ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy
  • Life Sciences (General)
  • 2015-2019  (98)
  • 2000-2004  (603)
  • 1950-1954
  • 1940-1944
  • 2015  (98)
  • 2004  (603)
  • 1
    Publication Date: 2015-01-09
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fernandez-Capetillo, Oscar -- Yan, Nieng -- Dionne, Jen -- Bassett, Danielle -- Sebastian, Suchitra -- Hendon, Christine -- Schlichting, Hilke -- Baker, Monya -- England -- Nature. 2015 Jan 1;517(7532):111-3.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25568916" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Aging/genetics ; Astronomy ; Biomedical Engineering/trends ; Cryoelectron Microscopy ; DNA Damage ; Diagnostic Imaging ; Humans ; Interdisciplinary Communication ; Interdisciplinary Studies ; Nanostructures/radiation effects ; Neoplasms/genetics ; Neurosciences/trends ; Planets ; Research/*trends ; *Research Personnel/psychology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-12-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 Dec 24;528(7583):459-67. doi: 10.1038/528459a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26701036" target="_blank"〉PubMed〈/a〉
    Keywords: Analgesics, Opioid/metabolism ; Astronomy ; Benzylisoquinolines/chemistry/metabolism ; Bias (Epidemiology) ; CRISPR-Cas Systems/genetics ; Diplomacy ; Electric Conductivity ; Electronics/instrumentation ; Embryo Research/ethics ; Genetic Engineering/ethics ; Genome, Human/genetics ; Genomics ; Global Warming/economics/*legislation & jurisprudence/prevention & control ; History, 21st Century ; History, Ancient ; Human Migration/history ; Humans ; Iran ; Language/history ; Nanotubes, Carbon ; Nuclear Weapons/legislation & jurisprudence ; Paris ; Pluto ; Prejudice ; Psychology/standards ; Reproducibility of Results ; Reproductive Medicine/ethics ; Sexual Harassment/prevention & control ; Space Flight/economics/trends ; Synthetic Biology/methods ; Temperature ; Yeasts/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-06
    Description: Background: Rift Valley fever (RVF) outbreaks have been associated with periods of widespread and above normal rainfall over several months. Knowledge on the environmental factors influencing disease transmission dynamics has provided the basis for developing models to predict RVF outbreaks in Africa. From 2008 to 2011, South Africa experienced the worst wave of RVF outbreaks in almost 40 years. We investigated rainfall associated environmental factors in southern Africa preceding these outbreaks. Methods: RVF epizootic records obtained from the World Animal Health Information Database (WAHID), documenting livestock species affected, location, and time, were analyzed. Environmental variables including rainfall and satellite-derived normalized difference vegetation index (NDVI) data were collected and assessed in outbreak regions to understand the underlying drivers of the outbreaks. Results: The predominant domestic vertebrate species affected in 2008 and 2009 were cattle, when outbreaks were concentrated in the eastern provinces of South Africa. In 2010 and 2011, outbreaks occurred in the interior and southern provinces affecting over 16,000 sheep. The highest number of cases occurred between January and April but epidemics occurred in different regions every year, moving from the northeast of South Africa toward the southwest with each progressing year. The outbreaks showed a pattern of increased rainfall preceding epizootics ranging from 9 to 152 days; however, NDVI and rainfall were less correlated with the start of the outbreaks than has been observed in eastern Africa. Conclusions: Analyses of the multiyear RVF outbreaks of 2008 to 2011 in South Africa indicated that rainfall, NDVI, and other environmental and geographical factors, such as land use, drainage, and topography, play a role in disease emergence. Current and future investigations into these factors will be able to contribute to improving spatial accuracy of models to map risk areas, allowing adequate time for preparation and prevention before an outbreak occurs.
    Keywords: Life Sciences (General)
    Type: GSFC-E-DAA-TN26328 , Vector-Borne and Zoonotic Diseases (ISSN 1530-3667) (e-ISSN 1557-7759); 15; 8; 502-511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: NASA Ames Research Center's WetLab-2 Project enables on-orbit quantitative Reverse Transcriptase PCR (qRT-PCR) analysis without the need for sample return. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage of using non-toxic chemicals and does not require alcohols or other organics. The resulting RNA is dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The project selected the Cepheid SmartCycler (TradeMark), a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, because of its advantages including rugged modular design, low power consumption, rapid thermal ramp times and four-color multiplex detection. Single tube multiplex assays can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system can downlink data from the ISS to the ground after a completed run and uplink new thermal cycling programs. The ability to conduct qRT-PCR and generate results on-orbit is an important step towards utilizing the ISS as a National Laboratory facility. Specifically, the ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time without the need for sample return and re-flight. On orbit gene expression analysis can also eliminate the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples and provide on-orbit gene expression benchmarking prior to sample return. Finally, the system can also be used for analysis of air, surface, water, and clinical samples to monitor environmental pathogens and crew health. The validation flight of the WetLab-2 system using E. coli bacteria and mouse liver launched on SpaceX-7 in June 2015 and will remain on the ISS National Laboratory.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN24590 , Annual Meeting of the American Society for Gravitational and Space Research; Nov 11, 2015 - Nov 14, 2015; Alexandria, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: We will discuss the results of a planned observation campaign of Near Earth Asteroids (NEAs), 1999 CU3, 2002 GM2, 2002 FG7, and 3691 Bede with instruments on the United Kingdom Infrared Telescope (UKIRT) from 15-Mar-2015 to 28-April 2015 UT. We will study the phase-angle dependence of the reflectance and thermal emission spectra. Recent publications reveal that the assignment of the asteroid class from visible and near-IR spectroscopy can change with phase angle for NEAs with silicate-bearing minerals on their surfaces (S-class asteroids) (Thomas et al. 2014, Icarus 228, 217; Sanchez et al. 2012 Icarus 220, 36). Only three of the larger NEAs have been measured at a dozen phase angles and the trends are not all the same, so there is not yet enough information to create a phase-angle correction. Also, the phase angle effect is not characterized well for the thermal emission including determination of the albedo and the thermal emission. The few NEAs were selected for our study amongst many possible targets based on being able to observe them through a wide range of phase angles, ranging from less than about 10 degrees to greater than 45 degrees over the constrained date range. The orbits of NEAs often generate short observing windows at phase angles higher than 45 deg (i.e., whizzing by Earth and/or close to dawn or dusk). Ultimately, lowering the uncertainty of the translation of asteroid class to meteorite analog and of albedo and size determinations are amongst our science goals. On a few specific nights, we plan to observe the 0.75-2.5 micron spectra with IRTF+SpeX for comparison with UKIRT data including 5-20 micron with UKIRT+UIST/Michelle to determine as best as possible the albedos. To ensure correct phasing of spectroscopic data, we augment with TRAPPIST-telescope light curves and R-band guider image data. Our observations will contribute to understanding single epoch mid-IR and near-IR measurements to obtain albedo, size and IR beaming parameters (the outcomes of thermal models) and asteroid spectral class.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN22001 , International Astronomical Union General Assembly (IAU) General Assembly (IAU 2015); Aug 03, 2015 - Aug 14, 2015; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: The thermal emission spectra of young giant planets is shaped by the opacity of atoms and molecules residing in their atmospheres. While great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity and chemistry of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the shape of the Y and K spectral bands. Since young giant planets are bright in these bands it is important to understand the influences on the spectral shape. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. Since Na and K condense at temperatures near 500 to 600 K, the chemistry of the condensation process must be well understood as well, particularly any disequilibrium chemical pathways. Comparisons of the current generation of sophisticated atmospheric models and available data, however, reveal important shortcomings in the models. We will review the current state of observations and theory of young giant planets and will discuss these and other specific examples where improved laboratory measurements for alkali compounds have the potential of substantially improving our understanding of these atmospheres.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN21977 , International Astronomical Union General Assembly; Aug 03, 2015 - Aug 14, 2015; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: Pluto's surface was found to be remarkably diverse in terms of its range of landforms, terrain ages, and inferred geological processes. There is a latitudinal zonation of albedo. The conspicuous bright albedo heart-shaped feature informally named Tombaugh Regio is comprised of several terrain types. Most striking is Texas-sized Sputnik Planum, which is apparently level, has no observable craters, and is divided by polygons and ovoids bounded by shallow troughs. Small smooth hills are seen in some of the polygon-bounding troughs. These hills could either be extruded or exposed by erosion. Sputnik Planum polygon/ovoid formation hypotheses range from convection to contraction, but convection is currently favored. There is evidence of flow of plains material around obstacles. Mountains, especially those seen south of Sputnik Planum, exhibit too much relief to be made of CH4, CO, or N2, and thus are probably composed of H2O-ice basement material. The north contact of Sputnik Planum abuts a scarp, above which is heavily modified cratered terrain. Pluto's large moon Charon is generally heavily to moderately cratered. There is a mysterious structure in the arctic. Charon's surface is crossed by an extensive system of rift faults and graben. Some regions are smoother and less cratered, reminiscent of lunar maria. On such a plain are large isolated block mountains surrounded by moats. At this conference we will present highlights of the latest observations and analysis. This work was supported by NASA's New Horizons project
    Keywords: Astronomy
    Type: Control ID: 2364885 , ARC-E-DAA-TN27203 , ARC-E-DAA-TN27197 , AGU Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States|2015 DPS Meeting; Nov 08, 2015 - Nov 13, 2015; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The SOFIA observatory has been in routine science operations since returning in January from a 6 month-long heavy maintenance period for the aircraft and the telescope assembly. These operations include a successful 6 week deployment to the Southern hemisphere. This presentation will provide an update to the current operational status of the SOFIA observatory, concentrating on the improvements and upgrades that have been implemented since the heavy maintenance period.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN23899 , International Astronomical Union General Assembly; Aug 03, 2015 - Aug 14, 2015; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: After discovery, the first task of exoplanet science is characterization. However experience has shown that the limited spectral range and resolution of most directly imaged exoplanet data requires an iterative approach to spectral modeling. Simple, brown dwarf-like models, must first be tested to ascertain if they are both adequate to reproduce the available data and consistent with additional constraints, including the age of the system and available limits on the planet's mass and luminosity, if any. When agreement is lacking, progressively more complex solutions must be considered, including non-solar composition, partial cloudiness, and disequilibrium chemistry. Such additional complexity must be balanced against an understanding of the limitations of the atmospheric models themselves. For example while great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the spectral shape of Y and J spectral bands. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. I will present examples of the iterative process of directly imaged exoplanet characterization as applied to both known and potentially newly discovered exoplanets with a focus on constraints provided by GPI spectra. If a new GPI planet is lacking, as a case study I will discuss HR 8799 c and d will explain why some solutions, such as spatially inhomogeneous cloudiness, introduce their own additional layers of complexity. If spectra of new planets from GPI are available I will explain the modeling process in the context of understanding these new worlds.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN22790 , In the Spirit of Bernard Lyot Conference 2015; Jun 22, 2015 - Jun 26, 2015; Montreal; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: The United Kingdom Infrared Telescope (UKIRT) has been a major asset for the NASA Orbital Debris Program Office (OPDO) since March, 2014. With the UKIRT current contract coming to an end at the finish of FY15, there is a golden opportunity for this community to fund and gain access to UKIRT as an SSA asset through HCAR (Hawaii Center for Astronautics Research). UKIRT is the only telescope on Mauna Kea dedicated to infrared bands. Spectral coverage ranges from the near- (0.8-5m) to the mid- to far-infrared (8-25 micrometer) regime. To date, debris observations have been collected with three instruments. Near-Infrared photometry with ZYJHK filters has been obtained with the Wide Field Camera (WFCam). Near-Infrared (1-2.5 micrometer) spectra are the focus of observations taken with the UKIRT Imager SpecTrometer (UIST). And Michelle (Mid Infrared escCHELLE) is a thermal imager-spectrometer designed for the 8-25 micrometer regime. With 35% of the telescope time allocated to ODPO, a very steady stream of data has been collected on a variety of debris targets using all the above instrumentation. Initial results from WFCam were discussed at AMOS and NISOI including analyses on IDCSPs, the MSG cooler and baffle covers. The cylindrical HS-376 buses were the focus of recent WFCam runs. Summary analyses of these works will be presented. Focus will be given to initial results of the data collected with the Cassegrain instruments, UIST and Michelle. UIST spectra were collected in September 2014, March and April 2015. Targets included a suite of HS-376 buses, well suited to investigate the signatures of blue solar panels; several dead satellites with solar array wings; Titan 3C transtage debris; the CTA Array cover, and others. In addition, Michelle mid-IR photometry was collected on a select few objects during the April 2015 run. Using WFCam, UIST and Michelle the Lockheed Martin has been observing operational satellites in the near- mid and far-infrared regime in an attempt to understand the health and status of several satellites that are based on the Lockheed Martin A2100 bus. The potential insights into debris characterization using this range of assets, and early analyses will be discussed, as well as the opportunities possible for utilizing UKIRT as an SSA asset.
    Keywords: Astronomy
    Type: JSC-CN-34418
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-19
    Description: NASA's Meteoroid Environment Office (MEO) is charged with monitoring the meteoroid environment in near-Earth space for the protection of satellites and spacecraft. The MEO has recently established eight wide-field meteor cameras, four cameras each at two separate stations to calculate automated meteor fluxes in the millimeter size range. Each camera consists of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 15.5 degree field of view. This configuration has a limiting meteor magnitude of about +5. One station is located at Marshall Space Flight Center in Huntsville, Alabama and the other is 31.8 kilometers away at a school in Decatur, Alabama. Both single-station and double-station fluxes are calculated every morning using data from the previous night. The flux algorithms employed here differ from others currently in use in that they do not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the position of the active shower or sporadic source radiant. The flux per height interval is calculated and summed to obtain the total meteor flux. As the mass is also computed from the photometry, a mass flux can also be calculated. First, a weather algorithm indicates if sky conditions are clear enough to calculate fluxes, at which point a limiting magnitude algorithm is employed. The limiting magnitude algorithm performs a fit of stellar magnitudes versus camera intensities. The stellar limiting magnitude is derived from this and converted to a limiting meteor magnitude for the active shower or sporadic source. The fluxes are scaled to an average limiting magnitude throughout the night and zenithal hourly rate (ZHR's) are output daily along with flux values. In addition to this process, results will be presented as applied to the 2014 May Camelopardalid outburst, using data from several different optical systems, which looked at May Camelopardalids in different size ranges.
    Keywords: Astronomy
    Type: M15-4673 , Stanford Meteor Environment and Effects (SMEE) Workshop; Jul 14, 2015 - Jul 16, 2015; Stanford, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-19
    Description: The short development time associated with Python and the number of astronomical packages available have led to increased usage within NASA. The Meteoroid Environment Office in particular uses the Python language for a number of applications, including daily meteor shower activity reporting, searches for potential parent bodies of meteor showers, and short dynamical simulations. We present our development of a meteor shower identification code that identifies statistically significant groups of meteors on similar orbits. This code overcomes several challenging characteristics of meteor showers such as drastic differences in uncertainties between meteors and between the orbital elements of a single meteor, and the variation of shower characteristics such as duration with age or planetary perturbations. This code has been proven to successfully and quickly identify unusual meteor activity such as the 2014 kappa Cygnid outburst. We present our algorithm along with these successes and discuss our plans for further code development.
    Keywords: Astronomy
    Type: M15-4271 , Python in Astronomy; Apr 20, 2015 - Apr 24, 2015; Leiden; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-19
    Description: NASA has established the goal of traveling beyond low-Earth orbit and extending manned exploration to Mars. The extended length of a Mars mission, along with the lack of resupply missions increases the importance of nutritional content in the food system. The purpose of this research is to assess the stability of vitamin supplementation in traditionally processed spaceflight foods. It is expected that commercially available fortificants will remain stable through long-duration missions if proper formulation, processing, and storage temperatures are all achieved. Five vitamins (vitamin E, vitamin K, pantothenic acid, folic acid, and thiamin) were blended into a vitamin premix (DSM, Freeport, TX); premixes were formulated to be compatible with current processing techniques (retort or freeze-dried), varied water activities (high or low), and packaging material. The overall goal of this process is to provide 25% of the recommended daily intake of each vitamin (per serving), following processing and two years of ambient storage. Four freeze-dried foods (Scrambled Eggs, Italian Vegetables, Potatoes Au Gratin, Noodles and Chicken) and four thermostabilized foods (Curry Sauce with Vegetables, Chicken Noodle Soup, Grilled Pork Chop, Rice with Butter) were produced (with and without the vitamin premix), to assess the impact of the added fortificant on color and taste, and to determine the stability of supplemental vitamins in spaceflight foods. The use of fortification in spaceflight foods appears to be a plausible mitigation step to inadequate nutrition. This is due to the ease of vitamin addition as well as the sustainability of the premixes through initial processing steps. Postprocessing analysis indicated that vitamin fortification with this premix did not immediately impact organoleptic properties of the food. At this stage, the largest hurdle to fortification is the preciseness to which vitamins can be added; the total amount of vitamins required for production is 10 - 20 grams, a minor percentage of the formulation. As demonstrated by the over-fortification measured in Italian Vegetables and Grilled Pork Chop, homogeneity may be difficult to achieve with such small amounts. Thus, pouch-to-pouch variability, over-fortification, and underfortification may ensue if a method for precise addition is not identified. Stability will continue to be evaluated over two years of storage at three temperatures, and future analysis should reveal the extent to which this issue should be a concern
    Keywords: Life Sciences (General)
    Type: JSC-CN-32114 , 2015 Human Research Program (HRP) Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: The nearby star Procyon is a visual binary containing the F5 IV-V subgiant Procyon A, orbited in a 40.84-year period by the faint DQZ white dwarf (WD) Procyon B. Using images obtained over two decades with the Hubble Space Telescope, and historical measurements back to the 19th century, we have determined precise orbital elements. Combined with measurements of the parallax and the motion of the A component, these elements yield dynamical masses of 1.478 plus or minus 0.012M and 0.592 plus or minus 0.006M for A and B, respectively. The mass of Procyon A agrees well with theoretical predictions based on asteroseismology and its temperature and luminosity. Use of a standard core-overshoot model agrees best for a surprisingly high amount of core overshoot. Under these modeling assumptions, Procyon A's age is approximately 2.7 Gyr. Procyon B's location in the H-R diagram is in excellent agreement with theoretical cooling tracks for WDs of its dynamical mass. Its position in the mass-radius plane is also consistent with theory, assuming a carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was 1.9-2.2M, depending on its amount of core overshoot. Several astrophysical puzzles remain. In the progenitor system, the stars at periastron were separated by only approximately AU, which might have led to tidal interactions and even mass transfer; yet there is no direct evidence that these have occurred. Moreover the orbital eccentricity has remained high (approximately 0.40). The mass of Procyon B is somewhat lower than anticipated from the initial-to-final-mass relation seen in open clusters. The presence of heavy elements in its atmosphere requires ongoing accretion, but the place of origin is uncertain.
    Keywords: Astronomy
    Type: AD-A626355 , The Astrophysical Journal (ISSN 1538-4357); 813; 2; 106
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: Despite the significant value of the southeastern United States' red drum (Sciaenops ocellatus) fishery, there is a lack of clinical blood chemistry data. This was the first study to assess plasma glucose values as an indicator of stress response to evaluate variation and the effect of reproductive activity for wild adult red drum in Florida. Red drum (n=126) were collected from NASA's Kennedy Space Center waters during three reproductive periods in 2011. Samples were obtained from the branchial vessels of the gill arch. Plasma glucose levels were significantly different among reproductive periods, with the highest mean values recorded during the spawning period, September- October (38.23 mg / dL +/- 10.0). The glucose range was 17 - 69 mg / dL. Glucose values were lower during all three periods than previous values recorded for cultured or captive red drum studies. This may indicate that fish from this population were under less stress than other populations previously sampled.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN21089 , Biological Sciences; 78; 2; 88-93
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: MSFC-E-DAA-TN28120 , International Fermi Symposium; Nov 09, 2015 - Nov 11, 2015; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Prior rodent experiments on the Shuttle were limited by the short flight duration. The International Space Station (ISS) provides a new platform for conducting rodent experiments under long duration conditions. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 days (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNAlater at -80C (n2group) until their return to Earth. Remaining carcasses on-orbit were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls housed in standard cages, and Ground Controls (GC) housed in flight hardware within an environmental chamber. Upon return to Earth, there were no differences in body weights between Flight (FLT) and GC at the end of the 37 days in space. Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were processed under optimal conditions in the laboratory. Liver samples dissected on-orbit yielded high quality RNA (RIN8.99+-0.59, n7). Liver samples dissected post-flight from the intact, frozen FLT carcasses yielded RIN of 7.27 +- 0.52 (n6). Additionally, wet weights of various tissues were measured. Adrenal glands and spleen showed no significant differences in FLT compared to GC although thymus and livers weights were significantly greater in FLT compared to GC. Over 3,000 tissue aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for future Biospecimen Sharing Program. Together, the RR validation flight successfully demonstrates the capability to support long-duration experimentation on the ISS to achieve both basic science and biomedical objectives.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN27932 , Annual Meeting of ASGSR; Nov 11, 2015 - Nov 14, 2015; Alexandria, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: MSFC-E-DAA-TN28009 , International Fermi Symposium; Nov 09, 2015 - Nov 13, 2015; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Over the past forty years, microgravity has inspired and enabled applications in a wide range of sectors including medicine, materials, computers, communications, and national defense. Trends show that demand for high-tech solutions is increasing in these sectors, solutions that require higher resolution, greater precision, novel materials, innovative processes, and more sophisticated tools. These are areas where microgravity can offer unique capabilities for innovation. The Emerging Space Office (ESO) has engaged in multiple studies over the past year that have found that microgravity RD is one of the most promising technology areas for contributing to economic growth and to NASAs mission. The focus of these studies was on terrestrial markets rather than NASA applications, applied research rather than basic research, and commercial rather than academic investigators. There have been more success stories than are generally appreciated and there are significant areas of promising future potential. Many of the problems that have limited commercial microgravity development in the past are being solved. Microgravity research and development (RD) requires iteration and learning, as rapidly as possible. New technologies enable high throughput and rapid data collection in increasingly small payloads. The International Space Station is in orbit and provides a laboratory that is available 247 at least until 2024. Frequent flights by commercial space providers to and from the ISS now enable the fast learning cycles needed by high-tech industries. Launch costs are decreasing and the ability to return payloads to Earth is increasing. New commercial space laboratories, such as those being developed by SpaceX and Bigelow Aerospace, are in the final stages of development and testing. This ecosystem for microgravity RD has never been available before. These are game-changer conditions for attracting high-tech industries to space for terrestrial, as well as NASA, applications. However, few know that these capabilities are available or how to use them. In aggregate, the potential value for new applications from microgravity RD over the next ten years could add billions of dollars per year in terrestrial applications to the future economy, create new jobs, and generate a wide range of public benefits in medical advances, while broadening the customer base for the emerging space industry.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN22743 , ExoMed Conference 2015; May 20, 2015; Swampscott, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: In utero exposure to stress can shape neurobiological and behavioral outcomes in offspring, producing vulnerability to psychopathology later in life. Animal models of prenatal stress likewise have demonstrated long-term alterations in brain function and behavioral deficits in offspring. For example, using a rodent model of unpredictable variable prenatal stress (UVPS), in which dams are exposed to unpredictable, variable stress across pregnancy, we have found increased body weight and anxiety-like behavior in adult male, but not female, offspring. DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could be responsible for the long-term effects of UVPS. Here, we measured methylation of brain-derived neurotrophic factor (bdnf), a gene important in development and plasticity, and telomere length in the brains of adult offspring from the UVPS model. Results indicate that prenatally stressed adult males have greater methylation in the medial prefrontal cortex (mPFC) compared to non-stressed controls, while females have greater methylation in the ventral hippocampus compared to controls. Further, prenatally stressed males had shorter telomeres than controls in the mPFC. These findings demonstrate the ability of UVPS to produce epigenetic alterations and changes in telomere length across behaviorally-relevant brain regions, which may have linkages to the phenotypic outcomes.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN22394 , International Society for Developmental Psychobiology (ISDP); Jul 20, 2015 - Jul 23, 2015; San Sebastian; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: JSC-CN-34408 , Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS); Sep 15, 2015 - Sep 18, 2015; Maui, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: M15-4567 , Lunar Impact Workshop; Jun 02, 2015 - Jun 03, 2015; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-12
    Description: We present Suzaku XIS observation of V2491 Cyg (Nova Cyg 2008 No. 2) obtained in quiescence, more than two years after the outburst. The nova was detected as a very luminous source in a wide spectral range from soft to hard X-rays. A very soft blackbody-like component peaking at 0.5 keV indicates that either we observe remaining, localized hydrogen burning on the surface of the white dwarf, or accretion onto a magnetized polar cap. In the second case, V2491 Cyg is a candidate "soft intermediate polar". We obtained the best fit for the X-ray spectra with several components: two of thermal plasma, a blackbody and a complex absorber. The later is typical of intermediate polars. The X-ray light-curve shows a modulation with an approximately 38 min period. The amplitude of this modulation is strongly energy dependent and reaches maximum in the 0.8-2.0 keV range. We discuss the origin of the X-ray emission and pulsations, and the likelihood of the intermediate polar scenario.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN24641
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-12
    Description: Methods for mass producing bacterial alginate, bacterial cultures for producing alginate, and pharmaceutical compositions containing bacterial alginate are contemplated.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-12
    Description: Plants will be important for food and O2 production during long term human habitation in space. Recycling of nutrients (e.g., from waste materials) could reduce the resupply costs of fertilizers for growing these plants. Work at NASA's Kennedy Space Center has shown that ion exchange resins can extract fertilizer (plant essential nutrients) from human waste water, after which the residual brine could be treated with electrodialysis to recover more water and produce high value chemicals (e.g., acids and bases). In habitats with significant plant production, inedible biomass becomes a major source of solid waste. To "close the loop" we also need to recover useful nutrients and fertilizer from inedible biomass. We are investigating different approaches to retrieve nutrients from inedible plant biomass, including physical leaching with water, processing the biomass in bioreactors, changing the pH of leaching processing, and/or conducting multiple leaches of biomass residues.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN28049
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-12
    Description: This paper describes the near-infrared detector system noise generator (NG) that we wrote for the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). NG simulates many important noise components including; (1) white "read noise", (2) residual bias drifts, (3) pink 1/f noise, (4) alternating column noise, and (5) picture frame noise. By adjusting the input parameters, NG can simulate noise for Teledyne's H1RG, H2RG, and H4RG detectors with and without Teledyne's SIDECAR ASIC IR array controller. NG can be used as a starting point for simulating astronomical scenes by adding dark current, scattered light, and astronomical sources into the results from NG. NG is written in Python-3.4.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN31629
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-12
    Description: Since plants on Earth evolved under broad-spectrum solar radiation, anytime they are grown exclusively under electric lighting that does not contain all wavelengths in similar proportion to those in sunlight, plant appearance and size could be uniquely different. Nevertheless, plants have been grown for decades under fluorescent (FL) (1) + incandescent (IN) (2) lamps as a sole source of lighting (SSL), and researchers have become comfortable that, in certain proportions of FL + IN for a given species, plants can appear "normal" relative to their growth outdoors. The problem with using such traditional SSLs for commercial production typically is short lamp lifespans and not obtaining enough photosynthetically active radiation (PAR, 400-700 nm) when desired. These limitations led to supplementation of FL + IN lamp outputs with longer-lived, high-intensity discharge (HID) lamps in growth chambers (3). As researchers became comfortable that mixes of orange-biased high-pressure sodium (HPS) and blue-biased metal halide (MH) HIDs together also could give normal plant growth at higher intensities, growth chambers and phytotrons subsequently were equipped mainly with HID lamps, with their intense thermal output filtered out by ventilated light caps or thermal-controlled water barriers. For the most part, IN and HID lamps have found a home in commercial protected horticulture, usually for night-break photoperiod lighting (IN) or for seasonal supplemental lighting (mostly HPS) in greenhouses. However, lack of economically viable options for SSL have held back aspects of year-round indoor agriculture from taking off commercially.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN23510
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-19
    Description: We are studying how biological systems can harness quantum effects of time varying electromagnetic (EM) waves as the time-setting basis for universal biochemical organization via the redox cycle. The effects of extremely weak EM field on the biochemical redox cycle can be monitored through real-time detection of oxidation-induced light emissions of reporter molecules in living cells. It has been shown that EM fields can also induce changes in fluid transport rates through capillaries (approximately 300 microns inner diameter) by generating annular proton gradients. This effect may be relevant to understanding cardiovascular dis-function in spaceflight, beyond the ionosphere. Importantly, we show that these EM effects can be attenuated using an active EM field cancellation device. Central for NASA's Human Research Program is the fact that the absence of ambient EM field in spaceflight can also have a detrimental influence, namely via increased oxidative damage, on DNA replication, which controls heredity.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN18643 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-19
    Description: Bayesian Blocks are optimal piecewise linear representations (step function fits) of light-curves. The simple algorithm implementing this idea, using dynamic programming, has been extended to include more data modes and fitness metrics, multivariate analysis, and data on the circle (Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations, Scargle, Norris, Jackson and Chiang 2013, ApJ, 764, 167), as well as new results on background subtraction and refinement of the procedure for precise timing of transient events in sparse data. Example demonstrations will include exploratory analysis of the Kepler light curve archive in a search for "star-tickling" signals from extraterrestrial civilizations. (The Cepheid Galactic Internet, Learned, Kudritzki, Pakvasa1, and Zee, 2008, arXiv: 0809.0339; Walkowicz et al., in progress).
    Keywords: Astronomy
    Type: ARC-E-DAA-TN21788 , Hot Wiring the Transient Universe IV; May 12, 2015 - May 15, 2015; Santa Barbara, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-19
    Description: Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual meteor shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.
    Keywords: Astronomy
    Type: M15-4834 , Annual Meeting of the AAS Division of Planetary Sciences; Nov 08, 2015 - Nov 13, 2015; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-19
    Description: Laboratory analysis of cometary samples have been enabled by collection of cometary dust in the stratosphere by high altitude aircraft and by the direct sampling of the comet Wild2 coma by the NASA Stardust spacecraft. Cometary materials are composed of a complex assemblage of highly primitive, unprocessed interstellar and primordial solar system materials as well as a variety of high temperature phases that must have condensed in the inner regions of the protoplanetary disk. These findings support and contradict conclusions of comet properties based solely on astronomical observations. These sample return missions have instead shown that there is a continuity of properties between comets and asteroids, where both types of materials show evidence for primitive and processed materials. Furthermore, these findings underscore the importance and value of direct sample return. There will be great value in comparing the findings of the Stardust cometary coma sample return mission with those of future asteroid surface sample returns OSIRISREx and Hayabusa II as well as future comet nucleus sample returns.
    Keywords: Astronomy
    Type: JSC-CN-32830 , MISASA V International Symposium 2015; Mar 06, 2015 - Mar 08, 2015; Tottori; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-19
    Description: The NASA Stardust mission returned the first direct samples of a cometary coma from comet 81P/Wild2 in 2006. Intact capture of samples encountered at 6 km/s was enabled by the use of aerogel, an ultralow dense silica polymer. Approximately 1000 particles were captured, with micron and submicron materials distributed along ~mm scale length tracks. This sample collection method and the fine scale of the samples posed new challenges to the curation and cosmochemistry communities. Sample curation involved extensive, detailed photodocumentation and delicate microsurgery to remove particles without loss from the aerogel tracks. This work had to be performed in highly clean facility to minimize the potential of contamination. JSC Curation provided samples ranging from entire tracks to micrometersized particles to external investigators. From the analysis perspective, distinguishing cometary materials from aerogel and identifying the potential alteration from the capture process were essential. Here, transmission electron microscopy (TEM) proved to be the key technique that would make this possible. Based on TEM work by ourselves and others, a variety of surprising findings were reported, such as the observation of high temperature phases resembling those found in meteorites, rarely intact presolar grains and scarce organic grains and submicrometer silicates. An important lesson from this experience is that curation and analysis teams must work closely together to understand the requirements and challenges of each task. The Stardust Mission also has laid important foundation to future sample returns including OSIRISREx and Hayabusa II and future cometary nucleus sample return missions.
    Keywords: Astronomy
    Type: JSC-CN-32829 , MISASA V International Symposium 2015; Mar 06, 2015 - Mar 08, 2015; Tottori; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN27848 , AGU 2015 Fall Meeting; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL/6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNA later at less than or equal to -80 C (n=2/group) until their return to Earth. Remaining carcasses were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls, housed in standard cages, and Ground Controls (GC), housed in flight hardware within an environmental chamber. FLT mice appeared more physically active on-orbit than GC, and behavior analysis are in progress. Upon return to Earth, there were no differences in body weights between FLT and GC at the end of the 37 days in space. RNA was of high quality (RIN greater than 8.5). Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were optimally processed in the laboratory. Liver samples collected from the intact frozen FLT carcasses had RNA RIN of 7.27 +/- 0.52, which was lower than that of the samples processed on-orbit, but similar to those obtained from the control group intact carcasses. Nonetheless, the RNA samples from the intact carcasses were acceptable for the most demanding transcriptomic analyses. Adrenal glands, thymus and spleen (organs associated with stress response) showed no significant difference in weights between FLT and GC. Enzymatic activity was also not significantly different. Over 3,000 tissues collected from the four groups of mice have become available for the Biospecimen Sharing Program. Together, these validation flight findings demonstrate the capability to support long-duration RR on the ISS to achieve both basic science and biomedical objectives.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN24803 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 10, 2015 - Nov 14, 2015; Alexandria, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: We are designing and developing a "6U" (10 x 22 x 34 cm; 14 kg) nanosatellite as a secondary payload to fly aboard NASA's Space Launch System (SLS) Exploration Mission (EM) 1, scheduled for launch in late 2017. For the first time in over forty years, direct experimental data from biological studies beyond low Earth orbit (LEO) will be obtained during BioSentinel's 12- to 18- month mission. BioSentinel will measure the damage and repair of DNA in a biological organism and allow us to compare that to information from onboard physical radiation sensors. In order to understand the relative contributions of the space environment's two dominant biological perturbations, reduced gravity and ionizing radiation, results from deep space will be directly compared to data obtained in LEO (on ISS) and on Earth. These data points will be available for validation of existing biological radiation damage and repair models, and for extrapolation to humans, to assist in mitigating risks during future long-term exploration missions beyond LEO. The BioSentinel Payload occupies 4U of the spacecraft and will utilize the monocellular eukaryotic organism Saccharomyces cerevisiae (yeast) to report DNA double-strand-break (DSB) events that result from ambient space radiation. DSB repair exhibits striking conservation of repair proteins from yeast to humans. Yeast was selected because of 1) its similarity to cells in higher organisms, 2) the well-established history of strains engineered to measure DSB repair, 3) its spaceflight heritage, and 4) the wealth of available ground and flight reference data. The S. cerevisiae flight strain will include engineered genetic defects to prevent growth and division until a radiation-induced DSB activates the yeast's DNA repair mechanisms. The triggered culture growth and metabolic activity directly indicate a DSB and its successful repair. The yeast will be carried in the dry state within the 1-atm P/L container in 18 separate fluidics cards with each card having 16 independent culture microwells, with integral microchannels and filters to supply nutrients and reagents, confine the yeast to the wells, and enable optical measurement. The measurement subsystem will monitor each subgroup of culture wells continuously for several weeks, optically tracking DSBtriggered cell growth and metabolism. BioSentinel will also include physical radiation sensors based on the TimePix sensor, as implemented by JSC's RadWorks group, which record individual radiation events including estimates of their linear-energytransfer (LET) values. Radiation-dose and LET data will be compared directly to the rate of DSB-and-repair events measured by the S. cerevisiae biosentinels. The spacecraft bus will operate in a deep space environment with functions that include command and data handling, communications, power generation (via deployable solar panels) and storage, and attitude determination-and-control system with micropropulsion. Development of the BioSentinel spacecraft will mature and prove multiple nanosatellite advances in order to function well beyond LEO: Communications from distances of 500,000 km; Autonomous attitude control, momentum management, and safe mode of nanosatellites in deep space; Shielding-, hardening-, design-, and software-derived radiation tolerance for electronics; Reliable functionality for 12 - 18 months of key subsystems for biofluidics, memory, communications, power, etc.; Close integration of living biological radiation event monitors with miniature physical radiation spectrometers; Biological measurement of solar particle events beyond Earth orbit In addition to providing the first biological results from beyond LEO in over 4 decades, BioSentinel will provide an adaptable small-satellite instrument platform to perform a range of human-exploration-relevant measurements that characterize the biological consequences of multiple outer space environments. BioSentinel is being developed under NASA's Advanced Exploration Systems program.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN20997 , Small Satellite Conference; Aug 08, 2015 - Aug 13, 2015; Logan, Utah; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-19
    Description: Porous aggregate grains are commonly found in cometary dust samples and are needed to model cometary IR spectral energy distributions (SEDs). Models for thermal emissions from comets require two forms of silicates: amorphous and crystalline. The dominant crystal resonances observed in comet SEDs are from Forsterite (Mg2SiO4). The mass fractions that are crystalline span a large range from 0.0 〈 or = fcrystal 〈 or = 0.74. Radial transport models that predict the enrichment of the outer disk (〉25 AU at 1E6 yr) by inner disk materials (crystals) are challenged to yield the highend-range of cometary crystal mass fractions. However, in current thermal models, Forsterite crystals are not incorporated into larger aggregate grains but instead only are considered as discrete crystals. A complicating factor is that Forsterite crystals with rectangular shapes better fit the observed spectral resonances in wavelength (11.0-11.15 microns, 16, 19, 23.5, 27, and 33 microns), feature asymmetry and relative height (Lindley et al. 2013) than spherically or elliptically shaped crystals. We present DDA-DDSCAT computations of IR absorptivities (Qabs) of 3 micron-radii porous aggregates with 0.13 〈 or = fcrystal 〈 or = 0.35 and with polyhedral-shaped Forsterite crystals. We can produce crystal resonances with similar appearance to the observed resonances of comet Hale- Bopp. Also, a lower mass fraction of crystals in aggregates can produce the same spectral contrast as a higher mass fraction of discrete crystals; the 11micron and 23 micron crystalline resonances appear amplified when crystals are incorporated into aggregates composed otherwise of spherically shaped amorphous Fe-Mg olivines and pyroxenes. We show that the optical properties of a porous aggregate is not linear combination of its monomers, so aggregates need to be computed. We discuss the consequence of lowering comet crystal mass fractions by modeling IR SEDs with aggregates with crystals, and the implications for radial transport models of our protoplanetary disk.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN21970 , International Astronomical Union General Assembly; Aug 03, 2015 - Aug 14, 2015; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-19
    Description: The first young giant planet to be discovered by the Gemini Planet Imager was the (is) approximately 2MJ planet 51 Eri b. This approximately 20 Myr old young Jupiter is the first directly imaged planet to show unmistakable methane in H band. To constrain the planet's mass, atmospheric temperature, and composition, the GPI J and H band spectra as well as some limited photometric points were compared to the predictions of substellar atmosphere models. The best fitting models reported in the discovery paper (Macintosh et al. 2015) relied upon a combination of clear and cloudy atmospheric columns to reproduce the data. However for an object as cool as 700 K, the origin of the cloud coverage is somewhat puzzling, as the global silicate and iron clouds would be expected to have sunk well below the photosphere by this effective temperature. While strong vertical mixing in these low gravity atmospheres remains a plausible explanation, we have explored whether atmospheric photochemistry, driven by the UV flux from the primary star, may yield hazes that also influence the observed spectrum of the planet. To explore this possibility we have modeled the atmospheric photochemistry of 51 Eri b using two state-of-the-art photochemical models, both capable of predicting yields of complex hydrocarbons under various atmospheric conditions. In our presentation we will summarize the modeling approach employed to characterize 51 Eri b, explaining constraints on the planet's effective temperature, gravity, and atmospheric composition and also present results of our studies of atmospheric photochemistry. We will discuss whether photochemical hazes could indeed be responsible for the particulate opacity that apparently sculpts the spectrum of the planet.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN27081 , Extreme Solar Systems III; Nov 29, 2015 - Dec 04, 2015; Waikoloa Beach, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-20
    Description: Individual differences in cognitive processing relate to critical performance differences in real-world environments. Task switching is required for many of them and especially for task management during overload. Research exploring individual differences related to switching behavior (both frequency, and adherence to optimal switch times) is, however, sparse. We examined these relationships here, using the attentional network task to index executive control, and an ongoing tracking task (within a larger suite of concurrent task demands) to examine switching behavior. The results failed to support a general relationship between executive control and frequency in a complex, heterogeneous multi-task environment. However, higher executive control participants more successfully exploited optimal switching times, highlighting the varying role of individual differences in task management, when choice is unconstrained.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN26426 , Human Factors and Ergonomics Annual Meeting; Oct 26, 2015 - Oct 30, 2015; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: SPSC-01 , AIAA SPACE Conference and Exhibition; Aug 31, 2015 - Sep 02, 2015; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: The Florida Atlantic Coast Telemetry (FACT) Array is a collaborative partnership of researchers from 24 different organizations using passive acoustic telemetry to document site fidelity, habitat preferences, seasonal migration patterns, and reproductive strategies of valuable sportfish, sharks, and marine turtles. FACT partners have found that by bundling resources, they can leverage a smaller investment to track highly mobile animals beyond a study area typically restrained in scale by funds and manpower. FACT is guided by several simple rules: use of the same type of equipment, locate receivers in areas that are beneficial to all researchers when feasible, maintain strong scientific ethics by recognizing that detection data on any receiver belongs to the tag owner, do not use other members detection data without permission and acknowledge FACT in publications. Partners have access to a network of 480 receivers deployed along a continuum of habitats from freshwater rivers to offshore reefs and covers 1100 km of coastline from the Dry Tortugas, Florida to South Carolina and extends to the Bahamas. Presently, 49 species, (25 covered by Fisheries Management Plans and five covered by the Endangered Species Act) have been tagged with 2736 tags in which 1767 tags are still active.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN39898 , Annual Meeting of The American Fisheries Society; Aug 16, 2015 - Aug 20, 2015; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-30
    Description: We present an exploration tool for very large spectrum data sets such as the SDSS (Sloan Digital Sky Survey), LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope), and 4MOST (4-meter Multi-Object Spectroscopic Telescope) data sets. The tool works in two stages: the first uses batch processing and the second runs interactively. The latter employs the NASA hyperwall, a configuration of 128 workstation displays (8 by 16 array) controlled by a parallelized software suite running on NASA's Pleiades supercomputer. The stellar subset of the Sloan Digital Sky Survey, DR10, was chosen to show how the our tool may be used. In stage one, SDSS files for 569,740 stars are processed through our data pipeline. The pipeline fits each spectrum using an iterative continuum algorithm, distinguishing emission from absorption and handling molecular absorption bands correctly. It then measures 1659 discrete atomic and molecular spectral features that were carefully preselected based on their likelihood of being visible at some spectral type. The depths relative to the local continuum at each feature wavelength are determined for each spectrum: these depths, the local S/N (signal to noise ratio) level, and DR10-supplied variables such as magnitudes, colors, positions, and radial velocities are the basic measured quantities used on the hyperwall. In stage two, each hyperwall panel is used to display a 2-D scatter plot showing the depth of feature A vs the depth of feature B for all of the stars. A and B change from panel to panel. The relationships between the various (A,B) strengths and any distinctive clustering are immediately apparent when examining and inter-comparing the different panels on the hyperwall. The interactive software allows the user to select the stars in any interesting region of any 2-D plot on the hyperwall, immediately rendering the same stars on all the other 2-D plots in a unique color. The process may be repeated multiple times, each selection displaying a distinctive color on all the plots. At any time, the spectra of the selected stars may be examined in detail on a connected workstation display. We illustrate how our approach allows us to quickly isolate and examine such interesting stellar subsets as EMP (Extremely MetalPoor) stars, CV (Cataclymic Variable) stars and C (Carbon)-rich stars.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN20093 , Meeting of the American Astronomical Society (AAS 2015); Jan 04, 2015 - Jan 08, 2015; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-24
    Description: Strain gauges that can provide information with regard to the state of implantable devices are described. The strain gauges can exhibit luminescence that is detectable through living tissue, and the detectable luminescent emission can vary according to the strain applied to the gauge. A change in residual strain of the device can signify a loss of mechanical integrity and/or loosening of the implant, and this can be non-invasively detected either by simple visual detection of the luminescent emission or through examination of the emission with a detector such as a spectrometer or a camera.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-24
    Description: A method for providing an extended propagation ephemeris model for a satellite in Earth orbit, the method includes obtaining a satellite's orbital position over a first period of time, applying a least square estimation filter to determine coefficients defining osculating Keplarian orbital elements and harmonic perturbation parameters associated with a coordinate system defining an extended propagation ephemeris model that can be used to estimate the satellite's position during the first period, wherein the osculating Keplarian orbital elements include semi-major axis of the satellite (a), eccentricity of the satellite (e), inclination of the satellite (i), right ascension of ascending node of the satellite (.OMEGA.), true anomaly (.theta.*), and argument of periapsis (.omega.), applying the least square estimation filter to determine a dominant frequency of the true anomaly, and applying a Fourier transform to determine dominant frequencies of the harmonic perturbation parameters.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Hand-based biometric analysis systems and techniques are described which provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an in put image. Additionally, the analysis utilizes re-use of commonly-seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-12
    Description: A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-12
    Description: We describe how availability of new solar electric propulsion (SEP) technology can substantially increase the science capability of space astronomy missions working within the near-UV to far-infrared (UVOIR) spectrum by making dark sky orbits accessible for the first time. We present two case studies in which SEP is used to enable a 700 kg Explorer-class and 7000 kg flagship-class observatory payload to reach an orbit beyond where the zodiacal dust limits observatory sensitivity. The resulting scientific performance advantage relative to a Sun-Earth L2 point (SEL2) orbit is presented and discussed. We find that making SEP available to astrophysics Explorers can enable this small payload program to rival the science performance of much larger long development-time systems. Similarly, we find that astrophysics utilization of high power SEP being developed for the Asteroid Redirect Robotics Mission (ARRM) can have a substantial impact on the sensitivity performance of heavier flagship-class astrophysics payloads such as the UVOIR successor to the James Webb Space Telescope.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN15606
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-13
    Description: With the Kepler Mission, exoplanet science has entered the era of Big Data and has benefited tremendously from the availability of the NAS (NASA Advanced Supercomputing Division) Pleiades supercomputer. This presentation provides an overview of the history of exoplanet discoveries and highlights the key enabling technologies for Kepler. I provide an overview of the Kepler science pipeline and the algorithms used to analyze the data and detect transiting planets, all of which run routinely on the NAS Pleiades system. The presentation also provides a description of the Blender analysis program used to validate Kepler planet discoveries statistically, and the effort to discover exomoons lurking in Kepler data, both of which also run on Pleiades. Finally, I describe NASA's TESS (Transiting Exoplanet Survey Satellite) Mission, which leverages Kepler heritage to provide a science pipeline similar to that for Kepler and that will also run routinely on the NAS Pleiades supercomputer.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN37530 , NASA Advisory Council (NAC) Science Committee Ad Hoc Big Data Task Force Meeting; 28 Sept. 2016; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: JSC-CN-33747 , 2015 ISS R&D Conference; Jul 07, 2015 - Jul 09, 2015; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-08-13
    Description: Solar system exploration and eventual colonization efforts are constrained by limits on the mass of material that can embark from Earth. Thus, creative use of the resources available in situ could reduce mission costs and extend the scope of such activities. To that end, we are developing synthetic fungal strains to produce specialized materials from the resources found throughout the solar system. A primary goal is to develop a suite of Saccharomyces cerevisiae strains to serve as generic production chassis for synthetic metabolic pathways. These strains must perform consistently upon challenge by unique conditions including exposure to microgravity, cosmic radiation, the rigors of launch and re-entry, and long-term stasis. Presently, we are establishing systematic datasets profiling epigenetic, transcriptional, translational and metabolic states of S. cerevisiae under relevant operating conditions. These will deepen our understanding of the physiological changes associated with space travel and enable rational engineering of optimal production strains.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN24136 , 2015 Gordon Research Conference on Synthetic Biology: Advancing Biosystems Design; Jun 28, 2015 - Jul 03, 2015; Newry, ME; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-01-09
    Description: The calibration techniques we are developing for WFIRST can be also used on HDST, turning it into a revolutionary astrometric instrument. Estimated astrometric accuracy is 10s of nano arcseconds.Two examples of what such a capability allows us to do: 1)Parallaxes of galactic neighborhood out to 100 Mpc 2) Astrometric characterization of sun like stars out to 50 p.
    Keywords: Astronomy
    Type: JPL-CL-16-3212
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: M16-4927 , Meeting of the American Astronomical Society Division for Planetary Sciences; Nov 08, 2015 - Nov 13, 2015; National Harbor, MD.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: One human factors challenge is predicting operator performance in novel situations. Approaches such as drawing on relevant previous experience, and developing computational models to predict operator performance in complex situations, offer potential methods to address this challenge. A few concerns with modeling operator performance are that models need to realistic, and they need to be tested empirically and validated. In addition, many existing human performance modeling tools are complex and require that an analyst gain significant experience to be able to develop models for meaningful data collection. This paper describes an effort to address these challenges by developing an easy to use model-based tool, using models that were developed from a review of existing human performance literature and targeted experimental studies, and performing an empirical validation of key model predictions.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN26427 , Human Factors and Ergonomics Annual Meeting; Oct 26, 2015 - Oct 30, 2015; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN23534 , European Turbulence Conference; Aug 25, 2015 - Aug 28, 2015; Delft; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) and the planetary science community have recently been exploring the potential contributions of stratospheric balloons to the planetary science field. A study that was recently concluded explored the roughly 200 or so science questions raised in the Planetary Decadal Survey report and found that about 45 of those questions are suited to stratospheric balloon based observations. In September of 2014, a stratospheric balloon mission called BOPPS (which stands for Balloon Observation Platform for Planetary Science) was flown out of Fort Sumner, New Mexico. The mission had two main objectives, first, to observe a number of planetary targets including one or more Oort cloud comets and second, to demonstrate the applicability and performance of the platform, instruments, and subsystems for making scientific measurements in support planetary science objectives. BOPPS carried two science instruments, BIRC and UVVis. BIRC is a cryogenic infrared multispectral imager which can image in the.6-5 m range using an HgCdTe detector. Narrow band filters were used to allow detection of water and CO2 emission features of the observed targets. The UVVis is an imager with the science range of 300 to 600 nm. A main feature of the UVVis instrument is the incorporation of a guide camera and a Fine Steering Mirror (FSM) system to reduce image jitter to less than 100 milliarcseconds. The BIRC instrument was used to image targets including Oort cloud comets Siding Spring and Jacques, and the dwarf planet 1 Ceres. BOPPS achieved the first ever earth based CO2 observation of a comet and the first images of water and CO2 of an Oort cloud comet (Jacques). It also made the first ever measurement of 1Ceres at 2.73 m to refine the shape of the infrared water absorption feature on that body. The UVVis instrument, mounted on its own optics bench, demonstrated the capability for image correction both from atmospheric disturbances as well as some of the residual motion from the gondola that was not addressed by the gondolas coarse pointing systems. The mission met its primary science and engineering objectives. The results of the BOPPS mission will feed into the body of science knowledge but also feed into future planning for more science from balloon-borne platforms. A notional platform called Gondola for High-Altitude Planetary Science (GHAPS) has been explored and this concept platform can address a number of important decadal questions. This paper provides a summary of the assessment of potential balloon borne observations for planetary science purposes including where potential science contributions can be expected, the necessary performance characteristics of the platform, and other features required or desired. The BOPPS mission is summarized including descriptions of the main elements and key science and engineering results. The paper then briefly describes GHAPS, and the salient features that can make it a valuable tool for future planetary observations.
    Keywords: Astronomy
    Type: GRC-E-DAA-TN24015 , ESA Symposium on European Rockets and Balloon Programmes and Related Research; Jun 07, 2015 - Jun 12, 2015; Tromso; Norway
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: LV separation state is fixed ECEF, so inertial states vary with hourly, daily, monthly, and yearly frequencies The net effect of all frequencies leads to significant variations in orbit geometry Injection states can be matched with invariant manifolds of periodic orbits in the CR3BP to explain observed final orbit.
    Keywords: Astronomy
    Type: AAS 15-802 , GSFC-E-DAA-TN25129 , Astrodynamics Specialist Conference; Aug 09, 2015 - Aug 13, 2015; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: GSFC-E-DAA-TN25101 , Contamination, Coatings, Materials, and Planetary Protection Workshop; Jul 29, 2015 - Jul 31, 2015; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN21991 , Gamma Ray Bursts Workshop; Apr 13, 2015 - Apr 17, 2015; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: The Agricultural Model Intercomparison and Improvement Project (AgMIP) was founded in 2010. Its mission is to improve substantially the characterization of world food security as affected by climate variability and change, and to enhance adaptation capacity in both developing and developed countries. The objectives of AgMIP are to: Incorporate state-of-the-art climate, crop/livestock, and agricultural economic model improvements into coordinated multi-model regional and global assessments of future climate impacts and adaptation and other key aspects of the food system. Utilize multiple models, scenarios, locations, crops/livestock, and participants to explore uncertainty and the impact of data and methodological choices. Collaborate with regional experts in agronomy, animal sciences, economics, and climate to build a strong basis for model applications, addressing key climate related questions and sustainable intensification farming systems. Improve scientific and adaptive capacity in modeling for major agricultural regions in the developing and developed world, with a focus on vulnerable regions. Improve agricultural data and enhance data-sharing based on their intercomparison and evaluation using best scientific practices. Develop modeling frameworks to identify and evaluate promising adaptation technologies and policies and to prioritize strategies.
    Keywords: Life Sciences (General)
    Type: GSFC-E-DAA-TN21609 , Handbook of Climate Change and Agroecosystems; 3; 3-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-27
    Description: A scaffold assembly and related methods of manufacturing and/or using the scaffold for stem cell culture and tissue engineering applications are disclosed which at least partially mimic a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Synthetic biological engineering can be utilized to aide the advancement of improved long-term space flight. The potential to use synthetic biology as a platform to biomanufacture desired equipment on demand using the three dimensional (3D) printer on the International Space Station (ISS) gives long-term NASA missions the flexibility to produce materials as needed on site. Polyhydroxybutyrates (PHBs) are biodegradable, have properties similar to plastics, and can be produced in Escherichia coli using genetic engineering. Using PHBs during space flight could assist mission success by providing a valuable source of biomaterials that can have many potential applications, particularly through 3D printing. It is well documented that during PHB production E. coli cells can become significantly elongated. The elongation of cells reduces the ability of the cells to divide and thus to produce PHB. I aim to better understand cell division during PHB production, through the design, building, and testing of synthetic biological circuits, and identify how to potentially increase yields of PHB with FtsZ overexpression, the gene responsible for cell division. Ultimately, an increase in the yield will allow more products to be created using the 3D printer on the ISS and beyond, thus aiding astronauts in their missions.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN24678 , NASA Internship Conference; Aug 07, 2015; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: A 3-stage adiabatic demagnetization refrigerator (ADR) is used on the Soft X-ray Spectrometer instrument on Astro-H to cool a 6x6 array of x-ray microcalorimeters to 50 mK. The ADR is supported by a cryogenic system consisting of a superfluid helium tank, a 4.5 K Joule-Thomson (JT) cryocooler, and additional 2-stage Stirling cryocoolers that pre-cool the JT cooler and cool radiation shields within the cryostat. The ADR is configured so that it can use either the liquid helium or the JT cryocooler as its heat sink, giving the instrument an unusual degree of tolerance for component failures or degradation in the cryogenic system. The flight detector assembly, ADR and dewar were integrated into the flight dewar in early 2014, and have since been extensively characterized and calibrated. This paper summarizes the operation and performance of the ADR in all of its operating modes
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN27441 , Cryogenics (ISSN 0011-2275); 74; 2-9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: Synthetic biology holds the promise of advancing long term space fight by the production of medicine, food, materials, and energy. One such application of synthetic biology is the production of biomaterials, specifically polyhydroxyalkanoates (PHAs), using purposed organisms such as Escherichia coli. PHAs are a group of biodegradable bioplastics that are produced by a wide variety of naturally occurring microorganisms, mainly as an energy storage intermediate. PHAs have similar melting point to polypropylene and a Youngs modulus close to polystyrene. Due to limited resources and cost of transportation, large-scale extraction of biologically produced products in situ is extremely cumbersome during space flight. To that end, we are developing a secretion systems for exporting PHA from the cell in order to reduce unit operations. PHAs granules deposited inside bacteria are typically associated with proteins bound to the granule surface. Phasin, a granule bound protein, was targeted for type I secretion by fusion with HlyA signal peptide for indirect secretion of PHAs. In order to validate our secretion strategy, a green fluorescent protein (GFP) was tagged to the PHA polymerase enzyme (phaC), this three part gene cassette consists of phaA and phaB and are required for PHA production. Producing PHAs in situ during space flight or planet colonization will enable mission success by providing a valuable source of biomaterials that can have many potential applications thereby reducing resupply requirements. Biologically produced PHAs can be used in additive manufacturing such as three dimensional (3D) printing to create products that can be made on demand during space flight. After exceeding their lifetime, the PHAs could be melted and recycled back to 3D print other products. We will discuss some of our long term goals of this approach.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN24127 , Gordon Conference on Synthetic Biology; Jun 28, 2015 - Jul 03, 2015; Newry, ME; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Drosophila melanogaster, or the fruit fly, has long been an important organism for Earth-based research, and is now increasingly utilized as a model system to understand the biological effects of spaceflight. Studies in Drosophila melanogaster have shown altered immune responses in 3rd instar larvae and adult males following spaceflight, changes similar to those observed in astronauts. In addition, spaceflight has also been shown to affect bacterial physiology, as evidenced by studies describing altered virulence of Salmonella typhimurium following spaceflight and variation in biofilm growth patterns for the opportunistic pathogen Pseudomonas aeruginosa during flight. We recently sent Serratia marcescens Db11, a Drosophila pathogen and an opportunistic human pathogen, to the ISS on SpaceX-5 (Fruit Fly Lab-01). S. marcescens samples were stored at 4degC for 24 days on-orbit and then allowed to grow for 120 hours at ambient station temperature before being returned to Earth. Upon return, bacteria were isolated and preserved in 50% glycerol or RNAlater. Storage, growth, and isolation for ground control samples were performed using the same procedures. Spaceflight and ground samples stored in 50% glycerol were diluted and injected into 5-7-day-old ground-born adult D. melanogaster. Lethality was significantly greater in flies injected with the spaceflight samples compared to those injected with ground bacterial samples. These results indicate a shift in the virulence profile of the spaceflight S. marcescens Db11 and will be further assessed with molecular biological analyses. Our findings strengthen the conclusion that spaceflight impacts the virulence of bacterial pathogens on model host organisms such as the fruit fly. This research was supported by NASA's ISS Program Office (ISSPO) and Space Life and Physical Sciences Research and Applications (SLPSRA).
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN27791 , Annual Meeting of the American Society for Gravitational and Space Research; Nov 10, 2015 - Nov 14, 2015; Alexandria, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. In this paper, we describe the methodology based on the original structural code of Durisen et al. (1989, Icarus 80, 136-166) and on the pollution transport code of Cuzzi and Estrada (1998, Icarus 132, 1-35). We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data. In particular, we explicitly verify the claim that the inner B (and presumably A) ring edge can be maintained over long periods of time due to an ejecta distribution that is heavily biased in the prograde direction through a balance between the sharpening effects of ballistic transport and the broadening effects of viscosity. We also see that a "ramp"-like feature forms over time just inside that edge. However, it does not remain linear for the duration of the runs presented here unless a less steep ejecta velocity distribution is adopted. We also model the C ring plateaus and find that their outer edges can be maintained at their observed sharpness for long periods due to ballistic transport. We hypothesize that the addition of a significant component of a retrograde-biased ejecta distribution may help explain the linearity of the ramp and is probably essential for maintaining the sharpness of C ring plateau inner edges. This component would arise for the subset of micrometeoroid impacts which are destructive rather than merely cratering. Such a distribution will be introduced in future work.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN23431 , Icarus (e-ISSN 1090-2643); 252; 415–439
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: A space-based GW observatory will produce spectacular science. The LISA mission concept: (a) Long history, (b) Very well-studied, including de-scopes, (c) NASAs Astrophysics Strategic Plan calls for a minority role in ESAs L3 mission opportunity. To that end, NASA is Participating in LPF and ST7 Developing appropriate technology for a LISA-like mission Preparing to seek an endorsement for L3 participation from the 2020 decadal review.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN27844 , 2015 Mid-Atlantic Section of the American Physical Society meeting; Oct 23, 2015 - Oct 25, 2015; Morgantown, WV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: M15-4720 , Stanford Meteor Environments and Effects (SMEE) Workshop; Jul 14, 2015 - Jul 16, 2015; Stanford, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: JSC-CN-33042 , Inter-Agency Space Debris Coordination Committee (ICAD) Meeting; Mar 30, 2015 - Apr 02, 2015; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone in the absence of mechanical loading. The model was recently updated to include skeletal loading from exercise and free living activities to maintain healthy bone using a new daily load stimulus (DLS). This new formula was developed based on an extensive review of existing DLS formulas, as discussed in the abstract by Pennline et al. The DLS formula incorporated into the bone remodeling model utilizes strains and stress calculated from finite element model (FEM) of the bone region of interest. The proximal femur was selected for the initial application of the DLS formula, with a specific focus on the femoral neck. METHODS: The FEM was generated from CAD geometry of a femur using de-identified CT data. The femur was meshed using linear tetrahedral elements Figure (1) with higher mesh densities in the femoral neck region, which is the primary region of interest for the initial application of the DLS formula in concert with the DAP bone remodeling model. Nodal loads were applied to the femoral head and the greater trochanter and the base of the femur was held fixed. An L2 norm study was conducted to reduce the length of the femoral shaft without significantly impacting the stresses in the femoral neck. The material properties of the FEM of the proximal femur were separated between cortical and trabecular regions to work with the bone remodeling model. Determining the elements with cortical material properties in the FEM was based off of publicly available CT hip scans [4] that were segmented, cleaned, and overlaid onto the FEM.
    Keywords: Life Sciences (General)
    Type: GRC-E-DAA-TN20068 , Human Research Program Investigator''s Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: M15-4492 , Python in Astronomy; Apr 20, 2015 - Apr 24, 2015; Leiden; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: Star light suppression technologies to find and characterize faint exoplanets include internal coronagraph instruments as well as external star shade occulters. Currently, the NASA WFIRST-AFTA mission study includes an internal coronagraph instrument to find and characterize exoplanets. Various types of masks could be employed to suppress the host star light to about 10 -9 level contrast over a broad spectrum to enable the coronagraph mission objectives. Such masks for high contrast internal coronagraphic imaging require various fabrication technologies to meet a wide range of specifications, including precise shapes, micron scale island features, ultra-low reflectivity regions, uniformity, wave front quality, achromaticity, etc. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks by combining electron beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each, highlighting milestone accomplishments from the High Contrast Imaging Testbed (HCIT) at JPL and from the High Contrast Imaging Lab (HCIL) at Princeton University. We also present briefly the technologies applied to fabricate laboratory scale star shade masks.
    Keywords: Astronomy
    Type: SPIE Optics + Photonics; Aug 09, 2015 - Aug 13, 2015; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: Long-term exposure to space microgravity poses significant risks for visual impairment. Evidence suggests such vision changes are linked to cephalad fluid shifts, prompting a need to directly quantify microgravity-induced retinal vascular changes. The quality of retinal images used for such vascular remodeling analysis, however, is dependent on imaging methodology. For our exploratory study, we hypothesized that retinal images captured using fluorescein imaging methodologies would be of higher quality in comparison to images captured without fluorescein. A semi-automated image quality assessment was developed using Vessel Generation Analysis (VESGEN) software and MATLAB image analysis toolboxes. An analysis of ten images found that the fluorescein imaging modality provided a 36% increase in overall image quality (two-tailed p=0.089) in comparison to nonfluorescein imaging techniques.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN27224 , Annual Meeting American Society for Gravitational and Space Research (ASGSR 2015) Conference; Nov 11, 2015 - Nov 14, 2015; Alexandria, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN27584 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2015); Nov 11, 2015 - Nov 14, 2015; Alexandria, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: The goal of this study was to advance understanding and prediction of the impact of circadian rhythm on aspects of complex task performance during unexpected automation failures, and subsequent fault management. Participants trained on two tasks: a process control simulation, featuring automated support; and a multi-tasking platform. Participants then completed one task in a very early morning (circadian night) session, and the other during a late afternoon (circadian day) session. Small effects of time of day were seen on simple components of task performance, but impacts on more demanding components, such as those that occur following an automation failure, were muted relative to previous studies where circadian rhythm was compounded with sleep deprivation and fatigue. Circadian low participants engaged in compensatory strategies, rather than passively monitoring the automation. The findings and implications are discussed in the context of a model that includes the effects of sleep and fatigue factors.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN26422 , Human Factors and Ergonomics Annual Meeting; Oct 26, 2015 - Oct 30, 2015; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN26831 , Sino-German Symposium on Gravitational Physics in Space; Sep 14, 2015 - Sep 16, 2015; Hannover; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: Telescope to be tested double-pass from the small aperture side currently aligned to better than l3 deg room temperature operation only seems to be stable under normal lab conditions.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN26806 , Sino-German Symposium on Gravitational Physics; Sep 15, 2015; Hanover; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astronomy
    Type: JSC-CN-34411 , AMOS Technical Conference; Sep 15, 2015 - Sep 18, 2015; Maui, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: Following its formation, a star's metal content is one of the few factors that can significantly alter its evolution. Measurements of stellar metallicity ([Fe/H]) typically require a spectrum, but spectroscopic surveys are limited to a few x 10(exp 6) targets; photometric surveys, on the other hand, have detected 〉 10(exp 9) stars. I present a new machine-learning method to predict [Fe/H] from photometric colors measured by the Sloan Digital Sky Survey (SDSS). The training set consists of approx. 120,000 stars with SDSS photometry and reliable [Fe/H] measurements from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g' 〈 or = 18 mag), with 4500 K 〈 or = Teff 〈 or = 7000 K, corresponding to those with the most reliable SSPP estimates, I find that the model predicts [Fe/H] values with a root-mean-squared-error (RMSE) of approx.0.27 dex. The RMSE from this machine-learning method is similar to the scatter in [Fe/H] measurements from low-resolution spectra..
    Keywords: Astronomy
    Type: Data Analytics in Astronomy and Sciences Symposium; Mar 23, 2015 - Mar 25, 2015; Aizu Univ.; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a system capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project has developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage that it uses non-toxic chemicals, alcohols or other organics. The resulting RNA is transferred into a pipette and then dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. These reaction tubes are mounted on rotors to centrifuge the liquid to the reaction window of the tube using a cordless drill. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The resulting process takes less than 30 min to have tubes ready for loading into the qRT-PCR unit.The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, the Cepheid SmartCycler, that will fly in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid thermal ramp times and four-color detection. The ability to detect up to four fluorescent channels will enable multiplex assays that can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system will have the capability to downlink data from the ISS to the ground after a completed run and to uplink new programs. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The system can be used to validate terrestrial analyses of samples returned from ISS by providing on-orbit gene expression benchmarking prior to sample return. The ability to get on-orbit data will provide investigators with the opportunity to adjust experimental parameters in real time for subsequent trials, without the need for sample return and re-flight to sample multigenerational changes. The system can also be used for analysis of air, surface, water, and clinical samples to monitor environmental contaminants and crew health. The verification flight of the instrument is scheduled to launch on SpaceX-7 in June 2015. The WetLab-2 Project is supported by NASAs ISS Program at JSC, Code OZ.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN24831 , 2015 ISS R&D Conference; Jul 07, 2015 - Jul 09, 2015; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: Parameters important for NEO risk assessment and mitigation include Near-Earth Object diameter and taxonomic classification, which translates to surface composition. Diameters of NEOs are derived from the thermal fluxes measured by WISE, NEOWISE, Spitzer Warm Mission and ground-based telescopes including the IRTF and UKIRT. Diameter and its coupled parameters Albedo and IR beaming parameter (a proxy for thermal inertia and/or surface roughness) are dependent upon the phase angle, which is the Sun-target-observer angle. Orbit geometries of NEOs, however, typically provide for observations at phase angles greater than 20 degrees. At higher phase angles, the observed thermal emission is sampling both the day and night sides of the NEO. We compare thermal models for NEOs that exclude (NEATM) and include (NESTM) night-side emission. We present a case study of NEO 3691 Bede, which is a higher albedo object, X (Ec) or Cgh taxonomy, to highlight the range of H magnitudes for this object (depending on the albedo and phase function slope parameter G), and to examine at different phase angles the taxonomy and thermal model fits for this NEO. Observations of 3691 Bede include our observations with IRTF+SpeX and with the 10 micrometer UKIRT+Michelle instrument, as well as WISE and Spitzer Warm mission data. By examining 3691 Bede as a case study, we highlight the interplay between the derivation of basic physical parameters and observing geometry, and we discuss the uncertainties in H magnitude, taxonomy assignment amongst the X-class (P, M, E), and diameter determinations. Systematic dependencies in the derivation of basic characterization parameters of H-magnitude, diameter, albedo and taxonomy with observing geometry are important to understand. These basic characterization parameters affect the statistical assessments of the NEO population, which in turn, affects the assignment of statistically-assessed basic parameters to discovered but yet-to-be-fully-characterized NEOs.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN28013 , American Geophysical Union (AGU) Fall Meeting 2015; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: This paper discusses charge blooming and starlight saturation - two potential technical problems - when using an Electron Multiplying Charge Coupled Device (EMCCD) type detector in a high-contrast instrument for imaging exoplanets. These problems especially affect an interferometric type coronagraph - coronagraphs that do not use a mask to physically block starlight in the science channel of the instrument. These problems are presented using images taken with a commercial Princeton Instrument EMCCD camera in the Goddard Space Flight Center's (GSFC), Interferometric Coronagraph facility. In addition, this paper discusses techniques to overcome such problems. This paper also discusses the development and architecture of a Field Programmable Gate Array and Digital-to-Analog Converter based shaped clock controller for a photon-counting EMCCD camera. The discussion contained here will inform high-contrast imaging groups in their work with EMCCD detectors.
    Keywords: Astronomy
    Type: SPIE 960515 , GSFC-E-DAA-TN33011 , SPIE Conference on Techniques and Instrumentation for Detection of Exoplanets; Aug 10, 2015 - Aug 13, 2015; San Diego, CA; United States|Techniques and Instrumentation for Detection of Exoplanets 7; 9605; 960515-1-960515-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-12
    Description: Translational Cell and Animal Research (TCAR). For nearly 50 years, the NASA Space Biology Program has funded, and Ames Research Center (ARC) has managed, a robust program of fundamental research including studies using a wide range of animal cells, tissues and organisms. Much of this research was conducted on spacecraft in microgravity environments including diverse platforms such as: Gemini Spacecraft, US Biosatellites, Apollo Command Modules, Skylabs, Russian Biosatellites, NASA Space Shuttles, NASA/Mir, and most recently, the International Space Station (ISS). During the Space Shuttle Era (19812011), the science of space biology took an enormous step forward with 45 missions that afforded researchers with new opportunities to conduct systematic and complex experiments aimed at a deeper understanding of how life adapts to the space environment. Beginning in the 1990s, the products of these experiments, comprised of research summaries and rare, unused biospecimens, were collected and catalogued within the ARC Life Sciences Data Archiving Office, a branch of NASAs Life Sciences Data Archive (LSDA) managed from the NASA Johnson Spaceflight Center.
    Keywords: Life Sciences (General)
    Type: NASA/SP-2015-625 , ARC-E-DAA-TN20135
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-12-12
    Description: NASA in its plans to send humans to distant destination such as Mars faces the health and physiological performance problems caused by microgravity and space radiation. While most of the environmental conditions in spacecraft during flight can be made to mimic terrestrial conditions, microgravity cannot yet be managed. This space environmental factor has a major impact on the bodys biological system forcing alterations, in order to adapt to this new environment. Most space flight and ground-based studies suggest that prolonged exposure to microgravity leads to significant skeletal muscle atrophy, bone loss, and results in suppression of total metabolism. Due to microgravity, unloaded crewmembers lose up to 1.5% of their skeletal mass and 1.8% of bone strength each month during ISS missions. Remarkably many animals, including human-size bears, which are largely inactive during the 6 to 8 months of hibernation, show no loss in bone mass and much less muscle atrophy than would be anticipated over such a prolonged period of physical inactivity. This suggests that while in a suppressed metabolic state animals have unique natural mechanisms to prevent muscle disuse and bone atrophy. The molecular mechanisms underlying these important adaptations are not yet known. Radiation exposure is the second health hazard encountered during spaceflight that can cause radiation sickness, cancer or death. This study provides new evidence that metabolic activity levels play a critical role in radioprotection. Metabolic suppression, as an adaptive response of cells to minimize damage caused by radiation, enables cells to reduce cellular dysfunction and damage, and prolong their survival despite persistent oxidative stress. Thus mechanistic understanding of metabolism offers a means for sustaining astronauts in long-duration missions. The ultimate goals of this study are to demonstrate that induced metabolic suppression in animals and humans will profoundly reduce their sensitivity to the damaging effects of radiation and microgravity as well as other kinds of stresses caused by spaceflight. The beneficial effects of suppressed metabolism induced by different factors such as temperature, nutrition, and medications, will not only mitigate the most detrimental hazards of spaceflight but also radically reduce mission life support requirements and spaceflight logistics.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN19467 , NASA Human Research Program Investigators Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: The CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)/Cas9 system has revolutionized genome editing by providing unprecedented DNA-targeting specificity. Here we demonstrate that this system can be also applied in vitro to fundamental cloning steps to facilitate efficient plasmid selection for transformation and selective gene insertion into plasmid vectors by cleaving unwanted plasmid byproducts with a single-guide RNA (sgRNA)-Cas9 nuclease complex. Using fluorescent and chromogenic proteins as reporters, we demonstrate that CRISPR/Cas9 cleavage excludes multiple plasmids as well as unwanted ligation byproducts resulting in an unprecedented increase in the transformation success rate from approximately 20% to nearly 100%. Thus, this CRISPR/Cas9-Assisted Transformation-Efficient Reaction (CRATER) protocol is a novel, inexpensive, and convenient application to conventional molecular cloning to achieve near-perfect selective transformation.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN29411
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-12
    Description: Described herein are systems and techniques for a motion capture system and a three-dimensional (3D) tracking system used to record body position and/or movements/motions and using the data to measure skin strain (a strain field) all along the body while a joint is in motion (dynamic) as well as in a fixed position (static). The data and technique can be used to quantify strains, calculate 3D contours, and derive patterns believed to reveal skin's properties during natural motions.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: Wetlab-2 is a research platform for conducting real-time quantitative gene expression analysis aboard the International Space Station. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space. Currently, gene expression analyses of space flown biospecimens must be conducted post flight after living cultures or frozen or chemically fixed samples are returned to Earth from the space station. Post-flight analysis is limited for several reasons. First, changes in gene expression can be transient, changing over a timescale of minutes. The delay between sampling on Earth can range from days to months, and RNA may degrade during this period of time, even in fixed or frozen samples. Second, living organisms that return to Earth may quickly re-adapt to terrestrial conditions. Third, forces exerted on samples during reentry and return to Earth may affect results. Lastly, follow up experiments designed in response to post-flight results must wait for a new flight opportunity to be tested.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN24208
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: We present new measurements for the rotation periods of two near Earth asteroids: 1027 Aesculapia and 3395 Jitka, the latter of which has been measured for the first time. Our measured period for 1027 Aesculapia is 9.79 +/- 0.01 h and amplitude of 0.09 mag, which is inconsistent with the previously published measurement of 6.83 +/- 0.10 h. The origin of this discrepancy is uncertain. We measure the period of 3395 Jitka to be 9.12 +/- 0.02 h with an amplitude of A= 0.42 mag.
    Keywords: Astronomy
    Type: M14-4489
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: NASA has long recognized the importance of biological life-support systems to remove carbon dioxide, generate oxygen, purify water, and produce food for long-duration space missions. Experiments to understand the effects of the space environment on plant development have been performed since early days of the space program. In the late 1970s, NASA sponsored a series of workshops to identify issues associated with developing a sustainable, biological life-support system for long-duration space missions. Based on findings from these workshops, NASA's Controlled Ecological Life Support Systems (CELSS) program began funding research at university and field centers to systematically conduct the research identified in those workshops. Key issues were the necessity to reduce mass, power/energy requirements, and volume of all components.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN23507
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-12
    Description: A: The cosmic microwave background (CMB) radiation fills the universe and travels in all directions. As we see it from here in satellite maps, it is about equally bright in all directions, and thats one of the main reasons we know its cosmic.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN21387
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-26
    Description: No abstract available
    Keywords: Astronomy
    Type: HQ-E-DAA-TN25223 , ALMA Workshop for Large Proposals on Nearby Galaxies; Aug 25, 2015; Mitaka; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-26
    Description: A system for assessing vestibulo-ocular function includes a motion sensor system adapted to be coupled to a user's head; a data processing system configured to communicate with the motion sensor system to receive the head-motion signals; a visual display system configured to communicate with the data processing system to receive image signals from the data processing system; and a gain control device arranged to be operated by the user and to communicate gain adjustment signals to the data processing system.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-08-26
    Description: The disclosed embodiments provide cyanobacteria spp. that have been genetically engineered to have increased production of carbon-based products of interest. These genetically engineered hosts efficiently convert carbon dioxide and light into carbon-based products of interest such as long chained hydrocarbons. Several constructs containing polynucleotides encoding enzymes active in the metabolic pathways of cyanobacteria are disclosed. In many instances, the cyanobacteria strains have been further genetically modified to optimize production of the carbon-based products of interest. The optimization includes both up-regulation and down-regulation of particular genes.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-19
    Description: With the exponential growth of interest in unmanned aerial vehicles (UAVs) and their vast array of applications in both space exploration and terrestrial uses such as the delivery of medicine and monitoring the environment, the 2014 Stanford-Brown-Spelman iGEM team is pioneering the development of a fully biological UAV for scientific and humanitarian missions. The prospect of a biologically-produced UAV presents numerous advantages over the current manufacturing paradigm. First, a foundational architecture built by cells allows for construction or repair in locations where it would be difficult to bring traditional tools of production. Second, a major limitation of current research with UAVs is the size and high power consumption of analytical instruments, which require bulky electrical components and large fuselages to support their weight. By moving these functions into cells with biosensing capabilities - for example, a series of cells engineered to report GFP, green fluorescent protein, when conditions exceed a certain threshold concentration of a compound of interest, enabling their detection post-flight - these problems of scale can be avoided. To this end, we are working to engineer cells to synthesize cellulose acetate as a novel bioplastic, characterize biological methods of waterproofing the material, and program this material's systemic biodegradation. In addition, we aim to use an "amberless" system to prevent horizontal gene transfer from live cells on the material to microorganisms in the flight environment. So far, we have: successfully transformed Gluconacetobacter hansenii, a cellulose-producing bacterium, with a series of promoters to test transformation efficiency before adding the acetylation genes; isolated protein bands present in the wasp nest material; transformed the cellulose-degrading genes into Escherichia coli; and we have confirmed that the amberless construct prevents protein expression in wild-type cells. In addition, as part of our human outreach project, we have been in touch with leaders in the fields of UAVs, synthetic biology, and earth sciences, and it is clear that biodegradable UAVs could have a significant impact on the industry.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN20240 , Institute of Biological Engineering (IBE) Annual Conference; Mar 05, 2015 - Mar 07, 2015; St. Louis, MO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Xenon is the heaviest gas found in significant quantities in natural planetary atmospheres. It would seem the least likely to escape. Yet there is more evidence for xenon escape from Earth than for any element other than helium and perhaps neon. The most straightforward evidence is that most of the radiogenic Xe from the decay of (129)I (half-life 15.7 Myr) and (244)Pu (half-life 81 Myr) that is Earth's birthright is missing. The missing xenon is often attributed to the impact erosion of early atmospheres of Earth and its ancestors. It is obvious that if most of the radiogenic xenon were driven off by impacts, most of the rest of the atmophiles fared the same fate. The other line of evidence is in the nonradiogenic isotopes of xenon and its silent partner, krypton. Atmospheric xenon is strongly mass fractionated (at about 4% per amu) compared to any known solar system source (Figure 1). This is in stark contrast to krypton, which may not be fractionated at all: atmospheric Kr is slightly heavier than solar Kr (at about 0.5% per amu), but it is the same as in carbonaceous chondrites. Nonradiogenic xenon is also under abundant relative to krypton (the so-called "missing xenon" problem). Together these observations imply that xenon has been subject to fractionating escape and krypton not.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN20427 , Lunar & Planetary Science Conference (LPSC); Mar 16, 2015 - Mar 20, 2015; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: Exo-C is NASAs first community study of a modest aperture space telescope designed for high contrast observations of exoplanetary systems. The mission will be capable of taking optical spectra of nearby exoplanets in reflected light, discovering previously undetected planets, and imaging structure in a large sample of circumstellar disks. It will obtain unique science results on planets down to super-Earth sizes and serve as a technology pathfinder toward an eventual flagship-class mission to find and characterize habitable Earth-like exoplanets. We present the mission/payload design and highlight steps to reduce mission cost/risk relative to previous mission concepts. Key elements are an unobscured telescope aperture, an internal coronagraph with deformable mirrors for precise wavefront control, and an orbit and observatory design chosen for high thermal stability. Exo-C has a similar telescope aperture, orbit, lifetime, and spacecraft bus requirements to the highly successful Kepler mission (which is our cost reference). The needed technology development is on-course for a possible mission start in 2017. This paper summarizes the study final report completed in January 2015. During 2015 NASA will make a decision on its potential development.
    Keywords: Astronomy
    Type: IEEEAC Paper #2508 , GSFC-E-DAA-TN20777 , 2015 IEEE Aerospace Conference; Mar 07, 2015 - Mar 14, 2015; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: The Fruit Fly Lab team at Ames Research Center has developed and flown several versions of hardware to ISS that have been utilized to conduct research using the model organism, Drosophila melanogaster. These sets of hardware vary in complexity and capabilities and can be matched to experiments based on specific aims objectives and considerations for cost, updownmass, and crew time requirements. The team has multiple investigators slated to utilize this hardware on near-term missions to ISS, and is expecting more from future calls for proposals.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN21503 , ISS Research & Development Conference 2015; Jul 07, 2015 - Jul 09, 2015; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: There are now well over a thousand confirmed exoplanets, ranging from hot to cold and large to small worlds. JWST spectra will provide much more detailed information on the molecular constituents, chemical compositions, and thermal properties of the atmospheres of transiting planets than is now known. We explore this by modeling clear, cloudy,and high mean molecular weight atmospheres of typical hot Jupiter, warm Neptune, warm sub-Neptune, and cool super-Earth planets and then simulating their JWST transmission and emission spectra. These simulations were performed for several JWST instrument modes over 1 - 11 microns and incorporate realistic signal and noise components. We then performed state-of the art retrievals to determine how well temperatures and abundances (CO, CO2, H2O, NH3) will be constrained and over what pressures for these different planet types. Using these results, we appraise what instrument modes will be most useful for determining what properties of the different planets, and we assess how well we can constrain their compositions, CO ratios, and temperature profiles.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN25135 , Exploring the Universe with JWST; Oct 12, 2018 - Oct 16, 2018; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-11-06
    Description: Kepler has discovered that tens of percent of sunlike stars possess one or more planets larger than Earth within 0.5 AU. Masses of dozens of small and mid-sized exoplanets have been measured using radial velocity or transit timing variations. Few transiting planets larger than 1.6 Earth radii are rocky. Rather, the planetary mass-radius diagram for planetary radius between 1.6 and 8 times that of Earth shows a tendency for mass to increase slowly with size. The scatter is larger than can be explained by observational errors and correlations with temperature, implying that the population is heterogeneous. Many Neptune-size planets have very low densities and must have a substantial fraction of their volumes occupied by hydrogen and/or helium. Models of the structure, growth and evolution of planets made of mixtures of rock and light gases will be presented and compared with observations of both individual bodies and of the characteristics of the population as a whole.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN22185 , IAP Colloquium, From Super-Earth to Brown Dwarfs: Who''s Who?; Jun 29, 2015 - Jul 03, 2015; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2004-01-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉New York, N.Y. -- Science. 2003 Dec 19;302(5653):2039-45.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14700029" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/therapeutic use ; Animals ; Astronomical Phenomena ; Astronomy ; Climate ; Germ Cells/cytology/physiology ; Humans ; Mental Disorders/etiology/genetics ; Neoplasms/blood supply/drug therapy ; Physical Phenomena ; Physics ; RNA, Antisense ; *Science/trends ; Stem Cells/physiology ; Y Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-08-24
    Description: Carbon nanotubes (CNTs) used as a probe for scanning probe microscopy has become one of the many potential usages of CNTs that is finding real applications in scientific research and industrial communities. It has been proposed that the unique mechanical buckling properties of the CNT would lessen the imaging force exerted on the sample and, thus, make CNT scanning probes ideal for imaging soft materials, including biological samples in liquid environments. The hydrophobic nature of the CNT graphitic sidewall is clearly chemically incompatible with the aqueous solution requirements in some biological imaging applications. In this paper, we present electron micrograph results demonstrating the instability of CNT scanning probes when submerged in aqueous solution. Moreover, we also introduce a novel approach to resolve this chemical incompatibility problem. By coating the CNT probe with ethylenediamine, thus rendering the CNT probe less hydrophobic, we demonstrate the liquid imaging capability of treated CNT probes. Experimental data for imaging in aqueous solutions are presented, which include an ultrathin Ir film and DNA molecules on a mica surface.
    Keywords: Life Sciences (General)
    Type: IEEE Trans Nanobioscience (ISSN 1536-1241); Volume 3; 1; 56-60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...