ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.
    Keywords: Man/System Technology and Life Support
    Type: IEEE Sens J (ISSN 1530-437X); Volume 4; 3; 337-47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-05
    Description: Experiments were conducted on the effects of temperature, polymer molecular weight, and carbon loading on the electrical resistances of polymer/carbon-black composite films. The experiment were performed in a continuing effort to develop such films as part of the JPL Electronic Nose (ENose), that would be used to detect, identify, and quantify parts-per-million (ppm) concentration levels of airborne chemicals in the space shuttle/space station environments. The polymers used in this study were three formulations of poly(ethylene oxide) [PEO] that had molecular weights of 20 kilodaltons, 600 kilodaltons, and 1 megadalton, respectively. The results of one set of experiments showed a correlation between the polymer molecular weight and the percolation threshold. In a second set of experiments, differences among the temperature dependences of resistance were observed for different carbon loadings; these differences could be explained by a change in the conduction mechanism. In a third set of experiments, the responses of six different polymer/carbon composite sensors to three analytes (water vapor, methanol, methane) were measured as a function of temperature (28 to 36 C). For a given concentration of each analyte, the response of each sensor decreased with increasing temperature, in a manner different from those of the other sensors.
    Keywords: Documentation and Information Science
    Type: NASA Tech Briefs, January 2009; 6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Improved process for making mechanically strong, dense, phase-pure potassium beta''-alumina solid electrolyte (K-BASE) results in material superior to all previous K-BASE preparations and similar to commercial Na-BASE in strength, phase purity and high-temperature ionic conductivity. Potassium-based alkali-metal thermal-to-electric conversion (AMTEC) cells expected to operate efficiently at lower heat-input temperatures and lower rejection temperatures than sodium-based AMTEC cells, making them appropriate for somewhat different applications.
    Keywords: MATERIALS
    Type: NPO-19209 , NASA Tech Briefs (ISSN 0145-319X); 19; 6; P. 64
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.
    Keywords: Spacecraft Propulsion and Power
    Type: 2012 Space Power Workshop; Apr 17, 2012 - Apr 19, 2012; Manhattan Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: A pre-operational annealing process is under investigation as a potential means of preventing a sudden reduction of ionic conductivity in a Beta"-alumina solid electrolyte (BASE) during use. On the basis of tests, the sudden reduction of ionic conductivity, followed by a slow recovery, has been found to occur during testing of the solid electrolyte and electrode components of an alkali metal thermal-to-electric converter (AMTEC) cell. At this time, high-temperature tests of limited duration have indicated the superiority of the treated BASE, but reproducible tests over thousands of hours are necessary to confirm that microcracking has been eliminated. The ionic conductivity of the treated BASE is also measured to be higher than untreated BASE at 1,073 K in low-pressure sodium vapor. Microcracking resulting in loss of conductivity was not observed with treated BASE in one high-temperature experiment, but this result must be duplicated over very long testing times to be sure of the effect. Shorter annealing times (10 to 20 hours) were found to result in significantly less loss of mass; it may be necessary for the packed powder mixture to evolve some Na2O before the Na2O can leave the ceramic.
    Keywords: Man/System Technology and Life Support
    Type: NPO-20919 , NASA Tech Briefs, March 2003; 25-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Post-fire air constituents that are of interest to NASA include CO and some acid gases (HCl and HCN). CO is an important analyte to be able to sense in human habitats since it is a marker for both prefire detection and post-fire cleanup. The need exists for a sensor that can be incorporated into an existing sensing array architecture. The CO sensor needs to be a low-power chemiresistor that operates at room temperature; the sensor fabrication techniques must be compatible with ceramic substrates. Early work on the JPL ElectronicNose indicated that some of the existing polymer-carbon black sensors might be suitable. In addition, the CO sensor based on polypyrrole functionalized with iron porphyrin was demonstrated to be a promising sensor that could meet the requirements. First, pyrrole was polymerized in a ferric chloride/iron porphyrin solution in methanol. The iron porphyrin is 5, 10, 15, 20-tetraphenyl-21H, 23Hporphine iron (III) chloride. This creates a polypyrrole that is functionalized with the porphyrin. After synthesis, the polymer is dried in an oven. Sensors were made from the functionalized polypyrrole by binding it with a small amount of polyethylene oxide (600 MW). This composite made films that were too resistive to be measured in the device. Subsequently, carbon black was added to the composite to bring the sensing film resistivity within a measurable range. A suspension was created in methanol using the functionalized polypyrrole (90% by weight), polyethylene oxide (600,000 MW, 5% by weight), and carbon black (5% by weight). The sensing films were then deposited, like the polymer-carbon black sensors. After deposition, the substrates were dried in a vacuum oven for four hours at 60 C. These sensors showed good response to CO at concentrations over 100 ppm. While the sensor is based on a functionalized pyrrole, the actual composite is more robust and flexible. A polymer binder was added to help keep the sensor material from delaminating from the electrodes, and carbon was added to improve the conductivity of the material.
    Keywords: Man/System Technology and Life Support
    Type: NPO-47640 , NASA Tech Briefs, June 2012; 21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.
    Keywords: Energy Production and Conversion
    Type: NPO-47885 , NASA Tech Briefs, May 2013; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: Experiments have shown the stability enhancement of polymeric sensing films on mixing the polymer with colloidal filler particles (submicron-sized) of carbon black, silver, titanium dioxide, and fumed silicon dioxide. The polymer films are candidates for potential use as sensing media in micro/nano chemical sensor devices. The need for stability enhancement of polymer sensing films arises because such films have been found to exhibit unpredictable changes in sensing activity over time, which could result in a possible failure of the sensor device. The changes in the physical properties of a polymer sensing film caused by the sorption of a target molecule can be measured by any of several established transduction techniques: electrochemical, optical, calorimetric, or piezoelectric, for example. The transduction technique used in the current polymer stability experiments is based on piezoelectric principles using a quartz-crystal microbalance (QCM). The surface of the QCM is coated with the polymer, and the mass uptake by the polymer film causes a change in the oscillating frequency of the quartz crystal. The polymer used for the current study is ethyl cellulose. The polymer/ polymer composite solutions were prepared in 1,3 dioxolane solvent. The filler concentration was fixed at 10 weight percent for the composites. The polymer or polymer composite solutions were cast on the quartz crystal having a fundamental frequency of about 6 MHz. The coated crystal was subjected to a multistage drying process to remove all measurable traces of the solvent. In each experiment, the frequency of oscillation was measured while the QCM was exposed to clean, dry, flowing air for about 30 minutes, then to air containing a known concentration of isopropanol for about 30 minutes, then again to clean dry air for about 30 minutes, and so forth. This cycle of measurements for varying isopropanol concentrations was repeated at intervals for several months. The figure depicts some of the sensing film stability results for ethyl cellulose polymer, ethyl cellulose-carbon black, and ethyl cellulose-silicon dioxide composite systems. An ethyl cellulose film exhibited a marked decline in response in the first few months of study and settled to a steady average response after about four months. However, response varied widely around the average response for ethyl cellulose film. In contrast, ethyl cellulose- carbon black and ethyl cellulose-silicon dioxide composites also declined in the early months, but showed more repeatable sensing film activity after the initial decline. Similar trends were observed in experiments for ethyl cellulose-titanium dioxide and ethyl cellulose-silver composites.
    Keywords: Man/System Technology and Life Support
    Type: NPO-40518 , NASA Tech Briefs, July 2006; 9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: An all-solid-state diffusion bonding process that exploits the eutectoid reaction between molybdenum and titanium has been developed for use in fabricating thermoelectric devices based on skutterudite compounds. In essence, the process is one of heating a flat piece of pure titanium in contact with a flat piece of pure molybdenum to a temperature of about 700 C while pushing the pieces together with a slight pressure [a few psi (of the order of 10 kPa)]. The process exploits the energy of mixing of these two metals to form a strong bond between them. These two metals were selected partly because the bonds formed between them are free of brittle intermetallic phases and are mechanically and chemically stable at high temperatures. The process is a solution of the problem of bonding hot-side metallic interconnections (denoted hot shoes in thermoelectric jargon) to titanium-terminated skutterudite n and p legs during the course of fabrication of a unicouple, which is the basic unit cell of a thermoelectric device (see figure). The hot-side operating temperature required for a skutterudite thermoelectric device is 700 C. This temperature precludes the use of brazing to attach the hot shoe; because brazing compounds melt at lower temperatures, the hot shoe would become detached during operation. Moreover, the decomposition temperature of one of the skutterudite compounds is 762 C; this places an upper limit on the temperature used in bonding the hot shoe. Molybdenum was selected as the interconnection metal because the eutectoid reaction between it and the titanium at the ends of the p and n legs has characteristics that are well suited for this application. In addition to being suitable for use in the present bonding process, molybdenum has high electrical and thermal conductivity and excellent thermal stability - characteristics that are desired for hot shoes of thermoelectric devices. The process takes advantage of the chemical potential energy of mixing between molybdenum and titanium. These metals have a strong affinity for each other. They are almost completely soluble in each other and remain in the solid state at temperatures above the eutectoid temperature of 695 C. As a result, bonds formed by interdiffusion of molybdenum and titanium are mechanically stable at and well above the original bonding temperature of about 700 C. Inasmuch as the bonds are made at approximately the operating temperature, thermomechanical stresses associated with differences in thermal expansion are minimized.
    Keywords: Man/System Technology and Life Support
    Type: NPO-40883 , NASA Tech Briefs, July 2007; 13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: A report discusses the second generation of the JPL Electronic Nose (ENose), an array of 32 semi-specific chemical sensors used as an event monitor to identify and quantify contaminants released into breathing air by leaks or spills. It is designed to monitor the environment for changes in air quality, and is trained to identify and quantify selected chemical species at predetermined concentrations, ranging from sub-ppm to ppth. This system has improved reproducibility for making matched arrays, allowing use of data analysis software with minimal recalibration on sensor set replacement. The Second Generation (SG) ENose is a follow-up to the first JPL Electronic Nose that was tested on an earlier space shuttle mission (STS-95). Improvements have been made to the hardware, sensor materials, and data analysis software.
    Keywords: Man/System Technology and Life Support
    Type: NPO-43051 , NASA Tech Briefs, August 2007; 27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...