ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-01
    Description: We present a new catalogue of ∼2400 optically selected quasars with spectroscopic redshifts and X-ray observations from either Chandra or XMM–Newton. The sample can be used to investigate the non-linear relation between the ultraviolet (UV) and X-ray luminosity of quasars as well as to build a Hubble diagram up to a redshift of z ∼ 7.5. We selected sources that are neither reddened by dust in the optical and UV nor obscured by gas in the X-rays, and whose X-ray fluxes are free from flux-limit-related biases. After checking for any possible systematics, we confirm, in agreement with our previous works, that the X-ray to UV relation provides distance estimates matching those from supernovae up to z ∼ 1.5, and its slope shows no redshift evolution up to z ∼ 5. We provide a full description of the methodology for testing cosmological models, further supporting a trend whereby the Hubble diagram of quasars is well reproduced by the standard flat cold dark matter model up to z ∼ 1.5–2, but strong deviations emerge at higher redshifts. Since we have minimised all non-negligible systematic effects and proven the stability of the LX − LUV relation at high redshifts, we conclude that an evolution of the expansion rate of the Universe should be considered as a possible explanation for the observed deviation, rather than some systematic (redshift-dependent) effect associated with high-redshift quasars.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-09-27
    Description: We present the analysis of a Chandra High-Energy Transmission Grating (HETG) observation of the local Seyfert galaxy NGC 1365. The source, well known for its dramatic X-ray spectral variability, was caught in a reflection-dominated, Compton-thick state. The high spatial resolution afforded by Chandra allowed us to isolate the soft X-ray emission from the active nucleus, neglecting most of the contribution from the kpc-scale starburst ring. The HETG spectra thus revealed a wealth of He- and H-like lines from photoionized gas, whereas in larger aperture observations these are almost exclusively produced through collisional ionization in the circumnuclear environment. Once the residual thermal component is accounted for, the emission-line properties of the photoionized region close to the hard X-ray continuum source indicate that NGC 1365 has some similarities to the local population of obscured active galaxies. In spite of the limited overall data quality, several soft X-ray lines seem to have fairly broad profiles (~800–1300 km s –1 full width at half-maximum), and a range of outflow velocities (up to ~1600 km s –1 , but possibly reaching a few thousand km s –1 ) appears to be involved. At higher energies, the Kα fluorescence line from neutral iron is resolved with 〉99 per cent confidence, and its width of ~3000 km s –1 points to an origin from the same broad-line region clouds responsible for eclipsing the X-ray source and likely shielding the narrow-line region.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-14
    Description: We analyse a sample of 26 active galactic nuclei (AGN) with deep XMM–Newton observations, using principal component analysis (PCA) to find model-independent spectra of the different variable components. In total, we identify at least 12 qualitatively different patterns of spectral variability, involving several different mechanisms, including five sources which show evidence of variable relativistic reflection (MCG–6-30-15, NGC 4051, 1H 0707–495, NGC 3516 and Mrk 766) and three which show evidence of varying partial covering neutral absorption (NGC 4395, NGC 1365 and NGC 4151). In over half of the sources studied, the variability is dominated by changes in a power-law continuum, both in terms of changes in flux and power-law index, which could be produced by propagating fluctuations within the corona. Simulations are used to find unique predictions for different physical models, and we then attempt to qualitatively match the results from the simulations to the behaviour observed in the real data. We are able to explain a large proportion of the variability in these sources using simple models of spectral variability, but more complex models may be needed for the remainder. We have begun the process of building up a library of different principal components, so that spectral variability in AGN can quickly be matched to physical processes. We show that PCA can be an extremely powerful tool for distinguishing different patterns of variability in AGN, and that it can be used effectively on the large amounts of high-quality archival data available from the current generation of X-ray telescopes. We will make our PCA code available upon request to the lead author.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-10
    Description: In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR , Suzaku and XMM–Newton . The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density ( N H ~ 0.8–1.1 x 10 24  cm –2 ). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle ~=66°, and is seen at a grazing angle through its upper rim (inclination angle ~=70°). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 ± 5) and individual column density, [~= (4.9 ± 1.5) x 10 22  cm –2 ]. The comparison of IR and X-ray spectroscopic results with state-of-the art ‘torus’ models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-20
    Description: Recent time-resolved spectral studies of a few active galactic nuclei (AGNs) in hard X-rays revealed occultations of the X-ray primary source probably by broad-line region (BLR) clouds. An important open question on the structure of the circumnuclear medium of AGN is whether this phenomenon is common, i.e. whether a significant fraction of the X-ray absorption in AGN is due to BLR clouds. Here, we present the first attempt to perform this kind of analysis in a homogeneous way, on a statistically representative sample of AGN, consisting of the ~40 brightest sources with long XMM–Newton and/or Suzaku observations. We describe our method, based on a simple analysis of hardness-ratio light curves, and its validation through a complete spectroscopic analysis of a few cases. We find that X-ray eclipses, most probably due to clouds at the distance of the BLR, are common in sources where the expected occultation time is compatible with the observation time, while they are not found in sources with longer estimated occultation times. Overall, our results show that occultations by BLR clouds may be responsible for most of the observed X-ray spectral variability at energies higher than 2 keV, on time-scales longer than a few ks.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-06
    Description: We present a broad-band spectral analysis of the joint XMM–Newton and Nuclear Spectroscopic Telescope Array observational campaign of the narrow-line Seyfert 1 SWIFT J2127.4+5654, consisting of 300 ks performed during three XMM–Newton orbits. We detect a relativistic broadened iron Kα line originating from the innermost regions of the accretion disc surrounding the central black hole, from which we infer an intermediate spin of $a = 0.58^{+0.11}_{-0.17}$ . The intrinsic spectrum is steep ( = 2.08 ± 0.01) as commonly found in narrow-line Seyfert 1 galaxies, while the cutoff energy ( $E_{\rm c}=108^{+11}_{-10}$ keV) falls within the range observed in broad-line Seyfert 1 galaxies. We measure a low-frequency lag that increases steadily with energy, while at high frequencies, there is a clear lag following the shape of the broad Fe K emission line. Interestingly, the observed Fe K lag in SWIFT J2127.4+5654 is not as broad as in other sources that have maximally spinning black holes. The lag amplitude suggests a continuum-to-reprocessor distance of about 10–20 r g . These timing results independently support an intermediate black hole spin and a compact corona.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-14
    Description: In the past five years, a flurry of X-ray reverberation lag measurements of accreting supermassive black holes have been made using the XMM–Newton telescope in the 0.3–10 keV energy range. In this work, we use the NuSTAR ( Nuclear Spectroscopic Telescope Array ) telescope to extend the lag analysis up to higher energies for two Seyfert galaxies, SWIFT J2127.4+5654 and NGC 1365. X-ray reverberation lags are due to the light travel time delays between the direct continuum emission and the reprocessed emission from the inner radii of an ionized accretion disc. XMM–Newton has been particularly adept at measuring the lag associated with the broad Fe K emission line, where the gravitationally redshifted wing of the line is observed to respond before the line centroid at 6.4 keV, produced at larger radii. Now, we use NuSTAR to probe the lag at higher energies, where the spectrum shows clear evidence for Compton reflection, known as the Compton ‘hump’. The XMM–Newton data show Fe K lags in both SWIFT J2127.4+5654 and NGC 1365. The NuSTAR data provide independent confirmation of these Fe K lags, and also show evidence for the corresponding Compton hump lags, especially in SWIFT J2127.4+5654. These broad-band lag measurements confirm that the Compton hump and Fe K lag are produced at small radii. At low frequencies in NGC 1365, where the spectrum shows evidence for eclipsing clouds in the line of sight, we find a clear negative (not positive) lag from 2 to 10 keV, which can be understood as the decrease in column density from a neutral eclipsing cloud moving out of our line of sight during the observation.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-08-07
    Description: We report results from multi-epoch X-ray observations of the Seyfert 1.5 galaxy ESO 362–G18 performed between 2005 November and 2010 June. ESO 362–G18 generally exhibits the typical X-ray spectrum of type 1 active galactic nuclei. A disc-reflection component accounts for broad residuals in the iron K band and above 10 keV, as well as for a significant soft excess. From our best-fitting reflection model, we measure a black hole spin a ≥ 0.92 at the 99.99 per cent confidence level. ESO 362–G18 is also (typically) mildly absorbed by a column of neutral gas. The absorber is variable and one observation, performed ~2 months after a typical mildly absorbed one, is heavily absorbed by a cold column density of ~ 3-4 x 10 23  cm –2 , nearly two orders of magnitude higher than that during any other observation. UV variability between the heavily absorbed observation and the others suggests that the absorber can be identified with a dusty, clumpy torus. The absorption variability time-scale enables us to locate the X-ray-emitting region within the innermost ~50 gravitational radii. Such result holds not only for the X-ray continuum, but also for the soft excess.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-17
    Description: We present a spectral and imaging analysis of the X-ray reflecting structure at the heart of the Circinus galaxy, investigating the innermost regions surrounding the central black hole. By studying an archival 200 ks Chandra Advanced CCD Imaging Spectrometer-S observation, we are able to image the extended clumpy structure responsible for both cold reflection of the primary radiation and neutral iron Kα line emission. We measure an excess of the equivalent width of the iron Kα line which follows an axisymmetric geometry around the nucleus on a hundred pc scale. Spectra extracted from different regions confirm a scenario in which the dominant mechanism is the reflection of the nuclear radiation from Compton-thick gas. Significant differences in the equivalent width of the iron Kα emission line (up to a factor of 2) are found. It is argued that these differences are due to different scattering angles with respect to the line of sight rather than to different iron abundances.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-14
    Description: We analyse 400 ks of XMM–Newton data on the active galactic nucleus NGC 1365 using principal component analysis (PCA) to identify model-independent spectral components. We find two significant components and demonstrate that they are qualitatively different from those found in MCG–6-30-15 using the same method. As the variability in NGC 1365 is known to be due to changes in the parameters of a partial covering neutral absorber, this shows that the same mechanism cannot be the driver of variability in MCG–6-30-15. By examining intervals where the spectrum shows relatively low absorption we separate the effects of intrinsic source variability, including signatures of relativistic reflection, from variations in the intervening absorption. We simulate the principal components produced by different physical variations, and show that PCA provides a clear distinction between absorption and reflection as the drivers of variability in AGN spectra. The simulations are shown to reproduce the PCA spectra of both NGC 1365 and MCG–6-30-15, and further demonstrate that the dominant cause of spectral variability in these two sources requires a qualitatively different mechanism.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...