of interest. By plotting the linear trend of the M sample s known concentration versus the average of the N samples, a much higher resolution of elemental analysis can be performed. The resulting trend also shows how the noise is affecting the data, and at what point (of smaller concentrations) is it impractical to try to extract any further useful data.
    Keywords: Technology Utilization and Surface Transportation
    Type: KSC-13303 , NASA Tech Briefs, November 2009; 35
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-12
    Description: Pressure-energized seal rings intended to withstand flows better than do conventional pressure-energized seal rings have been conceived. The concept applies, more specifically, to seal rings used on some valve stems, pistons, and the like. A conventional pressure-energized seal ring generally has a U-shaped cross section and consists of an elastomer or other suitable polymer with an embedded metal energizing spring (see Figure 1). The working fluid from the high-pressure side that one seeks to seal is allowed into the U-shaped cavity, so that the pressure pushes the sides of the seal ring tighter against the gland and body sealing surfaces, thereby increasing the degree of sealing. Unfortunately, when the seal ring is exposed to flow of the working fluid, under some conditions, the flow grabs the lip of the U-shaped cross section and ejects or deforms the seal ring so that, thereafter, a proper seal is not obtained. Figure 2 depicts one of several alternative seal rings according to the present concept. One element of the concept is to modify the U-shaped cross section from that of the corresponding conventional seal ring to eliminate the exposed lip and prevent entry of the working fluid into the U-shaped cavity. Unlike in the conventional seal, pressurized fluid would not push the seal ring directly against the both gland and body sealing surfaces. Instead, the pressure would directly push the seal ring against a gland sealing surface only. In so doing, the pressure would squash the seal ring into a smaller volume bounded by the gland and body sealing surfaces, and would thereby indirectly press the seal ring more tightly against the body sealing surface. To enhance the desired squashing deformation, a spring having an approximately parallelogram cross section would be embedded in the modified U-shaped cavity. As the pressure pushed two corners of the approximate parallelogram closer together along the axis of the seal ring, the other two corners of the approximate parallelogram would be pushed farther apart along a radius of the ring, thereby causing the polymeric ring material to push radially harder against the body sealing surface. From the radially innermost corner of the approximate parallelogram, the spring material would extend radially, then axially into recesses in the seal gland. These extensions would help to restrain the seal ring against ejection. A seat retainer would hold the sealing ring in the gland and form a mechanical compression seal to prevent or at least reduce leakage of pressurized fluid into the cavity behind the seal. However, because there would likely be a little leakage, the cavity behind the seal should be vented to the low pressure side to prevent buildup of pressure in the cavity over time; otherwise, the built-up pressure could cause ejection of the seal ring when the pressure on the high-pressure side was reduced. Polymeric seal-ring materials may not be able to withstand working conditions in applications that involve abrasive and/or hot working fluids. For such applications, all-metal seal rings may be preferred. The bottom part of Figure 2 shows one example of an alternative gland configuration with an all-metal seal ring.
    Keywords: Technology Utilization and Surface Transportation
    Type: SSC-00262/3 , NASA Tech Briefs, November 2009; 23-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user can halt this reclassification process at any point, thereby obtaining the best possible result for a given amount of computation time. Alternatively, the results can be displayed as they are generated, providing the user with real-time feedback about the current accuracy of classification.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-44089 , NASA Tech Briefs, November 2009; 34-35
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: A further improvement has been made to reduce the high-temperature thermal conductivities of the aerogel-matrix composite materials described in Improved Silica Aerogel Composite Materials (NPO-44287), NASA Tech Briefs, Vol. 32, No. 9 (September 2008), page 50. Because the contribution of infrared radiation to heat transfer increases sharply with temperature, the effective high-temperature thermal conductivity of a thermal-insulation material can be reduced by opacifying the material to reduce the radiative contribution. Therefore, the essence of the present improvement is to add an opacifying constituent material (specifically, TiO2 powder) to the aerogel-matrix composites.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-44732 , NASA Tech Briefs, November 2009; 19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment. The present effort to develop polymerbased mercury-vapor sensors complements the work reported in NASA Tech Briefs Detecting Airborne Mercury by Use of Palladium Chloride (NPO- 44955), Vol. 33, No. 7 (July 2009), page 48 and De tecting Airborne Mer cury by Use of Gold Nanowires (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions more specifically, at temperatures closer to room temperature than to the elevated temperatures (greater than 100 C ) needed for regeneration of sensors based on noble-metal films. The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40 C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-45003 , NASA Tech Briefs, November 2009; 29-30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: An apparatus allows the measurement of the thermal conductance across a thin sample clamped between metal plates, including thermal boundary resistances. It allows in-situ variation of the clamping force from zero to 30 lb (133.4 N), and variation of the sample temperature between 40 and 300 K. It has a special design feature that minimizes the effect of thermal radiation on this measurement. The apparatus includes a heater plate sandwiched between two identical thin samples. On the side of each sample opposite the heater plate is a cold plate. In order to take data, the heater plate is controlled at a slightly higher temperature than the two cold plates, which are controlled at a single lower temperature. The steady-state controlling power supplied to the hot plate, the area and thickness of samples, and the temperature drop across the samples are then used in a simple calculation of the thermal conductance. The conductance measurements can be taken at arbitrary temperatures down to about 40 K, as the entire setup is cooled by a mechanical cryocooler. The specific geometry combined with the pneumatic clamping force control system and the steady-state temperature control approach make this a unique apparatus.
    Keywords: Technology Utilization and Surface Transportation
    Type: GSC-15698-1 , NASA Tech Briefs, November 2009; 5
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-44643 , NASA Tech Briefs, November 2009; 29-30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: The Work Coordination Engine (WCE) is a Java application integrated into the Service Management Database (SMDB), which coordinates the dispatching and monitoring of a work order system. WCE de-queues work orders from SMDB and orchestrates the dispatching of work to a registered set of software worker applications distributed over a set of local, or remote, heterogeneous computing systems. WCE monitors the execution of work orders once dispatched, and accepts the results of the work order by storing to the SMDB persistent store. The software leverages the use of a relational database, Java Messaging System (JMS), and Web Services using Simple Object Access Protocol (SOAP) technologies to implement an efficient work-order dispatching mechanism capable of coordinating the work of multiple computer servers on various platforms working concurrently on different, or similar, types of data or algorithmic processing. Existing (legacy) applications can be wrapped with a proxy object so that no changes to the application are needed to make them available for integration into the work order system as "workers." WCE automatically reschedules work orders that fail to be executed by one server to a different server if available. From initiation to completion, the system manages the execution state of work orders and workers via a well-defined set of events, states, and actions. It allows for configurable work-order execution timeouts by work-order type. This innovation eliminates a current processing bottleneck by providing a highly scalable, distributed work-order system used to quickly generate products needed by the Deep Space Network (DSN) to support space flight operations. WCE is driven by asynchronous messages delivered via JMS indicating the availability of new work or workers. It runs completely unattended in support of the lights-out operations concept in the DSN.
    Keywords: Technology Utilization and Surface Transportation
    Type: NPO-45014 , NASA Tech Briefs, November 2009; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...