ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (206)
  • Cell & Developmental Biology
  • Chemistry
  • Fluid Mechanics and Thermodynamics
  • 2005-2009  (397)
  • 1945-1949
  • 2006  (397)
Collection
Keywords
Language
Years
  • 2005-2009  (397)
  • 1945-1949
Year
  • 101
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Recent advances in techniques for numerical simulation of black hole systems have enabled dramatic progress in astrophysical applications. Our approach to these simulations, which includes new gauge conditions for moving punctures, AMR, and specific tools for analyzing black hole simulations, has been applied to a variety of black hole configurations, typically resulting in simulations lasting several orbits. I will discuss these techniques, what we've learned in applications, and outline some areas for further development.
    Keywords: Astrophysics
    Type: Workshop on "New Frontiers in Numerical Relativity"; Jul 17, 2006 - Jul 21, 2006; Golm; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2019-07-19
    Description: We use ion-composition data from ACE/ULEIS, low energy electrons from ACE/EPAM, high energy protons from SoHO/ERNE, radio data from Wind/WAVES, and solar wind data from ACE/SWEPAM and ACE/MAG to investigate the solar and interplanetary circumstances near the times of passage of near-Earth shocks. We are particularly interested in claims that local acceleration by some interplanetary shocks produces Fe/O 〉 0.3 ('Fe-rich' shocks). The choice of the specific interval used to calculate the Fe/O ratio is extremely important because shock-accelerated particles can be masked by particles from flare events, related or unrelated to the shock, that have Fe/O 〉 0.3. We conclude that shock- accelerated populations have Fe/0〈0.3. We illustrate 5 events which have been reported to be Fe-rich and for which Fe/O increases with energy in the 0.5-2 MeV/nuc range. We find that in each case there are direct flare particles included in the averaging time interval. We also demonstrate that the Fe/O ratio increases as a result of the averaging time interval being too large.
    Keywords: Astrophysics
    Type: Symposium on the Composition of Mater/ACE Science Team and the International Space Science Institute; Sep 11, 2006 - Sep 15, 2006; Grindelwald; Switzerland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2019-07-19
    Description: A sequence of three Chandra X-ray Observatory High Resolution Camera images taken over a span of five years reveals arc-second-scale displacement of RX-J0822--4300, the stellar remnant near the center of the Puppis A supernova remnant. We measure its proper motion to be 0.16+/-0.02 arcsec/yr toward the west-southwest. At a distance of 2 kpc, this corresponds to a transverse space velocity of approx. 1500 km/s. This is the first case of a compact X-ray source with a directly measured proper motion. The space velocity is consistent with the explosion center inferred from proper motions of the oxygen-rich optical filaments, and confirms the idea that Puppis A resulted from an asymmetric explosion accompanied by a kick that imparted on the order of 3 x 10(exp 49) ergs of kinetic energy (some 3 percent of the supernova kinetic energy) to the stellar remnant. We will summarize this measurement and discuss possible mechanisms for producing such a violent kick. This research has been supported by NASA grant G04-5062X.
    Keywords: Astrophysics
    Type: High Energy Astrophysics Division Meeting; Oct 04, 2006 - Oct 07, 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2019-07-19
    Description: I will discuss the observational characteristics of black holes and how they compare across the 10^8 range in mass and as a function of luminosity and apparent Eddington ratio. I will concentrate on the broad band spectrum, the timing signatures and the energy budget of these objects. In particular I will stress the similarities and differences in the x-ray spectra and power density spectra of AGN, ultraluminous x-ray sources and galactic black holes as a function of 'state'. I will also discuss the nature of the Fe K line and other diagnostics of the regions near the event horizon.
    Keywords: Astrophysics
    Type: IAU General Assembly; Aug 14, 2006 - Aug 25, 2006; Prague; Czech Republic
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2019-07-19
    Description: Among the most important topics in modern astrophysics are the formation and evolution of supermassive black holes in concert with galaxy bulges, the nature of the dark energy equation of state, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. NASA's next major X-ray observatory is Constellation-X, which is being developed to perform spatially resolved high-resolution X-ray spectroscopy. Con-X will directly measure the physical properties of material near black holes' last stable orbits and the absolute element abundances and velocities of hot gas in clusters of galaxies. The Con-X mission will be described, as well as its successor, Generation-X (anticipated to fly approx.1 decade after Con-X). After describing these missions and their driving science areas, the talk will focus on areas in which Chandra observing programs may enable science with future X-ray observatories. These areas include a possible ultra-deep Chandra imaging survey as an early Universe pathfinder, a large program to spatially resolve the hot intracluster medium of massive clusters to aid dark energy measurements, and possible deep spectroscopic observations to aid in preparatory theoretical atomic physics work needed for interpreting Con-X spectra.
    Keywords: Astrophysics
    Type: Making the Most of the Great Observatories Conference; May 21, 2006 - May 25, 2006; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2019-07-19
    Description: The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Aerospace Sciences Meeting and Exhibits; Jan 08, 2006; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2019-07-19
    Description: Until now, high extinctions have prevented direct observation of the central objects of self-embedded, accreting protostars. However, sensitive high dispersion spectrographs on large aperture telescopes have allowed us to begin studying the stellar astrophysical properties of dozens of embedded low mass protostars in the nearest regions of star formation. These high dispersion spectra allow, for the first time, direct measurements of their stellar effective temperatures, surface gravities, rotation velocities, radial velocities (and spectroscopic binarity), mass accretion properties, and mass outflow indicators. Comparisons of the stellar properties with evolutionary models also allow us to estimate masses and constrain ages. We find that these objects have masses similar to those of older, more evolved T Tauri stars, but protostars have higher mean rotation velocities and angular momenta. Most protostars indicate high mass accretion or outflow, but some in Taurus-Auriga appear to be relatively quiescent. These new results are testing, expanding, and refining the standard star formation paradigm, and we explore how to expand this work further.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2019-07-19
    Description: Heat transfer of a two-layer fluid system has been of great importance in a variety of industrial applications. For example, the phenomena of immiscible fluids can be found in materials processing and heat exchangers. Typically in solidification from a melt, the convective motion is the dominant factor that affects the uniformity of material properties. In the layered flow, thermocapillary forces can come into an important play, which was first emphasized by a previous investigator in 1958. Under extraterrestrial environments without gravity, thermocapillary effects can be a more dominant factor, which alters material properties in processing. Control and optimization of heat transfer in an immiscible fluid system need complete understanding of the flow phenomena that can be induced by surface tension at a fluid interface. The present work is focused on understanding of the magnetic field effects on thermocapillary convection, in order to optimize material processing. That is, it involves the study of the complicated phenomena to alter the flow motion in crystal growth. In this effort, the Marangoni convection in a cavity with differentially heated sidewalls is investigated with and without the influence of a magnetic field. As a first step, numerical analyses are performed, by thoroughly investigating influences of all pertinent physical parameters. Experiments are then conducted, with preliminary results, for comparison with the numerical analyses.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 57th International Astronautical Congress; Oct 02, 2006 - Oct 06, 2006; Valencia; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2019-07-19
    Description: Carbon molecules and ions play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are the best-known candidates to account for the infrared emission bands (UIR bands) and PAH spectral features are now being used as probes of the interstellar medium in Galactic and extra-galactic environments. PAHs are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). In the model dealing with the interstellar spectral features, PAHs are present as a mixture of radicals, ions and neutral species. PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge for laboratory Astrochemistry is to reproduce (in a realistic way) the physical conditions that exist in the emission and absorption interstellar zones. An extensive laboratory program has been developed in various laboratories to characterize the physical and chemical properties of PAHs in astrophysical environments and to describe how they influence the radiation and energy balance in space and the interstellar chemistry. In particular, laboratory experiments provide measurements of the spectral characteristics of interstellar PAH analogs from the ultraviolet and visible range to the infrared range for comparison with astronomical data. The harsh physical conditions of the interstellar medium - characterized by a low temperature, an absence of collisions and strong ultraviolet radiation fields - are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions are formed from the neutral precursors in an isolated environment at low temperature (of the order of 100 K). The spectra of neutral and ionized PAHs are measured using the high sensitivity methods of cavity ring down spectroscopy (CRDS). These experiments provide unique information on the spectra of free, cold large carbon molecules and ions in the gas phase.
    Keywords: Astrophysics
    Type: Recent Developments in Chemistry; Nov 14, 2006 - Nov 17, 2006
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Tremendous strides have been made in our understanding of interstellar material over the past twenty five years thanks to significant developments in observational infrared astronomy and laboratory astrophysics. Twenty five years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds generally ignored, and the notion of large, abundant, gas phase, carbon-rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of interstellar dust is reasonably well understood. In molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is reasonably well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared spectroscopic studies of interstellar space, combined with laboratory simulations and theoretical studies of PAHs and interstellar ices, have revealed the widespread presence of interstellar PAHs and the composition of interstellar precometary ices. The remainder of the presentation will focus on the photochemical evolution of these icy materials. Within a molecular cloud, and especially the presolar nebula, materials frozen into the ices are photoprocessed by ultraviolet light and more complex molecules are produced. As these materials are the building blocks of comets and related to carbonaceous micrometeorites, they are likely to be important sources of complex materials delivered to habitable planets and their composition may be related to the origin of life.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2019-07-18
    Description: We have performed a fully 3-D GRMHD simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The simulation results show that a bipolar jet is initially created. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk. Recently we have developed two new codes: 3 -D GRMHD: RelAtivIStic magnetoHydrodynamica1 sImulatioN (RAISHIN) code constructed by modern high-resolution shock-capturing (HRSC) techniques and 3-D GRPIC code. We have calculated free-free and synchrotron emission from the disks and jet/outflows obtained from our GRMHD simulations using a fully covariant radiative transfer formulation.
    Keywords: Astrophysics
    Type: Eleventh Marcel Grossman Meeting; Jul 23, 2006 - Jul 29, 2006; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2019-07-18
    Description: In support of the development of a zero gravity pressure control capability for liquid hydrogen, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the effects of helium pressurant on the performance of a spray bar thermodynamic vent system (TVS). Fourteen days of testing was performed in August - September 2005, with an ambient heat leak of about 70-80 watts and tank fill levels of 90%, 50%, and 25%. The TVS successfully controlled the tank pressure within a +/- 3.45 kPa (+/- 0.5 psi) band with various helium concentration levels in the ullage. Relative to pressure control with an "all hydrogen" ullage, the helium presence resulted in 10 to 30 per cent longer pressure reduction durations, depending on the fill level, during the mixing/venting phase of the control cycle. Additionally, the automated control cycle was based on mixing alone for pressure reduction until the pressure versus time slope became positive, at which time the Joule-Thomson vent was opened. Testing was also conducted to evaluate thermodynamic venting without the mixer operating, first with liquid then with vapor at the recirculation line inlet. Although ullage stratification was present, the ullage pressure was successfully controlled without the mixer operating. Thus, if vapor surrounded the pump inlet in a reduced gravity situation, the ullage pressure can still be controlled by venting through the TVS Joule Thomson valve and heat exchanger. It was evident that the spray bar configuration, which extends almost the entire length of the tank, enabled significant thermal energy removal from the ullage even without the mixer operating. Details regarding the test setup and procedures are presented in the paper. 1
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Joint Propulsion Conference and Exhibit 2006; Jul 09, 2006 - Jul 12, 2006; Sacramento, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2019-07-18
    Description: This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: SSTI-2220-0090
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2019-07-18
    Description: A robust rocket engine combustor design and development process must include tools which can accurately predict the multi-dimensional thermal environments imposed on solid surfaces by the hot combustion products. Currently, empirical methods used in the design process are typically one dimensional and do not adequately account for the heat flux rise rate in the near-injector region of the chamber. Computational Fluid Dynamics holds promise to meet the design tool requirement, but requires accuracy quantification, or validation, before it can be confidently applied in the design process. This effort presents the beginning of such a validation process for the Loci-CHEM CFD code. The model problem examined here is a gaseous oxygen (GO2)/gaseous hydrogen (GH2) shear coaxial single element injector operating at a chamber pressure of 5.42 MPa. The GO2/GH2 propellant combination in this geometry represents one the simplest rocket model problems and is thus foundational to subsequent validation efforts for more complex injectors. Multiple steady state solutions have been produced with Loci-CHEM employing different hybrid grids and two-equation turbulence models. Iterative convergence for each solution is demonstrated via mass conservation, flow variable monitoring at discrete flow field locations as a function of solution iteration and overall residual performance. A baseline hybrid was used and then locally refined to demonstrate grid convergence. Solutions were obtained with three variations of the k-omega turbulence model.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Workshop on Rocket Combustion Modeling; Mar 12, 2006 - Mar 15, 2006; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2019-07-18
    Description: On January 2,2004, the STARDUST spacecraft made the closest ever flyby (236 km) of the nucleus of a comet - Comet Wild 2. During the flyby the spacecraft collected samples of dust from the coma of the comet. These samples were successfully returned to Earth on January 15,2006. After a six-month preliminary examination to establish the nature of the returned samples, they will be made available to the general scientific community for study. During my talk I will discuss the scientific goals of the STARDUST mission and provide a brief overview of the mission's design and flight. I will also discuss the recovery of the Stardust Sample Return Capsule (SRC), with an emphasis on those aspects of the recovery important for minimizing the degree of contamination (particularly organic contamination) of the samples. Finally, the first samples are only just now being distributed for preliminary examination, but I hope to be able to talk about some of the preliminary findings from the returned comet samples.
    Keywords: Astrophysics
    Type: 2006 Astrobiology Science Conference; Mar 26, 2006 - Mar 30, 2006; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Ground-based, air-borne and space-based, infrared spectra of a wide variety of objects have revealed prominent absorption and emission features due to large molecules and small dust grains. Analysis of this data reveals a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This diversity points towards a wide range of physical and chemical birthsites as well as a complex processing of these grains in the interstellar medium. In this talk, I will review the dust inventory contrasting and comparing both the interstellar and circumstellar reservoirs. The focus will be on the processes that play a role in the lifecycle of dust in the interstellar medium.
    Keywords: Astrophysics
    Type: Les Houches 2006 Meeting; Apr 30, 2006 - May 06, 2006; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2019-07-18
    Description: Recent studies of the shape and polarization of pulse profiles of young radio pulsars have provided evidence that their radio emission originates in wide cone beams at altitudes that are a significant fraction (1 -10%) of their light cylinder radius. Supporting evidence also comes from the relatively high rate of detection of radio pulsars in young supernova remnants. Such wide radio emission beams will be visible at a much larger range of observer angles than the narrow core components thought to originate at lower altitude and would make young, radio-quiet gamma-ray pulsars more of a rarity than previously thought. Radio emission at high altitudes will also have enhanced distortions due to aberration, retardation and caustics. Using 3D geometrical modeling that includes relativistic effects from pulsar rotation, we study the visibility of such radio cone beams as well as that of the gamma-ray beams predicted by polar cap, slot gap and outer gap models. From the results of this study one can obtain revised predictions for the fraction of Geminga-like, radio quiet pulsars present in the gamma-ray pulsar population.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2019-07-18
    Description: The abundances of water-vapor and water-ice during the first ten million years of the protoplanetary solar nebula are simulated using a new condensation/sublimation model. This study builds on a "snow line" model reported in ApJ 627 L153 (2005); it uses a simple phenomenological model where water vapor molecules evolve from solar atomic abundance and eventually condenses to ice at colder points in the nebula once the water-vapor partial pressure exceeds a value determined by the phase diagram for water. The synthesis of water vapor from elementary species is modeled with a chemical network consisting of about 400 species and 4000 reactions. The evolution of the icy zone (and its relative abundance of solid ice) is traced from a limited region in the early hotter disk to its final state at the time when the gas is expelled and a planetary system begins to form. Possible effects of this dynamic motion on disk chemistry and organic molecule formation are also described.
    Keywords: Astrophysics
    Type: 4th Astrobiology Science Conference; Mar 26, 2006 - Mar 30, 2006; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2019-07-18
    Description: Bi-directional reflectance distribution function (BRDF) measurements of optical surfaces both before and after molecular contamination were done using UV, VUV and visible light. Molecular contamination of optical surfaces from outgassed material has been shown in many cases to proceed from acclimation centers, and to produce many roughly hemispherical "islands" of contamination on the surface. Vacuum Ultraviolet (VW) wavelengths are used here to measure angularly scattered light from optical surfaces.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2019-07-18
    Description: Energy absorbed from the X-ray beam by the sample requires cooling by forced convection (i.e. cryostream) to minimize temperature increase and the damage caused to the sample by the X-ray heating. In this presentation we will first review the current theoretical models and recent studies in the literature, which predict the sample temperature rise for a given set of beam parameters. It should be noted that a common weakness of these previous studies is that none of them provide actual experimental confirmation. This situation is now remedied in our investigation where the problem of x-ray sample heating is taken up once more. We have theoretically investigated, and at the same time, in addition to the numerical computations, performed experiments to validate the predictions. We have modeled, analyzed and experimentally tested the temperature rise of a 1 mm diameter glass sphere (sample surrogate) exposed to an intense synchrotron X-ray beam, while it is being cooled in a uniform flow of nitrogen gas. The heat transfer, including external convection and internal heat conduction was theoretically modeled using CFD to predict the temperature variation in the sphere during cooling and while it was subjected to an undulator (ID sector 19) X-ray beam at the APS. The surface temperature of the sphere during the X-ray beam heating was measured using the infrared camera measurement technique described in a previous talk. The temperatures from the numerical predictions and experimental measurements are compared and discussed. Additional results are reported for the two different sphere sizes and for two different supporting pin orientations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The Fourth International Workshop on X-ray Damage to Biological Crystalline Samples; Mar 07, 2006 - Mar 08, 2006; Harima; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2019-07-19
    Description: Using Cassini plasma and magnetic field observations from the dawn meridian of Saturn s outer magnetosphere to Saturn s magnetotail region, we investigate the applicability of the centrifugal instability model by Sittler et al. [2006] for Saturn s auroral response to the solar wind, versus the reconnection model of Saturn s aurora by Cowley et al. [2005]. We use Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) and Electron Plasma Spectrometer (ELS) observations to characterize the plasma environment. ELS and magnetometer observations are used to map out the morphology of the outer magnetosphere from dawn to midnight local time. IMS observations are used to measure plasma flow velocities from which one can infer rotation versus convective flows. IMS composition measurements are used to trace the source of plasma from the inner magnetosphere (protons, H2 and water group ions) versus an external solar wind source (protons and Heff ions). A critical parameter for both models is the strength of the convection electric field with respect to the rotational electric field for the large scale magnetosphere. Is there a significant return flow from the magnetotail? Pitch angle distributions also play an important role as a discriminator. If the magnetosphere tends to conserve angular momentum as suggested by Sittler et al. [2006], then we expect to see an anti-correlation between rotational flow component and radial flow velocities. All will be investigated.
    Keywords: Astrophysics
    Type: Fall 2006 AGU Meeting; Dec 11, 2006 - Dec 15, 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The primary energy flux of charged particle components of the heliospheric and magnetospheric environments of the solar system is primarily carried by highly penetrating energetic particles. Although laboratory experiments on production of organics and oxidants typically only address effects on very thin surface layers, energy deposition occurs on surfaces of icy bodies of the outer solar system to meters in depth. Time scales for significant radiolytic deposition vary from thousands of years at millimeter depths on Europa to billions of years in the meters-deep regolith of Kuiper Belt Objects. Radioisotope decay (e.g., K-40) also contributes to volume radiolysis as the only energy source at much greater depths. Radiolytic oxygen is a potential resource for life within Europa and a partial source of oxygen for Saturn's magnetosphere and Titan's upper atmosphere. Interactions of very high energy cosmic rays with ices at Titan's surface may provide one of the few sources of oxidants in that highly reducing environment. The red colors of low-inclination classical Kuiper Belt Objects at 40-50 AU, and Centaur objects originating from this same population, may arise from volume radiolysis of deep ice layers below more refractory radiation crusts eroded away by surface sputtering and micrometeoroid impacts. A variety of techniques are potentially available to measure volume radiolysis products and have been proposed for study as part of the new Space Physics of Life initiative at NASA Goddard Space Flight Center. The technique of Electron Paramagnetic Resonance (EPR) has been used in medical studies to measure oxidant production in irradiated human tissue for cancer treatment. Other potential techniques include optical absorption spectroscopy and standard wet chemical analysis. These and other potential techniques are briefly reviewed for applicability to problems in solar system ice radiolysis and astrobiology.
    Keywords: Astrophysics
    Type: 2006 Joint Assembly Meeting; May 23, 2006 - May 26, 2006; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: We report the accumulated results of more than six and a half years of monitoring of J0537-6910, the 16 ms pulsar in the Large Magellanic Cloud, using data acquired with the Rossi X-ray Timing Explorer. During this campaign the pulsar experienced some 20 sudden increases in frequency ("glitches") of at least one $\mu$Hz, amounting to a gain of six parts per million of rotation frequency superposed on its normal spindown of $\sim-1.99 \times 10(exp -10)$ Hz/s. The time interval from one glitch to the next obeys a strong linear correlation to the amplitude of the first glitch, with a mean slope of about 120 days per 0.3 parts per million. As a result, the time of the next glitch can usually be predicted to an accuracy of a few days. The magnitude of the pulsar spindown continues to increase, and thus its timing age ($-\nu/2\dot\nu$) continues to decrease at a rate of about one year for every two year interval. The implications of these observations are discussed.
    Keywords: Astrophysics
    Type: AAS Conference; Jan 08, 2006 - Jan 12, 2006; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2019-07-19
    Description: We have performed several simulations of black hole systems (non-rotating, black hole spin parameter a = 0.0 and rapidly rotating, a = 0.95) with a geometrically thin Keplerian disk using the newly developed RAISHIN code. The simulation results show the formation of jets driven by the Lorentz force and the gas pressure gradient. The jets have mildly relativistic speed (greater than or equal to 0.4 c). The matter is continuously supplied from the accretion disk and the jet propagates outward until each applicable terminal simulation time (non-rotating: t/tau S = 275 and rotating: t/tau S = 200, tau s equivalent to r(sub s/c). It appears that a rotating black hole creates an additional, faster, and more collimated inner outflow (greater than or equal to 0.5 c) formed and accelerated by the twisted magnetic field resulting from frame-dragging in the black hole ergosphere. This new result indicates that jet kinematic structure depends on black hole rotation.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2019-07-18
    Description: The composition of interstellar ice and dust provides insight into the chemical history of the interstellar medium and early solar system. It is now possible to probe this unique and unusual chemistry and determine the composition of these microscopic interstellar particles which are hundreds to many thousands of light years away thanks to substantial progress in two areas: astronomical spectroscopic techniques in the middle-infrared, the spectral region most diagnostic of chemical composition, and laboratory simulations which realistically reproduce the critical conditions in various interstellar environments. High quality infrared spectra of many different astronomical sources, some associated with giant, dark molecular clouds -the birthplace of stars and planets- and others in more tenuous, UV radiation rich regions are now available. The fundamentals of IR spectroscopy and what comparisons of astronomical IR spectra with laboratory spectra of materials prepared under realistic simulated interstellar conditions tell us about the components of these materials is the subject of this talk. These observations have shown that mixed molecular ices comprised of H2O, CH3OH, CO, NH3 and H2CO contain most of the molecular material in molecular clouds and that gas phase, ionized polycyclic aromatic hydrocarbons (PAHs) are widespread and surprisingly abundant throughout most of the interstellar medium.
    Keywords: Astrophysics
    Type: Nibler Symposium and Birthday Re-Union Part; Aug 11, 2006; OR; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2019-07-18
    Description: Efforts are currently underway to increase the capacity of airports by use of closely-spaced parallel runways. If such an objective is to be achieved safely and efficiently during both visual and instrument flight conditions, it will be necessary to develop more precise methods for the prediction of the motion and spread of the hazard posed by the lift-generated vortex-wakes of aircraft, and their uncertainties. The purpose of the present study is to relate the motion induced in vortex filaments by turbulence in the ambient flow field to the measured turbulence in the flow field. The problem came about when observations made in the two largest NASA wind tunnels indicated that extended exposure of vortex wakes to the turbulence in the wind tunnel air stream causes the centers of the vortices to meander about with time at a given downstream station where wake measurements are being made. Although such a behavior was expected, the turbulence level based on the maximum amplitude of meander was much less than the root-mean-squared value measured in the free-stream of the wind tunnel by use of hot-film anemometers. An analysis of the time-dependent motion of segments of vortex filaments as they interact with an eddy, indicates that the inertia of the filaments retards their motion enough in the early part of their travel to account for a large part of the difference in the two determinations of turbulence level. Migration of vortex filaments from one turbulent eddy to another (probably with a different orientation), is believed to account for the remainder of the difference. Methods that may possibly be developed for use in the measurement of the magnitude of the more intense eddies in turbulent flow fields and how they should be adjusted to predict vortex meander are then discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA 6th Aviation, Technology, Integration and Operations (ATIO) Forum; Sep 25, 2006 - Sep 27, 2006; Wichita, KS; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2019-07-18
    Description: Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well 'mixed. In the di&se ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233,321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5 146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).
    Keywords: Astrophysics
    Type: 06-RC-291-AAS208 , American Astronomical Society 208th Meeting; Jun 04, 2006 - Jun 08, 2006; Calgary; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2019-07-18
    Description: Submicron sized dust grains are an important component of the interstellar medium. In particular they provide surface where active chemistry can take place. At the low temperatures (-10 K) of the interstellar medium, colliding gas phase species will stick, diffuse, react, and form an icy mantle on these dust grains. This talk will review the principles of grain surface chemistry and delineate important grain surface routes, focusing on reactions involving H, D, and O among each other and with molecules such as CO. Interstellar ice mantles can be studied through the fundamental vibrations of molecular species in the mid-infrared spectra of sources embedded in or located behind dense molecular clouds. Analysis of this type of data has provided a complex view of the composition of these ices and the processes involved. Specifically, besides grain surface chemistry, the composition of interstellar ices is also affected by thermal processing due to nearby newly formed stars. This leads to segregation between different ice components as well as outgassing. The latter results in the formation of a so-called Hot Core region with a gas phase composition dominated by evaporated mantle species. Studies of such regions provide thus a different view on the ice composition and the chemical processes involved. Interstellar ices can also be processed by FUV photons and high energy cosmic ray ions. Cosmic ray processing likely dominates the return of accreted species to the gas phase where further gas phase reactions can take place. These different chemical routes towards molecular complexity in molecular clouds and particularly regions of star formation will be discussed.
    Keywords: Astrophysics
    Type: Nobel Symposium on Cosmic Chemistry and Molecular Astrophysics; Jun 08, 2006 - Jun 16, 2006; Stockholm; Sweden
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2019-07-18
    Description: We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be 〈3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2019-07-18
    Description: We present the discovery of four absorption lines in the X-ray spectrum of the Seyfert galaxy NGC 1365, at energies between 6.7 and 8.3 keV. The lines are detected with high statistical confidence (from 〉20 sigma for the strongest to -4 sigma for the weakest) in two XMM-Newton observations 60 ks long. We also detect the same lines, with a lower signal-to-noise ratio (but still 〉2 sigma for each line), in two previous shorter (-10 ks) XMM-Newton observations. The spectral analysis identifies these features as Fe XXV and Fe XXVI Kalpha and Kbeta lines, outflowing with velocities varying between -1000 and -5000 km/s among the observations. These are the highest quality detections of such lines so far. The high equivalent widths [EW (Kalpha) approximately 100 eV] and the Kalpha/Kbeta ratios imply that the lines are due to absorption of the AGN continuum by a highly ionized gas with column density NH-5?1023 cm(exp -2) at a distance of -(50-100)RS from the continuum source.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2019-07-18
    Description: We present gas mass fractions of 38 massive galaxy clusters spanning redshifts from 0.14 to 0.89, derived from Chandra X-ray data and OVRO/BIMA interferometric Sunyaev-Zel' dovich Effect (SZE) measurements. We use three models for the gas distribution: (1) an isothermal Beta-model fit jointly to the X-ray data at radii beyond 100 kpc and to all of the SZE data, (2) a nonisothermal double Beta-model fit jointly to all of the X-ray and SZE data, and (3) an isothermal Beta-model fit only to the SZE spatial data. We show that the simple isothermal model well characterizes the intracluster medium (ICM) outside of the cluster core, and provides consistently good fits to clusters spanning a wide range of morphological properties. The agreement in the results shows that the core can be satisfactorily accounted for by either excluding the core in fits to the X-ray data (the 100 kpc-cut model) or modeling the intracluster gas with a non-isothermal double Beta-model. We find that the SZE is largely insensitive to structure in the core.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2019-07-18
    Description: We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. Various one-dimensional test problems in both special and general relativity show significant improvements over our previous model. We have performed simulations of jet formations from a geometrically thin accretion disk near both nonrotating and rotating black holes. The new simulation results show that the jet is formed in the same manner as in previous work and propagates outward. In the rotating black hole cases, jets form much closer to the black hole's ergosphere and the magnetic field is strongly twisted due the frame-dragging effect. As the magnetic field strength becomes weaker, a larger amount of matter is launched with the jet. On the other hand, when the magnetic field strength becomes stronger, the jet has less matter and becomes poynting-flux dominated. We will also discuss how the jet properties depend on the rotation of a black hole.
    Keywords: Astrophysics
    Type: Eleventh Marcel Grossman Meeting; Jul 23, 2006 - Jul 29, 2006; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2019-07-18
    Description: The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment contains a segmented calorimeter composed of 320 individual BGO crystals (18 radiation lengths deep) to determine the particle energy. Like all inorganic scintillation crystals the light output of BGO depends not only on the energy deposited by particles but also on the temperature of the crystal. ATIC had successful flights in 2000/2001 and 2002/2003 from McMurdo, Antarctica. The temperature of balloon instruments varies during their flights at altitude due to sun angle variations and differences in albedo from the ground and is monitored and recorded. In order to determine the temperature sensitivity of the ATIC calorimeter it was temperature cycled in the thermal vacuum chamber at the CSBF in Palestine, TX. The temperature dependence is derived from the pulse height response to cosmic ray muons at various temperatures.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 36th COSPAR Scientific Assembly; Jul 16, 2006 - Jul 23, 2006; Beijing; Comoros
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2019-07-18
    Description: Extra-galactic point sources are a significant contaminant in cosmic microwave background and Sunyaev-Zel'dovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio point sources toward galaxy clusters at 28.5 GHz. We compute counts of mJy point source fluxes from 90 fields centered on known massive galaxy clusters and 8 non-cluster fields. Counts in the non-cluster fields are consistent with extrapolations from the results of other surveys. We also compute counts towards clusters as a function of luminosity in three redshift bins out to z = 1.0 and see no clear evidence for evolution with redshift. We compute spectral indices of mJy sources in cluster fields between 1.4 and 28.5 GHz. The distribution is skewed, with a median spectral index of 0.76 and 25th and 75th percentiles of 0.55 and 0.95, respectively. This is steeper than the spectral indices of brighter field point sources measured by other surveys.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2019-07-18
    Description: We have developed a new three-dimensional general relativistic magnetohydrodynamic code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous model. The . preliminary results show the jet formations from a geometrically thin accretion disk near a non-rotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field strength.
    Keywords: Astrophysics
    Type: New Frontiers in Numerical Relativity; Jul 17, 2006 - Jul 21, 2006; Golm; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2019-07-18
    Description: Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The Multi-Messenger Approach to High Energy Gamma-Ray Sources; Jul 04, 2006 - Jul 07, 2006; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2019-07-18
    Description: The spectra of short soft gamma repeater (SGR) bursts at photon energies above -15 keV are often well described by an optically thin thermal bremsstrahlung model (i.e., F(E) - E^-1 * exp(-E/kT) ) with kT=20-40 keV. However, the spectral shape burst continuum at lower photon energies (down to -2 keV) is not well established. It is important to better understand the SGR burst spectral properties at lower energies since inadequate description of the burst spectral continuum could lead to incorrect conclusions, such as existence of spectral lines. Here, we present detailed spectral investigations (in 2-200 keV) of 163 bursts from SGR 1806-20, all detected with Rossi X-ray Timing Explorer during the 2004 active episode that included the giant flare on 27 December 2004. We find that the great majority of burst spectra are well represented by the combination of a blackbody plus a OTTB models.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Recent advances in numerical simulation techniques have lead to dramatic progress in understanding binary black hole merger radiation. I present recent results from simulations performed at Goddard, focusing on the gravitational radiation waveforms, and the application of these results to gravitational wave observations.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2019-07-18
    Description: The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: International Conference on Computational Fluid Dynamics; Jul 12, 2004 - Jul 16, 2004; Toronto; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Highlights of the early Suzaku (formerly Astro-E2) observations of supernova remnants are presented. Suzaku offers unique capabilities for the study of supernova remnants. The unprecedented combination of imaging and spectral resolution below 1 keV in the X-ray Imaging Spectrometer (XIS) makes possible mapping of C, N and O abundances in Galactic remnants of all ages. The first detection of carbon lines in the Cygnus Loop and mapping of the O VII to O VIII ratio in SN 1006 demonstrate this capability. The XIS sensitivity to soft, low surface brightness emission is exemplified by spectroscopy in the 0.3-1.0 keV band of the North Polar Spur and other Galactic ISM structures. Such observations make possible inferences about plasma conditions and abundances. The sensitivity above 6 keV via a combination of the XIS (below 10 keV) and the Hard X-ray Detector (above 10 keV) allows broad band (2-40 keV) spectroscopy and mapping of extended remnants with hard emission components. These components are generally associated with sites of particle acceleration, and measuring their spectral shape potentially provides information about the TeV electron population and its acceleration and energy loss mechanisms. Examples of such remnants observed by Suzaku are the non-thermal emission dominated remnants RX J1713.7-3946 and RX J0852.0-4622, for which flux beyond 30 keV has been detected. The status of the mission and prospects for future groundbreaking observations of supernova remnants will be discussed.
    Keywords: Astrophysics
    Type: 208th American Astronomical Society Meeting; Jun 04, 2006 - Jun 08, 2006; Calgary; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Improvements in detector design and advances in fabrication techniques has resulted in devices which can reach fundamental sensitivity limits in many cases. Many pressing astrophysical questions require large arrays of such sensitive detectors. I will describe the state of far infrared through millimeter detector development at NASA/GSFC, the design and production of large format arrays, and the initial deployment of these powerful new tools.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2019-07-18
    Description: We determine the distance to 38 clusters of galaxies in the redshift range 0.14 less than or equal to z less than or equal to 0.89 using X-ray data from Chandra and Sunyaev-Zeldovich Effect data from the Owens Valley Radio Observatory and the Berkeley-Illinois-Maryland Association interferometric arrays. The cluster plasma and dark matter distributions are analyzed using a hydrostatic equilibrium model that accounts for radial variations in density, temperature and abundance, and, the statistical and systematic errors of this method are quantified. The analysis is performed via a Markov chain Monte Carlo technique that provides simultaneous estimation of all model parameters. W
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2019-07-18
    Description: We have begun an investigation of the nature of the low-latitude boundary layer in the mid-altitude cusp region using data from the Polar spacecraft. This region has been routinely sampled for about three months each year for the periods 1999-2001 and 2004-2006. The low-to-mid-energy ion instruments frequently observed dense, magnetosheath-like plasma deep (in terms of distance from the magnetopause and in invariant latitude) in the magnetosphere. We seek to understand the morphology of the LLBL as it projects from the sub-solar region into the cusp and determine the influences on this morphology. An initial survey of the data is ongoing and we present here an overview of our intended study and some preliminary results.
    Keywords: Astrophysics
    Type: Polar Science Workshop; Jun 07, 2006 - Jun 08, 2006; Berkeley, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2019-07-18
    Description: We present a detailed spectral analysis of the prompt and afterglow emission of four nearby GRBs (GRBs 980425, 030329, 031203, and 060218) that were spectroscopically found to be associated with type Ib/c supernovae. For each event, we investigated its spectral and luminosity evolution and estimated the total energy budget based on the broadband observations. We discuss the properties of the four events in comparison to general burst population, and infer the physical parameters involved in creation of these nearby GRB-SN events
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2019-07-18
    Description: We use the Interferometric BIdimensional Spectrometer (IBIS) of the INAF/Arcetri Astrophysical Observatory and installed at the National Solar Observatory (NSO) Dunn Solar Telescope, to understand the structure of sunspots. These high resolution observations were acquired on 2004 July 30-31, of active region NOAA 10654, using the high order NSO adaptive optics system. We map the spatio-temporal variation of the penumbral Doppler signatures in three spectral lines, FeI 6301.5\AA, FeII 7224.4\AA, and CaII 8542.6\AA, from the photosphere to the chromosphere. From a 70-minute temporal average of individual 32-second cadence Doppler observations we find that the averaged velocities decrease with height, about 3.5 times larger in the deeper photosphere (FeII 7224.4\AA; height-of-formation $\approx$\50 km) than in the upper photosphere FeI 6301.5\AA; height-of-formation $\approx$\350 km), There is a remarkable coherence of Doppler signals over the height difference of 300 km. From a highspeed animation of the Doppler sequence we find evidence for what appears to be ejection of high speed gas concentrations from edges of penumbral filaments into the surrounding granular photosphere. The Evershed flow persists a few arcseconds beyond the traditionally demarcated penumbra-granulation boundary. We present these and other results and discuss the implications of these measurements for sunspot models
    Keywords: Astrophysics
    Type: 37th American Astronomical Society Solar Physics Division Annual meeting; Jun 25, 2006 - Jun 30, 2006; Durham, NH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2019-07-18
    Description: In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2019-07-18
    Description: The Chandra X-Ray Observatory Launched on July 23, 1999. The first X-ray photons were detected on August 12 of that same year. Subsequently observations with the Observatory, which features sub-arcsecond angular resolution, have revolutionized our understanding of the X-ray emitting sky providing hosts of spectacular energy-resolved images and high-resolution spectra. Here we present a brief overview of Chandra X-Ray Observatory observations of compact X-ray binaries.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2019-07-18
    Description: The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.
    Keywords: Astrophysics
    Type: SPIE International Symposium: Astronomical Telescopes and Instrumentation 2006; May 24, 2006 - May 31, 2006; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2019-07-18
    Description: The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.
    Keywords: Fluid Mechanics and Thermodynamics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2019-07-18
    Description: Electrostatic Levitation (ESL) is an emerging technology. The MSFC ESL is a NASA facility that supports investigations of refractory solids and melts. The facility can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. Containerless processing via ESL provides a high-purity environment for the study of high temperature materials and access to metastable states. Scientific topics investigated in the facility include nucleation, undercooling, metastable state formation and metallic glass formation. Additionally, the MSFC ESL provides data for the determination of phase diagrams, time-temperature-transition diagrams, viscosity, surface tension, density, heat capacity and creep resistance. In order to support a diverse research community, the MSFC ESL facility has developed a number of technical capabilities, including a portable system for in situ studies of structural tran$hrmations during processing at the high-energy X-ray beamline at the Advanced Photon Source of Argonne National Laboratory. The capabilities of the MSFC ESL facilities will be discussed and selected results of materials processing and characterization studies will be presented.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: American Physical Society Meeting; Mar 13, 2006 - Mar 17, 2006; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2019-07-18
    Description: Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.
    Keywords: Astrophysics
    Type: 6th International Conference on High Energy Laboratory of Astrophysics; Mar 11, 2006 - Mar 14, 2006; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2019-07-18
    Description: Thermophysical property studies performed at high temperature can prove challenging because of reactivity problems brought on by the elevated temperatures. Contaminants from measuring devices and container walls can cause changes in properties. To prevent this, containerless processing techniques can be employed to isolate a sample during study. A common method used for this is levitation. Typical levitation methods used for containerless processing are, aerodynamically, electromagnetically and electrostatically based. All levitation methods reduce heterogeneous nucleation sites, 'which in turn provide access to metastable undercooled phases. In particular, electrostatic levitation is appealing because sample motion and stirring are minimized; and by combining it with optically based non-contact measuring techniques, many thermophysical properties can be measured. Applying some of these techniques, surface tension, viscosity and density have been measured for the glass forming alloy Zr62Cu20Al10Ni8 and will be presented with a brief overview of the non-contact measuring method used.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The Minerals, Metals and Materials Society; Mar 13, 2006 - Mar 16, 2006; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2019-07-18
    Description: The thermophysical properties of glass-forming and quasicrystal-forming alloys show many interesting features in the undercooled liquid range. Some of the features in the thermophysical property curves are expected to reflect changes in the structure and coordination of the liquid. These measurements require containerless processing such as electrostatic levitation to access the undercooled liquid regime. An overview of the state of the art in measuring the thermophysical properties and structure of undercooled liquid glass-forming and quasicrystal-forming alloys will be presented, along with the status of current measurements.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: The Minerals, Metals and Materials Society; Mar 13, 2006 - Mar 16, 2006; San Antonio, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: "We report on recent studies of high frequency variability during magnetar giant flares. These oscillations may represent the first observations of global shear oscillations in neutron star crusts, and can provide a new tools to study neutron star structure.
    Keywords: Astrophysics
    Type: APS DAP business meetings; Apr 22, 2006 - Apr 25, 2006; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-24
    Description: The 2006 Annual Report of the Space Studies Board provides an opportunity to comment not only on the SSB's activities for the past year but also on the environment that has shaped those activities. As has been true for the past several years, and may well be for years to come, we live in an environment that is continually changing. NASA has continued to pursue the Vision for Space Exploration laid down by President George W. Bush in 2004, but it has obtained only limited resources to do so, requiring continuing adjustments in other NASA programs and reconsideration of our plans for the future. In this environment, the activities of the Space Studies Board are of particular importance. We can, through the National Research Council reports that we charter, provide advice on the issues most important to the execution and planning of the space program. Through our Congressional testimony and public statements, we call attention to the concerns and dilemmas that confront NASA and the science community that it supports. The Space Studies Board itself is also in transition. The year 2006 marked the arrival of a new Director, Marcia Smith, who is the permanent replacement for the long-serving and much admired Joe Alexander. As is evident in this Annual Report, Marcia has had to experience a year that has been among the busiest for the Space Studies Board. And that level of activity appears only to be increasing, as we attempt to help navigate the space program through the technical challenges and political turbulence that are expected in the years ahead.
    Keywords: Astrophysics
    Type: PB2011-101834
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2019-08-17
    Description: We have developed techniques to measure branching fractions in the vacuum ultraviolet using diffraction grating spectroscopy and phosphor image plates as detectors. These techniques have been used to measure branching fractions in Fe II that give prominent emission lines in astrophysical objects.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 229-232; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2019-08-17
    Description: We have measured the electron impact excitation cross sections for the strong iron L-shell 3 --〉 2 lines of Fe XVIII to Fe XXIV at the EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Centers 6 x 6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well established cross section of radiative electron capture through a sophisticated model analysis which results in the excitation cross section for the strong Fe L-shell lines at multiple electron energies. This measurement is part of a laboratory X-ray astrophysics program utilizing the Livermore electron beam ion traps EBIT-I and EBIT-II.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 170-173; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-16
    Description: Images taken of interstellar space often display a colorful canvas of portions of the electromagnetic spectrum. Dispersed throughout the images are interstellar clouds of dust and gas--remnants ejected from stars and supernovae over billions and billions of years. For more than 40 years, astronomers have observed that interstellar dust exhibits a consistent effect at a spectral wavelength of 2,175 angstroms, the equivalent of 5.7 electronvolts in energy on the electromagnetic spectrum. At this wavelength, light from stars is absorbed by dust in the interstellar medium, blocking the stars light from reaching Earth. The 2,175-angstrom feature, which looks like a bump on spectra, is the strongest ultraviolet-visible light spectral signature of interstellar dust and is visible along nearly every observational line of sight. Scientists have sought to solve the mystery of what causes the 2,175-angstrom feature by reproducing the effect in the laboratory. They speculated a number of possibilities, including fullerenes (buckyballs), nanodiamonds, and even interstellar organisms. However, none of these materials fits the data for the unique spectral feature. Limitations in the energy and spatial resolution achievable with electron microscopes and ion microprobes--the two main instruments used to study samples of dust--have also prevented scientists from finding the answer. A collaborative effort led by Livermore physicist John Bradley and funded by the National Aeronautics and Space Administration (NASA) has used a new-generation transmission electron microscope (TEM) and nanoscale ion microprobe to unlock the mystery. The Livermore group includes physicists Zu Rong Dai, Ian Hutcheon, Peter Weber, and Sasa Bajt and postdoctoral researchers Hope Ishii, Giles Graham, and Julie Smith. They collaborated with the University of California at Davis (UCD), Lawrence Berkeley National Laboratory, Washington University's Laboratory for Space Sciences in St. Louis, and NASA's Ames Research Center for their discovery. The team analyzed micrometer-size interplanetary dust particles (IDPs), each about one-tenth the diameter of a human hair. Within the particles, they found carriers of the 2,175-angstrom feature: organic carbon mixed with amorphous silicates (glass with embedded metals and sulfides, GEMS), two of the most common materials in interstellar space. Ishii says, 'Organic carbon and amorphous silicates are abundant in interstellar dust clouds, and abundant carriers are needed to account for the frequent astronomical observation of the 2,175-angstrom feature. It makes sense that this ubiquitous feature would come from common materials in interstellar space'. The group's results increase scientific understanding of the starting materials for the formation of the Sun, solar system, and life on Earth.
    Keywords: Astrophysics
    Type: DE2006-893993 , UCRL-TR-218442
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2019-08-16
    Description: Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 166-169; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2019-07-12
    Description: The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 micrometers thick) that are wrapped around the sample tray assembly. Soda lime spheres (approximately 49 m in diameter) have been accelerated with a light-gas-gun into flight-grade Al foils at 6.35 km s(sup -1) to simulate the potential capture of cometary debris. The preserved crater penetrations have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact penetration. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover pure melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2019-07-12
    Description: We have explored the feasibility of C-, N-, and O-isotopic measurements by NanoSIMS and of elemental abundance determinations by TOF-SIMS on residues of Allende projectiles that impacted Stardust-type aluminum foils in the laboratory at 6 km/s. These investigations are part of a consortium study aimed at providing the foundation for the characterization of matter associated with micro-craters that were produced during the encounter of the Stardust space probe with comet 81P/Wild 2. Eleven experimental impact craters were studied by NanoSIMS and eighteen by TOF-SIMS. Crater sizes were between 3 and 190 microns. The NanoSIMS measurements have shown that the crater morphology has only a minor effect on spatial resolution and on instrumental mass fractionation. The achievable spatial resolution is always better than 200 nm, and C- and O-isotopic ratios can be measured with a precision of several percent at a scale of several 100 nm, the typical size of presolar grains. This clearly demonstrates that presolar matter, provided it survives the impact into the aluminum foil partly intact, is recognizable even if embedded in material of Solar System origin. TOF-SIMS studies are restricted to materials from the crater rim. The element ratios of the major rockforming elements in the Allende projectiles are well characterized by the TOF-SIMS measurements, indicating that fractionation of those elements during impact can be expected to be negligible. This permits information on the type of impactor material to be obtained. For any more detailed assignments to specific chondrite groups, however, information on the abundances of the light elements, especially C, is crucial.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2019-07-12
    Description: Various microscopic techniques were used to characterize experimental micro- craters in aluminium foils to prepare for the comprehensive analysis of the cometary and interstellar particle impacts in aluminium foils to be returned by the Stardust mission. First, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda-lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using TEM (Transmission Electron Microscopy), EDS, and electron diffraction methods. The TEM samples were prepared by Focused Ion Beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that InfraRed microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2019-07-12
    Description: General relativity predicts the gravitational radiation signatures of mergers of compact binaries, such as coalescing binary black hole systems. Derivations of waveform predictions for such systems are required for optimal scientific analysis of observational gravitational wave data, and have so far been achieved primarily with the aid of the post-Newtonian (PN) approximation. The quality of this treatment is unclear, however, for the important late inspiral portion. We derive late-inspiral waveforms via a complementary approach, direct numerical simulation of Einstein's equations, which has recently matured sufficiently for such applications. We compare waveform phasing from simulations covering the last approximately 14 cycles of gravitational radiation from an equal-mass binary system of nonspinning black holes with the corresponding 3PN and 3.5PN orbital phasing. We find agreement consistent with internal error estimates based on either approach at the level of one radian over approximately 10 cycles. The result suggests that PN waveforms for this system are effective roughly until the system reaches its last stable orbit just prior to the final merger/
    Keywords: Astrophysics
    Type: To appear in Physical Review Letter
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2019-07-12
    Description: Coalescing binary black hole mergers are expected to be the strongest gravitational wave sources for ground-based interferometers, such as the LIGO, VIRGO, and GEO600, as well as the spacebased interferometer LISA. Until recently it has been impossible to reliably derive the predictions of General Relativity for the final merger stage, which takes place in the strong-field regime. Recent progress in numerical relativity simulations is, however, revolutionizing our understanding of these systems. We examine here the specific case of merging equal-mass Schwarzschild black holes in detail, presenting new simulations in which the black holes start in the late inspiral stage on orbits with very low eccentricity and evolve for approximately 1200M through approximately 7 orbits before merging. We study the accuracy and consistency of our simulations and the resulting gravitational waveforms, which encompass approximately 14 cycles before merger, and highlight the importance of using frequency (rather than time) to set the physical reference when comparing models. Matching our results to PN calculations for the earlier parts of the inspiral provides a combined waveform with less than half a cycle of accumulated phase error through the entire coalescence. Using this waveform, we calculate signal-to-noise ratios (SNRs) for iLIGO, adLIGO, and LISA, highlighting the contributions from the late-inspiral and merger-ringdown parts of the waveform which can now be simulated numerically. Contour plots of SNR as a function of z and M show that adLIGO can achieve SNR 2 10 for some IMBBHs out to z approximately equals 1, and that LISA can see MBBHs in the range 3 x 10(exp 4) approximately 〈 M/Mo approximately 〈 10(exp 7) at SNR 〉 100 out to the earliest epochs of structure formation at z 〉 15.
    Keywords: Astrophysics
    Type: Sponsored in part by the Leon A. Herreid Graduate Fellowship, The Korean Federation of Science and Technology Societies and by the Korean Government (MOEHRD, Basis Research Promotion Fund
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Luminous Blue Variables (LBVs) are believed to be evolved, extremely massive stars close to the Eddington Limit and hence prone to bouts of large-scale, unstable mass loss. I discuss current understanding of the evolutionary state of these objects, the role duplicity may play and known physical characteristics of these stars using the X-ray luminous LBVs Eta Carinae and HD 5980 as test cases.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2019-08-26
    Description: A model of multicomponent-liquid (MC-liquid) drop evaporation in a three-dimensional mixing layer is here exercised at larger Reynolds numbers than in a previous study, and transitional states are obtained. The gas phase is followed in an Eulerian frame and the multitude of drops is described in a Lagrangian frame. Complete coupling between phases is included with source terms in the gas conservation equations accounting for the drop/flow interaction in terms of drop drag, drop heating and species evaporation. The liquid composition, initially specified as a single-Gamma (SG) probability distribution function (PDF) depending on the molar mass is allowed to evolve into a linear combination of two SGPDFs, called the double-Gamma PDF (DGPDF). The compositions of liquid and vapor emanating from the drops are calculated through four moments of the DGPDFs, which are drop-specific and location-specific, respectively. The mixing layer is initially excited to promote the double pairing of its four initial spanwise vortices into an ultimate vortex in which small scales proliferate. Simulations are performed for four liquids of different compositions and the effect of the initial mass loading and initial free-stream gas temperature are explored. For reference, Simulations are also performed for gaseous multicomponent mixing layers for which the effect of Reynolds number is investigated. The results encompass examination of the global layer characteristics, flow visualizations and homogeneous-plane statistics at transition. Comparisons are performed with previous pre-transitional MC-liquid simulations and with transitional single-component (SC) liquid studies. It is found that MCC flows at transition, the classical energy cascade is of similar strength, but that the smallest scales contain orders of magnitude less energy than SC flows, which is confirmed by the larger viscous dissipation in the former case. Contrasting to pre-transitional MC flows, the vorticity and drop organization depend on the initial gas temperature, this being due to the drop/turbulence coupling. The vapor-composition mean molar mass and standard deviation distributions strongly correlate with the initial liquid-composition PDF; such a correlation only exists for the magnitude of the mean but not for that of the standard deviation. Unlike in pre-transitional situations, regions of large composition standard deviation no longer necessarily coincide with regions of large mean molar mass. The kinetic energy, rotational and composition characteristics, and dissipation are liquid specific and the variation among liquids is amplified with increasing free-stream gas temperature. Eulerian and Lagrangian statistics of gas-phase quantities show that the different. Observation framework may affect the perception of the flow characteristics. The gas composition, of which the first four moments are calculated, is shown to be close to, but distinct from a SGPDF. The PDF of the scalar dissipation rate is calculated for drop-laden layers and is shown to depart more significantly from the typically assumed Gaussian in gaseous flows than experimentally measured gaseous scalar dissipation rates, this being attributed to the increased heterogeneity due to drop/flow interactions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 44th AIAA Aerospace Sciences Meeting and Exhibit; Jan 09, 2006 - Jan 12, 2006; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2019-08-17
    Description: Carbon dioxide has been produced from the impact of a monoenergetic O(P-3) beam upon a surface cooled to 4.8 K and covered with a CO ice. Using temperature-programmed desorption and mass spectrometer detection, we have detected increasing amounts of CO2 formation with O(P-3) energies of 2, 5, 10, and 14 eV. This is the first measurement of polyatomic molecule formation on a surface with superthermal atoms. The goal of this work is to detect other polyatomic species, such as CH3OH, which can be formed under conditions that simulate the grain temperature, surface coverage, and superthermal atoms present in shock-heated circumstellar and interstellar regions.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 174-177; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2019-08-17
    Description: We are continuing EBIT measurements of line lists in the EUV region for use as astrophysical diagnostics and have recently measured the same transitions in much denser plasma of the NSTX tokamak. This allows us to calibrate density-sensitive line ratios at their upper limits. We compare our observations at low and high density with calculations from the Flexible Atomic Code.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 213-216; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2019-08-13
    Description: This paper describes a study of a lean premixed (LP) methane-air combustion wave in a two-dimensional Cartesian and axisymmetric coordinate system. Lean premixed combustors provide low emission and high efficiency; however, they are susceptible to combustion instabilities. The present study focuses on the behavior of the flame as it interacts with an external acoustic disturbance. It was found that the flame oscillations increase as the disturbance amplitude is increased. Furthermore, when the frequency of the disturbance is at resonance with a chamber frequency, the instabilities increase. For the axisymmetric geometry, the flame is found to be more unstable compared to the Cartesian case. In some cases, these instabilities were severe and led to flame extinction. In the axisymmetric case, several passive control devices were tested to assess their effectiveness. It is found that an acoustic cavity is better able at controlling the pressure fluctuations in the chamber.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 42nd AIAA/ASME/SAE/ASEe Joint Propulsion Conference and Exhibit; Jul 09, 2006 - Jul 12, 2006; Sacramento, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2019-08-13
    Description: This work presents an overview of the International Organization for Standardization (ISO) 15859 International Standard for Space Systems Fluid Characteristics, Sampling and Test Methods Parts 1 through 13 issued in June 2004. These standards establish requirements for fluid characteristics, sampling, and test methods for 13 fluids of concern to the propellant community and propellant characterization laboratories: oxygen, hydrogen, nitrogen, helium, nitrogen tetroxide, monomethylhydrazine, hydrazine, kerosene, argon, water, ammonia, carbon dioxide, and breathing air. A comparison of the fluid characteristics, sampling, and test methods required by the ISO standards to the current military and NASA specifications, which are in use at NASA facilities and elsewhere, is presented. Many ISO standards composition limits and other content agree with those found in the applicable parts of NASA SE-S-0073, NASA SSP 30573, military performance standards and details, and Compressed Gas Association (CGA) commodity specifications. The status of a current project managed at NASA Johnson Space Center White Sands Test Facility (WSTF) to rewrite these documents is discussed.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: JANNAF 33rd PEDCS; Mar 06, 2006 - Mar 10, 2006; Sandestin Beach, FL; United States|22nd SEPS Joint Meeting; Mar 06, 2006 - Mar 10, 2006; Sandestin Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2019-08-28
    Description: NASA Laboratory Astrophysics Workshop 2006, is the fourth in a series of workshops held at four year intervals, to assess the laboratory needs of NASA's astrophysics missions - past, current and future. Investigators who need laboratory data to interpret their observations from space missions, theorists and modelers, experimentalists who produce the data, and scientists who compile databases have an opportunity to exchange ideas and understand each other's needs and limitations. The multi-wavelength character of these workshops allows cross-fertilization of ideas, raises awareness in the scientific community of the rapid advances in other fields, and the challenges it faces in prioritizing its laboratory needs in a tight budget environment. Currently, we are in the golden age of Space Astronomy, with three of NASA s Great Observatories, Hubble Space Telescope (HST), Chandra X-Ray Observatory (CXO), and Spitzer Space Telescope (SST), in operation and providing astronomers and opportunity to perform synergistic observations. In addition, the Far Ultraviolet Spectroscopic Explorer (FUSE), XMM-Newton, HETE-2, Galaxy Evolution Explorer (GALEX), INTEGRAL and Wilkinson Microwave Anisotropy Probe (WMAP), are operating in an extended phase, while Swift and Suzaku are in their prime phase of operations. The wealth of data from these missions is stretching the Laboratory Astrophysics program to its limits. Missions in the future, which also need such data include the James Webb Space Telescope (JWST), Space Interferometry Mission (SIM), Constellation-X (Con-X), Herschel, and Planck. The interpretation of spectroscopic data from these missions requires knowledge of atomic and molecular parameters such as transition probabilities, f-values, oscillator strengths, excitation cross sections, collision strengths, which have either to be measured in the laboratory by simulating space plasma and interactions therein, or by theoretical calculations and modeling. Once the laboratory data are obtained, a key step to making them available to the observer is the creation and maintenance of critically compiled databases. Other areas of study, that are important for understanding planet formation, and for detection of molecules that are indicators of life, are also supported by the Laboratory Astrophysics program. Some examples are: studies of ices and dust grains in a space environment; nature and evolution of interstellar carbon-rich dust; and polycyclic aromatic hydrocarbons. In addition, the program provides an opportunity for the investigation of novel ideas, such as simulating radiative shock instabilities in plasmas, in order to understand jets observed in space. A snapshot of the currently funded program, mission needs, and relevance of laboratory data to interpreting observations, will be obtained at this workshop through invited and contributed talks and poster papers. These will form the basis for discussions in splinter groups. The Science Organization Committee will integrate the results of the discussions into a coherent White Paper, which will provide guidance to NASA in structuring the Laboratory Astrophysics program in subsequent years, and also to the scientific community in submitting research proposals to NASA for funding.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 17-25; NASA/CP-2006-214549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2019-07-13
    Description: There are currently five known groups of basaltic achondrites that represent material from distinct differentiated parent bodies. These are the howardite-eucrite-diogenite (HED) clan, mesosiderite silicates, angrites, Ibitira, and Northwest Africa (NWA) 011 [1]. Spectroscopically all these basaltic achondrite groups have absorption bands located near 1 and 2 microns due to the presence of pyroxene. Some of these meteorite types have spectra that are quite similar, but nevertheless have characteristics (e.g. spectral slope, band depths, etc.) that may be used to differentiate them from each other.
    Keywords: Astrophysics
    Type: 69th Meeting of the Meteoritical Society; Aug 06, 2006 - Aug 11, 2006; Zurich; Switzerland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2019-07-13
    Description: A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long-duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multi-dimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. In the absence of transient pressure drop data for the zero mean oscillating multi-dimensional flows present in the Technology Demonstration Convertors on test at NASA Glenn Research Center, unidirectional flow pressure drop test data is used to compare against 2D and 3D computational solutions. This study focuses on tracking pressure drop and mass flow rate data for unidirectional flow though a Stirling heater head using a commercial CFD code (CFD-ACE). The commercial CFD code uses a porous-media model which is dependent on permeability and the inertial coefficient present in the linear and nonlinear terms of the Darcy-Forchheimer equation. Permeability and inertial coefficient were calculated from unidirectional flow test data. CFD simulations of the unidirectional flow test were validated using the porous-media model input parameters which increased simulation accuracy by 14 percent on average.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2006-214246 , AIAA Paper 2005-5539 , E-15491 , Third International Energy Conversion Engineering Conference; Aug 15, 2005 - Aug 18, 2005; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2019-07-13
    Description: The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 44th AIAA Aerospace Sciences Meeting and Exhibit; Jan 09, 2006 - Jan 12, 2006; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2019-07-13
    Description: The Voyager 1 and 2 spacecraft are exploring the space environment of the outermost solar system at the same time that earth-based astronomy continues to discover new icy bodies, one larger than Pluto, in the transitional region outward from the Classical Kuiper Belt to the Inner Oort Cloud. Some of the Scattered Disk Objects in this region periodically pass through the heliosheath, entered by Voyager 1 in Dec. 2004 and later expected to be reached by Voyager 2, and out even beyond the heliopause into the Very Local Interstellar Medium. The less energetic heliosheath ions, important for implantation and sputtering processes, are abundant near and beyond the termination shock inner boundary, but the source region of the more penetrating anomalous cosmic ray component has not yet been found. Advantageous for modeling of icy body interactions, the measured heliosheath flux spectra are relatively more stable within this new regime of isotropic compressional magnetic turbulence than in the upstream heliospheric environment. The deepest interactions and resultant radiation-induced chemistry arise from the inwardly diffusing component of the galactic cosmic ray ions with significant intensity modulation also arising in the heliosheath beyond Voyager 1. Surface gardening by high-velocity impacts of smaller bodies (e.g., fragments of previous KBO collisions) and dust is a further space weathering process setting the time scales for long term exposure of different regolith layers to the ion irradiation. Sputtering and ionization of impact ejecta grains may provide a substantial feedback of pickup ions for multiple cycles of heliosheath acceleration and icy body interaction. Thus the space weathering interactions are potentially of interest not only for effects on sensible surface composition of the icy bodies but also for evolution of the heliosheath plasma energetic ion, and neutral emission environment.
    Keywords: Astrophysics
    Type: Institute of Geophysics and Planetary Physics, Univ. of California, San Diego, 5th Annual Internation Astrophysics Conference; Mar 03, 2006 - Mar 09, 2006; Oahu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2019-07-13
    Description: The study reported here is part of an effort to develop scaling methods for super cooled large droplet (SLD) conditions. Previously reported results showed that SLD main ice shapes can be simulated quite successfully by appendix C conditions using scaling methods developed for appendix C. However, when the velocity was higher than 100 kt, the feather size and density for SLD tests at MVDs well above 100 m was not well represented by the scaled appendix C conditions. This paper reports additional results of a study of the feather region with the objective of identifying differences between SLD and appendix C feathers. Both the feather appearance and the angle at which feathers grow from the airfoil surface were recorded over a range of MVD from 20 to 190 m for airspeeds of 100 and 200 kt and stagnation freezing fractions of 0.3 to 1.0. Tests were performed in the NASA Glenn Icing Research Tunnel (IRT) using a 91-cm-chord NACA0012 airfoil model mounted at 0 degrees AOA. Photographs are presented to illustrate details of feather appearance. Appearance was noticeably affected by the stagnation freezing fraction of the test, but not by velocity or MVD. The angle of feather growth relative to the chord line decreased with increasing stagnation freezing fraction. For a velocity of 100 kt, no significant effect of MVD on feather angle was apparent, but at 200 kt, feather angle tended to increase with MVD for glaze conditions, but not rime. This finding is based on limited data, and its significance with respect to icing physics has not been determined.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2006-214125 , E-15460 , AIAA Paper 2005-0072 , 43rd Aerospace Sciences Meeting and Exhibit; Jan 10, 2005 - Jan 13, 2005; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2019-07-13
    Description: A 16-microphone linear phased-array installed parallel to the jet axis and a 32-microphone azimuthal phased-array installed in the nozzle exit plane have been applied to identify the noise source distributions of nozzle exhaust systems with various internal mixers (lobed and axisymmetric) and nozzles (three different lengths). Measurements of velocity were also obtained using cross-stream stereo particle image velocimetry (PIV). Among the three nozzle lengths tested, the medium length nozzle was the quietest for all mixers at high frequency on the highest speed flow condition. Large differences in source strength distributions between nozzles and mixers occurred at or near the nozzle exit for this flow condition. The beamforming analyses from the azimuthal array for the 12-lobed mixer on the highest flow condition showed that the core flow and the lobe area were strong noise sources for the long and short nozzles. The 12 noisy spots associated with the lobe locations of the 12-lobed mixer with the long nozzle were very well detected for the frequencies 5 KHz and higher. Meanwhile, maps of the source strength of the axisymmetric splitter show that the outer shear layer was the most important noise source at most flow conditions. In general, there was a good correlation between the high turbulence regions from the PIV tests and the high noise source regions from the phased-array measurements.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2006-214376 , E-15657 , AIAA Paper 2006-2647 , 12th Aeroacoustics Conference; May 08, 2006 - May 10, 2006; Cambridge, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2019-07-13
    Description: Control of flow separation using impulsive surface injection is investigated within the multistage environment of a low speed axial-flow compressor. Measured wake profiles behind a set of embedded stator vanes treated with suction-surface injection indicate significant reduction in flow separation at a variety of injection-pulse repetition rates and durations. The corresponding total pressure losses across the vanes reveal a bank of repetition rates at each pulse duration where the separation control remains nearly complete. This persistence allows for demands on the injected-mass delivery system to be economized while still achieving effective flow control. The response of the stator-vane boundary layers to infrequently applied short injection pulses is described in terms of the periodic excitation of turbulent strips whose growth and propagation characteristics dictate the lower bound on the band of optimal pulse repetition rates. The eventual falloff in separation control at higher repetition rates is linked to a competition between the benefits of pulse-induced mixing and the aggravation caused by the periodic introduction of low-momentum fluid. Use of these observations for impulsive actuator design is discussed and their impact on modeling the time-average effect of impulsive surface injection for multistage steady-flow simulation is considered.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/TM-2006-214361 , E-15636 , Turbo Expo 2006 American Society of Mechanical Engineers; May 08, 2006 - May 11, 2006; Barcelona; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2019-07-13
    Description: The combined radiation/conduction heat transfer in high-temperature multilayer insulations for typical reentry of reusable launch vehicles from low Earth orbit was investigated experimentally and numerically. The high-temperature multilayer insulation investigated consisted of gold-coated reflective foils separated by alumina fibrous insulation spacers. The steady-state heat transfer through four multilayer insulation configurations was investigated experimentally over the temperature range of 300-1300 K and environmental pressure range of 1.33 10(exp -5)-101.32 kPa. It was shown that including the reflective foils reduced the effective thermal conductivity compared to fibrous insulation sample at 1.5 times the density of the multilayer sample. A finite volume numerical model was developed to solve the governing combined radiation/conduction heat transfer equations. The radiation heat transfer in the fibrous insulation spacers was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. The numerical model was validated by comparison with steady-state experimental data. The root mean square deviation between the predicted and measured effective thermal conductivity of the samples was 9.5%.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 5th European Workshop on Thermal Protection Systems and Hot Structures; May 17, 2006 - May 19, 2006; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2019-07-13
    Description: An experimental study of underexpanded and highly underexpanded axisymmetric nitrogen free jets seeded with 0.5% nitric oxide (NO) and issuing from a sonic orifice was conducted at NASA Langley Research Center. Reynolds numbers based on nozzle exit conditions ranged from 770 to 35,700, and nozzle exit-to-ambient jet pressure ratios ranged from 2 to 35. These flows were non-intrusively visualized with a spatial resolution of approximately 0.14 mm x 0.14 mm x 1 mm thick and a temporal resolution of 1 s using planar laser-induced fluorescence (PLIF) of NO, with the laser tuned to the strongly-fluorescing UV absorption bands of the Q1 band head near 226.256 nm. Three laminar cases were selected for comparison with computational fluid dynamics (CFD). The cases were run using GASP (General Aerodynamic Simulation Program) Version 4. Comparisons of the fundamental wavelength of the jet flow showed good agreement between CFD and experiment for all three test cases, while comparisons of Mach disk location and Mach disk diameter showed good agreement at lower jet pressure ratios, with a tendency to slightly underpredict these parameters with increasing jet pressure ratio.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2006-0910 , 44th AIAA Aerospace Sciences Meeting and Exhibit; Jan 09, 2006 - Jan 12, 2006; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2019-07-13
    Description: The regenerator is a key component to Stirling cycle machine efficiency. Typical regenerators are of sintered fine wires or layers of fine-wire screens. Such porous materials are contained within solid-waH casings. Thermal energy exchange between the regenerator and the casing is important to cycle performance for the matrix and casing would not have the same axial temperature profile in an actual machine. Exchange from one to the other may allow shunting of thermal energy, reducing cycle efficiency. In this paper, temperature profiles within the near-wall region of the matrix are measured and thermal energy transport, termed thermal dispersion, is inferred. The data show how the wall affects thermal transport. Transport normal to the mean flow direction is by conduction within the solid and fluid and by advective transport within the matrix. In the near-wall region, both may be interrupted from their normal in-core pattern. Solid conduction paths are broken and scales of advective transport are damped. An equation is presented which describes this change for a wire screen mesh. The near-wall layer typically acts as an insulating layer. This should be considered in design or analysis. Effective thermal conductivity within the core is uniform. In-core transverse thermal effective conductivity values are compared to direct and indirect measurements reported elsewhere and to 3D numerical simulation results, computed previously and reported elsewhere. The 3-D CFD model is composed of six cylinders in cross flow, staggered in arrangement to match the dimensions and porosity of the matrix used in the experiments. The commercial code FLUENT is used to obtain the flow and thermal fields. The thermal dispersion and effective thermal conductivities for the matrix are computed from the results.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-15754 , 13th International Heat Transfer Conference (IHTC-13); Aug 13, 2006 - Aug 18, 2006; Sydney, Australia; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2019-07-13
    Description: This paper presents the test results on start-up behaviors of a miniature loop heat pipe (MLHP) with two evaporators and two condensers. The MLHP start-up tests were conducted by varying the heat load to one or both evaporators, the condenser sink temperatures, and with or without compensation chamber (CC) temperature control. More than 90 start-up tests have been conducted in horizontal position, and all were successful. Test results showed robust start-ups of the MLHP with heat loads of 1W to 100W. Loop started as soon as the heat load was applied, without a large temperature overshoot. The efficacy and good repeatability of the start-ups with CC active temperature control by using thermoelectric cooler (TEC) was demonstrated. The ability of the loop to start with parasitic heat gain caused by cooling the CC temperature below ambient temperature was also demonstrated.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 36th International Conference on Environmental Systems; Jul 17, 2006 - Jul 20, 2006; Norfolk, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2019-07-13
    Description: A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport equations, one for the intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models), but form a framework for the implementation of correlation-based models into general-purpose CFD methods.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Paper No. 2004-GT-53434 , Journal of Turbomachinery; 128; 4; 423-434
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2019-07-13
    Description: A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reductions in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Aerospace Computing, Information, and Communication; 3; 1; 5-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2019-07-13
    Description: The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Journal of Spacecraft and Rockets; 43; 1; 54-62
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2019-07-13
    Description: An implicit unfactored SSOR algorithm has been added to the overset Navier-Stokes CFD code OVERFLOW 2 for unsteady and moving body applications. The HLLEM and HLLC third-order spatial upwind convective flux models have been added for high-speed flow applications. A generalized upwind transport equation has been added for solution of the two-equation turbulence models and the species equations. The generalized transport equation is solved using an unfactored SSOR implicit algorithm. Three hybrid RANS/DES turbulence models have been added for unsteady flow applications. Wall function boundary conditions that include compressibility and heat transfer effects have been also been added to OVERFLOW 2.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2006-2824 , 24th AIAA Applied Aerodynamics Conference; Jun 05, 2006 - Jun 08, 2006; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2019-07-13
    Description: A flow tripping capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. The capability is based on prescribing an appropriate profile of turbulence model variables to energize the boundary layer in a plane normal to a specified trip region on the body surface. We demonstrate this approach using the k-epsilon two-equation turbulence model of USM3D. Modification to the solution procedure primarily consists of developing a data structure to identify all unstructured tetrahedral grid cells located in the plane normal to a specified surface trip region and computing a function based on the mean flow solution to specify the modified profile of the turbulence model variables. We leverage this data structure and also show an adjunct approach that is based on enforcing a laminar flow condition on the otherwise fully turbulent flow solution in user-specified region. The latter approach is applied for the solutions obtained using other one-and two-equation turbulence models of USM3D. A key ingredient of the present capability is the use of a graphical user-interface tool PREDISC to define a trip region on the body surface in an existing grid. Verification of the present modifications is demonstrated on three cases, namely, a flat plate, the RAE2822 airfoil, and the DLR F6 wing-fuselage configuration.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA 2006-0919 , 44th AIAA Aerospace Sciences Meeting and Exhibit; Jan 09, 2006 - Jan 12, 2006; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2019-07-13
    Description: This paper will investigate the validation of a NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as the baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a freestream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the length of the fan-face diameter. The numerical simulations with and without wind tunnel walls are performed, quantifying effects of the tunnel walls on the BLI inlet flow measurements. The wind tunnel test evaluated several different combinations of jet locations and mass flow rates as well as a vortex generator (VG) vane case. The numerical simulations will be performed on a single jet configuration for varying actuator mass flow rates at a fix inlet mass flow condition. Validation of the numerical simulations for the VG vane case will also be performed for varying inlet mass flow rates. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCPavg, very well for comparisons made within the designed operating range of the BLI inlet. However the CFD simulations did predict a total pressure recovery that was 0.01 lower than the experiment. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of the flow and that a miss alignment of the vanes in the experiment could have resulted in this difference. The numerical simulations of the BLI inlet with jets showed good agreement with the circumferential inlet distortion levels for a range of jet actuator mass flow ratios at a fixed inlet mass flow rate. The CFD simulations for the jet case also predicted an average total pressure recovery that was 0.01 lower than the experiment as was seen in the baseline. Comparison of the flow features the jet case revealed that the CFD predicted a much larger vortex at the engine fan-face when compare to the experiment.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA 2006-0845 , 44th AIAA Aerospace Sciences Meeting and Exhibit; Jan 09, 2006 - Jan 12, 2006; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2019-07-13
    Description: This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCPavg, the circumferential distortion level at the engine fan face.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 44th AIAA Aerospace Sciences Meeting and Exhibit; Jan 09, 2006 - Jan 12, 2006; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2019-07-13
    Description: Computational fluid dynamics predictions of Viking Lander 1 entry vehicle afterbody heating are compared to flight data. The analysis includes a derivation of heat flux from temperature data at two base cover locations, as well as a discussion of available reconstructed entry trajectories. Based on the raw temperature-time history data, convective heat flux is derived to be 0.63-1.10 W/cm2 for the aluminum base cover at the time of thermocouple failure. Peak heat flux at the fiberglass base cover thermocouple is estimated to be 0.54-0.76 W/cm2, occurring 16 seconds after peak stagnation point heat flux. Navier-Stokes computational solutions are obtained with two separate codes using an 8- species Mars gas model in chemical and thermal non-equilibrium. Flowfield solutions using local time-stepping did not result in converged heating at either thermocouple location. A global time-stepping approach improved the computational stability, but steady state heat flux was not reached for either base cover location. Both thermocouple locations lie within a separated flow region of the base cover that is likely unsteady. Heat flux computations averaged over the solution history are generally below the flight data and do not vary smoothly over time for both base cover locations. Possible reasons for the mismatch between flight data and flowfield solutions include underestimated conduction effects and limitations of the computational methods.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA 2006-0386 , 44th AIAA Aerospace Sciences Meeting and Exhibit; Jan 09, 2006 - Jan 12, 2006; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2019-07-13
    Description: Transitional databases from Direct Numerical Simulation (DNS) of three-dimensional mixing layers for single-phase flows and two-phase flows with evaporation are analyzed and used to examine the typical hypothesis that the scalar dissipation Probability Distribution Function (PDF) may be modeled as a Gaussian. The databases encompass a single-component fuel and four multicomponent fuels, two initial Reynolds numbers (Re), two mass loadings for two-phase flows and two free-stream gas temperatures. Using the DNS calculated moments of the scalar-dissipation PDF, it is shown, consistent with existing experimental information on single-phase flows, that the Gaussian is a modest approximation of the DNS-extracted PDF, particularly poor in the range of the high scalar-dissipation values, which are significant for turbulent reaction rate modeling in non-premixed flows using flamelet models. With the same DNS calculated moments of the scalar-dissipation PDF and making a change of variables, a model of this PDF is proposed in the form of the (beta)-PDF which is shown to approximate much better the DNS-extracted PDF, particularly in the regime of the high scalar-dissipation values. Several types of statistical measures are calculated over the ensemble of the fourteen databases. For each statistical measure, the proposed (beta)-PDF model is shown to be much superior to the Gaussian in approximating the DNS-extracted PDF. Additionally, the agreement between the DNS-extracted PDF and the (beta)-PDF even improves when the comparison is performed for higher initial Re layers, whereas the comparison with the Gaussian is independent of the initial Re values. For two-phase flows, the comparison between the DNS-extracted PDF and the (beta)-PDF also improves with increasing free-stream gas temperature and mass loading. The higher fidelity approximation of the DNS-extracted PDF by the (beta)-PDF with increasing Re, gas temperature and mass loading bodes well for turbulent reaction rate modeling.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Combustion Institute International Symposium on Combustion, Heidelberg; Aug 06, 2006 - Aug 11, 2006; Heidelberg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2019-07-13
    Description: Buoyancy Generation: Various technology attempts include melting a wax, which pushes directly against a piston (U.S. Patent 5,291,847) or against a bladder (Webb Research), using ammonia or Freon 21 (U.S. Patent 5,303,552), and using solar heat to expand an oil (www.space.com, April, 10, 2002). All these heat-activated buoyancy control designs have thus far proved impractical and have ultimately failed during repeated cycling in ocean testing. JPL has demonstrated fully reversible 10 C encapsulated wax phase change, which can be used to change buoyancy without electrical hydraulic pumps. This technique has greatly improved heat transfer and much better reversibility than previous designs. Power Generation: Ocean Thermal Energy Conversion (OTEC) systems have been designed that transfer deep, cold sea water to the surface to generate electricity using turbine cycles with ammonia or water as the working fluid. JPL has designed several UUV systems: 1) Using a propeller water turbine to generate power on a gliding submersible; 2) Employing a compact CO2 turbine cycle powered by moving through thermoclines; and 3) Using melted wax to directly produce power through a piston-geared generator.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ONR Joint Review of Unmanned Systems Technology Development; Feb 10, 2006; Panama City, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2019-07-13
    Description: Ions embedded in icy grain mantles are thought to account for various observed infrared spectroscopic features, particularly in certain young stellar objects. The dissociation of formic acid (HCOOH) in astrophysical ices to form the formate ion (HCOO(-)) was modeled with density functional theory cluster calculations. Like isocyanic acid (HOCN), HCOOH was found to spontaneously deprotonate when sufficient water is present to stabilize charge transfer complexes. Both ammonia and water can serve as proton acceptors, yielding ammonium (NH4(+)) and hydronium (H3O(+)) counterions. Computed frequencies of weak infrared features produced by stretching and bending modes in both HCOO(-) and HCOOH were compared with experimental and astronomical data. Our results confirm laboratory assignments that a band at 1381 cm(exp -1) can be attributed to the CH bend in either HCOO(-) or HCOOH, but a band at 1349 cm(exp -1) corresponds to CO stretching in HCOO(-). Another feature at 1710 cm(exp -1) (5.85 m) can possibly be assigned to a CO stretching mode in HCOOH, as suggested by experiment, but the agreement is less satisfactory. In addition, we examine and analyze spectroscopic features associated with NH+4, both as a counterion to HCOO(-) or OCN(-) and in isolation, in order to compare with experimental and astronomical data in the 7 m region.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 648; Part 1; 1285-1290
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2019-07-13
    Description: This volume contains materials presented at the Minnowbrook V 2006 Workshop on Unsteady Flows in Turbomachinery, held at the Syracuse University Minnowbrook Conference Center, New York, on August 20-23, 2006. The workshop organizers were John E. LaGraff (Syracuse University), Martin L.G. Oldfield (Oxford University), and J. Paul Gostelow (University of Leicester). The workshop followed the theme, venue, and informal format of four earlier workshops: Minnowbrook I (1993), Minnowbrook II (1997), Minnowbrook III (2000), and Minnowbrook IV (2003). The workshop was focused on physical understanding of unsteady flows in turbomachinery, with the specific goal of contributing to engineering application of improving design codes for turbomachinery. The workshop participants included academic researchers from the United States and abroad and representatives from the gas-turbine industry and U.S. Government laboratories. The physical mechanisms discussed were related to unsteady wakes, active flow control, turbulence, bypass and natural transition, separation bubbles and turbulent spots, modeling of turbulence and transition, heat transfer and cooling, surface roughness, unsteady CFD, and DNS. The workshop summary and the plenary discussion transcripts clearly highlight the need for continued vigorous research in the technologically important area of unsteady flows in turbomachines. This volume contains abstracts and copies of select viewgraphs organized according to the workshop sessions. Full-color viewgraphs and animations are included in the CD-ROM version only (Doc.ID 20070024781).
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CP-2006-214484 , E-15776 , Minnowbrook V: 2006 Workshop on Unsteady Flows in Turbomachinery; Aug 20, 2006 - Aug 23, 2006; Blue Mountain Lake, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2019-07-13
    Description: This CD-ROM contain materials presented at the Minnowbrook V 2006 Workshop on Unsteady Flows in Turbomachinery, held at the Syracuse University Minnowbrook Conference Center, New York, on August 20-23, 2006. The workshop organizers were John E. LaGraff (Syracuse University), Martin L.G. Oldfield (Oxford University), and J. Paul Gostelow (University of Leicester). The workshop followed the theme, venue, and informal format of four earlier workshops: Minnowbrook I (1993), Minnowbrook II (1997), Minnowbrook III (2000), and Minnowbrook IV (2003). The workshop was focused on physical understanding of unsteady flows in turbomachinery, with the specific goal of contributing to engineering application of improving design codes for turbomachinery. The workshop participants included academic researchers from the United States and abroad and representatives from the gas-turbine industry and U.S. Government laboratories. The physical mechanisms discussed were related to unsteady wakes, active flow control, turbulence, bypass and natural transition, separation bubbles and turbulent spots, modeling of turbulence and transition, heat transfer and cooling, surface roughness, unsteady CFD, and DNS. This CD-ROM contains copies of the viewgraphs presented, organized according to the workshop sessions. Full-color viewgraphs and animations are included. The workshop summary and the plenary discussion transcripts clearly highlight the need for continued vigorous research in the technologically important area of unsteady flows in turbomachines.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CP-2006-214484 , E-15776 , Minnowbrook V: 2006 Workshop on Unsteady Flows in Turbomachinery; Aug 20, 2006 - Aug 23, 2006; Blue Mountain Lake, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2019-07-13
    Description: NASA's New Millennium Program is scheduled to test a Disturbance Reduction System (DRS) on Space Technology 7 (ST7) as part of the European Space Agency's (ESA's) LISA Pathfinder Mission in late 2009. Colloid Micronewton Thrusters (CMNTs) will be used to counteract forces, mainly solar photon pressure, that could disturb gravitational reference sensors as part of the DRS. The micronewton thrusters use an ionic liquid, a room temperature molten salt, as propellant. The ionic liquid has a number of unusual properties that have a direct impact on thruster design. One of the most important issues is bubble formation before and during operation, especially during rapid pressure transitions from atmospheric to vacuum conditions. Bubbles have been observed in the feed system causing variations in propellant flow rate that can adversely affect thruster control. Bubbles in the feed system can also increase the likelihood that propellant will spray onto surfaces that can eventually lead to shorting high voltage electrodes. Two approaches, reducing the probability of bubble formation and removing bubbles with a new bubble eliminator device in the flow system, were investigated at Busek Co., Inc. and the Jet Propulsion Laboratory (JPL) to determine the effectiveness of both approaches. Results show that bubble formation is mainly caused by operation at low pressure and volatile contaminants in the propellant coming out of solution. A specification for the maximum tolerable level of contamination has been developed, and procedures for providing system cleanliness have been tested and implemented. The bubble eliminator device has also been tested successfully and has been implemented in recent thruster designs at Busek. This paper focuses on the propellant testing work at JPL, including testing of a breadboard level bubble eliminator device.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 09, 2006 - Jul 12, 2006; Sacramento, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2019-07-13
    Description: A viewgraph presentation describing the Integrated Thermal Energy Management System (ITEMS) is shown. The topics include: 1) The Benefits of Two-Phase Flow; 2) Description; and 3) Hardware.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Space Power Workshop; Apr 25, 2006 - Apr 27, 2006; Manhattan Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2019-07-13
    Description: The X-ray properties of a sample of 11 high-redshift (0.6 〈 z 〈 1 .O) clusters observed with Chardm and/or XMM-Newton are used to investigate the evolution of the cluster scaling relations. The observed evolution in the normalization of the L-T, M-T, M(sub 2)-T and M-L relations is consistent with simple self-similar predictions, in which the properties of clusters reflect the properties of the Universe at their redshift of observation. Under the assumption that the model of self-similar evolution is correct and that the local systems formed via a single spherical collapse, the high-redshift L-T relation is consistent with the high-z clusters having virialized at a significantly higher redshift than the local systems. The data are also consistent with the more realistic scenario of clusters forming via the continuous accretion of material. The slope of the L-T relation at high redshift (B = 3.32 +/- 0.37) is consistent with the local relation, and significantly steeper than the self-similar prediction of B = 2. This suggests that the same non-gravitational processes are responsible for steepening the local and high-z relations, possibly occurring universally at z is approximately greater than 1 or in the early stages of the cluster formation, prior to their observation. The properties of the intracluster medium at high redshift are found to be similar to those in the local Universe. The mean surface-brightness profile slope for the sample is Beta = 0.66 +/- 0.05, the mean gas mass fractions within R(sub 2500(z)) and R(200(z)) are 0.069 +/- 0.012 and 0.11 +/- 0.02, respectively, and the mean metallicity of the sample is 0.28 +/- 0.11 Z(sub solar).
    Keywords: Astrophysics
    Type: Monthly Notices of the Royal Astronomical Society; 365; 2; 509-529
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2019-07-13
    Description: The nonorthogonal orbitals technique in a multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities of N(I) lines. The relativistic effects are allowed by means of Breit-Pauli operators. The length and velocity forms of oscillator strengths show good agreement for most transitions. The B-spline R-matrix with pseudostates approach has been used to calculate electron excitation collision strengths and rates. The nonorthogonal orbitals are used for an accurate description of both target wave functions and the R-matrix basis functions. The 24 spectroscopic bound and autoionizing states together with 15 pseudostates are included in the close-coupling expansion. The collision strengths for transitions between fine-structure levels are calculated by transforming the LS-coupled K-matrices to K-matrices in an intermediate coupling scheme. Thermally averaged collision strengths have been determined by integrating collision strength over a Maxwellian distribution of electron energies over a temperature range suitable for the modeling of astrophysical plasmas. The oscillator strengths and thermally averaged collision strengths are presented for transitions between the fine-structure levels of the 2s(sup 2)p(sup 3) (sup 4)S(sup 0), (sup 2)D(sup 0), (sup 2)P(sup 0), 2s2p(sup 4) (sup 4)P, 2s(sup 2)2p(sup 2)3s (sup 4)P, and (sup 2)P terms and from these levels to the levels of the 2s(sup 2)2p(sup 2)3p (sup 2)S(sup 0), (sup 4)D(sup 0), (sup 4)P(sup 0), (sup 4)S(sup 0), (sup 2)D(sup 0), (sup 2)P(sup 0),2s(sup 2)2p(sup 2)3s(sup 2)D, 2s(sup 2)2p(sup 2)4s(sup 4)P, (sup 2)P, 2s(sup 2)2p(sup 2)3d(sup 2)P, (sup 4)F,(sup 2)F,(sup 4)P, (sup 4)D, and (sup 2)D terms. Thermally averaged collision strengths are tabulated over a temperature range from 500 to 50,000 K.
    Keywords: Astrophysics
    Type: The Astrophysical Journal, Supplement Series; 163; 207-223
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2019-07-13
    Description: A viewgraph presentation of phase separator ground-based and reduced-gravity testing for Advanced Life Support (ALS) systems is shown. The topics include: 1) Multiphase Flow Technology Program; 2) Types of Separators; 3) MOBI Phase Separators; 4) Experiment set-up; and 5) Preliminary comparison/results.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Habitation 2006; Feb 06, 2006; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...